
Internal Use Only (非公開）

TR-1-0207

単一化に基づく生成の効率改善

Optimization of Unification-based Generation

上田良寛
Y oshihiro Ueda

1991.3

概要

双方向文法を用いる生成のメカニズムとして提案したタイプ付素性構造主導型生
成の高速化について述べる。単一化を基礎メカニズムとして用いているシステム
では、単一化それ自体が計算コストのかかるプロセスであるため、生成プロセ
スのほとんどを単一化によって消費されている。このため、単一化のアルゴリ
ズムを改良する、または、単一化の適用回数を減少させることにより、生成シス
テムの効率を向上させることが出来る。ここでは、後者の方法、すなわち、単一
化の適用回数を減らすことによる効率向上を、文法および生成メカニズムの両面
から試みた。文法の改良により、最高10倍の効率改善を達成した。

ATR Interpreting Telephony Research Laboratories
ATR自動翻訳電話研究所

ー

Optimization of
Unification-based Generation

Abstract

＾

＾

Here the methods to improve the efficiency of the Typed-
Feature-Structure-Directed Generation, a unification-based
generation mechanism which is developed for dialogue
translation, are described. Unification is a time-consuming
process and, in systems that use unification as their basic
mechanism, most of the computing time is consumed by
unification. Better algorithms for unification and/or
reducing the amount of unification can improve the
efficiency of such systems. We have adopted the latter
approach, experimenting with several methods from both the
mechanism side and the grammar side. For the mechanism,
delaying surface lexical selection and eliminating disjunctive
feature structures in the derivation tree can reduce the
generation time up to one-third in some cases. Modification
of the grammar to reduce nondeterminism is so effective that
it can increase the efficiency up to 10 times.

＼

，

，

1. Introduction

Bidirectional grammar is now widely adopted by generation systems
because the grammar and lexicon can be developed in a consistent way
([2], [5], [7]). In particular, unification-based systems are desirable as
they can handle a variety of information including syntax, semantics,
pragmatics, etc. This information is required to reflect the speaker's
intention, i. e., "what the speaker wants to say and express" in the
tnmslation of spoken dialogues ([9]).

Thus, we have developed the Typed-Feature-Structure-Directed
Generation mechanism ([14]), which uses unification-based bidirectional
gra1nmar. In this system, constraints described in Typed Feature
Structures ([1]) are attached to the grammar rules and used to select the
rules to control the generation process.

Unification itself is a time-consuming process and, in systems that
use unification as their basic mechanism, most of the computing time is
consumed by unification. Better algorithms for unification and/or
reducing the number of calls for unification can improve the efficiency of
such systems. In this paper, the latter approach is taken both from the
mechanism side and the grammar side.

In this paper, we will first give a brief overview of the mechanism
and the grammar of the system. Problems with the mechanisms and the
grainmar are considered and the possible solutions are proposed in
section 3. Experiment results are shown in section 4.

2. Brief Overview of the System

2.1 Mechanism: Typed-Feature-Structure-Directed Generation

The basic mechanism of this system is repetitive top-down
application of CFG rules. Along with a rule application, a feature
structure attached to the mother node is distributed to their daughter
nodes according to the specifications attached to the rule. This process
constructs the derivation tree.

Simple top-down application of the CFG rules often leads to the
derivation of unnecessary phrase structures. Furthermore, this causes
termination problems, i.e., infinite application of the same grammar rules
([11]). Selecting appropriate rules is required to avoid these problems
([14]). In particular, declarative rule selection is desirable for
unification-based grammars.

-1 -

Typed-Feature-Structure-Directed Generation is developed to solve
this problem. The CFG rules are selected according to the constraints
attached to them. The features construct a type hierarchy and the
constraints can be represented by the typed feature structures ([1]).

The rule (1), when used in analysis, consumes one element in the
subcat list and application of this rule is terminated when the subcat is
exhausted.

VP =HC*=> (VP XP) (1) *
(< !m ! sem> == < ! head-dtr ! sem>)
(<!head-dtr !subcat first>== <!comp-dtr-1 synsem>)
(<!head-dtr !subcat rest>== <!m !subcat>)

The finite length of the input sentence also helps the termination
when the sentence is analyzed in a bottom-up way. However, in
generation, it infinite} y appends the subcat list to the daughter VP and the
appl" . 1cat1on never terminates.

We classify verbs into three subtypes (Monadic, Dyadic and Triadic)
according to their argument numbers. Then, the following constraint can
be attached to the rule to restrict the possible length of the subcat listt and
avoid infinite application of this rule. Types are shown here in bold
italics.

(: or ((< ! head-dtr ! subcat rest> == [l.ist-end] }
(< ! sern reln> == (: or [dyadic] [triadic]}})

((< ! head-dtr ! subcat rest rest> == [l.ist-end]}
(< ! sern re ln> == [triadic]) }

These constraints can be written in a purely declarative way. The
hierarchy (or lattice) constructed by types also gives maximum flexibility
in describing the constraints when the grammar grows larger and the
feature structures become complex. For example, the type hierarchy for
verbs can be reconstructed as in Fig. 1 to allow a new type
dyadic/triadic to represent OR combination of two types.

* In this rule, =HC*=> link shows that the first element of the right hand symbols
becomes the head daughter and the others the complement daughters. =CH=> link is
also supplied for Complement-Head structures. A symbol with an exclamation mark(!)
indicates a predefined template. In this rule, !m stands for mother, i.e., left-hand VP.

t This grammar uses Borsley's modification of HPSG ([3]), which uses a separate slot
for the subject apart from subcat list. Thus the length of the subcat list is 2 for triadic
verbs and 1 for dyadic verbs.

-2-

＾

＾

~

＾

V

~
Monadic Dyadicff riadic

ヘDyadic Triadic

Fig. I Type hierarchy for verbs

The constraints can thus be rewritten as follows.

(: or ((< !head-dtr ! subcat rest> == [l.ist-end])
(< ! sem reln> == [dyadic/triadic])) .

((< ! head-dtr ! subcat rest rest> == [l.ist-end])
(< ! sem reln> == [triadic]))

2.2 Grammar: Revised Analysis of HPSG

The grammar for the generation system is based on a new analysis of
HPSG ([13]), an extension of its former version ([12]). Fundamentals of
the formalisms such as the head feature principle, the subcat feature
principle, etc. remain the same but the formalisms are extended to explain
more broad language phenomena.

The most significant extensions are made on its representation
structures obtained from the analysis of sentences. The former structure
is shown in Fig. 2 (a) and the revised structure in (b). A new feature
SYNSEM, which is the combination of syntactic structure and semantic
structure, is introduced and it is now used as the element of SUBCA T list
instead of the phrase itself. Each element in the structure has a specific
role, e. g., a LOCAL structure becomes a SLASH element and a PARAM
structure becomes a REL (relative) element.

PHON

LOC [詈］
SYN

BIND [誓］
SEM

Fig.2 a) Former feature structure

-3-

PHON

LOCAL local

SYNSEM synsem

[HEAD noun, etc. [CASE, etc.]

CAT~ 悶塁;(sysem…) ］
CONTENT日
CONTEXT conte立［COINDICES {…｝

BACKGROUND (…il
―

―

―

―

 ．．． ．

．

呻

．．
．

．

"
r
`
I

．

• e

e
a
l
哨
．

{
u
a
n
-

q
p

H

{
｛

s

LAUEEL

S

Q

R

―

―

 D

D

E

z

T

―
―
―

到

R

E

H

O

I

N

T

―

―

L

A

c
 ゚

ヒ
1

●

L

N

.

．

届゚

z

T

晦n

uaDE

q

••.
E

R
 ゜

T
 s

Q

目
quantifier :_-

鰐T

x

E

D

ー
＼
｝

IN

―

―

elc

乱
九

n

回

n
P
L
N
筵

E

A

R

C

九

p
p
[

，

ー

・

R
 s

A

M

T

 E

R

R

A

p
 E

b
j

3

rcf

R

A

p

T
 s

E

R

Fig. 2 b) Revised Feature Structure

One of the changes that affects the system is the use of sets in feature
structures. Set operations such as UNION are also introduced. For
example, modification by an adjective becomes a restriction in the
restricted parameter representation of the modified object. Thus, the
restrictions construct a set including a restriction of the noun itself. The
feature structure shown in Fig. 3 is the semantic representation for a
modified noun "big blue book."

[PARAM日[INDEX[悶温襟誓恥l
RESTR I[: 悶言］隣間Jue][儡喩゚ oknl

Fig.3 Feature Structure containing a set

Sets and set operations cannot be well formulated by ordinary
unification. An extension of the unification by adding a function-calling
mechanism makes the bidirectional use of grammar and lexicon
impossible. The reverse operation of UNION, which is necessary in
generation, is especially difficult to define.

In our implementation of the grammar, differential lists are used
instead of sets. Lists preserve the order of elements, and the order in the
semantic representation reflects the surface constituents'order. In other
words, the order in the semantic representation given as the generation
input defines the result of generation. This leads to an undesirable

＾

＾

-4-

＾

＾

0

.

consequence in that the generation system loses its ability to define the
order of the results, e.g., the appropriate order of adjectives.

This can be solved by representing all the possibilities of the order
using disjunction and filtering out those that are ungrammatical by
restrictions in the grammar. Yoshimoto described such restrictions for
the sequence of post-verbs in unification grammar for Japanese analysis
((15)). We experimented with making this Japanese grammar
bidirectional and such restrictions helped considerably.

a. Problems and Possible Solutions

Here we consider some problems with the efficiency of the
generation and methods to improve it by reducing the amount of
unification. The approach is made both from the mechanism side and the
grammar side.

3.1 Constraint Check Mechanism

Unification-based systems in general use unification in two ways: as
a constraint that restricts the inappropriate rules to be applied by failure
of the unification, and propagating the result of unification to the next
process or step.

Unification also has two roles in the unification grammars.
Constraints are for checking the grammar rule applicability and the
unification results are syntactic/semantic represe11-tation of phrases that
are propagated from node to node (in the generation case, from the
mother node to its daughter nodes). In this generation .system, the
constraints are described as the equations attached to the CFG rules as
well as the specifications of feature structures for the nodes. The
equations construct one feature structure that contains both the constraint
portion and the propagation portion.

The advantage of such embedding of the constraint portion in the
propagation portion is that embedding helps to describe both the
constraints and the specification for transferring feature structures in a
uniform way. Furthennore, this requires no special mechanism for
constraint checking.

However, it can be a disadvantage from the viewpoint of efficiency.
The constraint portion of the feature structure may be applied after the
resulting feature structure is almost completed. In such a case, the
process of creating the resulting feature structure is totally abandoned.
The current constraint check mechanism that uses uniform unification can
create such incomplete feature structures and make the system inefficient.

-5-

Thus, efficiency can be increased by unifying the constraint checking
portion first and then unifying the transferring portion only to those
feature structures that have survived the constraint check.

Furthermore, the unification result of the constraint check portion is
not necessary and can be discarded. Thus, unification can be replaced by
a lighter process that only checks the unifiability.

To achieve this, the constraint portion is explicitly separated from
the transferring portion in the grammar rules. For example, rule (1) can
be rewritten as follows.

VP = HC * => { VP XP) (1')
(< ! m ! sem> == < ! head-dtr ! sem>)
(<!head-dtr !subcat first>== <!comp-dtr-1>)
(< ! head-dtr ! subcat rest> == < ! m ! subcat>)
{:info :gen

(: or ((< ! head-dtr ! subcat rest> == [l.ist-end])
{<!sem reln> == {:or [dyadic] [triadic])))

{ {< ! head-dtr ! subcat rest rest> == [l.ist-end])
{< ! sem reln> == [triadic]))))

To make the constraints independent of other parts has another
advantage. The constraints are required only by generation and the
gra1nmar compiler can remove them from the analysis grammar. This
reduces an unnecessary load on the unification during analysis.

Kogure proposed "early failure finding strategy" in his unification
algorithm from the same motivation ([10]). His algorithm uses the
statistical information of unification success and failure and such
information can be inaccurate. The method described here avoids this
problem by forcing the constraints to be explicitly described.

3.2 Inefficiency Caused by Disjunctive Feature Structures

This system uses disjunctive feature structure to handle the multiple
surface forms in a single lexical entry (called a lexical unit). This avoids
making a copy of the derivation tree for each candidate of the surface
form. For example, the lexical unit for the verb "be" can be described as
follows.

(DEFLEX-UNIT lbe-Unitl DYADIC
{: or
{!finite-form
{: or (!present-tense

(: or { {<word> == "am") ! lsg-subj-agr)
{ {<word> == "are")
{: or { (! 2sg-subj-agr) { ! pl-subj-agr))))

-6-

~

~

，

~

((<word> == "is") ! 3sg-subj-agr)
;; for past form, particles, etc.

When the subject gets its semantics including NUMBER and
PERSON, the in the lexical unit are simultaneously resolved by the
subject-verb agreement1. The semantics of the subject are given by the
subcat frame of the verb and, in most cases, tl1e semantics of the subject
and the surface form of the verb are simultaneously determined when the
derivation reaches the leaf and the lexical unit is selected.

However, some disjunctions survive until the subject is determined.
We use the following label notation to represent the speaker.

[SYNSEMILOCALICONTENT [LABEL•SPEAKER•]]

This is usually generated as "I" (first-person, singular pronoun).
However, it must be rendered as "this" in sentences such as "this is the
conference office" in telephone dialogues. Selection of these two surface
realizations of the subject affects the selection of the main verb "be"
("am" or "is"). Until the selection is completed, the disjunction remains
unresolved.

Kasper's algorithm is used for the unification of disjunctive feature
structures ([8]). However, Carter pointed out that disjunctive unification
in general is a very time-consuming process ([4]). Keeping disjunction in
the feature structures during the course of unification decreases the
efficiency of the generation.

Shieber et al. proposed "postponing lexical choice" for a similar
problem ([11]). We adopt the same approach, which adds an identifier to
the lexical unit instead of attaching each disjunctive component to the
derivation tree. Unifying the disjunctive components with the derivation
tree and resolving them is delayed until the whole tree is constructed.

3.3 Distribution of Quantifiers

We consider the problem of distributing the Quantifier Storage as
one of the problems of the grammar.

-.T-
t Agr eements are represented as follows using a template.

{deffstemp !3sg-subj-agr {)
(<!subj-1 !cont param index pers> == 3rd)
(<!subj-1 !cont param index num> == sing))

-7-

The new analysis of I-IPSG adopted the Quantifier Storage (Cooper
Storage), and the information on quantifiers is analyzed as a QSTORE
feature apart from semantic content. A sentence that contains "every
student" and "the book" will be analyzed as Fig. 4. Here each element of
the QSTORE points to some part of the semantic content.

屈 [PARAM日[INDEX[NUMBER SING)]

RESTR l[RELN book

SYNSEMILOCALICONTENT I…
INST日 ll]

回[PARAM回[INDEX[NUMBER SING)] •..

RESTR I[霊乱tudent])]

OSTORE lquantifier[DET the [j quantifier[DET every dl
RESTPAR 2 RESTPAR 4

Fig. 4 Representation that uses Quantifier Storage

QSTORE is also represented using a differential list in our
implementation of the grammar. One of the shortcomings of lists
including differential lists is that they can be traversed only from their
first element. No problem arises if the elements are generated according
to the order of occurrence in the list as in the case of adjective
modification.

However, the QSTORE is not such a case. Until the semantic content
for the first QSTORE element is determined, quantifier information for
other constituents is left undetermined and every quantifier element
possibility is tried. Shieber et al. adopted a "shuffling" operation for this
pu平os~([11]). Such nondeterminism increases the possible number of
denvat1on trees and decreases the efficiency of the generation process.

To solve the nondetermini_sm problem caused by the quantifier
storage distribution, we consider the following approaches:

1) Improving unification of differential lists
2) Attaching procedures to check rule applicability
3) Modifying the grammar.

One way to improve the unification of the differential lists (dlists) is
to make them accessible from both ends of the list. When the generation
process doesn't know from which end the quantifier storage is consumed,
this approach can help to reduce the nondeterminism. We call this the
"double dlist" approach.

ー
、
ー
ー
・
-

，

＾

-8-

＾

~

However, this approach also has a limitation. There are cases in
which the quantifier storage has more than two quantifier elements and
the generation process starts from the quantifier element in the middle of
the quantifier storage. In such cases, the appropriate quantifier cannot be
determined.

Next, we will consider attaching procedures to check the rule
applicability. We will call them "procedural constraints." The
procedural constraint attached to the NP rule must traverse the quantifier
store and identify the one which quantifies the semantic content of the
NP.

Procedural constraints are powerful and flexible but they can make
the grammar difficult to read and write, particularly for grammar
writers.

The third approach is to treat the problem within the grammar level.
One possible solution according to this approach is to put the quantifier
1nformat1on somewhere in the semantic content. Here we put the DET
feature under the P ARAM feature in the semantic content. Fig. 5 shows
the feature structure given to the phrase "every student."

PARAM固INDEX [NUMBER SING]

SYNSEMILOCALICONTENT日[RESTR([心［翌且:;;~n~) ~
QSTORE I quantifier[~:; 盟ご韮l

Fig. 5 Q .. uant1f 1er inf ormat1on in semantic f ea tu res

This modification allows the generation process to identify the
quantifiers, yet does no harm to the quantifier storage analysis.

4. Experiment2

4.1 Method

We have conducted an experiment to determine the effects of these
possible solutions.

The sentences to be generated are the following:

a

-

2 Details of the experiment method and the result are shown in the appendix (in
Japanese).

-9-

S-1) My boss attends every big conference.
(two quantifiers)

S-2) The conference office sent the professor a registration
form.

(three quantifiers)
S-3) This is the conference office.

(to see the effect of delayed surface selection)

We prepared 5 separate versions of the grammar that uses the
different approaches to the problems. Grammars from G-2 thru G-4
adopt the solutions for the quantifier distribution problem. Grammar G-
5 also includes the delayed surface selection for the disjunctive feature
structure problem.

G-1) Original untouched version
G-2) uses double dlist
G-3) checks procedural constraints
G-4) places the determiner in the semantic content
G-5) delays the surface lexical selection

For each grammar, three constraint checking methods were tried.

a) unification of feature structures which embed the constraint
b) independent unification of the constraints
c) check of the unifiability of the constraints

This experiment was performed in Sun Common Lisp on a
SPARCStation 1+.

4.2 The Result

The result is shown in Table I -3. Every combination of the
parameter (grammar and constraint check method) was tried 5 times.
The generation time figure used here is their average value excluding
those distorted by GC.

check method G-1 G-2 G-3 G-4 G-5

a 7.87 3. 4 9 2.18 2.36 2.39

b 7.36 3.64 2.23 2.26 2.23

C 6.96 3.09 1.97 2.03 2.16

Table 1 Generation Time (sec) for Sentence 1

1
.
9

-^
ヽ

＾

＾

モ

}

'

r

.

-10-

こ●ー』

check method G-1 G-2 G-3 G-4 G-5

a 28.91 9.83 2. 40 2. 61 2.54

b 31.71 9.75 2.26 2.58 2.39

C 27.52 8.24 2.40 2.56 2.34

Table 2 Generation Time (sec) for Sentence 2

check method G-1 G-2 G-3 G-4 G-5

a 17.71 7.52 7.54 5.63 1.76

b 18.26 7.81 7. 62 5.80 1.69

C 17.82 7.60 7.54 5.55 1.60

~

Table 3 Generation Time (sec) for Sentence 3

Fig. 6 summarizes the generation time of the different versions of
the grammar. Here the constraint check method (c) is used.

30

20

10

，

゜

一Sentence1
A・Sentence 2
• Sentence 3

G-1 G-2 G-3 G-4 G-5

Grammars

一
●
＇
，

2

Fig. 6 The effect of changing grammars

The effect of the solutions to the quantifier storage distribution
problem can be seen in this figure. The grammar G-2 which uses a
double dlist effectively reduces the generation time. However, we can see
that the effect is not sufficient by comparing the result with those of G-3
and G-4. Procedural constraints (G-3) and the determiner in the

-11 -

semantics (G-4) are equally responsible for further reduction. A ten-fold
increase in efficiency is made in the case of sentence 2.

The generation time for sentence 3 is reduced by the grammar G-5
because of the delayed lexical choice. The reduction factor is almost 1/3
(5.55 sec in G-4 to 1.60 sec in G-5).

The effect of changing constraint check methods is summarized in
Fig. 7. Here the data is taken from the grammar G-5. A drastic
improvement cannot be achieved by this method.

｀ー、ー・—
ロ Sentence 1

2.6 7 A SS enntt ence 2
e ence 3 --......__

2.4

2.2j ~------ ~

2.0

1.8

1.6

1.4
a b C

Constraint check method

Fig.7 The effect of changing constraint check method

5 .. _ Conclusion

＾
In this paper, we have proposed and experimented with several

methods to improve the efficiency of a unification-based generation
system. The greatest improvement was made by reducing
nondeterminism in the grammar. For the mechanism, delaying surface
lexical selection and eliminating disjunctive feature structures in the
derivation tree can reduce the generation time to about one-third in some
cases_. Improvement of the constraint check method doesn't give such
drastic results nevertheless, it is also important because the effect is
applicable to any implementation of grammar and to any sentences.

The grammar used here must be extended to handle a variety of
speech acts in the telephone dialogue. We have learned that it is most
important to reduce nondeterminism in order to make the grammar

•

-12-

~

＾

efficient. Typed-Feature-Structure-Directed Generation provides a way
of reducing such nondeterminism using constraints represented by the
type hierarchy.

The mechanism itself is also a target of improvement. We have
combined Semantic-Head-Driven generation ([11]) and our method, and
the combined mechanism is now under evaluation.

We have not discussed improvement of the unification algorithm but
this also plays a very important role. Unification occupies a significant
portion of computation time in unification-based parsing and generation.
Several algorithms have been proposed ([10], [6]) and we can expect them
to help increase the efficiency of the generation.

References
[1] Ail-Kaci, H.: An Algebraic Semantics Approach to the Effective

Resolution of Type Equations, Theoretical Computer Science 45, pp.
293 -351, North-Holland (1986).

[2] Appelt, D. E.: Bidirectional Grammars and the Design of Natural
Language Generation Systems, Theoretical Issues in Natural Language
Processing -3, pp. 185 -191, Las Cruses (1987).

[3] Borsley, R. D.: Subjects and Complements in HPSG, Report No.
CSLI-87-107, CSLI, Stanford (1987).

[4] Carter, D.: Efficient Disjunctive Unification for Bottom-Up Parsing,
in Coling-90, Vol. 3, pp. 70 -75, Helsinki (1990).

[5] Dymetman, D. and Isabelle, P.: Reversible Logic Grammars for
Machine Translation, in 2nd International Conference on Theoretical
and Methodological Issues in Machine Translation, Pittsburgh (1988)

[6] Godden, K.: Lazy Unification, in 28th Annual Meeting of the
Association for Computational Linguistics, pp. 180 -187, Pittsburgh
(1990).

[7] Jacobs, P.S.: PHRED: A Generator for l'latural Language Interfaces,
Computational Linguistics, Vol. 11, No. 4, pp. 219 -242, MIT Press
(1985).

[8] Kasper, R. T.: A Unification Method for Disjunctive Feature
Descriptions, in 25th Annual Meeting of the Association for
Computational Linguistics, pp. 235 -242, Stanford (1987).

[9] Kogure, K.: A Method of Analyzing Japanese Speech Act Types, in
2nd International Conference on Theoretical and Methodological
Issues in Machine Translation, Pittsburgh (1988),.

[10] Kogure, K.: Strategic Lazy Incremental Copy Graph Unification, in
Coling-90, Vol. 2, pp. 223 -228, Helsinki (1990).

[11] Shieber, S. M., van Noord, G., Moore, R. C., and Pereira, F. C. N.:
Semantic-Head-Driven Generation, in Computational Linguistics, Vol.
16, No. 1, pp. 30 -42, MIT Press (1990).

-13-

[12] Pollard, C. ・and Sag, I. A.: An Information-Based Syntax and
Semantics, Volun1e 1, Fundamentals, CSLI Lecture Notes Number 13,
Center for the Study of Language and Information, Stanford (1987).

[13] Pollard, C. and Sag, I. A.: An Information-Based Syntax and
Semantics, Volume 2, Topics in Binding and Control , CSLI Lecture
Notes (to appear), Center for the Study of Language and Information,
Stanford (1991).

[14] Ueda, Y. and Kogure K.: Generation for Dialogue Translation Using
1 ... yped Feature Structure Unification, in Coling 90, Vol. 1, pp. 64 -
66, Helsinki (1990).

[15] Yoshimoto, K. and Kogure, K.: Phrase Structure Grammar for
Inter-Terminal Dialog Analysis, in 37th Meeting of Japan Infonnation
Processing Society, 5C-5 (1988).

7
↓

r¥9-

＾

＾

,
、
ヽ
ー
・
—

-14-

付録：生成効率改善実験

文法ieg2のシリーズを用いて生成効率改善の実験を行った。その実験方法と実験データを

示す。

実験方法
彎
＇
』

例文

文法

n
’
S、

n

my boss attends every big conference

this is the conference office

the conference office sent the professor a registration form

~

ieg2 Grammar 1。特に対策をたてていないもの。

ieg2-2 Grammar 2。双方向DListをもちいたもの。

ieg2-3 Grammar 3。手続き的制約を用いたもの。

ieg2-5 Grammar 4。detenninerをsynsem素性の下に入れたもの。

ieg2-4 Grammar 5。Grammar3に表層選択の遅延を加えたもの。

制約条件のチェック方法

: total チェック方法a。制約条件と素性構造伝播部分を同時に単一化。

: desc-check チェック方法b。制約条件部分を独立に単一化してチェック。

: desc-filtered チェック方法bの結果を、素性構造伝播部分の入力に使用。

: spec-check チェック方法c。制約条件部分の単一化可能性のみをチェック。

実験環境 Sun Common Lisp / SPARCstation 1 +

~

実験の再現方法

コネクトディレクトリは/as06/ryu/

1 (load "achart/acp-gen")

2 (load "grammar/ieg2")

3 (setq *dribble-file* "grammar/test-gen-ieg2-1.log")

4 (load "grammar/test-ieg-seq.lisp" :print t)

実験結果

実験結果は、下記のファイルに残されている。

grammar/test-gen-ieg2-1.log

grammar/test-gen-ieg2-5.log

ここで得られたデータを次に示す。 5回の生成を行い、その平均を左端に出している。測

定データのうち、ガーベジコレクション("DynamicByte Consed")のため信頼できないもの

A-1

には＊をつけて、平均値の鈴出からは除いている。

ieg2 特に対策をたてていないもの(Grammar1)。

S-1 :total 7.8 8.47 7.04 7.64 8.33 7.856

:desc-check 6.82 7.51 8.81 6.35 7.3 7.358

:desc-filtered 7.47 9.43 8.03 9.52 7.46 8.382

:spec-check 7.09 6.38 7.81 6.3 7.23 6.962
ヽ
,I

S-2 :total 19.38 16.77 17.86 17.58 16.97 17.712

:desc-check 18.84 18.26 18.17 18.64 17.37 18.256

:desc-filtered 21.4 21.97 21.98 21.19 21.75 21.658

:spec-check 17.43 18.42 18.03 17.05 18.13 17.812

S-3 :total 27.58 28.71 27.86 29.49 30.92 28.912

:desc-check 30.95 32.95 32.81 37.14* 30.11 31.705

:desc-filtered 35 36.83 33.89 35.85 36.09 35.532

:spec-check 26 .25 30.37 25.65 27.22 28.13 27.524

~

ieg2-2. DoubleDListを用いたもの(Grammar2)。かなり効果が現れている。文3ではじゅう

ぶんな結果は得られない。

1 :total 3.28 4.44* 3.24 3.94 4.66* 3.487

:desc-check 3.33 3.88 4.75* 3.28 4.07 3.64

:desc-filtered 5.11* 4.38 3.62 4.72* 4.24 4.08

:spec-check 3.11 4.59* 4.81* 2.66 3.5 3.09

2 :total 7.53 8.65* 7.78 8.22* 7.26 7.523

:desc-check 7.93 8.61* 8.04 7.46 8.53* 7.81

:desc-filtered 9.94 9.91 10.55* 10.14 10.58* 9.997

:spec-check 7.31 7.77 7.96 8.33* 7.35 7.5975

3 :total 9.98 10.26 8.59 9.87 10.44 9.828

:desc-check 9.62 10.45 10.66 8.44 9.6 9.754

:desc-filtered 11.55 13.85 11.66 11.5 11.06 11.924

＾
:spec-check 7.82 8.62 8.45 9.11 7.2 8.24

ieg2-3. チェック手続きを用いたもの(Grammar3)。文3のようにqstoreのリストが3個以上

で先頭からも末尾からも生成がなされないものにも有効である。

1 :total 2.53 1.98 1.93 2.94* 2.26 2.175

:desc-check 2.57 2.13 2 2.95* 2.23 2.2325

:desc-filtered 2.54 1.96 1.92 3.30* 2.04 2.115

:spec-check 2.5 1.76 1.8 3.40* 1.83 1.9725

2 :total 7.86 8.42* 7.65 7.16 7.47 7.535

:desc-check 8.41* 7.38 7.69 7.8 8.03* 7.623
｝ :desc-filtered 8.54 8.84 9.02 9.54* 8.98 8.845

:spec-check 7.27 7.81 8.01* 7.7 7.37 7.5375

A-2

3 :total 2.96* 2.42 2.53 2.26 3.48* 2.403

:de:ic-check 2.04 2.05 2.05 2.03 3.11 2.256

:desc-filtered 2.2 3.22 2.22 3.98* 2.17 2.4525

:spec-check 3.96* 1.95 2.66 2.6 3.32* 2.403

ieg2-4. 表層形の選択を同時に行わず、最後まで遅らせたもの(Grammar5)。文2のように主

語が動詞によって決定され、それまで表層形が決定されないものにも有効である。しかし、

その他の文に対してはかえって遅くなっている。

1 :total 2.44 3.79* 2.09 2.88 2.13 2.385

:denc-check 2 3.51* 2.05 2.83 2.01 2.2225

:desc-filtered 3.20* 2.46 2.73 2.48 3.34* 2.557

:spec-check 1.94 2.73 1.95 1.99 3.25* 2.1525

2 :total 1.67 2.15 1.61 1.61 2.51* 1.76

:desc-check 1. 62 1.62 1.95 1.65 1.62 1.692

:desc-filtered 2.06 1.68 1.7 2.26* 1.63 1. 7 67 5

:spec-check 1.55 1.53 1.91 1.52 1.51 1.604 ． 3 :total 4.00* 2.23 3.2 2.18 3.77* 2.537

:desc-check 2.16 3.09 2.16 3.58* 2.15 2.39

:desc-filtered 3.22 2.82 3.49* 2.71 3.36 3.0275

:spec-check 2.09 4.12* 2.1 3.08 2.09 2.34

ieg2-5. determinerをsynsem素性の下に入れることによって非決定性をなくしたもの

(Grammar4)。表層形の選択の遅延は行っていない。

1 :total 2.39 3.82* 2.01 3.01 2.04 2.3625

:desc-check 2.07 3.30* 2.41 2.54 2.02 2.26

:desc-filtered 2.1 3.7 2.72 2.07 3.68* 2.6475

:spec-check 2 1.92 2.3 1.91 3.31* 2.0325

2 :total 5.5 5.37 5.78 5.96 5.54 5.63

:desc-check 6.56* 5.58 5.96 5.66 6 5.8 ． :desc-filtered 7.52* 6.65 6.88 6.63 7.04 6.8
:spec-check 6.54* 5.53 5.8 5.49 5.39 5.5525

3 :total 2.72 4.13* 2.27 3.14 2.32 2.6125
:desc-check 4.18* 2.24 3.18 2.31 3.61* 2.577
:desc-filtered 2.51 3.32 2.82 3.61* 2.39 2.76
:spec-check 4.19* 2.23 3.29 2.15 3.56* 2.557

A-3

