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Abstract

This paper describes an architecture for symbolic and subsymbolic interactions during massively-
parallel processing of natural language recognition. The model is centered around a graph-based
constraint propagation network which is connected to a recurrent neural network which provides con-
textually sensitive predictions. The integration of symbolic massive parallelism and subsymbolic neural
net PDP processing provides a smooth a posteriorileaming to the symbolic system and a focused guided
learning as well as strong constraints during recognition to the neural network. As the result, the archi-
tecture provides the ability to handle strict and structured symbolic constraints during recognition while
attaining a smooth contextual prediction applied with a least rigidity and leaming sentential regularities

from actual dialog samples.



1. Introduction

MONA-LISA stands for Multimodal Ontological Neural Architecture for Linguistic In-
teractions and Scalable Adaptations. It is a joint project of the Center for Machine

Translation of Carnegie Mellon University and ATR Interpreting Research Laboratories.
The MONA-LISA architecture has the following characteristics:

o Integration of neural-net based signal processing and constraint-based symbolic pro-

cessing.
e Massively-Parallel Constraint Propagation Architecture.

e Multi-Modal Input and Qutput Channels.

Historically MONA-LISA joins two traditions of Massively-parallel cognitive process-
ing, namely, symbolic massive-parallelism and subsymbolic parallel distributed processing.
As a-model of symbolic massively-parallel processing, MONA-LISA follows the tradition of
memory-based processing that was originated by [Quillian, 1968] followed by the Direct
Memory Access models developed by [Riesbeck and Martin, 1985], [Tomabechi, 1987],

etc.l.

Independently a number of researchers in symbolic massive parallelism demon-
strated the strength of spreading-activation and marker-passing approaches especially in
terms of contextual inferencing and memory-based natural language recognition. This
included the research done by [Hirst and Charniak, 1982, [Fahlman, 1983], [Small and
Reiger, 1982}, [Charniak, 1983], [Hahn and Reimer, 1983], [Hirst, 1984], [Charniak, 1986),
[Hendler, 1986], [Charniak and Santos, 1987], [Norvig, 1987], [Hendler, 1989, and [Norvig,
1989]. The other tradition of massively-parallel cognitive processing has been the tradi-

tion of subsymbolic parallel distributed processing pursued by connectionists including

ncluding [Tomabechi and Tomita, 1988], [Tomabechi and Tomita, 1988b], [Tomabechi, et al, 1988],
[Kitano, 1989], and [Tomabechi and Levin, 1989).



(o

the work of [Granger and Eiselt, 1984], [Waltz and Pollack, 1984], [Waltz and Pollack,
1985), [Berg, 1987], [Bookman, 1987], and [Elman, 1988].

The symbolic massive parallelism models’ contribution has been their ability to take
advantage of memory-based processing by directly spreading activation through an a pri-
ori prepared conceptual network. Thus, these models have shown strength in handling
extra-sentential processing of natural language and memory-based inferential tasks that
have been architecturally difficult to achieve in the traditional symbolic models (as demon-
strated in [Kitano, 1989}, [Tomabechi and Levin, 1989), and [Norvig, 1989]). However,
there are some issues in symbolic cognitive processing that the massively parallel models
have not addressed effectively so far, namely, 1) learning contextual knowledge from the
actual data is difficult; 2) robust application of stored knowledge is difficult; 3) preparing
knowledge for different contexts is subject to computational explosion. Learning is diffi-
cult because the knowledge prepared in the form of conceptual networks and a grammar
of a language is too limited in contrast to the actual variety of linguistic inputs to perform
any meaningful inferencing for learning?. Application of stored knowledge to the input is
rigid in the symbolic models because symbolic matching of stored knowledge has to be
exact (as examplified in unification-based processing) and fixed. In symbolic contextual
processing, knowledge for each context has to be prepared separately to accomodate all
distinct and acceptable contexts. Thus the rapid growth in' the size of contextual knowl-
edge to be prepared is inevitable and actually, very few systems have incorporated any

significant amount of contextual knowledge for handling a realistic domain.

Connectionist models have shown the strength of learning from a posterioi provided
actual training sets without being provided declarative knowledge a priori. This has

contributed to desirable performance in a number of areas including speech and visual

2For example, if a sentential input to a parsing system is found to be illformed syntactically or
semantically, there is no way to determine whether 1) the system should conclude that it needs to modify
its grammar under the particular context; 2) its grammar is incomplete regardless of the context; 3) the
input is simply illformed.



recognition. Since neural net learning is performed in a smooth activation space effec-
tively generalizing the patterns in the input data, the application of input vectors does not
need to be exact and rigid. Also, the recent work in recurrent neural network has shown
the effectiveness of learning time-differentiated contextual sensitivity of input activations
([Elman, 1988], [Jordan, 1986]). Thus, the characteristics of connectionist models seem
desirable for handling contextually sensitive inputs. However, a major obstactle in using
these models for abstract cognitive processing (instead of low-level signal processing) has
been that the neural net representations are fully distributed and also that learning is
stored in the hidden layers as dynamic patterns of activations. Thus, neural networks
have been effectively applied as robust vector pattern discrimination modules (such as for
discriminating consonants from fourier transformed vector patterns) that are recogniz-
able through output layer activation patterns, but the context (time) sensitive learning

captured in the hidden layer has not been used for symbolic contextual processing.

Another problem in using subsymbolic connectionist learning for symbolic contextual
processing is due to the difference in the granularity of the massive-parallelism. Symbolic
massive-parallelism (spreading activation, marker-passing and constraint-propagation mod-
els) require medium to sometimes large grain size in their parallelism to handle the some-
what complex constraints required in the symbolic inferential tasks. On the other hand,
parallelism in PDP neural net models requires much finer granularity. It is because each
unit in the network is a mere vector location and activities never require complex func-
tional applications. With these difficulties, we still find the appeal of the cooperative
processing at symbolic and subsymbolic levels to be significant. If such an integration is
attained, then symbolic cognitive processing will have the capacity to handle contextual
sensitive inputs with smooth a posteriori learning and robust knowledge applications. It
will also become possible for the neural net subsymbolic learning and recognition to take
advantage of declarative symbolic a priori constraints as focus of attention to conduct its

learning and as enhancement during learning and recognition activities.
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Figure 1: MONA-LISA Architecture

2. Multimodal Ontological Neural Architecture

MONA-LISA is the result of our efforts to connect symbolic and subsymbolic cognitive

processing during natural language recognition.

Figure 1 shows the.conceptual diagram of the MONA-LISA architecture. The left side
module is the contextual recognition subsymbolic neural network and the right hand side
module is the constraint propagation symbolic conceptual network. The two networks are
connected by the vector encoder/decoder medules. The constraint-propagation network
is also connected to the Time-Delay Neural Network (TDNN, [Miyatake, et al., 1990],
[Sawai, et al, 1989]) speech recognition module. We are also planning to connect the
visual recognition neural network under study at our Vision Laboratory. The external
signal to the TDNN (and visual NN in the near future) activates the nodes in the con-
straint propagation massively-parallel symbolic network and the stored constraints that
are represented by graphs are propagated in the network. The constraint graphs are di-
rected graphs which can point to any location in the constraint propagation network and

represent both linguistic and non-linguistic constraints which are originally provided in



the form of path equations (and are converted into directed graphs). The input recogni-
tion in the constraint propagation network proceeds by massively propagating constraints
that are activated by input from the singal processing neural network (ie. TDNN) and in-
vokes nodes that received constraints to perform constraint satisfaction activities. When
constraints are satisfied, further activations are in order. The constraint propagation
network is also organized as an abstraction hierarchy and activations of nodes with low
abstraction levels are encoded into vectors through the encoder module and are fed into
the contextual recognition neural network. The contextual recognition neural network is
a recurrent neural network based on [Elman, 1988] with some modifications to predict
further into the future (and to receive priming further into the past). One difference from
Elman’s original work is that the vectors do not represent specific surface realizations of
a particular input (such as a word), instead, its features (syntactic, semantic, etc) are
encoded into vectors. Hence, in our model the output predictions can be decoded and are

fed back to the constraint propagations as further (reverse) constraints.

The strength of this architecture is that: 1) Any symbolic constraints can be repre-
sented in the constraint propagation network as long as the constraints are representable
using directed graphs (i.e., unification-based syntax/semantics, semantic networks, logical
formulas, etc.). Therefore, both syntactic and semantic lexicon and memory-based con-
textual knowledge can be represented in a uniform framework; 2) Contextual regularities
of input can be a posteriori acquired in the contextual recognition network. In the case of
dialog processing, we can provide a set of sample dialogs and the contextual recognition
network learns from the actual input. This enhances the contextual knowledge provided in
the constraint Apropa.gation network since the recognition in the recurrent network is fully
context sensitive whereas most of the constraints captured in the constraint propagation

network are context-free.
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3. Graph-based Constraint Propagation Network

The main part of the MONA-LISA architecture is the Graph-based Constraint Propaga-
tion Network (GCPN). What is propagated in the GCPN are the graphs® and they may
point to any location in the network and may contain complex paths including conver-
gent arcs and loops. The expressivity of the graph-based constraint propagation scheme
is significantly greater than that of so called marker-passing schemes. For example, if
we want to represent the object control constraint of English in which the object of the
external VP is coindexed with the subject of the embedded VP (as in John persuaded
Mary to eat sushi), using the marker-passing scheme (such as in [Tomabechi and Levin,
1989], and [Kitano, 1989)]), we will have to lexically store functional applications of object
control which are triggered by activations of object control verbs. It is because in marker-
passing schemes, markers can simply store bundles of feature and value pairs which are
simple (i.e., cannot be complex structures to satify path equations) and local (i.e., they do
not point anywhere in the global network). We can also view marker-passing models as
strongly restricted versions of GCPN where graphs are only allowed to be one level deep

without convergence or loops, and are not allowed to point to locations in the network.

{ we allow arbitrary directed graphs to be passed around in the network, constraints
such as control can be handled straightforwardly. For example, in case of object control
verbs, we will only need to store graphs with arcs converging on the same variable that
corresponds to the object of the external VP and the subject of the matrix VP (as is
done in the lexical specification of this constraint in the framework of unification-based
linguistic processing). Actually in practice, in handling linguistic constraints such as
control we will only need to store graphs that are converted from path equations that
are used in the unification-based grammar. We will not need any special functions to be

stored for each different type of linguistic phenomenon.

3Implementationally, they are pointers to graphs instead of graphs themselves.
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Below is the sample lexicon from our current MONA-LISA implementation which
processes English input. We have adopted HPSG ([Pollard and Sag, 1987]) as the basis
of providing the linguistic constraints to the system as graphs. The first example is the
specification for the concept *JOHN which represents the set of nodes that satisfies the
constraints specified here using path equations:

(def-frame *JOHN
(inherits-from *MALE-PERSON)
(type :lex-comp)
(spelling - John)
(synsem
(det-path
(<0 loc cat head maj> == n)
(<0 loc cat marking> == unmarked)
(<0 loc cont para index> == [[per 3rd]
[num sng]
[gend mascl])
(<0 loc cont restr reln> == *JOHN)
(<0 loc context backgr> == [[reln naming]
[name JOBEN]])
(<0 loc context backgr bearer> == <0 loc cont para index>)
(<0 mem> == <0 loc cont para index iden>))))

When this lexical definition is read into the system the path equations are converted into
graphs as shown in Appendix I. In the GCPN, the constraint graphs are stored in synsem
values of the nodes and the top level number 0 arc represents constraints to the node
itself. If a node has its complement nodes the constraints are specified by numbers higher

than 0. For example, the lexical specification for the node *GIVE looks as follows:

(def-frame *GIVE
(inherits-from *GIVE-ACTION)
(type :lex-head)

(spelling give)

(synsem

(def-path

(<0 loc cat head> == [[maj v]
[vtorm bsel
[aux -]
[inv -]
Cprd -1)

(<0 loc cat marking> == unmarked)



)

1

(<0 loc cat subcat 1> == <1>)
(<0 loc cat subcat 2> == <2>)
(<0 loc cat subcat 3> == <3>)
(<0 loc cont relm> == #give-action)
(<1 loc cat head maj> == n)
" (<1 loc cat head case> == nom)
(<0 loc cont agent> == <1 loc cont para index>)
(<1 loc cont restr reln> == %person)
(<2 loc cat head maj> == n)
(<2 loc cat head case> == acc)
(<0 loc cont goal> == <2 loc cont para index>)
(<2 loc cont restr reln> == #person)
(<3 loc cat head maj> == n)
(<3 loc cat head case> == acc)
(<0 loc cont theme> == <3 loc cont para index>)
(<3 loc cont restr relmn> == #smatter))))

The actual graph expansion in the GCPN looks as shown in the Appendix I. This way,
instead of simply storing simple case-frame type lexical specifications in the lexical nodes,
we would like to provide full graph-based lexical constraints in the lexical level nodes in
the constraint propagation network. Let us provide a sample lexical node definition for
the object control verb persuaded:

(def-frame #PERSUADED
(inherits-from *PERSUADE-ACTION)

(type :lex-head)
(spelling persuaded)

(synsem
(def-path
(<0 loc cat head> == [[maj v]
[vform int]
[aux +]
[inv -]
[prd -11)

(<0 loc cat marking> == unmarked)

(<0 loc cat subcat 1> == <1>)

(<0 loc cat subcat 2> == <2>)

(<0 loc cat subcat 3> == <3>)

(<1 loc cat head maj> == n)

(<1 loc cat head case> == nom)

(<1 loc cont restr reln> == *person)

(<0 loc cont agent> == <1 loc cont para index>)

9



(<0 loc cont persuadee> == <2 loc cont para index>)
(<0 loc cont persuadee> == <0 loc cont circumstance .agent>) ;;; obj control
(<2 loc cat head maj> == n)

(<2 loc cat head case> == ace)

(<2 loc cont restr reln> == *person)
(<3 loc cat head maj> == v)

(<3 loc cat head vform> == inf)

(<3 loc cat head aux> == +)
(<3 loc cat subcat 1 loc cat head> == [[maj n]
[case nom]])
(<3 loc cat subcat 2 loc cat head> == saturated) ;;; must not unify
(<3 loc cat subcat 3 loc cat head> == saturated) ;;; must not unify
(<0 loc cont circumstance> == <3 loc cont>)
(<0 loc cont reln> == *PERSUADE-ACTION)
(<3 loc cont restr reln> == <3 loc cont reln>)
(<3 loc cont restr reln> == #*action))))

Thus the two equations:

({ 0 loc cont persuadee ) == ( 2 loc cont para index })

({ 0 loc cont persuadee ) == ( 0 loc cont circumstance agent )

can easily specify the control constraints lexically in the network. The graph representa-
tion for the path equation looks as given in the Appendix I once read into the system.
With an addition of a specification for the intermediate subject control VP head to, as
we will see in Appendix II, the constraints are adequate for handling the object control
phenomenon. One thing to be noted is that because we use HPSG-based constraints to be
specified as graphs in the lexical nodes in the GCPN network, naturally, the lexical nodes
look much like HPSG lexical entries. However, the GCPN processing scheme does not
assume unification as the only type of graph constraint checking mechanism®. More im-
portantly, as we will see in the next section, lexical-nodes are parts of the GCPN network
and the network includes constraints at different levels of abstraction and compositionality

as well as sentential HPSG-based unification-based grammar syntax/semantics. Also, in

4We use graph-unification as currently desirable scheme of checking graph-based constraints, but other
method may replace unification in the future implementations.

10
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GCPN whatever is bound to the variables in the constraints graphs are actual instances
in memory for the current utterance and are not strings (or symbols) independent of

contexts.

4. The GCPN Natural Language Recognition Algorithm

The GCPN has § types of nodes: conceptual-class nodes, lexical-head nodes, lexical-

complement nodes, memory-instance nodes, and phonological-activity nodes. The conceptual-

class nodes are nodes in the high levels of abstraction and are used for discourse and
episodic recognition. Lexical-head nodes are nodes that are phonologically invoked with
lexical activations and they package the complement nodes. Lexical-complement nodes
are the nodes that are lexically invoked and do not have their own complements. Memory-
instance nodes are actual instances of lexical-heads and lexical-complements that are spe-
cific to the current utterance. Phonological-activity nodes are the nodes that represent
phonemic units and are connected to the TDNN output layer. We will focus activities
on lexical nodes and instance nodes in this paper and we will not discuss activities of
conceptual-class nodes and phonological nodes. (Please refer to [Tomabechi, et al., 1988]
and [Kitano, 1989) for activities of those nodes.)

Below is the central part of our sentential recognition algorithm for word lattice acti-
vation from the TDNN.

function sentential-recognize (input-stream)
create-process (recognize-lexical (input-stream));
invoke-global-incidents;
for all NODE in Decayinglayer do
print-node HODE;

function recognize-lexical (input-stream)
reset activities in Activation Layer and Decaying Layer
for word-lattice in input-stream do
for word-hypothesis in word-lattice do
create-process (activate-lex-rode (word-hypothesis));

11



invoke-global-incidents;

function activate-lex-node (word-hypotesis)
create instance of word-hypothesis
and make a copy of constraint graph with addition of an ‘mem’
arc pointing to the created instance;
if the node type is lexical-head
then propagate copied (and modified) constraint graph upward;

function invoke-global-incidents ()
for head-instance in ActivationLayer do
create-process (grab-subcata (head-instance)) ;

function grab-subcats (head-instance)
for arcs specified in subcat graph (i.e, <0 loc cat subcat>) do
if conceptual restriction node exists
(i.e, <loc cont rest reln> has value)
and if that node has received the constraint graph propagation .
then unify the subcat graph with the propagated graph
if unify succeeds and obliqueness order is met
then store result destructively in head-instance;
propagate synsem graph upward;

Originally, the GCPN is configured hierarchically in terms of conceptual inheritance.
Graph propagation occurs only upward in the inheritance hierarchy and never horizon-
tally (unlike many maker-passing models). Conceptual relations (other than inheritance)
between lexical nodes are specified through constraint graphs (as seen in the sample entry
in the previous section). For example, Figure 2 is the part of the GCPN that participates
in the sentential recognition of the input John persuaded Mary to give Sandy sushi which
encompasses two control relations (i.e., persuaded object controls Mary and to subject
controls Mary).

Appendix II provides a sample output from our current implementation on a shared
memory parallel hardware®. In the sample cutput, the input to the system is a correctly

hypothesized word instead of a word lattice. When each word is input, an instance of

SWe use 16 CPU Sequent Symmetry running Dynix parallel Unix. Concurrent processes are created
as light-weight-processes lwps on a parallel CommonLisp running on Sequent.

12



Graph-based Constraint Propagation Network:
Final sate after recognition of “John Pursuaded Mary to give Sandy Susi”

Figure 2: A Portion of GCPN representing control relation

the corresponding lexical node is created. Also the stored constraint graph is copied and
modified to point to the created instance. If the lexical node is a complement then the
graph is simply propagated upward and the global massively paralle] activity is invoked
when the activation reaches the top of the hierarchy. If the corresponding lexical node is
a head-complement then the global incidents are invoked immediately. During the global
invocation, instances of activated lexical-head nodes try to fill the complements (subcat-
egorization elements) by unifying the stored subcat graphs with the constraint graphs
propagated from the activated lexical complements. If the subcat list saturates in the
activated-head instances th‘rough successful unifications, then the node states decay (put
to DecayingLayer). All nodes originally belong to StaticLayer and when they are lexically
invoked their state changes into activated (moves to ActivationLayer). Only the saturated
lexical-head nodes move to the DecayingLayer. So at the end of the recognition, the con-
straint 0 graphs (i.e. the constraint to itself) of the nodes in the DecayLayer contain
information that can be used for further processing (such as generation). Actually, as we
can see from the sample output, the printout of the constraint 0 graph of the Decaying
node looks exactly like that of the output of a unification-based parser. This is expected

because our graph constraints propagated in the network are initially prepared accord-

13



ing to the unification-based grammar constraints (HPSG). One thing to be reiterated
here is that there still is an underlying difference between this model and the unification-
based parsing schemes in that the constraint 0 graph actually contains pointers to the
real instances in memory (such as Mary001) instead of a simple string (such as “Mary”).
Therefore, the MONA-LISA scheme allows for different kinds of memory-based and con-
textual inferences at any point of recognition activity. We have already stated our efforts
to connect the vision neural network to the system so that some of the memory instances
actually receive the activations from visual inputs as well. Another thing to note is that
during these recognition activities many nodes in the network receive priming activations
from the conceptual recognition neural network, which is the topic of discussion in the

next section.

5. Integrating Subsymbolism with Symbolism

The advantage of integrating symbolic massive parallelism with the subsymbolic massive
parallelism seems clear. First, such a system can provide a posteriori acquired contex-
tually sensitive recognition learned in a smooth activation space, whereas a priori given
or derivable symbolic knowledge may be rigid and sometimes ad hoc. Second, the neural
net learning is meaningless unless we can provide what to learn. In other words, it is the
traditional focus of attention problem that the external world contains too much vectors
to learn and without a strongly constrained focus of attention, learning by neural net-
work may never converge. Even if a fast neural network learns extremely large amounts
of long vector to vector matching, learned subsymbolic knowledge lies in the hidden layer
'~ as vector patterns which are inaccessible externally. We would like to integrate the neural
network as a part of the constraint propagation network instead of having it as a separate
module that performs simple signal processing and pattern discrimination. We will be
reviewing our scheme for this purpose in the first subsection. Another obstacle in inte-

grating symbolism and subsymbolism is that of parallelism. Symbolic constraints require

14



medium to large grain processing and are not postulatable using a fully distributed fine
grain parallel architecture (i.e., standard PDP architecture). On the other hand, neural-
net learning requires a fully distributed PDP architecture and granularity of parallelism

is very fine.

5.1. Our Scheme for Neural-Net/Symbolic Net Integration: Participation
of Recurrent Net

We would like to have the subsymbolic learning module assume the role of providing con-
textually sensitive recognition and priming based on the actual input data (i.e., dialogs
in terms of natural language systems). Since this requires the introduction of time differ-
entiation, we have adopted Elman’s recurrent neural network ([Elman, 1988]) as the base
of our neural network. We have been experimenting with different modifications of the
recurrent network modifying them to predict different time spans into the future (t+n)
and to receive hidden layer activity from different time spans from the past (t-n)®. For ex-
ample, the model that predicts t+1 and t+2, which is currently adopted for MONA-LISA,
looks as provided in the Figure 1.

In order to attain interaction with the symbolic GCPN, we introduced explicit encoding
(and decoding) of constraint graphs into vectors. By encoding the graphs into vectors
and decoding them, learning by the recurrent network can be accessible directly from the
output layer, whereas if we simply provide token vectors for unencoded surface strings,
the result of learning has to be extracted from the hidden layer (by methods such as
hidden cluster analysis).

6A report on the experiments on different configurations of the recurrent network is forthcoming as
our technical report.

15



5.1.1. Encoding CPN Constraints: Syntax

Each lexical entry in our system is encoded as a 45 position vector, where each position
is filled by either a 1 or a 0. The first 20 positions contain syntactic (head-feature)
information while the rest represent semantics. The head-features of a word determine
many of the syntactic properties of the phrase which is headed by that word ([Jackendoff,
1977]). The specific constraint features encoded in our lexical entries are based on those
postulated in the HPSG ([Pollard and Sag, 1987]) and are specified in the propagated
graphs in the GCPN. The first six vector positions represent its the activated lexical
node’s major category’ (MAJ for major) which may be one of the following: Noun (N),
Verb (V), Adjective (A), Preposition (P), Determiner (D), and Adverb (ADV). The next
seven vector positions of each lexical entry represent its form (FORM). The possible values
of FORM vary depending on the word’s major (MAJ) category. Thus, a verb may have one
of the following seven forms: Finite or tensed (FIN), Base (BSE), Past Participle (PSP),
Present Participle (PRP), Passive (PAS), Infinitival (INF), and Gerundive (GER). For
nouns, on the other hand, we distinguish five different forms: the expletive pronoun there®
(THERE), the expletive pronoun it of extraposition® and pseudocleft!® constructions (IT),
non-reflexive pronouns (PRO), reflexive pronouns (ANA), and all other nouns (NORM).
There are as many preposition forms as there are prepositions. The same holds for
determiners. In our current implementation (due to economy reasons), we distinguish the
six most frequently used prepositions, while all other prepositions are encodes as ‘other’.
The same holds for determiners. The head-features encoded in the remaining 7 syntactic
positions are different for each grammatical category. Thus for example, a 1 occupying the

14th vector position indicates in the case of a noun that its case is Nominative (NOM)!!,

7The major categories correspond to the notion of part-of-speech.

8For example, as in existential constructions such as There is @ moon out tonight. (Examples here are
from [Pollard and Sag, 1987].)

9For example, as in it bothers me that he resigned.

10For example, as in it’s bagels that I want.

UIn English, only pronouns exhibit overt case marking differences; e.g., he (Nominative) versus him
(Accusative).

16



in the case of a verb that it is an Auxiliary verb (AUX+)'?, and in the case of an adjective
or a preposition that it is Predicative (PRD+)3.

The 20-unit representation of the head-feature information associated with verbs is:
#(NV APD ADV FIN BSE BSP PRP PAS INF GER AUX+ INV+ 1ST 2ND
3RD SNG PLU ) and that of nouns is:

#(NV APDADV THERE IT NORM PRO ANA __ NOM ACC 1ST 2ND 3RD
SNG PLU ).

For example, with our encoding scheme, the syntactic part of the lexical vector for the

word attends is as shown below!4:

#(010000 01000000 00 001 10).

The first 6 units indicate that its Major category is V, the next 7 units indicate that
its V FORM is BSE, and the rest indicating that it is AUX- and INV-!5, and that its

agreement values are: 3rd person, singular?,

5.1.2. Encoding CPN Constraints: Inheritance Hierarchy

The latter half of the lexical vectors represent the semantics of the lexical-entry in terms
of its location in the conceptual inheritance hierarchy. The inheritance hierarchy is rep-

resented by groups of units (vectors) representing the branching from the previous layer

12Guch as the Auxiliary verb will in John will come.

13For example, the adjective ajarin The door was ajar and the prepositional phrase with the preposition
on in Feliz is on the oak library table.

14We will be using #( ... ) instead of [ ... ] to represent vector to be consistent with our sample
outputs.

15This feature is necessary to distinguish auxiliary verbs that invert (most of them do) from those that
do not, such as the verb detler as in You better stay here (see [Pollard and Sag, 1987]).

16Gender information is not encoded as a syntactic head-feature because it would be redundant in
the case of English since English is a natural gender language and gender information is encoded in the
semantics portion of the vector.
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to the next layer. Currently we have 5 groups of 5 units each representing one level of
abstraction in the inheritance hierarchy. The location of a unit whose value is 1 repre-
sents the branching for the next layer. For example, a simplified part of our inheritance
hierarchy looks as shown below (descending levels of abstractions from left to right):

1st level 2nd level 3rd level 4th level 5th level
Object Physical-Object Animate-Object Person Male-Person

Inanimate-Obj Natural-Subst Stones
: Artificial-Subst Document

Mental-Object Theory&Rule ...
Abstract-Tool Language English
: : Japanese

Social-Object ...
Phenomenon Physical-phenomenon ...
Attribute ....
Force ...

From the highest level to the 5th level, each level has 5 categories and therefore, about
3,000 concepts (5°) are representable with 25 units. For example, the semantic part of

the lexical-vector for Japanese would be:

#(10000 01000 01000 10000 0100 0); the value 1 indicating the
branching for the next level down (left to right).

5.1.3. Decoding the Encoded Vector

We apply the following rules to decoded the output (output layer vector) of the recurrent

net forward propagation:

Lexical-Vector Decoding Rule

18



¢ Apply predetermined threshold (currently 0.8 in our system) to the output

levels of each vector position.

¢ Decode syntactic part from left to right. If Major category is ambiguous
(i.e., more than one unit is over the threshold in the first six positions, or none
are above the threshold), then syntax is ambiguous. If Major category is
unambiguous, decode other head-features by checking the vector position

for each feature.

¢ Decode the semantic part from left to right level by level. If the output
is ambiguous (more than one or none above the threshold) at any level, stop

decoding immediately.

This left to right decoding of the syntax and semantics vector guarantees that the
decoding always returns its most unambiguous hypothesis for each output configuration.
For example, if the output after applying the specific threshold is: #{(1 00100 00
100000 00 000 00 10000 10000 01000 01000 100
1 0) we decode the syntactic part to be ambiguous, because the first six units indicate
that it can be either a Noun or a Preposition (because of previous words, that next word
can be hypothesized to be either N or P). The semantic part is decoded as Artificial-
Substance, because we can decode from left to right as Object, Physical-Object, Inanimate-
Object, Artificial Substance climbing down the abstraction hierarchy; however, one more
level down, it is now ambiguous between Document and something else. Therefore, our

decoding stops at Artificial-Substance.

5.1.4. Recurrent Net Priming

In the MONA-LISA system, some nodes that are one to two levels higher than the lexical-

nodes in the abstraction hierarchy are designated as ‘contextual interaction nodes’ which
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send and receive activations to/from the recurrent network. We have trained the recurrent
network by supplying actual dialog sample sentences into the system. We have 12 dialogs
of telephone conversations in the domain of international conference registration prepared
based on actual telephone conversations. Each sentence is 10 to 15 words long and each
dialog contains 10 to 20 sentences. We treated one dialog as one epoch and a training
set consisted of 3 sets of 12 dialogs ordered pseudo randomly. During the sentential
activations, when a particular lexical node is activated and the activation is passed upward
by propagating constraint graphs, if the ‘contextual interaction nodes’ are activated, then
head features!” and inheritance information of the constraint graphs are encoded into
vectors and are supplied to the recurrent network. A forward propagation is performed
(followed by backpropagation if it is a part of a training session) and the output vector
is decoded and fed back to the constraint propagation network. This activation from
the recurrent network is used as reverse costs in the GCPN to be used in subsequent
disambiguations at different levels of abstractions. The sample output in Appendix III
shows the actual output from the recurrent network during the recognition of one dialog.
The current sentence is I would like!® to register for the conference. As we can see when
to is input the next inheritance class concept *registeris actually predicted along with the
correct syntactic feature prediction for ((MAJ V) (FORM BSE)). This way the prediction
from the recurrent network may be strongly specialized when the activation pattern in
the training data is specialized. When we retrained the same network with sentences that
included I would like to but with other verbs afier to the network either predicted the
concepts that are higher in the abstraction or did not predict anything at all. Since our
inheritance decoding is from left to right (higher in abstraction to lower), in effect, some
inductive generalization is attained by training with a different variety of sentences. Also,
when the sentential activation patterns are specialized, the recurrent network fine tunes
to the provided patterns and the predictions may be strongly specialized. The impact

17We do not vectorize all graph structures simply of economy reasons because recurrent net training

takes large amount of time. :
18 Would like is treated as one unit when recurrent network is activated.
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of this is that the recurrent network priming mechanism can be utilized in fine-tuning
the system’s performance based on the actual usage patterns when the system is finally
installed for some specific applications. By running the backpropagation while actually
using the system, the system is capable of tuning to the actual sentential patterns used at
the specific site. Also, as already demonstrated by [Elman, 1988] the recurrent network
successfully learns syntax. As shown in the sample output after the recognition of I
would like to the network actually predicts the next lexical input to have the syntactic
major category Verb with the Base form. The implication of this should be significant
especially considering the fact that past natural language systems always a priori provided
context-free grammars (perhaps, partially motivated by the fact that syntactic knowledge

is believed to be innate).

We found some interesting predictions made by the recurrent network. Often the
prediction for the next word may be inaccurate but the prediction for the word after next
can be highly accurate. Also, as seen in the *register example, the predictions can be
too strong due to the size of the training data. Also, we have not succeeded so far in
performing credit assignment for the particular vector patterns from time t-n to appear
in time t+m. We are currently experimenting with different weight connections from
different times (t-n) with a multiple number of context layers to explore this question
further.

6. Conclusion

The MONA-LISA architecture assumes multimodal input/output activity and aims at
receiving input activations from the neural network into the symbolic massively-parallel
network. The interaction within GCPN and with the contextual recognition recurrent

neural network is performed in terms of propagating constraints that are provided as
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graphs or converted from vectors to graphs.!? As we can see, the activation in the GCPN
is only propagated upward in the inheritance hierarchy and never horizontally. Since
the increase in the grammar size takes place horizontally, the complexity increase can be

countered by an increase in the number of processing units.

We have seen that the neural net can actually provide valuable generalizations learned
over real dialog samples to the symbolic network. This was attained because the symbolic
netwrok provided the neural network with the encoded constraints to be learned during the
actual symbolic constraint propagation activity. MONA-LISA seems to demonstrate that
cooperative symbolic/subsymbolic activities are possible in the way that such activities

attain the performance that either systems were capable of attaining without the other.

Finally, there is one underlying implication of connecting subsymbolic processing with
a symbolic one. It is the implication that we are connecting the physical signal recognition
activity effectively with more conceptual symbolic inferencing activity. In other words,
attaining the integrated subsymbolic/symbolic processing by connecting symbolism with
subsymbolism should mean that we have one model that proposes a scheme to connect

the activities in physical world with the activity in the abstract world.

19 Also, in terms of the implementational problem due to the different grain sizes of parallelism, although
we did not discuss it in this paper due to space limitations, we have countered this question by inserting
the intermediate light-weight processes to handle different levels of parallelism. Namely, we have divided
the parallel processing into three levels:

¢ Node level: this is the level where nodes receive and fire activations, i.e., the representational
level of memory nodes. In the past models of massively-parallel artificial intelligence, this was
assumed to be the level of processing as well.

e Light weight process (lwp) level: this is the level at which massively parallel processing is
performed. Any number of lwps may be created during processing, independently of the number
of nodes and the number of processing units.

¢ Processing unit level: this is the level of actual processing hardware. Any number of processors
- may be configured depending on the hardware architecture. One (or more) processing unit may
be dedicated to the scheduling of lwps.
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Appendix I:

The output below shows the path equations converted into

graph internally in MONA-LISA lexical nodes. Numbers such as X03
are for printing purposes and if more than one number appears in
different locations it means that it is a shared-structure (i.e.,
convergent arcs).

{(*JOHN
(INHERITS-FROM *MALE-PERSON)
(TYPE
(VALUE
(COMMON :LEX-COMP)))
(SPELLING
(VALUE
(COMMON JOHN) ) )
(SYNSEM
(VALUE
(COMMON
X01[[0 X02([[MEM XD3[]]
[Loc Xxo04] [corrrexT X05 [ [BACKGR X06 [ [BEARER XOT[[IDEN X03]
[GEND X08 MASC)
[NUM  X08 SNG)
[PER X10 3RD])
(NAME X11 JOHN]
[RELN X12 NAMING]]]
[CONT X13[[RESTR X14[[RELN X15 *JOHN])
(PARA X16 [[INDEX X071]]
[CAT X17[[MARKING X18 UNMARKED]
(HEAD X19[[MAJ X20 N]J1111))))

(+GIVE
(INHERITS~FROM *GIVE-ACTION)
(TYPE
(VALUE
(COMMON :LEX~HEAD)))
(SPELLING
(VALUE
(COMMON GIVE)))
(SYNSEM
(VALUE
(COMVION
X01([[3 X02[[LOC XO3[[CONT xoa[[aesm XO5{[RELN X086 #MATTER]]
[PARA XOT[[INDEX X08([]1]]
[CAT X09[[HEAD X10([{CASE X11 ACC)
MAJ X12 N1 D)
(2 x13moc X14[[CONT X1S[[RESTR X16[[RELN X17 *PERSON] ]
[PARA X18([[INDEX X19{]]]]
[CAT X20[[HEAD X21([[CASE X22 ACC)
MAJ  X23 N1]111]
"1 X24{[Loc X25[[CONT X26([[RESTR X27[[RELN X28 *PERSON]]
[PARA X29[[INDEX X30{)]1]
[CAT - X31[[HEAD X32[[CASE X33 NOM]
MAJ X34 N)))))
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u;f“\

[0 X35[[LOC X36[[CONT X37[[THEME X08)
[GOAL X18])
[AGENT X30)
[RELN X38 #GIVE-ACTION]]
[CAT X39[[SUBCAT X40[[3 X02)
(2 Xx13]
(t x24)]
[MARKING X41 UNMARKED]
[HEAD X42[[PRD X43 -]
[INV X44 -]
[aUX X45 -]
[VFORM X46 BSE]
MA2  x47 VI1111))))

(«PERSUADED
(INHERITS-FROM *PERSUADE-ACTION)
(TYPE
(VALUE
(COMVON : LEX-HEAD)))
(SPELLING
(VALUE
(COMVON PERSUADED) ))
(SYNSEM
(VALUE
(COMVON
X01[[3 X02[[LOC X03[[CONT XO4[[RELN XO05 *ACTION]
[RESTR XO06[[RELN X0S5]]
[AGENT X07([]])
[CAT XO0B[[SUBCAT X09[[3 Xie[[LOC
X11[[CAT X12[[HEAD X13 SATURATED]]]]
[2 Xxi14[[LOC
X15[[CAT X16[[HEAD X17 SATURATED]]])
[1 xis[[LOC
X19[[CAT Xx20[[HEAD X21[[CASE X22 NOM]
MAJ X23 N]]11)I
[HEAD X24 [[AUX X25 +]
[VFORM X26 INF}
Mg x27 V])111]
[2 x28[[LOC X29[[CAT X30[[HEAD X31[[CASE X32 ACC]
(MAJ X33 N]])
[CONT X34[[RESTR X35[[RELN X36 *PERSON]]
[PARA X37[[INDEX X071}]]]
[1 X38[[LOC X39[[CONT X40[[PARA X41[[INDEX X42([]]}
[RESTR X43[[RELN X44 *PERSON]]]
[CAT X4S[[HEAD X46[[CASE X47 NOM]
. MAJ X48 N]11))]
[0 X49[[LOC XSO[[CONT X51[[RELN X52 *PERSUADE~ACTION]

[CIRCUMSTANCE  X04)
[PERSUADEE  X07)
[AGENT X42]]
[CAT X53[[SUBCAT X54[(3 X02]
{2 x28]
{1 x38]]
[MARKING X55 UNMARKED)
[HEAD X56[[PRD X57 -]
[INV XS58 -]
[AUX X59 +]
(VFORM X860 INF]
Mad  Xx61 VI111]))))
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Appendix II: Sample output of MONA-LISA system

Allegro CLiP 3.0.3 [sequent] (9/11/50 16:22)

Copyright (C) 1985-1990, Franz Inc.. Berkeley, CA. USA

<Initial lwp> (set-numprocs 1) ;:: We use only 1 processor for sample output.
1:: otherwise we cannot read the formatted output

1 1:: because mutliple cpus formats simultaneously.

<Initial lwp> (parse ° (John persuaded Mary to give Sandy susi))
Using 1 progessor ::; this is the word level input deme (net phonological)

ACTIVATING THE LEXICAL NODE: *JOHN...

A complement instance created: *JOHN2265
Propagating through: *JOHN

Propagating through: *ALE-PERSON
Propagating through: #PERSON
Propagating through: sHUMAN
Propagating through: *ORGANIC-MATTER
Propagating through: *NOH-ABSTRACT-MATTER
Propagating through: ®MATTER
Propagating through: *GENERIC-OBJECT*
Propagating through: *GENERIC-CONCEPTs
Global massive parallelism invoked...

ACTIVATING THE LEX]CAL NODE: »PERSUADED...
A head lnstance created: *PERSUADED2356
Global massive parallelism invoked...

ACTIVATING THE LEXICAL NODE: #MARY...

A complement instance created: #WARY2384
Propagating through: *=MARY

Propagating through: *FEMALE-PERSON
Propagating through: *PERSON
Propagating through: =HUMAN
Propagating through: *ORGANIC-MATTER
Propagating through: ®NON-ABSTRACT-MATTER
Propagating through: *MATTER
Propagating through: *GENER]C-0BJECT*
Propagating through: *GENERIC-CONCEPT*
Global massive parallelism invoked...

ACTIVATING THE LEXICAL NODE: *TO...
A head instance created: *T02468
Global massive parallelism invoked...

ACTIVATING THE LEXICAL NODE: sGIVE...
A head instance created: *GIVE24S6
Global massive parallelism lnvoked...

oo
@

A

.



ACTIVATING THE LEXICAL NODE: #SANDY...
A complement instance created: ®SANDY2524

Propagating through: *xSANDY

Propagating through: sFEMALE-PERSON

Propagating through: *PERSON

Propagating through: sHUMAN

Propagating through: ®ORGANIC-MATTER

Propagating through: sNON-ABSTRACT-MATTER

Propagating through: sMATTER

Propagating through: *GENERIC-OBJECT* .
- Propagating through: #GENERIC-CONCEPT#+

Global massive parallelism invoked...

ACTIVATING THE LEXICAL NODE: *SUSI...
A complement instance created: *SUSI2607
Propagating through: *SUS]
Propagating through; *FOOD
Propagating through: *RELAT]ON~ATTRIBUTE
Propagating through: *ARTIF]CAL-MATTER
Propagating through: *NON-ABSTRACT-MATTER
Propagating through: sMATTER
Propagating through: *GENERIC-OBJECT=
Propagating through: *GENERIC-CONCEPT»
Global massive parallelisa invoked...
case information ambiguous.
RecurrentNet: Receiving teatures: [{(MAJ N) (FORM NORM)) ((CLASS _sFIRST-NAME))])
RecurrentNet: Forward propagating...
RecurrentNet: Prediction:
2(0.014699033 0, 1123531 0.005615511 0. 086756654 0. 32903638 0. 0013546887 0.68235165 0.0021127297 0. 5569747 0. 37053
04 0.02657212 0.05936804 0. 066709384 0.045453567 0. 1352333 0. 102601826 0.005092019 0. 0041175676 0. 12681322 0.06572117
0.39188597 0, 4495346 0. 7061425 0.037395228 0. 0014276046 0.5112053 3.5331127e~4 0. 058075085 0.06910719 0, 07064937 0. 169
70897 0.39242262 0.0044099395 0. 01582387 0. 14374946 0. 15425228 0. 11064617 0. 020329852 0. 006546378 0. 34938157 0. 6864514
4 0.07599342 0.037360895 0.21914004 0. 3014929)
RecurrentNET: Unambiguosly priming:
Syntax: Specific syntactic features not primed enough, NIL
Conceptual priming: NIL

RecurrentNet: Receiving features: [((MAJ V) (FORM FIN)) ((CLASS _»OTHER-ACTION))}
RecurrentNet: Forward propagating...
RecurrentNet: Prediction: )
#(0. 5409094 6.671678e-5 0.008282855 0.27178025 0. 00601796 2.6298094e-6 0, 07189822 4. 755308e-4 0.8963017 0. 3088033
4, 3985072e-5 0. 0010595805 8. 573201e~4 5.263548e-4 4. B080444e~5 0. 006857538 5. 403738e-4 0. 00270635 4, 054648e-4 0.01763
7191 0.012824329 0.087318175 0.6491578 0. 26978797 0. 0011637454 0. 65390503 0. 002120616 0.017216874 0.9183577 0.00154854
58 0.3039199 0.015787806 0.002412431 B. 228919e-5 0. 041439652 0.33712184 0,021771248 6.48168e-5 9. 1088104e-6 2.803855e~
4 0.9190739 1.032367¢-4 0.301443 5.201519e-4 0.043834563)
RecurrentNET: Unambiguosly priming:
Syntax: Specific syntactic features not primed enough. NIL
Conceptual prifding: NIL
Trying to grab subcat 1 filler for *PERSUADED2356 satisfying: $PERSON
*PERSON already received constraint propagation from *JOHN226S.
Unitfying the propagated constraint graph with the aubcat 1
Propagated constraint graph:
X01[[LOC X02[[CAT X03[{HEAD X04[[MAJ X05 N}}
MARKING X06 UNMARKED] ]
[CONT X07[([PARA X08([INDEX XO0S[(PER X10 3RD)
fNUM X111 SAG)
[GEND  X12 MASC)
[IDEN X13 #JOHN2265]]]
[RESTR X14[[RELN XI5 #JOHN]])
[CONTEXT X16 [[BACKGR X1T[[RELN X18 NAMING]
7 (NAME  X19 JOHN]
(BEARER X09)1])
. MeM x13)°

The head-instance synsem to be unified into
X01((3 X02[[LOC X03[{CAT XD4[[HEAD XOS([(MAJ X06 V]
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[VFORM XO7 INF]
[AUX X08 +]]
[SUBCAT Xx0S9([[t X10[ILOC X11[[CAT X12[[HEAD XI3[[MAJ X14 N)
[CASE X15 NoM]))))
[2 X16[[LOC X1T[ICAT X18[[HEAD X19 SATURATED]]})
[3 Xx20[[LOC X21[[CAT X22[[HEAD X23 SATURATED))]]]]
{CONT X24[[AGENT x25())
[RESTR X26 [[RELN X27 *ACTION]|
) "[RELN  Xx27)1))
[2 X28[[LoC X29[[CONT x30[[PARA X3t[[INDEX X25))
[RESTR X32 [[RELN X33 »PERSON]]) i
[CAT X34 [[HEAD "X35[MAJ X356 N]
([case xa1 accll)]]
[1 X38[([LOC X39[[CAT X40[[HEAD X41[[MAJ X42 N]
[CASE Xx43 NoM])) .
[CONT X44[[RESTR X4S[[RELN X46 sPERSON]]
[PARA X47[[INDEX X48()]111])
[0 X49[[LOC XS0[[CAT XS51[[HEAD X52[[MAJ X53 V]
[VFORM X54 INF)
[aUX XS5 +)
‘ [INV X56 -]
[PRD XS7 ~])
[MARKING X58 UNMARKED)
{SUBCAT Xx59([[1 X38)
[2 x28)
(3 x02]))
[CONT XG0 [[AGENT X48) -
[PERSUADEE  X25]
[CIRCUMSTANCE  X24)
[RELN X61 *PERSUADE-ACTIONI]]
[MEM X62 »PERSUADED2356])
Unifying propagated graph with subcat constraints respecting class inheritance subsumption...
Constraint unification successfull
Resulting head instance:
{*PERSUADED2356
(INHERITS-FROM »PERSUADED)
{TYPE
(VALUE
(COMMON : INST-HEAD) ) )
(SYNSEM
(VALUE
(COMVON
X01[{3 X02[[LOC XO3[[CONT X04[[RELN X0S *ACTION)
[RESTR X06 [ [RELN X05])
[AGENT Xx07([})]
[CAT X08[[SUBCAT X09[[3 X10[[LOC X11[[CAT X12[[HEAD X13 SATURATED]]]]
[2 Xx14[(Loc XIS[(CAT X16[[HEAD X17 SATURATED]]]]
{1 x8[[Loc X19[[CAT X20[[HEAD X21[[CASE X22 NOM]
(MaJ Xx23 N]111))
[HEAD X24[[AUX X25 +)
[VFORM X26 INF)
MaJ  X27 V]11))
[2 x28[[LOC X29[[CAT X30([HEAD X31[[CASE X32 AcC]
MaJ X33 N)])
[CONT X34 [[RESTR X3S[[RELN X356 #PERSON])
[PARA X3T[[INDEX Xa7])]])
[0 X38[[MEM X39 *PERSUADED2356]
[LOC X40[[CONT X41[[RELN X42 *PERSUADE-ACTION]
(CIRCUMSTANCE  X04)
[PERSUADEE  X07]
. [AGENT X43[[IDEN X44 *JOHN2265)
[GERD X45 MASC]
[NUM  X46 SNG)
[PER X47 3RD]])
[CAT X48[[SUBCAT X49[[3 Xx02]
2 x28[]
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{MARKING X500 UNMARKED]
[HEAD XS1{(PRD x52 -]
[INV  X53 -]
[AUX XS54 +]
[VFORM XSS5 INF)
MaJ  x56 V]111]
1 Xs7([MEM X44)
[LOC XS58([[CONTEXT X59([BACKGR X60[(BEARER X43]
[NAME  X61 JOHN])
(RELN X562 NAMING]]]
[CONT X63[([RESTR X64 [[RELN XB5 #JOHN]]
{PARA X665 [[INDEX Xx43}}]
[CAT X67([MARKING X68 UNMARKED]
[HEAD X69[(CASE X70 NOM]
[MAJ  x71 N11110)))
(S=-TIME
(VALUE
{COMMON 1)))
(W-TIME
(VALUE
(COMON 2))))
#PERSON already received constraint propagation from #MARY2384.
Not meeting complement order constraint based on obliqueness order.
*PERSON already received constraint propagation from #SANDY2524.
Not meeting complement order constraint based on obliqueness order.
Trying to grab subcat 2 tiller for *PERSUADED2356 satistying: *PERSON
*PERSON already received constraint propagation from #MARY2384.
Unifying the propagated constraint graph with the subcat 2

Trying to grab subcat 3 filler for *GIVE2496 satisfying: #MATTER
*MATTER already rececived constraint propagation from »SUSI2607.
Unitying the propagated constraint graph with the subcat 3
Propagated constraint graph:
Xo1((LOC X02[[CAT X03 [[HEAD X04[(MmaJ X05 N]]
[MARKING X06 UNMARKED]]
[CONT XOT7[[PARA X08[[INDEX X09[[PER XI10 3RD]
[GEND X111 NEUT]
[IDEN X12 »SUSI2607)]]
[RESTR XI3[[RELN X14 »SUSI]
(INST X09]111]
(MEM  X12]

The head-instance synsem to be unitied into
X01[[3 X02[fLOC XO3[[CONT XO04[[RESTR XOS[(RELN XO6 MATTER]]
[PARA  X07 [[INDEX X08(]1]]
[CAT X09[[HEAD X10([CASE X11 ACC]
MaJ Xx12 N]11))
[1 X131[LOC X14[(CONT X1S[(RESTR XI6[[RELN X17 *PERSON])
[PARA X18[[INDEX X19[]]])
[CAT X20 ([HEAD X21([CASE X22 NOM]
MAJ  x23 N]]11)
[0 X24[[MEM X25 sGIVE2496]
[LOC X26[[CONT X27[[THEME x08]
(GOAL X28 ((IDEN X29 #SANDY2524]
[GEND X30 FEM]
{NUM X311 SNG]
[PER X32 3RD])
(AGENT  X19)
[RELN X33 %GIVE-ACTION])
[CAT X34 [[SUBCAT X35((3 xo02]
1 x13]]
[MARKING X36 UNMARKED]
[HEAD X37([PRD X38 -]
{INV  X39 -)
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[AUX x40 -)
[VFORM X41 BSE)
My x42 VI11))
[2 X43[[MEM X29)
[LOC X44[[CONTEXT X45[[BACKGR X46 [ [BEARER X28)
[NAME  X47 SANDY)
[RELN  X48 NAMING]])
[CONT X49[[RESTR X50([RELN XS51 #SANDY))
[PARA XS2 [[INDEX X28]]]
[CAT X53[[MARKING X54 UNMARKED)
[HEAD X55[([CASE XS56 ACC)
MaJ  x57 Nj11])
Unifying propagated graph with subcat constraints respecting class inheritance subsumption...
Constraint unjfication sucpessfull
Resulting head instance:
(*GIVE2496 .
(INHERITS-FROM *GIVE)
(TYPE
(VALUE
(COMMON : INST-HEAD) ))
(SYNSEM
(VALUE
(COMMON
X01[[1 X02{[LOC X03[[CAT XD4[[HEAD X0S([[MAJ X06 N}
[CASE X07 NOM] )}
[CONT XD8[[PARA X09[{INDEX X10(]]]
[RESTR X11[[RELN X12 *PERSON]]]]]
[0 x13[(Loc X14[[cAT X1S[[HEAD X16([[MAJ X17 V]
[VFORM X18 BSE)
[AUX  X19 =}
[INV X20 -]
[PRD X2t -])
[MARKING X22 UNMARKED)
[suBcAT Xx23([[1 Xx02]])
[CONT X24 [[RELN X25 #GIVE-ACTION]
[AGENT X10)
[GOAL X26[[PER X27 3RD]
[NUM  X28 SNG]
[GEND X29 FEM)
[IDEN X30 *SANDY2524}]
[THEME X31([IDEN X32 *SUSI12607)
[GEND X33 NEUT]
[PER X34 3RD)]])
[MEM X35 *GIVE2496]]
[2 x36[(LOoC X37[[CAT X38[[HEAD X39([MAJ X40 N]
[CASE X41 AcC]]
[MARKING X42 UNMARKED])
[CONT X43[[PARA X44[[INDEX X26])
[RESTR X45([[RELN X46 *SANDY]]]}
[CONTEXT X4T([[BACKGR X48[[RELN X49 NAMING]
{NAME X50 SANDY]
[BEARER X26]]1]
[MEM X30))
{3 xSi1[[MEM X32)
[LOC X52([CONT XS3[[RESTR XS54 [[INST X31)
[RELN XS5 *Susi)]
[PARA XS6 [[INDEX X31]]]
[CAT XS7[IMARKING X58 UNMARKED]
[HEAD X59{[CASE X60 ACC)
MaJ  x61 N1111))))
(S-TIME
(VALUE
(COMVON 1))
W-TIME
(VALUE
{COMMON 5))))



case information ambiguous.
RecurrentNet: Receiving features: [{(MAJ N) (FORM NORM)) ({CLASS _*FIRST-NAME))]
RecurrentNet: Forward propagating...

RecurrentNet: Prediction:

#(0.0154738 0.35002264 0.008896059 0.028663322 0.2347435 0. 005945847 0. 83691795 0. 01255739 0.374973 0. 47101313 0.
048599258 0.04839388 0. 17561457 0. 24761909 0. 33769128 0, 17915344 0. 022372289 0.016856076 0.23704979 0. 08486211 0.37755
772 0.34873196 0. 7351534 0. 041972607 0.0053865626 0. 28311712 0. 0035276331 0.07578456 0.0769191 0. 09640902 0. 14621502 0
. 3473997 0.011042247 0.03036274 0. 18813397 0. 40032905 0. 2921809 0. 039765105 0.02317913 0. 6034165 0. 30372223 0. 20795058
0. 024068216 0.20883459 0. 6907715)

RecurrentNET: Unambiguosly priming:
Syntax: Specific syntactic features not primed enough. NIL
Conceptual priming: NIL
Trying to grab subcat 3 filler for *PERSUADED2356 satlsfying: *ACTION
*ACTION already received constraint propagation from *PERSUADED2356.
Not meeting complement order constraint based on obliquenass order.
*ACTION already received constraint propagation from *GIVE2496.
Not meeting complement order constraint based on obliqueness order.
Trying to grab subcat 1 tiller for »T02468 satisfying: sMATTER
Trying to grab subcat 2 filler for »TQ2468 satisfying: *ACTION
*ACTION already received constraint propagation from *PERSUADED2356.
Not meeting complement order constraint based on obliqueness order.
*ACTION already received constraint propagation from *GIVE2496,
Unifying the propagated constraint graph with the subcat 2
) Propagated constraint graph:
fﬂ X01[([LOC X02([[CAT XO03([[HEAD Xx04([MAJ XO05 V]
— [VFORM X06 BSE)
[aUX X07 -]
[INV X088 -}
[PRD X09 -})
[MARKING X10 UNMARKED]
[SUBCAT X11[[1 X12([LOC X13[(CAT X14[[HEAD X15([MAJ X16 N)
[CASE X17 NOMj))
[CONT Xx18([([PARA XI19[[INDEX X20(]])
(RESTR X21[[RELN Xx22 *PERSON]]]]]}1)
[CONT X23[[RELN X24 *GIVE-ACTION]
(AGENT  X20}
[GOAL x25([PER X26 3RD]
[NUM  X27 SNG]
[GEND X28 FEM) :
[IDEN X239 =SANDY2524])
[THEME X30[[IDEN X31 *SUSI2607)
[GEND X32 NEUT)
[PER X33 3RD])))

[MEM X34 *GIVE2496)

f\‘ The head-instance synsem to be unified into
o X01([[2 x02[[LOC X03[[CAT X04([SUBCAT X0S5([[1 X06[[LOC XO7([[CONT X08[[AGENT X09([}]]
) [CAT X10[[HEAD X11[[DMAJ X12 N)
[CASE X13 NOM]}}])
(2 x14[[Loc X1S[[CAT X16[[HEAD X17 SATURATED]}])
(3 x18[[LOC X19([[CAT X20[[HEAD X21 SATURATED]]]]]
[HEAD X22[[(MAJ X23 V]
(VFORM  X24 BSE})]
[CONT X25[[AGENT Xx09)
[RESTR X26 ([RELN X27 ®ACTION]]}
[RELN Xx27)]1}
[1 X28[[LOC X29{[CAT X30[[HEAD X31[[MAJ X32 N]})
[CONT X33 {[PARA X34 [[INDEX X09]}
[RESTR X35 [[RELN X36 sMATTER])]])
: [0 x37[[LOC X3B([CAT X39[[HEAD X40([[MAJ X41 V]
; (VFORM X42 INF]
[AUX  X43 +)
[INV  X44 -}
[PRD  X45 -]}
[MARKING X45 UNMARKED]
[SUBCAT X47[[1 X28)
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{2 x02]))
[CONT x25))
(MEM X48 xT02468] )
Unitying propagated graph with subcat constraints respecting class inheritance subsumption...
Constraint unification successtull
Resulting head ingstance:
(sTO2468
(INHER1TS-FROM *TO)
(TYPE .
{VALUE -
(COMMON : INST-HEAD) ) )
(SYNSEM -
(VALUE
(COMMON
X01[§1 X02[[LOC XO3[[CONT X04[[RESTR XO0S[[RELN X06 +MATTER]]
[PARA XO7([INDEX Xx08[)]1])
[CAT Xx09([[HEAD X10[MMAJ X11 N]]]))
{0 X12[[MEM X13 %T02468)
[LOC X14[[CONT XI1S[[RESTR X16[[RELN X17 *GIVE-ACTION]]
[THEME X18[[PER X193 3RD)
[GEND X20 NEUT]
[IDEN X21 *SUS12607]]
[GOAL X22([[IDEN X23 %SANDY2524)
[GEND X24 FEM]
KM x2S SNG) 7~
{PER X26 3RD])
[AGENT X08)
[RELN X17]])
[CAT x27[([suscaT x28([[1 x02]]
[MARKING X29 UNMARKED]
[HEAD X30({PRD X31 -]
[INV X32 -)
[AUX X33 +)
[VFORM X34 1NF]
Ay x35 V]1]]]
[2 X3B[[MEM X37 *GIVE2456)
[LOC - X38[[CONT X15)
[CAT X39[[SUBCAT X40([[2 X41[[LOC X42[[CAT X243 [[HEAD X44 SATURATED]]])]
[3 X4S[[LOC X46[[CAT X4&7[[HEAD Xd48 SATURATED]]]]
[V X49[[LOC XSO[[CONT X51[[AGENT X0B]
[RESTR X52 [[RELN X53 #PERSON] )
" [PARA X54 [[INDEX X08]])
[CAT XSS5[[HEAD X56[[CASE XS57 NOM|
May x58 NJJIDII
[MARKING XS9 UNMARKED)

[HEAD X8O [[PRD X61 -] ,ﬂ\
[INv X582 -] L
[aUX  X63 -]
[VFORM X64 BSE]
Mas X85 VI1111)))
(5-TIME
(VALUE
(COMVMON 1))
W-TIME
(VALUE
(COMON 4))))

Unitying propagated “graph with subcat constraints respecting class inheritance subsumption...
Constraint unification successfull
Resulting head instance:

(*PERSUADED2356
{INHERITS-FROM #PERSUADED)
(TYPE - -

{VALUE

(P )
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(COMMON : INST-HEAD)) )
(SYNSEM
{VALUE
(COMVON
X01[[0 X02[[MEM X03 *PERSUADED235S6)
[LOC XO04[[CONT XOS|[[RELN X06 sPERSUADE-ACTION]
[CIRCUMSTANCE XOT[[RELN X08 sGIVE-ACTION]
[AGENT X09([[PER X10 3RD]
[N X11 SKG)
[GEND X12 FEM) - -
[TOEN X13 #4ARY2384])
[GOAL X14[[PER X15 3RD]
[NUM  X16 SNG]
- [GEND X17 FEM]
[IDEN X18 *SANDY2524))
[THEME XI19([IDEN X20 #SUSI2607]
[GEND X21 NEUT)
[PER x22 3RD}]
[RESTR X23[[RELN Xo08]])
[PERSUADEE  X09)
[AGENT X24[[IDEN X25 #JOHN2265]
[GEND X26 MASC)
[NUM  X27 SKG)
[PER X28 3RD)])
[CAT X29[[SUBCAT Xao[([NIL 1]
[MARKING X31 UNMARKED)
[HEAD X32[[PRD X33 -]
[INV X34 ~)
[AUX X35 +)
[VFORM X36 [NF)
Mag  Xx37 V11111
[1 Xx38[[MEM X25]
[LOC X39[([CONTEXT X40[[BACKGR X41[[BEARER X24]
[NAME  X42 JOHN)
[RELN X43 NAMING]]]
[CONT X44[[RESTR X45[[RELN X456 JOHN]]
[PARA XAT[[INDEX X24]])
[CAT X48[[MARKING X49 UNMARKED)
[HEAD XSO [[CASE X51 NCM]
(MaJ  x52 N11]]]
[2 Xx53[[LOC X54[[CAT X55([[HEAD XS56((mAJ X57 N)
[CASE X58 ACC)]
[MARKING XS59 UNMARKED])
[CONT X80{[PARA X61[[INDEX X09]]
[RESTR X582 [ [RELN X63 #MARY]]]
[CONTEXT XG4 [([BACKGR XB5[{RELN X66 NAMING]
[NAME X67 MARY]

[BEARER X09]]]]
[MEM  X13]]
(3 X68[[LOC X69[[CAT X70[[HEAD XT1[(MAJ X72 V]
[VFORM X73 INF]
[AUX  XT4 +]
(INV XT75 -]
[PRO X76 =]]
[MARKING X77 UNMARKED]
[SUBCAT X78[[2 X79[[LOC XBO[[CAT Xx81([[HEAD X82 SATURATED]]]]
(3 x83[[(LOC X84[[CAT x8BS[[HEAD X85 SATURATED]]]]
[1 x87((Loc x83([[CAT x89[[HEAD X90[[CASE X391 NCM]
MAJ  X92 N]])
(CONT X93(([PARA X94 [ [INDEX X09]]
[RESTR X35 ([RELN X396 =MATTER}111]]]
(CONT x0T7]]
[MEM X397 #T02468)1)))
(s-TIME :
(VALUE
(COMON 1)))
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W-TIME
(VALUE
(COVMMON 2))))
Global massive parallelism invoked...Using 1 processor
Global massive parallelism invoked...Using 1 processor
Specitic syntactic features not primed enough.
RecurrentNet: Receiving features: [NIL ((CLASS _*END-PUNCTUATION))])
RecurrentNet: Forward propagating...
RecurrentNet: Pradiction:
# (0. 023348229 0.036268964 0.0069902344 0.08897273 0. 07429021 0.0015437683 0. 92383903 0.016427 0. 3972626 0. 2532076
8 0.0077487146 0.09314012 0. 088530324 0.026151301 0. 074738614 0.22995259 0.005168746 0.0028443348 0. 16809087 0. 0108955
73 0. 94808227 0. 723022 0. 7163689 0. 023458632 3.6314150-4 0. 4608943 A. 364973e-4 0. 035874907 0. 17080069 0. 06231131 0. 112
641536 0. 64059454 0.0068304082 0.0028339091 0. 106612 0. 54372585 0. 18167657 0.010155719 7. 47683e-4 0. 32288808 0. 6085463
0. 09237444 0, 06486768 0. 14129014 0. 5319556) '
RecurrentNET: Unambiguosly priming:
Syntax: Specific syntactic features not primed enough. NIL
Conceptual priming: _*0BJECT

Resulting global memory state with 1 node(s) in the Decaying Layer:

{(*PERSUADED2356
(INHERITS-FROM *PERSUADED)
(TYPE
(VALUE
{COMMON : INST-HEAD) ))
(SYNSEM
(VALUE
(COMVON
X01[j0 X02[[MEM X03 *PERSUADED2356])
{LOC X04[[CONT XOS{[RELN X06 #PERSUADE-ACTION]
[CIRCUMSTANCE  XO7 [ [RELN X08 $GIVE-ACTION]
[AGENT XO09[[PER X10 3RD)
[N X11 SNG)
[GEND X12 FBM}
{IDEN X13 #MARY2384]])
[GOAL X14[[PER X15 3RO}
[NIM  X16 SKG)
[GEND X17 FEM}
[IDEN X18 #*SANDY2524])
[THEME X19[[IDEN X20 *SUS}2607]
[GEND X21 NEUT]
[PER  X22 3RD)]
[RESTR X23[[RELN Xx08]])
[PERSUADEE  X08]
[AGENT X24 [[IDEN X25 *JOHN226S)
[GEND X26 MASC)
[NUM  X27 SNG)
[PER X28 3RD]]]}
[CAT X29([SUBCAT X30([[NIL ]}
[MARKING X31 UNMARKED]
[HEAD X32[[PRD X33 -]
: [INV X34 -}
[AUX X3S 4}
[VFORM X36 INF]
MAJ  X37 VIIIN)
(1 Xx38{[MEM X25)
[LOC X39[{CONTEXT X40[[BACKGR X41[{BEARER X24]
. v [NAME  X42 JOHN)
. . (RELN X43 NAMING]])
(CONT X44[[RESTR X4S[{RELN X46 *JOHN])
[PARA X4T7[[INDEX X24}]}
[CAT X48([MARKING X439 UNMARKED]
[HEAD X50 [ [CASE XS1 NOM]
. (MaJ  X52 N]]1}]
[2 xS3[[LOC XS4[[CAT X55([[HEAD XS6(([MAJ XS7 N]
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[CASE  X58 ACC])
[MARKING X59 UNMARKED] )
[CONT X50[[PARA X61[[INDEX X03]]
[RESTR X62[[RELN X63 #MARY]])
[CONTEXT X64[[BACKGR X685 ([[RELN X66 NAMING)
[NAME  XB7 MARY)
[BEARER X0%9)]]])
(MEM X13)]
[3 x68[(LOC Xx69[[CAT XT70[[HEAD XT1[[MAJ XT2 V]
(VFORM  X73 INF) .
[AUX  XT4 +)
[INV X75 -]
[PRD X76 -})
[MARKING X77 UNMARKED)
[SUBCAT X78[(2 X79[[LOC Xx8BO[[CAT X81[[HEAD X82 SATURATED]]])
i: SUBCAT moved for print [3 X83[[LOC XB4[[CAT X85[[HEAD X86 SATURATED]]]]
(1 xa7([Loc Xx88[[CAT X89{[HEAD XS0 [{CASE XS1 NOM)
MAJ  X92 N]])
[CONT X93[(PARA X94 [[INDEX Xx09])
[RESTR XS5[[RELN X96 #WATTER]]}1])])

[CONT x07]])
[MEM X937 *T02468)])))
(S-TIME
(VALUE
(COMON 1)))
(W-TIME
{(VALUE
(COMON 2))))
NIL

<Ilnitial lwp>

Appendix III:

Sample recurrent net run (without constraint propagation network) :

Sentence: 5:

Input Word: 1
2(1000000010000100000000100010000000100100000O0 0)
Decoding. .
Syntax : ((MAJ N) (FORM NORM) (CASE KOM))
Semantics : _*[DENTITY

Forward propagating...

Prediction 1:

# (0. 08065432 0. 44271022 3.304273e-6 7.283204¢-5 0. 5740456 0.03322048 0. 12283865 0. 40194097 0.010165014 0.0 3. 5834
058e-5 9, 4155085e-6 1. 4496867¢-5 0, 35719004 0.0 3.266633e~5 2.6477635¢-5 2. 8367454e~5 2.077052%¢-5 1.3217542e-5 1. 0105
801e-6 0.27352263 0.9208149 2. 1918598¢e-5 0.02234797 1.9793946e-4 0. 15002659 0. 3563637 0.29727048 0.0 0. 965435016 0. 3886
9813 1.8852015e-5 4.3598768e-6 0.06382471 0.042883247 0.0031745322 0.06726367 4. 65445906e~5 2.3818132¢-5 0. 0077976245 0

. 7941675 0.0 1.8159598e-5 1.844641e-5)
Prediction 2:

%(0.001030652 0.0987835 6.319159¢-6 0.0 0.0 0.0017127303 0. 59903026 0.546817656 0.999995495 0.0 0.0 0.0 0.0 4. 63497
88e-4 0.0 7.8377664e-6 5. 7669246¢-6 3. 68227456-6 1.9240405¢-6 5. 413526e-7 0.0 0. 87255633 0,39791763 2.3441981e-6 0.0014
452058 0.0 5.2589756e-4 0.0 0.97264266 0.0 0.97116876 0.88693845 4. 5521352e-6 0.0 0.0 0.9945084 0.021551425 0.0 3. 7000

075e-5 6.0775995e-6 0.9779734 0. 10828607 0.0 4.33521570-6 2. 0350656e-5)
Unambiguosly priming: :
Syntax: Specific syntactic features not primed enough. NIL
Semantics: NIL
Unambiguosly priming:
Syntax: Specitic syntactic features not primed enough. NIL
Semantics: NIL
Input Word: WOULD-LIKE
23(0 1000001 000000000000010000100000010000000000O00)
Decoding. .
Syntax : ((MAJ V) (FORM BSE))



Semantics : _®WANTING
Forward propagating. ..
Prediction 1:
# (0. 0036569473 0.011257127 0.0 0.9957039 7. 182812e-4 1.2562753¢-6 0. 07089869 7. 592556e-4 0.090459324 0. 99684155 5
. 7461303e-5 0.051744964 1.4593257e¢~5 0.0044889473 0. 74692893 1, 738444%e-5 7.477739%~6 1.921835¢-5 1. 1713059e-5 2. 50979
84e-6 4.B11422e-4 0.0027652069 0. 20375258 7. 680587e-6 7.533815e-6 8. 5842276e-4 0. 3230395 2. 0946872e-6 0.003097785 0.0
0. 016042646 2.3709372e~-4 8. 5003716e-6 0.0 0.9205876 8. 909058e¢4 0. 020482019 0. 39825487 5.5661595¢-6 6.3519615e¢-6 0. 046
615478.4,. 5769926e~5 2. 5038603e-4 5. 9475285e~6 6.3412505¢~7) -
Prediction 2:
#(0.0010182429 0.98796636 6.304267e-6 0.0 1.5070632¢-4 0. 0063269758 0. 5667316 0.24030866 0. 0031520324 3.0823838e-5
7. 142568e~6 1, 5045246¢-6 2. 6129895e~5 0.6057414 0.0 2.4807787e-5 5. 198792¢-6 3.6296013e~5 4.4432268e-6 2. 7001494e-5 3
.207383e-6 0. 19303687 0.3953205 1. 4395691e~5 9. 679367e¢~5 0, 0023452558 0.97700447 0. 027542727 1.0726998e-6 0.0 0, 572177
65 0.24670222 8.872294e-6 0. 0020803844 0. 028046757 0.03065481 0.033143613 0.27817398 0.0 2.680418e-5 0.02525578 0. 0994
7373 1.7296341e-5 3.9351517e-5 3. 29452e-5)
Unambiguosly priming:
Syntax: (MAJ P) (FORM TO))
Semantics: NIL
Unambiguosly priming:
Syntax: Form informatjon ambiguous. ((MAJ V))
Semantics: NIL
Input Word: TO
#(0001000001000000000000000000000000000000000O0 0)

Decading. .
Syntax : ((MAJ P) (FORM TO)) -,
Semantics : NIL

Forward propagating...

Prediction 1:

# (0. 006645398 0.9748394 9, 4478565e-7 9. 1301006e~7 0.28371295 2,8940207¢-5 0.22426695 0.9995338 0.011119411 0.0 2.
1463569e-5 9.907014e~-4 0.0 1.2076247e~6 0.0 6.948811e-6 1.07124254¢~5 7. 748146e~6 2. 0520969¢-6 1.3688916e¢~6 0.0 0. 9963
652 0. 018030683 6.231766e~6 1.2965614e-5 0. 9939433 1,.411859%-5 0.0017316178 1.6144633e~4 0,0 0.9951787 1. 842334325 4,
3839252e~6 0.0 0.0 5.2508384e-4 S, 569637e-6 0. 10085709 0. 9935635 9. 9291646e-6 3.2253113e—6 0.9994216 0.0 7, 451506e-6 0
.0)

Prediction 2:

#(0.004090111 1. 7823987e~4 4. 4269213e-6 0.0 3. 148484Be-5 0. 35337582 0. 6594183 0.011784805 0. 23479094 0. 5148785 1.
5884766e~4 3.601192e-5 1.4319290~5 0. 0043031173 7. 7658945e-5 2, 623026e~5 2. 0872936~5 1.0452316e-5 2.3141551e-5 1. 62083
S58e-5 0.0 2.3180418e~4 0. 99943465 2. 3256573e~5 8. 4421030-7 1. 2691595e-5 0.23725961 0.0027482125 0. 58332264 0.0 6. 98766
23e-4 0.90281844 3. 1144506e~-5 0. 004172045 0. 023300686 0. 729631 2. 0565414e-4 0.015754476 3.7770277e-7 2.3778936e-5 0. 19
770168 0.06376461 0.5641478 1.8376058e-5 7,8343874e-7)

Unambiguosly priming:

Syntax: ((MAJ V) (FORM BSE))
Semantics: _sREGISTER
Unambiguosly priming:
Syntax: Specific syntactic features not primed enough, NIL
Semantics: NIL '
Input Word: REGISTER
#(010000010000000000000100010000100000001001000) /ﬂ\
Decoding. . '
Syntax : {04AJ V) (FORM BSE))
Semantics : _*REGISTER

Forward propagating...

Prediction 1:

# (0. 57818097 7.600054¢~-4 1.3522819¢-6 0.9916788 4.6087363e~4 0.0 0.0014736827 0.001126208 0. 7482364 0. 11970352 0.
0017721569 0,3743199 0.0 3.4496337e-4 0.31569117 4,29167780-6 7. 256921e-6 1. 14921965e-5 2.3930332e-5 1.642751e-6 0.009
130579 0. 002030561 0. 79940087 1. 2208627e¢-5 0.0 5,2752566e~4 0,58458163 0.0 6.5372556e—4 0.0 1,0391285e-4 1,.8891719e-4
3. 72056e~6 0.0 0.99861133 2. 636469e-6 0.004445028 0.93014574 0.0 4. 0053162e~6 0.0071188933 9. 200067e-6 0.0019791394 §.
0615036e=-6 0.0)

Prediction 2:

2 (0.0027282487 0.01660915 0.0 0.0 0.97914356 0.0012541501 0. 3139683 0. 25412673 3. 7964454e-4 0.0 2.6801595e-5 2. 95
8473c-5 7.913609e-7 2. 91595466-4 0.0 1.8841556e-5 1.2861614e~5 1.03448%9%-5 6.207719¢-6 3. 1600943e-6 0.0 0.43837935 0.
94093186 4. 6536902e-6 0.0 0. 007341183 7.853698e~-5 0.99903154 4,.6717253e-4 0.0 0.9999976 0.0036452315 2. 1453068e-5 1.12 K
11989e-6 0.0 4, 3183186e~5 3. 4282804e~5 0. 9553152 0. 028110573 1.0474978e-5 0.0012201315 0.99883443 0.0 7. 490793e-6 5. 79
72467e~6)

Unambiguosly priming:

Syntax: Form information ambiguous. ((MAJ P))
Semantics: NIL
Unambiguosly priming:
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Syntax: ((MAJ D) (FORM THE))
Semantics: _*INDEFINITE-REFERENCE
Input Word: FOR
#(0001000000D0100000000O0O0100O01!100O00O0O0O01YOO01000000DQ0)
Decoding..
Syntax : ((MAJ P} (FORM FOR))
Semantics : _*IDENTITY
Forward propagating...

Prediction 1:
#(0.025430072 0.0800034 9.0245414e~7 1.2959078e-4 0.87935114 0.0010964621 0.66273415 0.026702615 0. 0038762174 2.3

270592e~5 2.2359237e-4 0. 0020364996 1.0972683e~5 0.061779097 0.0 6.644864e-5 4.938321e-5 4.6108612e=5 2.6802772e~5 8. 0
954665e-5 6. 7984146e~7 0. 47155198 0.37317896 5.250912e-5 1. 1134641e-5 0.29229137 0.010076122 0.9570185 0. 0026000412 0.
0 0.090170965 0.051607817 5, 170351e-5 3. 12883e~4 0.0 1. 4693663e-4 2, 171143e~6 0.948931 0.0024116694 6. 496662e~5 5. 7048
875e~6 0.9987796 3.3912218e-5 4.6390715e~5 1.6625652e-5)
Prediction 2: . ‘
#{0.99587613 2, 6843035e-4 1.8449661e-6 4. 1015065¢-4 0.001769016 3.5763386e-5 0.010490522 2. 5873953e-4 0. 7233231 0
.0 4,1577905e~7 0,044339884 0.0 0.0 1.4707312e-6 4.938835e~6 3.869858e-6 5.351776e-6 1.2117688e-5 4, 0337974e~6 0.00654
8499 0. 96414596 0, 137382 5.57034%e-6 0.0 0. 10854193 0.019531576 1, 1240703e-5 0.2590055 4. 126145e-6 0. 53806704 0. 420100
2 3.4378007e-6 0.0 0.059565436 0,0020149 0.004508333 0.0010418281 0. 34381053 4. 7415084e~6 0.0041542156 0.092113815 0.0
6. 557656e-6 5.428172e~7)
Unambiguosly priming:
Syntax: Form information ambiguous. ((MAJ D))
Semanties: NIL
Unambiguosly priming:
, Syntax: Form unconstrained.case information ambiguous. ((MAJ N))
L/ Semantics: _*PHENOMENON
Input Word: THE
#(000010100000000000000010000110010000001000°1000)

-

Decoding.
Syntax : ((MAJ D) (FORM THE)}
Semantics : _*INDEFINITE-REFERENCE
Forward propagating,..

Prediction 1t:
#(0.9994159 1.5150331e-5 7. 1496844e-7 0.0 6.0090256e-4 2.6247492e~4 0.004174005 4. 72376e-4 0. 99733955 0.0 0.0 7.4

60583e~7 0.0 4.9344003e~7 0.0 1.08347155e-6 7. 7414596e~7 1.6305378e~6 2.6482144¢-6 2.8666532¢~6 5. 173069e-5 0. 7268867
0.0012903553 1.5074804e-6 0.0 2,3937816e-4 0.043803982 0.004405924 0. 7806072 0.0 0. 9992938 0. 0053379796 6. 4787954e~7 0
.0 2.116903e-4 0.0039119534 0. 10209093 4. 0302816e-4 1.6873701e-5 1.2386159e-6 0.09763454 0,01080258 0.0 1.3040462e-6 3
. 4048295e-7)

Prediction 2:
#(0.0018263549 4.8998085e-5 1.6378406e-~6 0.0 B8.499588e-5 0. 117409 0.9763714 0.001119116 0. 10569345 0. 9337093 3. 47

21392e-5 4,8418087e-6 6.35503e~7 9.253743e-4 1.9667076e-6 1,8688692e-5 B. 768017e-6 3. 6405584e-6 1.874708e-5 2. 1647196e
-5 0.0 2.862651e-6 0.9998745 1.3526556e~5 0.0 3.3506823e-6 0. 10532789 1.2680486e-5 0.64822525 0.0 3.9788792e~6 0. 99874
83 1.5393664e-5 1, 1082761e-4 0.014746789 0.8960314 1. 1186282e-5 0. 006877368 0.0 1, 3740902e~5 0.025940238 0. 156658138 0.
38879758 1. 1645927e-5 3,979821e-1)
Unambiguosly priming:
Syntax: case information ambiguous. ((MAJ N} (FORM NORM))
N Semantics: NIL
\\~‘/ Unambiguosly priming:
Syntax: Specific syntactic features not primed enough. NIL
Semantics: NIL
Input Word: CONFERENCE -
#(1000000010000000000001t100000010100000000000000)"
Decoding.. case information ambiguous.
Syntax : ((MAJ N) (FORM NORM))
Semantics : _*CONFERENCE
Forward propagating...

Input Word: *PER]OD*
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