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Abstract 

This paper describes connectionist ap:proaches to large-vocabulary 
continuous speech recognition integrating speech recognition and 
language processing. The speech recognition part consists of the 
Large Phonemic Time-Delay Neural Networks (TDNNs) which can 
automatically spot all Japanese phonemes by simply scanning among 
an input speech. The language processing part is made up of a 
predictive LR parser which predicts subsequent phonemes based on 
currently processed phonemes. Recognition experiments using ATR's 
large-vocabulary speech database with 5,240 words and "Conference 
Registration" task, yielded high recognition performance. 
Furthermore, we discuss some extensions of the current system for 
robust speech recognition, speaker-adaptation and speaker-
independent recognition. 
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Summary 

This paper describes recent progress in a connectionist large-
vocabulary continuous speech recognition system integrating speech 

recognition and language processing. The speech recognition part 
consists of Large Phonemic Time-Delay Neural Networks (TDNNs) 
which can automatically spot all 24 Japanese phonemes (i.e., 18 

consonants /b/, /d/, lg/, /pl, /t/, /kl, Im/, In/, /NI, Isl, /sh/, /h/, /z/, /ch/, /ts/, 
lrJ, /wl, Jyl and 5 vowels /aJ, /i/, Jul, le/, Joi and a double consonant /Q/ or 
silence) by simply scanning among input speech without any specific 
segmentation techniques. On the other hand, the language 

processing part is made up of a predictive LR parser in which the LR 
parser is guided by the LR parsing table automatically generated 
from context-free grammar rules, and proceeds left-to-right without 

backtracking. Time alignment between the predicted phonemes and 
a sequence of the TDNN phoneme outputs is carried out by the DTW 
matching method. We call this'hybrid'integrated recognition system 

the'TDNN-LR'method. We report that large-vocabulary isolated 
word and continuous speech recognition using the TDNN-LR method 
provided excellent speaker-dependent recognition performance, 
where incremental training using a small number of training tokens 

is found to be very effective for adaptation of speaking rate. 
Furthermore, we report some new achievements as extensions of the 
TDNN-LR method: (1) two proposed NN architectures provide robust 

phoneme recognition performance on variations of speaking manner, 
(2) a speaker-adaptation technique can be realized using a NN 
mapping function between input and standard speakers and (3) new 
architectures proposed for speaker-independent recognition provide 
performance that nearly matches speaker-dependent recognition 
perfomance. 
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Figure Captions: 

Fig.I Tl1e TDNN Architecture (input: "DA") 

Fig.2 Modular Construction of all Consonant 
Network 

ヽ

Fig.3 The Large Phonemic TDNN Architecture 

Fig.4 An Example of Spotting Results: (phrase 
name is /touroku-wo/) 

Fig.5 An Example of Context-Free Grammar 

Fig.6 An Example of ACTION and GOTO Tables 

Fig.7 The TDN~-LR Speech Recognition System 

’ Fig.8 Results on Large-Vocabulary Recognition 

Fig.9 FreN quenNcyN -Time -Shi ft-Invariant 
TDN (FTD) Architecture 

Fig.IO Block-Windowed Neural Network (BWNN) 
Architecture 

Fig.11 Segment-based Speaker Adaptive Neural 
Network Architecture 

Fig.12 A ,Leaarkgee r Phonemic TONN Architecture with 
Sp Adaptive Neural Networks 

Fig.13 TDNN-LR RuecroaglnNiettiown c System with Speaker 
Adaptive Ne orks 

＾ Fig.14 SID Network Architecture 

Fig.15 Meta-Pi Network Architecture 

Fig.16 Modular TDNN Architecture 

Fig.17 Modular Speaker ID Network Architecture 

Fig.IS A Leaakrgee r-Phonemic TDNN Architecture for 
Sp independent Recognition 
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Table Captions: 

Table 1 TDNN Phoneme Spotting Results on 
Large-Vocabulary 

Table 2 TDNN Phoneme Spotting Results on Test 
Phrases 

Table3 Features of the Task 

Table4 Phrase recognition rates(%) 

Table5 Pl1oneme Recognition Results(bdg task) 
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I. Introduction 

In this paper, we describe recent progress in the connectionist 
large-vocabulary continuous speech reconition system we have 
developed at ATR. First, we review our research achievements: 

phoneme recognition, phoneme/syllable spotting techniques using 
Time-Delay Neural Networks(TDNNs). Second, we describe large-
vocabulary and continuous speech recognition using TDNN phoneme 
spotting and LR parsing technique. Finally, currently developing 
techniques as extensions to speaker-independent phoneme 
recognition and speaker-adaptation techniques are described. 

We have demonstrated that a TDNN performed excellent phoneme 
recognition for a small but difficult task, i.e., bdg-phoneme 
recognition. Scalling up such a subnetwork to a larger network is 

another critical problem. Scaling up connectionist models to larger 

connectionist systems is difficult, because large networks require 

increasing amounts of training time and data, and the complexity of 

the optimization task quickly reaches computationally 
unmanageable proportions. We trained several small TDNNs aimed 
at all phonemic subcategories (nasals, fricatives, vowel, etc.) and 
reported excellent fine phonemic subcategory networks. We then 
proposed several techniques that allow us to "grow" larger nets in an 

incremental and modular fashion without loss in recognition 
performance and without the need for excessive training time or 
additional data. These techniques include class discriminatory 
learning, connectionist glue, selective / partial learning and all-net 
fine tuning. 

In section 3, we describe syllable and phoneme spotting 
experiments. Syllable or phoneme spotting if reliably achieved, 
provides a good solution to the spoken word and/or continuous speech 
recognition problem. We would like to extend the encouraging 

performance of TDNN to word/continuous speech recognition. We 
showed techniques for spotting Japanese CV syllables/phonemes in 
input speech based on TDNNs. We constructed a TDNN which could 
discriminate a single CV-syllable or phoneme. In Japanese, there are 
only about one hundred syllables, or less than thirty phonemes, 

which makes it feasible to prepare and train the TDNN to spot all 
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possible syllables or phonemes. These spotting techniques proved to 

be a good step toward continuous speech recognition. 
We have found that a phoneme spotting approach is more effective 

for recognizing continuous speech than a CV-syllable spotting 
approach because there are fewer phonemes than CV-syllables, and 

because preparing phoneme training tokens is easier than preparing 
CV-syllable tokens. Also, a phoneme-based recognition method is 

better suited for a large-vocabulary system than word-template-
based recognition methods. Since TDNNs have superior phoneme 
recognition performance and time-shift invariance, an accurate and 
efficient speech understanding system could be accomplished by 
adapting the TDNN spotting method to continuous speech 

recognition. 
In section 4, we describe the integration of speech processing and 

language processing. The speech recognition part consists of the 

Large Phonemic TDNN which can automatically spot all 24 Japanese 
phonemes (i.e., 18 consonants /bl, Id/, lg!, /pl, !ti, /kl, /ml, In/, IN/, Isl, 
/sh/, /h/, /zl, /ch/, /ts/, /r/, /w/, ly/ and 5 vowels /a/, /i/, Jul, le/, lo/ and a 
double consonant /Q/ or silence) by simply scanning among an input 
speech without any specific segmentation techniques. The Large 
Phonemic TDNN architecture is constructed as 4-layered back-
propagation type networks in a modular fashion, where a group of 
easily confused phonemes are integrated into sub-networks, and each 
sub-network is also integrated into one hidden layer. Training the 
Large TDNN is performed based on a fast back-propagation 
procedure[8] using shifted training tokens extracted from training-
word speech andlor training continuous speech, because the shift-
invariance property of the large TDNN was found to be effective in 
the region of 20-30 ms in a preliminary experiment[12]. 

On the other hand, the language processing part is made up of a 
predictive LR parser[l 7] in which the LR parser is guided by the LR 
parsing table automatically generated from context-free grammar 
rules, and proceeds left-to-right without backtracking. The predicted 
LR parser predicts subsequent phonemes based on the currently 
processed phonemes which are produced from the output units of the 
Large Phonemic TDNN scanning input speech. Time alignment 
between the predicted phonemes and a sequence of the TDNN 
phoneme outputs is carried out by a DTW matching method. A 
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duration control technique is applied for the predicted phonemes 
during the DTW matching to appropriately constrain the alignment. 

We call this "hybrid" integrated recognition system the "TDNN-

LR" method. The TDNN-LR recognition system provides vocabulary-

independent, large-vocabulary and continuous speech recognitio?-
because the Large Phonemic TDNN is trained by phoneme tokens 
extracted from various contexts of training word and/or continuous 

speech. 
In section 5, two kinds of recognition experiments i.e., large-

vocabulary isolated word recognition and continuous speech 
recognition, were performed using the TDNN-LR method. In section 
6, we describe currently developing issues as extensions including 

robustness for variations of speaking manner, speaker-independent 
phoneme recognition and speaker-adaptation problems. We will 

introduce recent results surrounding those issues. 

2. Phoneme Recogniti~n Using TDNN 

2.1. TONN Architecture 

For the recognition of phonemes, a three-layer net is constructed. 
Its overall architecture and a typical set of activities in the units are 
shown in Fig.1 based on one of the phonemic subcategory tasks 
(BDG). 

At the lowest level, 16 melscale spectral coefficients serve as input 

to the network. Input speech, sampled at 12 kHz, was hamming 
windowed and a 256-point FFT c~mputed every 5 msec. Melscale 
coefficients were computed from the power spectrum[l] and 

coefficients adjacent in time collapsed resulting in an overall 10-msec 
frame rate. The coefficients of an input token (in this case 15 frames 
of speech centered around the hand labeled vowel onset) were then 

normalized to lie between -1.0 and + 1.0 with the average at 0.0. 
Fig.1 shows the resulting coefficients for the speech token "DA" as 
input to the network, where positive values are shown as black 
squares and negative values as grey squares. The detailed 
architecture is described in ref.[1]. 

We have used a large-vocabulary database of 5,240 common 
Japanese words[19]. The entire database was phonetically hand 
labeled. These labels were used in the experiments reported below 

一ぎ

， 

＾ 

6
 





and applied to learning and evaluation. The data used was uttered in 
isolation by one male native Japanese speaker. _The database was 
then split into a training set and a testing set of 2,620 utterances 
each, from which the actual phonetic tokens were extracted. The 
training tokens (up to 600 tokens per phoneme) were randomized 
within each phoneme class. Training the TDNN was perf armed using 
a back-propagation learning procedure[7]. For performance 
evaluation, we have run all experiments on the testing tokens only, 
i.e., on tokens not included during training. The resulting data 
included a considerable amount of variability due to its position 
within an utterance or phonetic context. The TDNN achieved a 
recognition rate of 98.5% averaged for three male speakers[l]. 

2.2. Phoneme Recognition by Modular TDNN Design 

Our consonant TDNN (shown in Fig.2) was constructed modularly 
from networks aimed at the consonant subcategories, i.e., the bdg-, 
ptk-, mnN-, sshhz-, chts-and the rwy-tasks. Each of these nets had 
been trained before to discriminate between the consonants within 
each class. In addition, an interclass discrimination net that 
distinguishes between the consonant subclasses was trained. This 
hopefully provides missing feature information for interclass 
discrimination. Three connections were then established to each of 
the 18 consonant output categories (lb/, /di, lg/, Ip/, !ti, /kl, /ml, In/, IN/, 
Isl, /sh/, /h/, /z/, /ch/, /ts/, Ir!, lw/ and /y/): one to connect an output unit 
with the appropriate interclass discrimination unit in hidden layer 2, 
one with the appropriate intraclass discrimination unit from hidden 
layer 2 of the corresponding subcategory net and one with the always-
activated threshold unit (not shown in Fig.2). The overall network 
architecture is illustrated in Fig.2 for the case of an incoming test 
token (e.g., a /g/). For simplicity, Fig.2 shows only the hidden layers 
from the bdg-, ptk-, sshhz-and the interclass discrimination nets. At 
the output, only the two connections leading to the correctly activated 
/g/-output unit are shown. 

All free weights were initialized with small random weights and 
then trained by the back-propagation learning procedure[7][8]. 96.7% 
of all tokens were correctly categorized into one of the six consonant 
subclasses. After completion of the learning run the entire net was 
evaluated over 3,061 consonant test tokens, and achieved a 95.0% 
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recognition accuracy. All-net fine tuning was then performed by 
freeing up all connections in the network to allow all connections to 
make small additional adjustments in the interest of better overall 
performance. After completion of the all-net fine tuning, the 
performance of the network then yielded 96.0% correct consonant 

recognition over the test data[4, 5, 3]. Furthermore, a fast back-
propagation method later developed at ATR made it possible to train 

the consonant network from random weight values at the same time, 
and yielded a better recognition rate of 96. 7%[8]. 

3. Phoneme Spotting Using TDNN 

= 

3.1. Initial Atempts 

Spotting CV-syllables is a good approach to word and continuous 
speech recognition in Japanese because there are only about one 
hundred syllables. The architecture of the TDNN is extremely 

suitable for spotting CV-syllables/phonemes because the shift-

invariant structure makes it possible to correctly spot them even in 
the neighboring positions of syllable/phoneme tokens. If we train a 
neural network which can reliably discriminate one syllable, and also 
prepare all kinds of neural networks, spotting of any syllables, in 
principle, can be achieved for any input utterances. However, because 
there are about one hundred syllables which can be chosen, one 

significant problem will occur when we choose as training tokens all 
possible syllables except the specific syllable to be discriminated. As 
an initial attempt in spotting Japanese CV-syllables, we arbitrarily 
chose the syllable "BA" as a typical Japanese syllable. As training 
tokens, the "non-BA" syllables "DA", "GA", "PA", "TA" and "KA" 
are chosen because they might be confused with "BA". We could 
automatically discriminate all possible syllables other than the five 

syllables used as training tokens. As a result of that, both training 
time and the number of tokens could be greatly reduced. The spoting 
experiments on "BA" syllables showed that a rate of 96.7% was 
achieved, and other possible syllables except "BA" (not only "DA", 
"GA", "PA", "TA" and "KA" but also all other syllables) are well 
inhibited at a rate of 99.3%[2, 3]. 

In general, spotting phonemes is also an effective approach to 
speech recognition in other languages. We study the phoneme 
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spotting approach for comparison with the syllable spotting 
approach. In this case, phoneme group networks which can 
discriminate one phoneme group (ex.:"BDG") are trained. "BDG", 
"PTK", "MNsN", "SShrIZ", "ChTs", "RWY" and "AIUEO" are chosen 
as phoneme groups. As well as training phoneme group networks, the 
corresponding "intra-group" networks are also provided with 
training tokens of each subcategory (ex.:"B", "D" and "G" for the 

"BDG" intra-group network). Spotting experiments are performed by 

determining the phoneme category which is involved in the phoneme 

group. This approach to spotting phonemes is critical if an incorrect 
phoneme group were determined. However, it is advantageous that 
only 7 phoneme groups and 7 intra-group networks need be prepared 
rather than preparing about one hundred CV-syllable networks. 
Even though some misfired patterns appeared in phoneme spotting 

because the network were trained only with easily confused training 
tokens extracted from the center positions of phonemic tokens, 
excellent spotting results were obtained[2]. 

These results in spotting Japanese-CV syllables and phonemes in 
words strongly suggested that these spotting techniques can be 
applied to recognizing not only spoken words but also continuous 
speech. 

3.2. A Large TDNN Architecture for Spotting Phonemes 

A large TDNN architecture for discriminating 24 Japanese 
phonemes (18 consonants: lb/, /di, lg/, /pl, It/, /kl, /ml, In/, /NI, Isl, /sh/, 
/h/, /z/, /ch/, /ts/, Ir/, /w/, /y/, and 5 vowels /a/,/i/, /u/, le/, lo/, and silence) 
was constructed as shown in Fig.3[3, 6, 11, 12]. This TDNN is 
modulay constructed by 6 intra-class subnetworks discriminating 
among "bdg", "ptk", "mnN", "sshhz", "chts" and "rwy", an intra-class 

subnetwork discriminating among consonant groups, a vowel 
network, and a silence network discriminating between silence and 
speech. The input layer consists of 240 units, i.e., 16 melscale 
filterbank coefficients* 15 frames (10 ms frame rate) as same as the 
bdg-net. These subnetworks are integrated into a third hidden layer 
which has 24 units so that their corresponding output units can be 
laterally inhibited. 

3.3. Training the Large TDNN 
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Phoneme tokens for training the TDNN are classified into 24 
phoneme categories, based on hand labeling, extracted from even-
numberd words of the 5,240 common words uttered by the same male 
speaker as in section 2. Phoneme training tokens are extracted from 
various positions of each phoneme in order to avoid inclination of 
phoneme positions i.e., a duration of 150 ms from each phoneme is 
extracted by shifting its center by 20 ms, while phoneme boundary 

tokens are eliminated. Tokens for silence are extracted from the 
points 20 ms before the beginning or after the end of words. The 

number of training tokens per phoneme category ranges up to 1,000, 
randomly selected from the extracted tokens. Tokens are duplicated 
when the number per category can not reach 1,000. Each token is 
analyzed under the same conditions as in section 2. 

Training the TDNN is performed using a fast back-propagation 
learning procedure[8]. This algorithm is based on a steep error 
surface, updating weight parameters frequently, and omitting 
computation for samples with small error. Using this learning 
procedure made it possible to simultaneously train the network in 
Fig.3 without modular training. 

3.4. Phoneme Spotting Experiments 

Phoneme spotting outputs are obtained as recognition results by 
shifting the input layer among input speech frame by frame. This 
phoneme spotting method does not require any phoneme 

segmentation techniques and can get spotting results merely by 
scanning the network[2, 3, 11, 12]. 

Applying the trained TDNN to the 2,620 test words, it is found 
that most phonemes are correctly spotted throughout each phoneme 
segment, and that the outputs corresponding to the other categories 

are well inhibited. The lower layer shows an input spectrogram and 
the upper shows spotting outputs, where the horizontal axis is time 
and the vertical axes in the lower and the upper layers represent 
frequency and type of phoneme, respectively. 

Table 1 shows spotting resuts when using up to 400 and 1,000 
training tokens/category, respectively. It is demonstrated that 98.0% 
of the phonemes in the test words are correctly spotted for the latter 
case, yielding a false alarm rate of 23.2%. 
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Table 1 TDNN Pl1oneme Spotting Results on 
Large-Vocabulary 

Phan- #of 400tokens/category 1,000 tokens/category 

emes phonemes Correct Deletion F"o.lse a la.rm Correct Deletion Fo.. ¥ se. Q.¥ tt .,m 

b 231 228 3 268 225 6 104 

d 180 175 5 ― 106 171 ， 71 

g 265 230 35 198 210 55 57 

p 28 25 3 203 26 2 104 

t 461 452 9 . 178 459 2 235 

k 1300 1218 . 82 116 1283 17 245 

m ・485 482 3 323 479 I 6 213 

n 273 258 15 84 263 10 63 

N 488 487 1 161 488 

゜
163 

s 572 570 2 175 572 

゜
100 

sh 387 385 2 52 386 1 81 

h 313 312. 1 215 310 3 .159 

z 315 310 5 170 307 8 87 

ch 141 140 I 1 ・57 141 

゜
163 

ts 220 219 I 1 205 218 I 2 235 

r. 760 709 I 51 62 730 I 30 97 

w 81 80 1 74 79 I 2 13 

y 573 531 42 124 561 I 12 171 

a 1772 1770 2 108 1771 1 85 

i 1333 1282 51 155 1302 31 200 

u 1615 1496 I 119 I 206 1543 72 I 200 
e 829 822 I 7 222 827 I 2 254 

゜
1352 1337 15 I 97 134s I 4 136 

Total 13974 13518 I 456 I 3559 I 13699 
(96.7%) (3.3%) (25.5%) (98.0%) 

275 I 3236 
(2.0%) (23.2~~) 
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Thus, the Large Phonemic TDNN is already trained by as many as 
18,864 training tokens extracted from 2,620 training words. For the 
first experiment, spotting experiments in continuous speech were 
conducted using the TDNN. The initial correct phoneme spotting rate 
in 278 Japanese test phrases was 81.2% with a false alarm rate of 
47.8%, as shown in Table 2. Because of the different co-articulatory 
effects of word speech and continuous speech, incremental TDNN 

training using a small number of tokens extracted from continuous 
training speech seemed to be needed. The number of tokens for 

incremental training is only 100/200 tokens per phoneme category 

(2,011/3,251 tokens are only 11 %/17% of the original tokens extracted 

from the training words). The correct phoneme spotting rate was 
significantly improved from 81.2% to 89.0%/89.1 % after the adaptive 

incremental training. More importantly, the false alarm rate 
decreased from 47.8% to 34.8%/25.8%. Fig. 4 shows an example of 
phoneme spotting results in the phrase /touroku-wo/. We can also 
exp.ect better phrase recognition rates in continuous speech after the 
incremental training. 

4. The TDNN-LR Recognition System 

To extend the high performance spotting results to large-
vocabulary continuous speech recognition, a "hybrid" method 
combining a predictive LR parser[l 7] with a DTW alignment 
technique was proposed. We applied this method to 5,240 common 
Japanese words and phrases[19] uttered by the male speaker. 

4.1. LR Parser 

Though there are other possible methods which can match TDNN 

spotting results with reference patterns, we used a predictive LR 
parsing (as an extension of a generalized LR parsing[16]) method 
because it is applicable to sentence recognition. The LR parsing 
method is available for ambiguous sentences which could not be dealt 
with by an ordinary LR parsing method. 

LR parsing is well known in the field of program languages, and is 
applicable to a large class of context-free grammars. Generalized LR 
parsing[16] is a kind of LR parsing, and has been extended to handle 
arbitrary context-free grammars. For an ambiguous grammar, the 
LR parsing table has multiple entries. The LR parser is guided by the 
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Table 2 TDNN Phoneme Spotting Results on Test 

Pl1rases 

No adaptive Adaptive traini:-ig 
Phan- #of tra1．n1． ng (200 tokens/cat.) 
eme phonemes 

Correct Deletion Fo.lse.o..la.rm Correct Deletion 国sell.la.™

b 16 14 2 19 10 6 I 5 

d 69 44 25 29 62 7 19. 

g 34 19 15 36 19 15 17 

p 10 8 I 2 6 10 

゜
6 

t 70 48 22 11 68 2 56 

k 210 182 28 94 195 15 7 

m 58 36 22 19 18 40 I 23 
n 74 36 38 5 33 41 11 

N 34 24 10 25 27 7 19 

s 74 67 7 20 72 2 ， 
sh 53 50 3 15 53 ・o 17 

h 27 14 13 10 24 3 l 48 
z 32 32 

゜
53 32 . 0 I 25 

ch . 17・ 10 7 11 16 1 I 7 

ts 24 24 

゜
I 79・ 22 2 I 13 

r 66 53 13 I 43 61 5 I 24 
w 25. 5 I 20 3 23 2 14 

y 96 80 16 I 30 90 6 I 30 
a 279 238 41 I 23 272 7 16 

i 192 160 32 27 179 13 39 

u 97 90 7 I 287 85 12 50 

e 127 107 20 38 121 6 27 

゜
256 234 22 I 43 . . 237 19 18 

total 1940 
1575 365 926 1729 211 500 

(81.2%) (18.8%)' (47.8%) {89.1%) (10.9%) (25.8%) 

17 



LR parsing table automatically created from context-free grammar 
rules, and proceeds left-to-right without backtracking. These parsing 
algorithms are very efficient for natural language processing. 

The LR parsing method includes FIFO(First In First Out) which 
keeps track of the stack status, saving the states of the LR parser, an 
ACTION table and a GOTO table. These tables are generated by a 
context-free grammar. The LR parser processes an input string by 
referencing these tables and the stacks. The GOTO table determines 
an action by using an input string and its own status. The actions are: 
"shift", "reduce", "accept" and "error"; 

shift : insert the state of the parser into the top of the stack 

reduce : sumarize stack status 
accept : complete analysis 
error : failure of analysis 
The following are analysis procedures ; 
[Definition] 
s: a status of the parser 
a, A: grammar symbols(non-terminal, terminal symbols) 
input pointer : a currently processed input string 
status stack: preserve the status of the parser 
GOTO(s,a) : return the value of the next status by referencing 
the status "s" and the gramar symbol "a" in the GOTO table 
ACTION(s,a) : determine an action by referencing the status "s" 
and the gramar symbol "a" in the ACTION table 
<Algorithm> 
(1) Intialization 

Set the input pointer to the top of an input string and then 
push "O" in a status stack. 

(2) Check the ACTION(s, a) by referncing the current status "s" 
and the input pointer symbol "a". 
(3) If ACTION(s,a) == "shift", push GOTO(s,a) into the status 
stack and then advance the input pointer by one. 
(4) If ACTION(s,a) == "reduce, n", pop up the stack status on the 
right side of then-th grammar rule. If the top of the stack status 
is "s'", the next status GOTO(s',A) is pushed to the stack by 
referencing s'and a grammar rule "A" on the left side of the n-
th grammar rule. These "pop up" and "push down" actions are 

n
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procedures summarizing the right side to the left side in the 

grammar rules. 
(5) If ACTION(s,a) = "accept", the analysis is completed. 
(6) If ACTION(s,a) = "error", the analysis failed. 
(7) Return to (2). 

An example of sentences in the LR parsing and a LR parsing table 
are shown in Fig. 5 and Fig.6, respectively[l 7]. The LR table consists 

of an ACTION table and a GOTO table. In Fig. 6, lines show 
grammar symbols, and columns show parser status. The symbols "s" 
and "r" show "shift" and "reduce" actions, respectively. The figure on 

the right side of "s" is the next status in a "shift" action. The figure on 
the right side of "r" is the number of grammar rules. The right side 
shows a GOTO table where the figure indicates the next status value. 

A generalized LR parser can analyze ambiguous sentences which 
could not be dealt with by an ordinary LR parser. Though actions in 
the LR parser describe a single action in an element of the table, the 
generalized LR parser can describe multiple actions in one element. 
Processing multiple actions in parallel makes it possible to deal with 
ambiguity in a grammar[16]. 

4.2. A Predictive LR Parser 

A predictive LR parsing method predicts the next phonemes in 
input speech based on the currently processed phonemes. An HMM 
continuous speech recognition system using an predictive LR parsing 
has been evaluated[l 7]. This technique is also applicable to spotting 
results from the TDNN and a word or phrase grammar describing a 
large vocabulary or phrase database[19], respectively. 

A predictive LR parser analyzes a sentence by predicting 
subsequent phonemes. Prediction can be easily realized by 
referencing an LR table such as Fig.6. By way of analysis, when the 

predictive LR parser is in a status, possible phonemes served to this 
LR parser are the only phonemes described by "shift" and''reduce" on 
a line of the table. The predictive LR parser regards these phonemes 
as predicted phonemes. 

4.3. Integration of the TDNN and the Parser 

The basic structure of the recognition system which utilizes TDNN 
spotting and predictive LR parsing is shown in Fig.7 (hereafter: 
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----------------------------------------
(1) S → NP V 

＾ 
(2) NP → N 
(3) NP i → N p 

(4) N → m a m e 
(5) N → a r e 
(6) p → 

゜(7) V → 
゜

k LI r e 
(8) V → k u r e 
----------------------... ------------------

Fig.5 An Example of Context-Free Grammar 

＾ 
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a u e 

゜
k m r ＄ s N V P NP 

----------------------

゜
s2 s3 5 4 1 

1 s7 s6 8 
2 s9 
3 s10 
4 s 11,r2 12 
5 ace 
6 s13 
7 s14 
8 r1 ， s15 

10 s16 
1 1 r6 

” 12 r3 
13 s17 
14 s18 
15 r5 
16 s19 
17 s20 
18 s21 
19 r4 
20 r8 
21 s22 
22 r7 
'=  . . . 

------------―------------------
Fig.6 An Example of ACTION and GOTO Tables 

＾ 
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TDNN-LR)[9, 10, 11, 13, 14, 15]. First, an input speech is converted to 

outputs via TDNN phoneme spotting shown in the upper part of 
Fig.4. Matching between these outputs and reference words is 
performed by the predictive LR parser according to a grammar rule. 
The grammar rule is registered as an LR table in advance based on a 
context-free grammar. The predicted LR parser predicts the next 
phonemes based on already processed phonemes. When plural 
phonemes are predicted, the predictive LR parser analyzes the 
phonemes in parallel. The predicted phoneme sequences are 

evaluated by a DP match between predicted phonemes and the 
TDNN phoneme spotting results. This procedure continues until 

input phonemes come to an end. However, since it takes considerable 

time to process all predicted phonemes, a beam search is used to take 
the first "B" candidates, where "B" is the width of the beam. 

The likelihood of a similarity between a predicted phoneme and an 
input phoneme is defined as the logarithm of the activation value of 
TDNN output. The length of the reference patterns (predicted 
phoneme patterns) is the average length of the training phoneme 
tokens extracted from the training words of the large vocabulary. The 
slope constraint in DTW alignment is 1/2 to 2. The matching 
algorithm is as follows: 

j : predicted phoneme 

p(t,j): output value of phoneme "j" at frame "t" 
DO(t): table#O for saving likelihood 
Dl(t): table#l for saving likelihood 

[Initialization] 
Q(O, t) = DO(t), Q(l, t) =Dl(t), t= 1,2, ... ,N. 
Q(l, 1) = p(l,j), otherwise 0. 

(Iterative formula) 

fort=l, …，N and i=l, …，M. 
Q(i, t) = max [ Q(i-1, t-1) + log(p(t, j)), 

Q(i-2, t-1) + log(p(t,j)) + log(p(t,j)), 
Q(i-1, i-2) + 0.5 * log(p(t-1,j)) + 0.5 * log(p(t,j))] 

DO(t) = Q(M-1, t), Dl(t) = Q(M, t). 

The above process is a DP match of predicted phonemes with their 
end points free. After this procedure, subsequent phonemes are 
predicted with initial values of DO(t) and Dl(t), and then the next DP 
match is performed. When plural phonemes are predicted, parallel 
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processing is conducted. Phoneme sequences are built up step by step 

using this DP matching procedure, and recognition results are 

obtained by taking the maximum value of candidates within the 
beam width. This procedure is similar to a level-building DTW 

match[18] with its endpoints free, which builds up subsequent 

phonemes. 

5. Recognition Experiments 

5.1. Large-Vocabulary Speech Recognition 

In recognition experiments of large vocabulary, 5,240 common 

Japanese words were used. Among those words, another half of the 
large database which were not used for the network training were 
used as test words. The number of test words was incremented as 100, 
500, 2,620 test words. On the other hand, the number of reference 
words was also incremented as 100, 500, 2,620 and 5,240 words, 
where in the former three cases, the reference words corresponded to 
the test words, and in the last case, the 5,240 reference words 
included the 2,620 test words as a subset. Therefore, note that this 
experiment is vocabulary-independent recognition. 

Fig.8 shows the recognition rates of the n-th (1~n~5) top choices 
as a function of the vocabulary size of reference words from 100 to 
5,240. In the case of the whole 5,240 words, a rate of 92.6% is obtained 

for the top choices, and rate of 97 .6% and 99.1 % are obtained for the 
second and fifth choices, respectively. While the rate of top choices 
decreases according to the increased vocabulary size, the rate within 
the top 5 choices is maintained higher than 99.1 % for any vocabulary 
size[ll, 14, 28]. 

Recognition error in 5,240 common words is classified into the 
following three cases: (1) insertion of "t" or "k" at the beginning of a 
word (ex.: "aisuru"→ "taisuru"). (2) a short word is misrecognized as a 
long word (ex.:"aa" → "hanahada"). (3) a double consonant is 

confused with a silence accompanied by an unvoiced stop(affricate) 
(ex.: "i tai"→ "i ttai "). 

Case (1) occurred due to the fact that TDNN easily inserted "t" or 
"k" at the unstable beginning of a word. Case (2) is due to the fact 
that a matching path is beyond the limitation of DP matching. Case 
(3) is due to the fact that the difference in durations between a double 
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consonant and a silence accompanied by an unvoiced stop(affricate) is 

not introduced into the DP matching method. 

5.2. Continuous Speech Recognition 

The Large Phonemic TDNN is already trained by as many as 

18,864 training tokens extracted from 2,620 training words. As an 

first attempt, continuous speech recognition experiments were 

conducted using the trained TDNN and an LR-parser describing 

general phrase grammar rules (its phoneme-perplexity is 5.9). Table 

3 shows the features of the ATR "Conference Registration" task we 

used. The initial phrase recognition rate for 278 Japanese test 

phrases was 55.0% for the top choices and 82.7% for the top 5 choices, 

respectively. Because of different co-articulatory effects between 

word speech and continuous speech,. incremental training of the 

TDNN using a small number of training tokens extracted from 

continuous training speech seemed to be needed. 

The number of training tokens for incremental training is only 100 

tokens per phoneme category (2,011 t"okens in total are only 11 % of 

the original tokens extracted from the training words). We then 

increased the number up to 200 tokens per category (3,251 tokens in 

total). The phrase recognition rates are shown in Table 4 as compared 

with the rates before the incremental training. A phrase recognition 

rate of 65.1 % for the top choices and 88.8% for the top 5 choices were 

obtained. Therefore, the efficiency of adaptive incremental training 

using a small number of training tokens extracted from continuous 
speech was confirmed through this experiment. 

Typical errors are as follows: 

(1) Substitution errors between /n/ and /ml. 

e.x. : /saNka-no/→ /saNka-mo/, 

/syotei-no/→ /syotei-mo/. 
These errors occurred due to the fact that the number of /ml and 

/n/ phoneme tokens for incremental training was too small (17 tokens 

for /ml and 13 tokens for In/) compared with the original training 

tokens extracted from traininig words (1,000 for Im.I and 460 for /n/). 

(2) Phoneme insertion errors. 

e.x. : /zyuusho/→ /zyuusho-o/, 
/happyou/→ /happyou-o/. 
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Table3 Features of the Task 

~ 

Number of words 1,035 

Number of rules 1,656 

Number of states in LR 5,015 

Phoneme perplexity 5.9 

Entropy/ phoneme 2.6 bit 

Average number of 7.32 
phonemes/ phrase 

＾ 

〇タ
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Table4 Phrase recognition rates(%) 

Before Before 
adaptive adaptive After After 

Rank tra1．n1． ng training adaptive adaptive 
(without (with trai. ni. ng training 

duration duration (100/cat) (200/cat) 
control) control) 

・1 52.9 55.0 64.4 65.1 

2 70.1 70.1 . 79.5 78.4 

3 77.7 76.6 81.7 87.1 

4 81.7 81.3 86.0 88.1 

5 82.4 82.7 88.8 88.8 

6--10 86.3 87.1 93.2 91.0 

11-15 87.4 87.4 93.5 92.4 

16- 12.6 12.6 6.5 7.6 

~ 

＾ 

●
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These errors occurred due to difficulty of precise duration control 

at the end of the utterances. 

6. Extensions 

In this section, we describe extensions in the TDNN-LR speech 

recognition system; robustness for variations of speaking manner, 

speaker-adaptation and speaker-independent phoneme recognition. 

6.1. Neural Network Architectures for Robust Speech 

Recognition 

Until now, Time-Delay Neural Networks (TDNN) architecture has 

been applied to several speaker-dependent recognition stages, such as 

phoneme recognition(described in section 2), Japanese CV-

syllable/phoneme spotting (in section 3), and the TDNN-LR large-

vocabulary continuous speech recognition system with integrated 
training for spotting Japanese phonemes (in section 4). If we extend 

these recognition methods based on TDNN to a continuous, speaker-

independent speech recognition system, a novel robust recognition 

strategy should be developed. This section introduces several novel 

TDNN architectures for robust speaker-independent, continuous 

speech recognition[20, 21]. 

One novel architecture, as shown in Fig.9, for a Frequency-shift-

invariant TDNN (FTDNN) is based on the frequency-time-shift-

invariance as well as the time-shift-invariance by constructing the 

same weighting values between the input layer and the hidden layers 

of the TDNN. Speech features from the input layer of the FTDNN are 

individually extracted along the time-axis and the mel-scaled 

frequency-axis by each corresponding first hidden layer. The 

extracted features are then integrated into a single second hidden 

layer. The final decision is made based on the activation patterns 

whose property is invariant from both the time-and frequency-shift 

of input phoneme tokens. 
Another novel architecture is a Block-Windowed NN (BWNN), as 

shown in Fig.10, based on windowing each layer of the NN with local 
time-frequency windows. This architecture makes it possible for the 

NN to capture global features from the upper layers as well as precise 

local features from the lower layers, because the local windows in the 

upper layers can integrate 1nore global features than those in the 
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lower layers. A five layered BWNN is constructed for a phoneme 
recognition experiment. 

Very confusable phoneme recognition experiments were 
performed using lb/, /di, lg/, /ml, In/, and IN/ (syllabic nasal) phoneme 

tokens to verify robustness toward variations of speech. The FTDNN 
and BWNN are trained by phoneme tokens extracted from word 
speech (utterance speed: 5.65 morals), and tested using unknown test 
phoneme tokens extracted from test word speech (same utterance 
speed as the training tokens) and continuous speech (utterance speed 

: 9.56 morals). Performance among an original TDNN, a FTDNN and 

a BWNN was compared using the same training and test phoneme 

tokens. Recognition rates of 96.7% for the FTDNN and 98.2% for the 
BWNN were obtained compared with a rate of 95.9% for the original 
TDNN, and rates of 80.8% and 82.8% for the FTDNN and BWNN, 
respectively, which are significantly better than a rate of 68.1 % for 
the original TDNN. 

6.2. Speaker-adaptation Using Neural Networks 

Speaker-adaptation is one good approach to a speaker-independent 
recognition problem. It is neccessary to use a small amount of 
training data uttered by an input speaker to adapt a speech 
recognition system. A speaker-adaptation technique using neural 
networks have been proposed[22]. It is also possible to use segmental 

speech for speaker-adaptation by building a mapping function from 
an input speaker to a standard speaker. We proposed a segmental 
approach using neural network identity mapping as a supervised 
learning method[23], as shown in Fig.11. In this approach, segmental 
speech including a phoneme or syllable can be mapped between two 
speakers through a neural network and DTW matching method[22, 
23]. This mapping network can be used as a front end of the TDNN-
LR speech recognition system, as shown in Figs. 12 and 13. 

As a preliminary experiment using the speaker-adaptation neural 
network and a TDNN for recognizing voiced stops i.e., lb, d, g/[23], we 
performed speaker-adaptation experiments between two male 
speakers. Before speaker-adaptation, a recognition rate was 86.2%, 
which was improved to 91.0% after speaker-adaptation. This 
technique is being applied to other phoneme categories including all 
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consonants and phonemes. Also, an unsupervised speaker-adptation 
technique using neural networks is being investigated[24]. 

6.3. Speaker-independent Recognition 

In this section, we compare several TDNN architectures applied to 
speaker-dependent and multi-speaker's phoneme recognition with 
respect to their capabilities in a speaker-independent recognition 
problem. 

We verified performance of several architectures: (!)single TDNN 
(Fig.l), (2)SID(Stimulus Identification) network (Fig.14), (3)Meta-Pi 

network (Fig.15), (4)Modular TDNN (Fig.16) and (5)Modular 

Speaker ID network (Fig.17), where the single TDNN is an original 

architecture, the SID network is constructed by both each speaker's 

module and a speaker ID module which selects outputs in each 
speaker's module, the Meta-Pi network is reported as the network 
most suitable for multi-speaker phoneme recognition[25]. However, it 
has not been demonstrated how the Meta-Pi network is effective for a 

speaker-independent phoneme recognition problem. Furthermore, 
two novel modular TDNN architectures ((4) & (5)) are proposed to 
improve the performance. The modular TDNN is a network which is 
constructed by integrating each speaker's module (i.e., a single 
TDNN) trained on the first stage, and retrained on the second stage 

to recognize each phoneme, regardless of training speakers. The 
Modular Speaker ID network comprises of a speaker ID module in 
addition to the Modular TDNN, thus explicitly classifying each 
speaker ID as in the Meta-Pi network. 

Speaker-independent phoneme experiments for recognizing voiced 
stops lb, d , g/ using six and twelve training speakers showed high 
recognition rates of 92.1 % for the modular TDNN and 95.6%, 

respectively for the Modular Speaker ID network. These results are 
significantly better than the rates of 82.0% and 85.9%, respectively 

for the Meta-Pi network. Table 5 summarizes the recognition results. 
As a result, it is found that the Meta-Pi architecture suitable for 

multi-speaker recognition is not necessarily robust for a speaker-
independent recognition task. The recognition rate for the Modular 
Speaker ID network nearly matches the speaker-dependent 
recognition rate of 98.0% for the single TDNN[26, 27]. Finally, 
according to the above findings, we propose a Large Phonemic TDNN 
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Table 5. Phoneme Recognition Results (bdg task) 

Recognition rate(%) 

Network 

architecture 
6 training speakers 12 training speakers 

＾ 
Closed Open Closed Open 

Single 93.2 85.1 

SID 96.4 80.0 95.4 85.8 

Meta-Pi 96.9 82.0 95.4 85.9 

Modular 97.7 92.1 97.1 95.5 

MSID 97.2 89.7 97.3 95.6 

＾ 
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architecture for speaker-independent recognition, as shown in Fig.18 
[29,30]. 

7. Conclusion 

We described an integration of speech recognition and language 
processing. The speech recognition part consists of the Large 
Phonemic Time-Delay Neural Networks (TDNNs) which can 

automatically spot all 24 Japanese phonemes with an excellent 
spotting rate of 98.0% by simply scanning among an input speech 

along with it. The language processing part is made up of a predictive 
LR parser which predicts subsequent phonemes based on the 

currently processed phonemes. The TDNN-LR hybrid recognition 
system provides large-vocabulary and continuous speech recognition. 
Two kinds of recognition experiments i.e., large-vocabulary isolated 
word recognition and continuous speech recognition were performed 
using the TDNN-LR method. Speaker-dependent recognition rates of 
92.6% for the first choices and 97.6% for the top two choices were 
obtained for 5,240 Japanese common words, and rates of 65.1 % for the 
first choices and 88.8% within the fifth choices were attained for 
phrase recognition. In the case of continuous speech recognition, 
adaptive incremental TDNN training using a small number of 
continuous training tokens is found to be very effective for adaptation 
of speaking manners. 

We also proposed several new connectionist approacl1es as 
extensions of the TDNN-LR speech recognition system: (1) two 
proposed NN architectures (FTDNN and BWNN) provided robust 
phoneme recognition performance on variations of speaking manner, 
(2) a speaker-adaptation technique can be realized using a NN 
mapping function between input and standard speakers and (3) the 
Modular Speaker ID architecture provided high phoneme recognition 
performance that nearly matches speaker-dependent recognition 
perfomance. These techniques should be implemented in the TDNN-
LR method in the future . 
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