
Internal Use Only

TR-1-0198

Quasi-Destructive Graph Unification

準破壊型グラフ・ユニフィケーション

Hideto Tomabechi

苫米地英人

1991,3.4

概要

単一化文法を使う解析法において、グラフ単一化の操作が最も計算コストを要する。この操作

を高速に処理する実現手法について報告する。次の2点に関する改良を図り、単一化アルゴリ

ズムの高速化を実現した。それらは、成功時だけ単一化操作によるグラフの複製を作ること、

およぴ単一化失敗を早期に発見すること、の2点である。解析実験により、代表的な単一化ア

ルゴリズムの一つであるWroblewskiのものと比ぺ、同等乃至は2倍の高速化が確認できた。

ATR Interpreting Telephony Research Laboratories
ATR自動翻訳電話研究所

@ 1991 by ATR Interpreting Telephony Research Laboratories

@ATR自動翻訳電話研究所 1991

-
l
)
j

ノ

一

Quasi-Destructive Graph Unification

＾
Technical Report

ATR Interpreting Telephony Research Laboratories

Hideto Tomabechi*

＾

r

・
7

.. ,
*VisiLing Research Scientist from Carnegie Mellon University. tomabech+@cs.cmu.edu

ー

Abstract

.I

Graph unification is the most expensive part of unification-based grammar parsing. It often

takes over 90% of the total parsing time of a sentence. We focus on two speed-up elements
in the design of unification algorithms: 1) elimination of excessive copying by only copying

successful unifications, 2) Finding unification failures as soon as possible. We have developed a

scheme to attain these two criteria without expensive overhead through temporarily modifying

graphs during unification to eliminate copying during unification. The temporary modification

is invalidate・d in constant time and therefore, unification can continue looking for a failure

without the overhead associated with copying. After a successful unification because the

nodes are temporarily prepared for copying, a fast copying can be perfonned without overhead

for handling reentrancy, loops and variables. We found that parsing relatively long sentences
(requiring about 500 unifications during a parse) using our algorithm is 100 to 200 percent

faster than parsing the same sentences using Wroblewski's algorithm.

＾

~

ー

1. Motivation

Graph unification is the most expensive part of unification-based grammar parsing systems. For

example, in the three types of parsing systems currently used at ATR 1, all of which use graph

unification algorithms based on [Wroblewski, 1987], unification operations consume 85 to 90

percent of the total cpu time devoted to a parse. The number of un~fication operations per sentence
tends to grow as the grammar gets larger and more complicated. An unavoidable paradox is that

when the natural language system gets larger and the coverage of linguistic phenomena increases

the writers of natural language grammars tend to rely more on deeper and more complex path

equations (loops and frequent reentrancy) to lessen the complexity of writing the grammar. As a

result, we have seen that the number of unification operations increases rapidly as the coverage

of the grammar grows in contrast to the parsing algorithm itself which does not seem to grow so

quickly. Thus, it makes sense to speed up the unification operations to improve the total speed

performance of the natural language parsing system.

Our original unification algorithm was based on [Wroblewski, 1987] which was chosen in

1988 as the then fastest algorithm available for our application (HPSG based unification grammar,
three types of parsers (Earley, Tomita-LR, and active chart), unification with variables and loops2

combined with Kasper's ([Kasper, 1987]) scheme for handling disjunctions). In designing the

graph unification algorithm, we have made the following observation which influenced the basic

design of the new algorithm described in this paper:

Unification does not always succeed.

As we will see from the data presented in a later section, when our parsing system operates with

a relatively small grammar, about 60 percent of unifications attempted during a successful parse
result in failure. If a unification fails, any computation performed and memory consumed during

the unification is wasted. As the grammar size increases, the number of unification failures for each

successful parse increases3. Without completely rewriting the grammar and the parser, it seems

difficult to shift any significant amount of the computational burden to the parser in order to reduce

the number of unification failures4.

Another problem that we would like to address in our design, which seems to be well documented

in the existing literature is that:

Copying is an expensive operation.

The copying of a node is a heavy burden to the parsing system. [Wroblewski, 1987] calls

it a "computational sink". Copying is expensive in two ways: 1) it takes time; 2) it takes

space. Copying takes time essentially because the area in the random access memory needs to be

1The three parsing systems are based on: 1. Earley's algorithm, 2. active chart parsing, 3. generalized LR parsing.

2Please refer to [Kogure, 1989] for trivial time modification of Wroblewski's algorithm to handle loops.

3 ¥Ve estimate over 80% of unifications to be failures in our large-scale speech-to-speech translation system under
development.

40f course, whether that will improve the overall performance is another question.

て
し
｀
｀
｀
＇
●
，

l
e

~

，

2

ー

dynamically allocated which is an expensive operation. [Godden, 1990] calculates the computation
time cost of copying to be about 67 % of total parsing time in his TIME parsing system. This
time/space burden of copying is non-trivial when we consider the fact that creation of unnecessary
copies will eventually trigger garbage collections more often (in a Lisp environment) which will
also slow down the overall performance of the parsing system. In general, parsing systems are
always short of memory space (such as large LR tables of Tomita-LR parsers and expanding tables

and charts of Earley and active chart parsers5), and the marginal addition or subtraction of the
amount of memory space consumed by other parts of the system of ten has critical effects on the
performance of these systems.

Considering the aforementioned problems, we propose the fallowing principles to be the desir-

able conditions for a fast graph unification algorithm:

• Copying should be performed only for successful unifications.

• Unification failures should be found as soon as possible.

~By way of definition we would like to categorize excessive copying of dags into Over Copying
and Early Copying. Our definition of over copying is the same as Wroblewski's; however, our
definition of early copying is slightly different.

• Over Copying: Two dags are created in order to create one new dag. -This typically happens
when copies of two input dags are created prior to a destructive unification operation to build
one new dag. ([Godden, 1990] calls such a unification: Eager Unification.). When two
arcs point to the same node, over copying is often unavoidable with incremental copying
schemes.

,,......

• Early Copying: Copies are created prior to the failure of unification so that copies created
since the beginning of the unification up to the point of failure are wasted.

Wroblewski defines Early Copying as follows:'、Theargument dags are copied before unification
started. If the unification fails then some of the copying is wasted effort" and restricts early copying

to cases that only apply to copies that are created prior to a unification. Restricting early copying to

copies that are made prior to a unification leaves a number of wasted copies that are created during a

unification up to the point of failure to be uncovered by either of the above definitions for excessive

copying. We would like Early Copying to mean all copies that are ¥vasted due to a unification

failure whether these copies are created before or during the actual unification operations.

Incremental copying has been accepted as an effective method of minimizing over copying
and eliminating early copying as defined by Wroblewski. However, while being effective in
minimizing over copying (it over copies only in some cases of convergent arcs into one node),
incremental copying is ineffective in eliminating early copying as we define it.6 Incremental
copying is ineffective in eliminating early copying because when a graph unification algorithm

recurses for shared arcs (i.e. the arcs with labels that exist in both input graphs), each created

5For example, our phoneme-based generalized LR parser for speech input is always running on a swapping space
because the LR table is too big.

6'Early copying'will henceforth be used to refer to early copying as defined by us.

3

unification operation recursing into each shared arc is independ~nt of other recursive calls into
other arcs. In other words, the recursive calls into shared arcs are non-deterministic and there is
no way for one particular recursion into a shared arc to know the result of future recursions into
other shared arcs. Thus even if a particular recursion into one arc succeeds (with minimum over ¥
copying and no early copying in Wroblewski's sense), other arcs may eventually fail and thus
the copies that are created in the successful arcs are all wasted. We consider it a drawback of
incremental copying schemes that copies that are incrementally created up to the point of failure
get wasted. This problem will be particularly felt when we consider parallel implementations of
incremental copying algorithms. Because each recursion into shared arcs is non-deterministic,
parallel processes can be created to work concurrently on all arcs. In each of the parallelly created
processes for each shared arc, another recursion may take place creating more parallel processes.
While some parallel recursive call into some arc may take time (due to a large number of subarcs,
etc.) another non-deterministic call to other arcs may proceed deeper and deeper creating a large
number of parallel processes. In the meantime, copies are incrementally created at different depths
of subgraphs as long as the subgraphs of each of them are unified successfully. This way, when a
failure is finally detected at some deep location in some subgraph, other numerous processes may
have created a large number of copies that are wasted. Thus, early copying will be a significant~
problem when we consider parallelization of incremental copying unification algorithms.

2. Our Scheme

We would like to introduce an algorithm which addresses the criteria for fast unification discussed in
the previous sections. It also handles loops without over copying (without any additional schemes
such as those introduced by [Kogure, 1989]).

As a data structure, a node is represented with eight fields: type, arc-list, comp-arc-list, forward,
copy, comp-arc-mark, forward-mark, and copy-mark. Although this number may seem high for a
graph node data structure, the amount of memory consumed is not significantly different from that
consumed by other algorithms. Type can be represented by three bits; comp-arc-mark, forward-
mark, and copy-mark can be represented by short integers (i.e. fixnums); and comp-arc-list (just
like arc-list) is a mere collection of pointers to memory locations. Thus this additional information
is trivial in terms of memory cells consumed and because of this data structure the unification~
algorithm itself can remain simple.

The representation for an arc is no different from that of other unification algorithms. Each arc
has two fields for'label'and'value'.'Label'is an atomic symbol which labels the arc, and'value'

is a pointer to a node.

The central notion of our algorithm is the dependency of the representational content on the

global timing clock (or the global counter for the current generation of unification algorithms).
This scheme was used in [Wroblewski, 1987] to invalidate the copy field of a node after one
unification by incrementing a global counter. This is an extremely cheap operation but has the
power to invalidate the copy fields of all nodes in the system simultaneously. In our algorithm, this
dependency of the content of fields on global timing is adopted for arc lists, forwarding pointers,
and copy pointers. Thus any modification made, such as adding forwarding links, copy links or

4

―-'●’“

NODE

+--------------—+ type I

+--------------—+ arc-list I

+--------------—+
I comp-arc-list I

+--------------—+ forward I

+--------------—+ copy I

+--------------—+
I comp-arc-mark I

+--------------—+
I forward-mark I

+--------------—+ copy-mark I

+--------------—+

ARC

+---------------+
label

+---------------+
I value I

+--------------—+

＾ Figure 1: Node and Arc Structures

arcs during one top-level unification (unif yO) to any node in memory can be invalidated by one

increment operation on the global timing counter. During unification (in unify 1) and copying after

a successful unification, the global timing ID for a specific field can be checked by comparing the

content of mark fields with the global counter value and if they match then the content is respected,
if not it is simply ignored. Thus the whole operation is a trivial addition to the original destructive
unification algorithm (Pereira's and Wroblewski's unifyl).

We have two kinds of arc lists 1) arc-list and comp-arc-list. Arc-list contains the arcs that

are permanent (i.e., usual graph arcs) and comp-arc-list contains arcs that are only valid during

one graph unification operation. We also have two kinds of forwarding links, i.e., permanent and

temporary. A permanent forwarding link is the usual forwarding link found in other algorithms

([Pereira, 1985], [Wroblewski, 1987], etc). Temporary forwarding links are links that are only

~valid during one unification. The currency of the temporary links is determined by matching the
content of the mark field for the links with the global counter and if they match then the content of
this field is respected7. As in [Pereira, 1985], we have three types of nodes: 1) :atomic, 2) :bottom 8,

and 3) :complex. :atomic type nodes represent atomic symbol values (such as Noun), :bottom type

nodes are variables and :complex type nodes are nodes that have arcs coming out of them. Arcs are

stored in the arc-list field. The atomic value is also stored in the arc-list if the node type is :atomic.

: bottom nodes succeed in unifying with any nodes and the result of unification takes the type and

the value of the node that the :bottom node was unified with. :atomic nodes succeed in unifying
with :bottom nodes or :atomic nodes with the same value (stored in the arc-list). Unification of an

7In terms of forwarding links, we do not have a separate field for temporary forwarding linlcs; instead, we designate
the integer value 9 to represent a permanent forwarding link. We start incrementing the global counter from 10 so
whenever the forward-mark is not 9 the integer value must equal the global counter value to respect the fonvarding
link.

8Bottom is called leaf in Pereira's algorithm.

5

:atomic node with a :complex node immediately fails. :complex nodes succeed in unifying with
: bottom nodes or with :complex nodes whose subgraphs all unify. Arc values are always nodes
and never symbolic values because the :atomic and :bottom nodes may be pointed to by multiple
arcs (just as in structure sharing of :complex nodes) depending on grammar constraints, and we do
not want arcs to contain terminal atomic values.

Below is our algorithm:

function UNIFY-DAG (dagl,dag2); ;; toplevel

RESULT:== catch with tag'UNIFY-FAIL

calling UNIFYO(dagl,dag2)

increment *unify-global-counter*;; starts from 10

return RESULT;
end;

function UNIFYO (dagl,dag2);

if'*T* == UNIFYl(dagl,dag2);

then COPY:== COPY-DAG-WITH-COMP-ARCS(dagl);

return COPY;

end;

function UNIFYl (dagl-underef,dag2-underef);

DAGl :== DEREFERENCE-DAG(dagl-underef);

DAG2 DAG(dag2-underef);

if (DAGl == DAG2) ;;; i.e.,'eq'relation

then return'*T*;
else if (DAGl.type == :bottom) ;; variable

then FORWARD-DAG(DAG1,DAG2, :temporary);

return'*T*;
else if (DAG2.type == :bottom)

then FORWARD-DAG(DAG2,DAG1, :temporary);

return'*T*;

else if (DAGl.type == :atomic and

DAG2.type == :atomic)

then

if (DAGl.arc-list == DAG2.arc-list)

; ; ； contains atomic values

then FORWARD-DAG{DAG2,DAG1,

: temporary);

return'*T*;

else throw with keyword'UNIFY-FAIL;

; ; ; return directly to unify-dag

(throw/catch construct)

else if (DAGl.type == :atomic
or DAG2.type == :atomic)

then throw with keyword'UNエFY-FAIL;
else NEW:== COMPLEMENTARCS(DAG2,DAG1);

SHARED :== INTERSECTARCS(DAG1,DAG2);

for each ARC in SHARED do
RESULT :== UNIFYl(destination of the

shared arc for dagl,

destination of the

＾

~

6

-‘・

shared arc for dag2);

if (RESULT=/='*T*)
throw with keyword'UNIFY-FAIL;

If (the recursive calls to UNIFYl

successfully returned for all

shared arcs)
,,, this check is actually unnecessary

then
FORWARD-DAG(DAG2,DAG1, :temporary);

DAGl.comp-arc-mark :==
unify-global-counter;

DAGl.comp-arc-list :== NEW
return'*T*;

end;

~

~

function COPY-DAG-WITH-COMP-ARCS(dag-underef);
DAG:== DEREFERENCE-DAG(dag-underef);
if (DAG.copy is non-empty

and
DAG.copy-mark== *unify-global-counter*)

then return the content of DAG.copy;

;;; i.e. existing copy

else if (DAG.type== :atomic)
COPY : == CREATE-NODE() ;

COPY.type:== :atomic;

COPY.arc-list :== DAG.arc-list;
; ; ； this is an atomic value

DAG.copy:== COPY;

DAG.copy-mark
: == *unify-global-counter*;

return COPY;

else if (DAG.type== :bottom)
COPY : == CREATE-NODE() ;
COPY.type:== :bottom;

DAG.copy:== COPY;
DAG.copy-mark

: == *unify-global-counter*;

return COPY;
else COPY:== CREATENODE();

COPY.type:== :complex;
for all ARC in DAG.arc-list do
NEWARC :== COPY-ARC-AND-COMP-ARC(ARC);

push NEWARC into COPY.arc-list;
if (DAG.comp-arc-list is non-empty

and
DAG.comp-arc-mark==

unify-global-counter)

then
for all COMP-ARC in

DAG.comp-arc-list do

NEWARC :==
COPY-ARC-AND-COMP-ARC(COMP-ARC);

push NEWARC into COPY.arc-list;

DAG.copy:== COPY
DAG.copy-mark:== *unify-global-counter*;

7

return COPY;
end;

function COPY-ARC-AND-COMP-ARC (input-arc)
LABEL:== label of input-arc;
VALUE:== COPY-DAG-WエTH-COMP-ARCS

(value of input-arc);
return a new arc with LABEL and VALUE;
end;

9
ゞ

．．
 ＇

The functions Complementarcs(dagl,dag2) and Intersectarcs(dagl,dag2) are the same as in

Wroblewski's algorithm and return the set-difference (the arcs with labels that exist in dagl but
not in dag2) and intersection (the arcs with labels that exist both in dagl and dag2) respectively.

Dereference-dag(dag) recursively traverses the forwarding link to return the forwarded node. In

doing so, it checks the forward-mark of the node and if the forward-mark value is 9 (9 represents a

permanent forwarding link) or its value matches the current value of *unify-global-counter*, then
the function returns the forwarded node; otherwise it simply returns the input node. Forward(dagl,
dag2, :forward-type) puts (the pointer to) dag2 in the forward field of dagl. If the keyword in
the function call is :temporary, the current value of the *unify-global-counter* is written in the
forward-mark field of dagl. If the keyword is :permanent, 9 is written in the forward-mark field of
dagl. Our algorithm itself does not require any permanent forwarding; however, the functionality

is added because the grammar reader module that reads the path equation specifications into dag
feature-structures uses permanent forwarding to merge the additional grammatical specifications
into a graph structure9. The temporary forwarding links are necessary to handle reentrancy and
loops. As soon as unification (at any level of recursion through shared arcs) succeeds, a temporary

forwarding link is made from dag2 to dagl (dagl to dag2 if dagl is of type :bottom). Thus, during
unification, a node already unified by other recursive calls to unify! within the same unifyO call
has a temporary forwarding link from dag2 to dagl (or dagl to dag2). As a result, if this node

becomes an input argument node, dereferencing the node causes dagl and dag2 to become the

same node and unification immediately succeeds. Thus a subgraph below an already unified node

will not be checked more than once even if an argument graph has a loop. Also, during copying

done subsequently to a successful unification, two arcs converging into the same node will not
cause over copying simply because if a node already has a copy then the copy is returned. For

example, as a case that may cause over copies in other schemes for dag2 convergent arcs, let us
consider the case when the destination node has a corresponding node in dagl and only one of
the convergent arcs has a corresponding arc in clagl. This destination node is already temporarily
forwarded to the node in dagl (since the unification check was successful prior to copying). Once
a copy is created for the corresponding clagl node and recorded in the copy field of dagl, every
time a convergent arc in dag2 that needs to be copied points to its destination node, dereferencing
the node returns the corresponding node in dagl and since a copy of it already exists, this copy is
returned. Thus no duplicate copy is created10.

’

＾

9We have been using Wroblewski's algorithm for the unification part of the parser and thus usage of (permanent)
forwarding links is used by the grammar reader module.

10Copying of dag2 arcs happens for arcs that exist in dag2 but not in dagl (i.e., Complementarcs{dag2,dagl)). Such
arcs are pushed to the comp-arc-list of曲glduring unify! and are copied into the arc-list of the copy during subsequent

8

一
疇
．

＾

As we just saw, the algorithm itself is simple. The basic control structure of the unification is
similar to Pereira's and Wroblewski's unifyl. The essential difference between our unifyl and the
previous ones is that our unifyl is non-destructive. It is because the complementarcs(dag2,dagl)
are added to the comp-arc-list of dagl and not into the arc-list of dagl. Thus, as soon as we
increment the global counter, the changes made to dagl (i.e., addition of complement arcs into
comp-arc-list) vanish. As long as the comp-arc-mark value matches that of the global counter the
content of the comp-arc-list can be considered a part of arc-list and therefore, dagl is the result
of unification. Hence the name quasi-destructive graph unification. In order to create a copy for
subsequent use we only need to make a copy of dagl before we increment the global counter while
respecting the content of the comp-arc-list of dagl.

Thus instead of calling other unification functions (such as unify2 of Wroblewski) for incre-
mentally creating a copy node during a unification, we only need to create a copy after unification.
Thus, if unification fails no copies are made at all (as in [Karttunen, 1986]'s scheme). Because
. fi . uni cation that recurses into shared arcs cames no burden of incremental copying (i.e., it simply
checks if nodes are compatible), as the depth of unification increases (i.e., the graph gets larger) the
speed-up of our method should get conspicuous if a unification eventually fails. If all unifications
during a parse are going to be successful, our algorithm should be as fast as or slightly slower than
Wroblewski's algorithm 11. Since a parse that does not fail on a siりgleunification is unrealistic,
the gain from our scheme should depend on the amount of unification failures that occur during
a unification. As the number of failures per parse increases and the graphs that failed get larger,
the speed-up from our algorithm should become more apparent. Therefore, the characteristics of
our algorithm seem desirable. In the next section, we will see the actual results of experiments
which compare our unification algorithm to Wroblewski's algorithm (slightly modified to handle
variables and loops that are required by our HPSG based grammar).

3. Experiments

'U nif s'represents the total number of unifications during a parse (the number of calls to the top-
level'unify-dag', and not'unify I').'USrate'represents the ratio of successful unifications to the

~total number of unifications. We parsed each sentence three times on a Symbolics 3620 using both
unification methods and took the shortest elapsed time for both methods ('T'represents our scheme,
'W'represents Wroblewski's algorithm with a modification to handle loops and variables12). Data

copying. If there is a loop or a convergence in arcs in dagl or in arcs in dag2 that do not have corresponding arcs in
dagl, then the mechanism is even simpler than the one discussed here. A copy is made once, and the same copy is
simply returned every time another convergent arc points to the original node. It is because arcs are copied only from
either dag 1 or dag2.

It may be slightly slower, because our unification recurses twice on a graph: once to unify and once to copy,
whereas in incremental unification schemes copying is perfonned during the same recursion as unifying. Additional
bookkeeping for incremental copying during unify2 may slightly offset this, however.

12Loops can be handled in Wroblewski's algorithm by checking whether an arc with the same label already exists
when arcs are added to a node. And if such an arc already exists, we destructively unify the node which is the
destination of the existing arc with the node which is the destination of the arc being added. If such an arc does not
exist, we simply add the arc. ([Kogure, 1989]). Thus, loops can be handled very cheaply in Wroblewski's algorithm.

，

sent# Unifs USrate Elapsed time(sec) Num of Copies Num of Conses
T w T w T w

1 6 0.5 1.066 1.113 85 107 1231 1451
2 101 0.35 1.897 2.899 1418 2285 15166 23836
3 24 0.33 1.206 1.290 129 220 1734 2644
4 71 0.41 3.349 4.102 1635 2151 17133 22943
5 305 0.39 12.151 17.309 5529 9092 57405 93035
6 59 0.38 1.254 1.601 608 997 6873 10763
7 6 0.38 1.016 1.030 85 107 1175 1395
8 81 0.39 3.499 4.452 1780 2406 18718 24978 ， 480 0.38 18.402 34.653 9466 15756 96985 167211

10 555 0.39 26.933 47.224 11789 18822 119629 189997
11 109 0.40 4.592 5.433 2047 2913 21871 30531
12 428 0.38 13.728 24.350 7933 13363 81536 135808
13 559 0.38 15.480 42.357 9976 17741 102489 180169
14 52 0.38 1.977 2.410 745 941 8272 10292
15 77 0.39 3.574 4.688 1590 2137 16946 22416

16 77 0.39 3.658 4.431 1590 2137 16943 22413

Figure 2: Comparison of our algorithm with Wroblewski's

structures are the same for both unification algorithms (except for additional fields for a node in
our algorithm, i.e., comp-arc-list, comp-arc-mark, and forward-mark). Same functions are used
to interface with Barley's parser and the same subfunctions are used wherever possible (such as
creation and access of arcs) to minimize the differences that are not purely algorithmic.'Number of
copies'represents the number of nodes created during each parse (and does not include the number

of arc structures that are created during a parse).'Number of conses'represents the amount of
structure words consed during a parse. This number represents the real comparison of the amount

of space being consumed by each unification algorithm (including added fields for nodes in our

algorithm and arcs that are created in both algorithms).

We used Earley's parsing algorithm for the experiment. The Japanese grammar is based on

HPSG analysis ([Pollard and Sag, 1987]) covering phenomena such as coordination, case adjunc-

tion, adjuncts, control, slash categories, zero-pronouns, interrogatives, WH constructs, and some

~

pragmatics (speaker, hearer relations, politeness, etc.) ([Yoshimoto and Kogure, 1989]). The~
grammar covers many of the important linguistic phenomena in conversational Japanese. The
grammar graphs which are converted from the path equations contain 2324 nodes. We used 16
sentences from a sample telephone conversation dialog which range from very short sentences

(one word, i.e., iie'no') to relatively long ones (such as soredehakochirakarasochiranitourokuy-
oushiwoookuriitashimasu'In that case, we [speaker] will send you [hearer] the registration form.').

Thus, the number of unifications per sentence varied widely (from 6 to over 500).

Handling variables in Wroblewski's algorithm is basically the same as in our algorithm (i.e., Pereira's scheme), and
the addition of this functionality can be ignored in tenns of comparison to our algorithm. Our algorithm does not
require any additional scheme to handle loops in input dags.

10

l

｀ ↓

4. Discussion:

a
J
 9,
1
盲

＾

r-,..,

4.1. Comparison to Other Approaches

The control structure of our algorithm is identical to that of [Pereira, 1985]. However, instead of

storing changes to the argument dags in the environment we store the changes in the dags themselves

non-destructively. Because we do not use the environment, the log(d) overhead (where dis the

number of nodes in a dag) associated with Pereira's scheme that is required during node access (to

assemble the whole dag from the skeleton and the updates in the environment) is avoided in our

scheme. We share the principle of storing changes in a restorable way with [Karttunen, 1986]'s
reversible unification and copy graphs only after a successful unification. Karttunen originally

introduced this scheme in order to replace the less efficient structure-sharing implementations

([Pereira, 1985], [Karttunen and Kay, 1985]). In Karttunen's method13, whenever a destructive

change is about to be made, the attribute value pairs14 stored in the body of the node are saved into

an array. The clag node structure itself is also saved in another array. These values are restored
after the top level unification is completed. (A copy is made prior to the restoration operation if

the unification was a successful one.) The difference between Karttunen's method and ours is that

in our algorithm, one increment to the global counter can invalidate all the changes made to nodes,

while in Karttunen's algorithm each node in the entire argument graph that has been destructively

modified must be restored separately by retrieving the attribute-values saved in an array and

resetting the values into the dag structure skeltons saved in another array. In both Karttunen's

and our algorithm, there will be a non-destructive (reversible, and quasi-destructive) saving of

intersection arcs that may be wasted when a subgraph of a particular node successfully unifies but

the final unification fails due to a failure in some other part of the argument graphs. This is not

a problem in our method because the temporary change made to a node is performed as pushing

pointers into already existing structures (nodes) and it does not require entirely new structures to
be created and dynamically allocated memory (which was necessary for the copy (create-node)

operation).15 [Godden, 1990] presents a method of using lazy evaluation in unification which

seems to be one successful actualization of [Karttunen and Kay, 1985]'s lazy evaluation idea. One

question about lazy evaluation is that the efficiency of lazy evaluation varies depending upon the

particular hardware and programming language environment. For example, in CommonLisp, to

attain a lazy evaluation, as soon as a function is delayed, a closure (or a structure) needs to be created

receiving a dynamic allocation of memory (just as in creating a copy node). Thus, there is a shift of

memory and associated computation consumed from maldng copies to making closures. In terms

of memory cells saved, although the lazy scheme may reduce the total number of copies created,

13The discussion ofKartunnen's method is based on the D-PAlR implementation on Xerox machines ([Karttunen,
1986]).

141.e., arc structures:'label'and'value'pairs in our vocabulary.

15 Although, in Karttunen's method it may become rather expensive if the arrays require resizing during the saving
operation of the subgraphs. This is another characteristic of Kartunnen's method that two arrays need to be originally
allocated memory. If the allocated arrays are too big then we will be wasting the unused cells, if it is too small, then there
will be array resizing operations during unification which can be costly. Because amount of destructive operations
during unifications vary significantly sentence to sentence, determining the ideal initial array size for Kartunnen's
method is not trivial.

11

if ,ve consider the memory consumed to create closures, the saving may be significantly canceled.
In terms of speed, since delayed evaluation requires additional bookkeeping, how schemes such as
the one introduced by [Godden, 1990] would compare with non-lazy incremental copying schemes
is an open question. Unfortunately Godden offers a comparison of his algorithm with one that
uses a full copying method (i.e. his Eager Copying) which is already significantly slower than
Wroblewski's algorithm. However, no comparison is offered with prevailing unification schemes
such as Wroblewski's. With the complexity for lazy evaluation and the memory consumed for
delayed closures added, it is hard to estimate whether lazy unification runs considerably faster than
Wroblewski's incremental copying scheme. -

Finally, when we consider parallelization of unification algorithms, it seems that the quasi-
destructive unification scheme is more suitable for parallelization than the past methods. When we
parallelize graph unification, the concurrent recursive calls into shared arcs should be the element
contributing to the speed up. On the other hand, that may require synchronization between parallel
recursive processes which in turn may undermine the speed up element due to parallelization. Also,
concurrently accessing shared data (i.e., global variables, etc.) causes lock/unlock synchronization
on the global memory location and that also undermines the effect of parallelization. These two
problems seem particularly applicable to incremental copying schemes (such as [Wroblewski,
1987] and [Godden, 1990]) because there may be multiple simultaneous write operations on a copy
when recursive calls to the shared arcs at each level return successfully. Our algorithm does not
suffer from this simultaneous write lock/unlock problem because there will be no write operation
to a node during unification checks (i.e., no writing is performed until the unification of entire
argument dags actually succeeds16).

In terms of simultaneous writes to shared global variables, Both structure sharing schemes and
the reversible unification seem vulnerable to this problem because values are stored into global data
and the concurrent processes must lock and unlock these global locations every time they access the
data. For example, Kartunnen's reversible unification scheme requires two global arrays to store
the original feature-value pairs and the dag node cells. When parallel recursive unification calls
into shared arcs are performed and node values are saved into the arrays concurrently, the processes
need to be queued (lock/unlock synchronization) to access the arrays17. The same problen1 will
be caused during writes to'copying environments'in the lazy unification scheme. Our algorithm
does not suffer from simultaneous writes to global shared variable simply because 1) no saving
is performed at all 2) changes are local. Instead of saving original values, changes are recorded
distributedly (locally) into each node that is being quasi-destructively modified. Therefore, there
will be no global shared data associated with the saving of original dag values. Changes are

16In our current parallel implementation ([Tomabechi and Fujioka, ms]), the quasi-destructive addition of intersection
arcs to a node does not occur until all parallel recursive calls into subgraphs succeed. This can be performed without
any harm because 1) any addition to the comp-arc-list is harmless until actual copying is performed after a successful
unification; 2) additions to comp-arc-list are performed only once per node and therefore, this will not cause the
lock/unlock problem due to multiple simultaneous write operations. However, the addition of temporary forwarding
links needs to wait until the top-level unification successfully returns.

17Depending on parallel machine architectures and operating system implementations, simultaneous read/read and
read/write may not be problems, however, simultaneous write/write is normally inherently problematic and needs to
be synchronized. Simultaneous write/write into save arrays is inevitable if we parallelize Kartunnen's scheme because
writing to arrays (i.e., both feature-value pair array and the dag cell array) must occur during the save operation.

”
ー
、
ー
・
—

＾

，

12

．

．

simply nullified by the increment on the global counter and therefore no saving operation is
necessary. Overall, ,ve have seen in our experiments (reported in [Tomabechi and Fujioka, ms])
that our algorithm recorded about 75 percent of effective parallelization rate (meaning that the 75
percent of unifications into shared arcs were parallelly performed both horizontally and vertically)

([Tomabechi and Fujioka, ms]18).

5. Conclusion

The algorithm introduced in this paper runs significantly faster than Wroblewski's algorithm using

Earley's parser and an HPSG based grammar developed at ATR. The gain comes from the fact that

our algorithm does not create any over copies or early copies. In Wroblewski's algorithm, although
over copies are essentially avoided, early copies (by our definition) are a significant problem
because about 60 percent of unifications result in failure in a successful parse in our sample parses.
The additional set-difference operation required for incremental copying during unify2 may also
be contributing to the slower speed of Wroblewski's algorithm. Given that our sample grammar is
relatively small, we would expect that the difference in the performance bet¥veen the incremental

copying schemes and ours will expand as the grammar size increases and both the number of

failures19 and the size of the wasted subgraphs of failed unifications become larger. Since our

algorithm is essentially parallel, parallelization is one logical choice to pursue further speedup.
Parallel processes can be continuously created as unify! recurses deeper and deeper without creating
any copies by simply looking for a possible failure of the unification (and preparing for successive
copying in case unification succeeds). So far, we have completed a preliminary implementation on
a shared memory parallel hardware with about 75 percent of effective parallelization rate. With the
simplicity of our algorithm and the ease of implementing it (compared to both incremental copying
schemes and lazy schemes), combined with the demonstrated speed of the algorithm, the algorithm

could be a viable alternative to existing unification algorithms used in the existing parsing schemes

as well as a part of future parsing systems.

ACKNOWLEDGMENTS

The author would like to thank Akira Kurematsu, Tsuyoshi Morimoto, Hitoshi Iida, Osamu Furuse,

Masaaki Nagata, Toshiyuki Takezawa and other members of ATR. Thanks are also due to Nlargalit

Zabludowski for comments on the final version of this paper and Takako Fujioka for assistance in
implementing the parallel version of our algorithm.

18Please refer to this paper for detail of parallel quasi-destructive unification algorithm and experiments using the
algorithm.

19For example, in our large-scale speech-to-speech translation system under development, the USrate is estimated
to be under 20%, i.e., over 80% of unifications are estimated to be failures.

13

逗,_,•. - -一」ぶ·•--

Appendix: Implementation

The unification algorithms, Earley parser and the HPSG path equation to gra~h converter programs
are implemented in Common Lisp on a Symbolics machine. The preliminary parallel version
of our unification algorithm is currently implemented on a Sequent Symmetry closely coupled
shared-memory parallel machine with 16 CPUs running Allegro CLiP parallel CommonLisp based
on a micro-tasking parallelism using light-weight processes.

References

[Godden, 1990] Godden, K. "Lazy Unification" In Proceedings of ACL-90. 1990.

[Karttunen, 1986] Karttunen, L. Development Environment for Unification-Based Grammars. Re-
port CSLI-86-61. Center for the Study of Language and Information, 1986.

[Karttunen, 1986] Karttunen, L. "D-PATR: A Development Environment for Unification-Based

Grammars". In Proceedings of COUNG-86. 1986.

[Karttunen and Kay, 1985] Karttunen, L. and Kay, M. "Structure Sharing with Binary Trees". In
Proceedings of ACL-85. 1985.

[Kasper, 1987] Kasper, R. "A Unification Method for Disjunctive Feature Descriptions". In Pro-
ceedings of ACL-87. 1987.

[Kogure, 1989] Kogure, K. A Study on Feature Structures and Unification. ATR Technical Report.
TR-1-0032. 1988.

[Pereira, 1985] Pereira, F. "A Structure-Sharing Representation for Unification-Based Grammar
Formalisms". In Proceedings of ACL-85. 1985.

[Pollard and Sag, 1987] Pollard, C. and Sag, A. Information-based Syntax and Semantics. Vol 1,
CSLI, 1987.

[Tomabechi and Fujioka, ms] Parallel Quasi-Destructive Graph Unification. Manuscript.

[Yoshimoto and Kogure, 1989] Yoshimoto, K. and Kogure, K. Japanese Sentence Analysis by
means of Phrase Structure Grammar. ATR Technical Report. TR-1-0049. 1989.

[Wroblewski, 1987] Wroblewski, D."Nondestructive Graph Unification" In Proceedings of
AAA/87. 1987.

14

	cover
	pt
	last

