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Abstract 

In this report, we will discuss algorit,hms to change speaker individuality: i.e., speech uttered 
by a speaker is changed or modified to sound as if another speaker had uttered it. First, we 
formulate voice conversion as a mapping problem by introducing vector quantization. 
Secondly, we propose a new algorithm which makes it possible to synthesize high quality 
speech even if the pitch frequency or duration is somewhat changed. Third, we discuss if 
speaker individuality can be controlled across different languages. Finally, to improve voice 
conversion performance, we propose also to convert the dynamic characteristics of speaker 
individuality by using speech segments as conversion units. 

内容梗概

音声の個人性を変換する目的で行った研究である。まず、コードプックマッピングによる

声質変換アルゴリズムを提案し、これを評価した。次に、短時間フーリエスペクトル分析

合成系を用いたピッチ周波薮変換アルゴリズムを提案し、これを評価した。第三に、バイ

リンガル話者の英語と日本語を分析し、言語による音声スペクトルの差を明らかにした。

この分析結果に基ずいて、コードプックマッピングによる声質変換アルゴリズムを用い

て、言語にわたる声質変換を試みた。最後に、コードブックマッピングによる声質変換ア

ルゴリズムをフレーム単位からセグメント単位に拡張し、声質変換の高度化を試みた。
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@ATR自動翻訳電話研究所
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Chapter 1. PROLOGUE 

I. Introduction 

Speech is the primary communication method for human beings. Only speech 

makes it possible to communicate without particular tools. In that sense, it is 

often said that speech is the most convenient and natural medium. Although this 

might be the primary benefit of speech, we unconsciously use other benefits of 

speech in daily speech communication. One of these is speech quality. As every 

person has a different face, speech sound uttered by a speaker has a particular 

guality specific to the speaker, which we call "speaker individuality". 

This thesis reports a study of speaker individuality control. The goal of this 

research is to change speaker individuality: i.e., speech uttered by a speaker is 

changed so as to sound as if another speaker had uttered it. In the remaining 

section of this chapter, speaker individuality is discussed in detail, and the scope 

of this thesis is explained. 

2. Speaker Individuality 

2.1 The Role of Speaker Individuality 

Speaker individuality plays an important role in smooth communication, and 

enriches our daily communication. When we con verse over the telephone, for 

example, we always try to identify the speaker. If the speaker is a someone close 

such as a family member or a friend, we confirm hi1n/her through speech q叫 ity.

If this is different from what we expect, we assume he/she has a cold or is a 

different person. 

3
 



Chapter I.PROLOGUE 

When we make a vo_cal request, speaker individuality is important 

information. Imaging that a father and daughter are in different rooms, and that 

the father asks her to, "please bring my bag." The daughter would never bring her 

mother's bag, because she judges the speaker to be her father through speech 

quality. If speech did not contain any information on a speaker, we would always 

have to confirm the speaker by extra questions. This would be very bothersome. 

Why do we enjoy a radio mystery? Because we can identify the characters by 

their speech quality, and that picture the story in our mind's eye. This is also true 

of radio programs such as panel discussions and interviews. 

As shown in the above examples, speaker individuality is useful not only in 

identifying a speaker, but also helps us communicate smoothly. 

ぶ

2.2 Where Does Speaker Individuality Come From? 

Speaker individuality is molded by both social and physiological factors. The 

social factors include the social environment in which a speaker grew up. An 

extreme example is a language. Even if all human beings have the same speech 

organ system, their acquired spoken-language attributes such as phonemes, 

accent, intonation and so on, differ considerably according to his/her 

environment. A dialect is another example. Social class also affects speaking style 

or a speaker's tendency to use certain words and syntactic structures. 

The physiological factors are variability in speech organs among speakers. It 

is well known, for example, that the primary difference between children's speech 

and adult's speech arises from the size of their speech organs. It is easy to 

understand that the speech of blood relatives is very close in quality because of 

the physical similarity in their speech organs. 

A speech production model was usually introduced to investigate speaker 

individuality. According to speech production theory, speech sound is generated 

by the periodic vibration of the vocal cord. The the peculiarities of vocal cord 

vibration and its periodicity are called "source characteristics". The air-flow 

passing through the vocal cord is modulated according to the shape 

4
 



Chapter 1. PROLOGUE 

(configuration) of the vocal tract, which is modeled as a kind of resonant tube. The 

vocal tract has particular "resonant characteristics" for any given shape, and 

sounds such as different vowels and consonants, are produced as it changes shape. 

Based on the speech production model, the acoustic cues of speaker 

individuality have been the subject of many studies. In terms of source 

characteristics, for example, large differences between male and female speech 

were reported[Price, 1989][Childers, 1985). The differences in resonant 

characteristics such as formant frequencies, bandwidth, and spectrum tilt among 

speakers, have been reported[Sato, 1974][Itoh, 1982][Furui, 1985][Kuwabara, 

1987] [Klatt, 1990] and utilized in speaker recognition[Rosenberg, 1976][Furui, 

198l][Soong, 1988]. However, not all acoustic cues of speaker individuality have 

been explained. It is now commonly accepted that speaker individuality resides 

not in a single feature, but is distributed over various acoustic features, and 

features which characterize speaker individuality are difficult to separate from 

features which characterize phonemes. 

3 Thesis Scope 

In this thesis, we will discuss algorithms to change speaker individuality: i.e., 

speech uttered by a speaker is changed or modified to sound as if another speaker 

had uttered it, which we call "voice conversion". What we try to change is only the 

speaker individuality which arises from physiological factors. 

From point of view of a speaker individuality control, not only must we extract 

parameters which characterize a speaker, but we must also formulate parameter 

conversion rules between speakers. Even if both problems were essentially 

solved, speech quality would not always be changed successfully because of the 

correlation between parameters. Both formant frequency shift and formant 

bandwidth modification, for example, will cause changes in spectrum tilt and vice 

versa[Takagi, 1987][Hakoda, 1987]. Parameter changes in glottal volume 

velocity function cause a shift in the first formant frequency and a change in its 

band width. Generally speaking, it is very difficult to reasonably control 
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Chapter 1. PROLOGUE 

parameters including these side effects. In chapter 2, to avoid such difficulties, we 

formulate voice conversion as a mapping problem by introducing vector 

quantization. An advantage of this approach is that features which represent 

speaker individuality are not extracted explicitly, but implicitly. 

Because pitch frequency is important information on speaker individuality, it 

is necessary to change pitch frequency for speaker individuality control. 

Although the modification of pitch frequency is possible using conventional 

vocoder algorithms, the modified speech quality is not good enough. In chapter 3, 

we propose a new algorithm which makes it possible to synthesize high quality 

speech even if the pitch frequency or duration is somewhat changed. 

To take social factors into account, spoken-language is considered to be an 

~spect of speaker individuality. If speaker individuality can be controlled across 

different languages, in other words, if English can be synthesized as if a Japanese 

speaker uttered it, it would be very useful. In chapter 4, we discuss the possibility 

and perform some experiments. 

The proposed algorithm in chapter 2 makes it possible to convert only the 

static characteristics of speaker individuality. In chapter 5, to improve voice 

conversion performance, we propose also to convert the dynamic characteristics of 

speaker individuality by using speech segments as conversion units. The 

importance of the dynamic characteristics of speaker individuality is discussed. 
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Chapter 2. VOICE CONVERSION BASED ON CODEBOOK MAPPING 

1. Introduction 

Speech individuality generally consists of two major factors: acoustic features 

and prosodic features. In this chapter, we are going to discuss control of the 

acoustic features. To control speech individuality, we have to know which 

parameters are most important for representing the speaker, and how to control 

these parameters. It is, however, difficult to ansewer such questions by analyzing 

speech data, because speech individuality is distributed among various 

parameters such as formant frequencies and bandwidths, spectral tilt, and glottal 

waveforms [Rosenberg, 1976] [Furui, 1981] [Childers, 1985] [Kuwahara, 1987] 

[Price, 1989]. To solve the voice conversion problem in a sophisticated manner, we 

formulate it as a mapping problem by introducing vector quantization [Shikano, 

1986] [Abe, 1988]. 

Figure 2.1 shows the basic idea of the voice conversion using vector 

quantization. Ellipses in Fig. 2.1 represent codebooks (spectrum spaces) of 

speaker A and speaker B, and the black dots in each ellipse are code vectors 

(speech spectra). Let's try to convert speaker A's speech to speaker B's speech. If 

the code vectors in these codebooks have one-to-one correspondences, like code 

vector Al and code vector Bl in Fig. 2.1, voice conversion is easily performed by 

replacing Al with Bl. In other words, a conversion of acoustic features from one 

speaker to another is reduced to the problem of finding a correspondence between 

the codebooks of the two speakers. However, as with A2-A3 and B2-B5, code 

vectors usually dose not have one-to-one correspondences. Therefore, we would 

like to generate a new codebook whose code vectors have a one-to-one 

correspondence with speaker A's code vectors. We call this new codebook a 

"mapping codebook". 

In section 2, vector quantization technique is briefly reviewed. In section 3, a 

method of making mapping codebooks and a synthesis procedure are described. In 

section 4, the performance of the proposed algorithms are evaluated by measuring 

distortion and listening tests. In section 5, improved algorithms are proposed and 

evaluated. 
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Chapter 2. VOICE CONVERSION BASED ON CODEBOOK MAPPING 

2. Vector Quantization[Makh叫， 1985]

The conversion of an analog source into a digital source consists of two parts: 

sampling and quantization. Sampling converts a continuous-time signal into a 

discrete-time signal by measuring the signal value at regular time intervals. 

Quantization converts a continuous-amplitude signal into a set of discrete 

amplitudes. When each of a set of parameters is quantized separately, the process 

is known as scalar quantization. When the set of parameters is quantized jointly 

as a single vector, the process is known as vector quantization. We shall often 

abbreviate vector quantization here as VQ. 

Vector quantization is presented as a process of redundancy removal that 

makes effective use of four interrelated properties of vector parameters: linear 

dependency, nonlinear dependency, shape of the probability density function, and 

vector dimensionality itself. VQ technique is very powerful and convenient, and 

has been applied in various areas. For example, VQ in speech coding has reduced 

the transmission rate of 2400-bitls vocoders so that they can operate at much 

lower rates while maintaining acceptable speech intelligibility and quality (see, 

for example, [Buso, 1980] [J uang, 1982]). Speech coding at very low rates, in the 

range of 200-800 bitls, has attracted substantial interest for use in commercial 

applications (see, for example, [Rocus, 1982] [Wong, 1983]). VQ has also been 

used regularly and effectively in pattern-recognition types of speech applications, 

such as for speech and speaker recognition (see, for example, [Levinson, 

1985][Rabiner, 1983]). The VQ problem is, after all, part of the general pattern-

recognition problem of how to classify data into a discrete number of categories 

that optimize some fidelity criterion. 

2.1 A Problem Formulation 

We assume that x=[x1 x2…. XN『 isan N-dimensional vector whose 

components {xk, 1~k~NJ are real-valued, continuous-amplitude random 

10 



Chapter 2. VOICE CONVERSION BASED ON CODEBOOK MAPPING 

variables. (The superscript T denotes transpose.) In vector quantization, the 

vector xis mapped onto another real-valued, discrete-amplitude, N-dimensional 

vector y. We say that xis quantized as y, and y is the quantized value of x. We 

write 

y=q(x) (2.1) 

where q(.) is the quantization operator. The vector y is also called the output 

vector corresponding to x. Typically, y takes on one of a finite set of values Y = { 

yi, 1~i~L }, where yi =[ yi1 yi2 .... yiN『.The set of Y is ref erred to as the 

codebook, Lis the size of codebook, and { y) is the set of code vectors. The vectors 

yi are also known in pattern-recognition literature as the reference patterns or 

templates. The size L of the codebook is also called the number of levels, a term 

borrowed from scalar quantization terminology. Thus, one talks about an L-level 

codebook or L-level quantizer. To design such a codebook, we partition the N-

dimensional space of the random vector x into L regions or cells { Ci, 1~i~L} 

and associate with each cell Ci a vector Ye If xis in Ci, the quantizer then assigns 

the code vector yi; that is, 

q(x)=yi, if XE Ci" (2.2) 

This codebook design process is also known as training. 

2.2 A Distortion Measure 

When x is quantized as y, a quantization error results・and a distortion 

measure d(x,y) can be defined between x and y. In this paper we use a measure 

called WLR (Weighted Likelihood Ratio), which is based on LPC analysis 

[Sugiyama, 1981]. WLR is defined so as to emphasize spectral peaks, because 

human auditory system is more sensitive to the mountain-shaped portion, such as 

formant frequencies, than to the valley-shaped portion of the sound spectrum 

[Matsuda, 1966] [Flanagan, 1972]. 

The spectrum obtained through LPC analysis can be represented by an all-pole 

function 

11 
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where f and g are the respective LPC spectra of reference and input patterns; an, 

f' 
R u and b R v are prediction coefficients, predicted normalized residuals and 

n'g' 

powers off and g in LPC analysis, respectively; p is the order of analysis and入is

the angular frequency. The WLR measure is defined as follows: 

WLR=土［冗{(log ; + y -1)-~+ (log j + ; — 1}そ｝心 (2.5) 

In Eq.(2.5), log(flg) + (glf) -1, log(glf) + (fig) -1 are terms indicating the 

differences of spectra, and flu and glv are terms representing the weight of peaks. 

If the power ratio ulv is set so that the measured value is the minimum, 

Eq.(2.5) can easily be calculated as follows using the parameters of LPC analysis: 

N 

WLR=こ
， 

(r,i -rn) (en -c:t) 

rt= l 

(2.6) 

where r11, r,/ and en, en'are correlation coefficients and LPC cepstrum coefficients 

of fandg, respectively. 

2.3 Codebook Design 

As mentioned above, to design an£-level codebook, we partition N-

dimensional space into L cells { Ci, 1名 i冬 L}and associate a vector y i with each 

cell Ci. The quantizer then assigns the code vector yi if xis in Ci. A quantizer is 

said to be an optimal (minimum-distortion) quantizer if the distortion is 
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Chapter 2. VOICE CONVERSION BASED ON CODEBOOK MAPPING 

minimized over all L-level quantizers. There are two necessary conditions for 

optimality. The first condition is that the optimal quantizer is realized by using a 

minimum-distortion or nearest neighbor selection rule 

q(x)=yu iffd(x,yi) <d(x,y), j=l=i, 1~j~L. (2.7) 

'l'hat is, the quantizer chooses the code vector that results in the minimum 

distortion with respect to x. The second condition for optimality is that each code 

vector yi is chosen to minimize the average distortion in cell Ci" That is, yi is that 

vector y which minimizes 

Di = I d(x,Y) p(x) dx. 
xECi 

We call such a vector the centroid of the cell Ci, and we write 

yi=cent(C). (2.9) 

(2.8) 

Computing the centroid for a particular region will depend on the definition of the 

distortion measure. In practice, we are given a set of training vectors {x(n), 1~n 

~M}. A subset Mi of those vector will be in cell Cc The average distortion Di is 

then given by 

1 
D.=-

I M 
こd(x,y.)

T 

i xEC. 
(2.10) 

ヽ

For either the mean square error or the weighted mean square error criterion, one 

can show that D. 1s mm1m1zed b y 

1 
y.=一
I M 

こx(n), 

i xEC. 
(2.11) 

ヽ

or yi is simply the sample mean of all the training vectors contained in Ci. One 

method for codebook design is an iterative clustering algorithm known in 

pattern-recognition literature as the K-means algorithm. In our problem here, 

K =L. This algorithm divides the set of training vectors {x(n)} into L clusters Ci in 

such a way that the two necessary conditions for optimality are satisfied. Below, 

13 



Chapter 2. VOICE CONVERSION BASED ON CODEBOOK MAPPING 

mis the iteration index and C/m) is the i-th cluster at iteration m, with y/m) its 

centroid. The algorithm is as follows: 

Step 1: Initialization: Set m=O. Choose, by an adequate method, a set of initial 

code vectors y/0), 1 ;£i ;£L. 

Step 2: Classification: Classify the set of training vectors {x(n), 1 ;£n ;£M} 

Step 3: 

into the clusters Ci by the nearest neighbor rule. 

x E C/m), iff d[x, y/m)J~d[x, yf m)J, for allj * i. 

Code Vector Updating: m← rn + 1. Update the code vector of every 
cluster by computing the centroid of the training vectors in each 

cluster 

y/m) = cent(C/m)), 1~i~L. 

Step 4: Termination Test: If the decrease in overall distortion D(m) at iteration 

m relative to D(m-1) is below a certain threshold, stop; otherwise go to 

Step 2. 

The above algorithm can be shown to converge to a local optimum. 

Furthermore, any such solution is, in general, not unique. Global optimality may 

be approximately achieved by initializing the code vectors to different values and 

repeating the above algorithm for several sets of initializations and then choosing 

the codebook that results in the minimum overall distortion. 

3. Voice Conversion based on Codebook Mapping 

The voice conversion algorithm consists of two steps: a learning step and a 

conversion-synthesis step. The learning step generates the mapping codebooks, 

and the conversion-synthesis step uses them to synthesize. 

14 



Chapter 2. VOICE CONVERSION BASED ON CODEBOOK MAPPING 

3.1 Learning Step 

The mapping codebooks describe a mapping function between the vector 

spaces of two speakers. Figure 2.2 shows a block diagram of the procedure for 

generating a mapping codebook for spectrum parameters. 

Step 1: Speakers, A and B, pronounce a learning word set used to generate a 

codebook for each speaker. Then, learning words uttered by speaker A 

are vector quantized using his/her codebook. The same words uttered by 

speaker Bare also vector quantized in the same way. 

Step 2: The correspondence between the vectors of the same words from the two 

speakers is determined by using the Dynamic Time Warping (DTW). 

Step 3: The vector correspondences between the two speakers are accumulated 

as histograms for all learning words. 

Step 4: Using the histogram for each code vector of speaker A as a weighting 

function, a mapping codebook from speaker A to B is defined as a linear 

combination of speaker B's vectors. 

Step 5: Steps 2, 3, and 4 are repeated to refine the mapping codebook. 

Pitch frequencies and power values contribute heavily to speech individuality. 

Mapping codebooks for these parameters are also generated at the same time 

using almost the same procedure mentioned above, with these differences: 

1. pitch frequencies and power values are each scalar-quantized, and 

2. the mapping codebook for pitch frequencies is defined based on the 

maximum occurrence in the histogram. 

3.2 Conversion-Synthesis Step 
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Figure 2.3 shows a block diagram of the conversion-synthesis step. First, 

speaker A's speech is analyzed by the linear prediction method. Then the 

spectrum parameters are vector-quantized using his/her codebook, and 

parameters for pitch frequencies and power values are scalar-quantized using 

his/her codebooks. Next, all parameters are decoded using the speaker A to B 

mapping codebooks between speakers A and B. Finally, speech is synthesized by 

an LPC vocoder. The output speech will have the voice individuality of speaker B. 

4. Performance Evaluation 

4.1 Evaluation by Distortion 

To evaluate the performance of this conversion technique, we measured the 

distortion of the spectrum parameters as well as of the pitch frequencies. 

4.1.1 Spectrum conversion experiments 

Experiment conditions are listed in Table 2.1. A set of 100 phonetically-

balanced learning words was used to produce mapping codebooks. Spectrum 

conversions were made between female and male voices, between male and male, 

and between female and female voices. Six speakers (3 male and 3 female 

speakers, all professional announcers) provided speech material. 

Table 2.2 lists the results of the open test. After vector-quantization, two kinds 

of spectrum distortions between two speech samples were calculated: between the 

input and target speaker's ("before conversion"), and the converted and target 

speaker's speech ("after conversion"). For the female-to-female conversion, the 

distortion decreased by 27% compared to nonconversion, for the male-to-male 

conversion by 49%, and for the male-to-female conversion by 66%. These results 
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show that this conversion technique is highly effective when there is a large 

enough difference between two speakers's voices. 

4.1.2 Pitch frequency conversion experiments 

Pitch frequency was also converted using the same process described in 4.1.1, 

and the experiment results are shown in Fig. 2.4. This figure shows the 

relationship between the number of learning words and the average pitch 

frequency differences after conversion. The value at O learning word shows the 

natural average pitch frequency difference between the two speakers. Regardless 

of speaker combinations, 60 words are enough to make a mapping codebook for 

pitch frequency that reduces the average pitch frequency difference to less than 

15Hz. 

4.2 Evaluation by Listening Test 

'l'o evaluate the overall performance of this technique, three kinds of listening 

tests were carried out. The first dealt with male-to-female conversion and the 

other two with male-to-male conversion. 

4.2.1 Experiment procedure 

4.2.1.1 Experiment 1 

Experiment 1 was designed to evaluate voice quality for male-to-female voice 

conversion by a pair-comparison listening test. In addition to the fully converted 

speech, pitch and spectrum parameters were also converted separately in order to 

examine their individual contributions to speech individuality. The following is a 

list of 5 different speech conversions performed in this experiment. 

1. vector-quantized original male speech (m) 

2. male-to-female converted speech: pitch frequency conversion only (mp-fp) 
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3. male-to-female converted speech: spectrum conversion only (ms-fs) 

4. male-to-female converted speech: all parameters (m-f) 

5. vector-quantized original female speech that is the target for the 

conversions (f) 

To avoid unnecessary cues for the judgment of voice quality, different words 

were used to make speech pairs for the listening test. A set of speech pairs 

consisted of all possible stimuli combinations from the 5 different conversions, 40 

in total. They were presented to listeners through a loud-speaker in a sound-proof 

room. Twelve listeners were asked to rate the similarity of each pair into five 

categories: "similar", "slightly similar", "difficult to decide", "slightly dissimilar", 

"dissimilar". 

4.2.1.2 Experiment 2 

Experiment 2 was designed to evaluate the conversion between two male 

speakers by the so-called ABX method. Stimuli A and B are vector-quantized 

original speech tokens for speakers A and B. The stimulus X takes either the 

converted token (A-B or B→ A) or the vector-quantized original token (A or B). 

Four different words were used for the conversions and each triad was a 

combination of 3 different words. A total of 96 speech triads were presented to the 

listeners. The listeners were required to select the stimulus (A or B) more closely 

resembling the stimulus X. 

4.2.1.3 Experiment 3 

Experiment 3 was designed to evaluate the conversion between male speakers 

in the same way as in 4.2.1.1. Conversions for pitch frequencies alone and 

spectrum parameters alone, however, were excluded. The following is a list of the 

4 conversions used. 

1. vector-quantized male speech (male 1) 

2. same as 1 but for another male speaker (male 2) 
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3. converted speech from male 1 to male 2 (male 1→ male 2) 

4. converted speech from male 2 to male 1 (male 2→ male 1) 

A total of 72 speech pairs were generated using the same procedures as in 

Experiment 1. 

4.2.2 Experiment results 

4.2.2.1 Evaluation of male-to-female conversion (Experiment 1) 

Hayashi's fourth method of quantification[Hayashi, 1985] was applied to the 

experimental data obtained by the listening test. This method places stimuli in a 

space according to the similarities between every two stimuli. Its formulation 

minimizes the measure Q, 

Q= —L e(i,j){x(i) -y(J")}2 

iJ 
(2.12) 

where e(ij) denotes the similarity between stimuli i andj, and x(i), y(j) represent 

the locations of stimulus i in the space. 

The projection onto a two-dimensional space is shown in Fig. 2.5. This figure 

shows the relative similarity-distance between stimuli. "m-f'converted speech 

is very close to the speech "f', indicating that this technique properly converted 

the male speech to the target female speech. Judging from the positions of 

"mp→ f p" and "ms→ fs", we see that the first and second axes roughly correspond 

to pitch frequency and spectrum differences, respectively. This indicates that 

neither pitch frequency nor spectrum carries enough information about speech 

individuality, and that both are necessary. 

4.2.2.2 Evaluation of male-to-male conversion (Experiments 2 and 3) 

The results of Experiment 2 are listed in Table 2.3. The numbers in this table 

are the percentages of responses in which stimuli X was judged correctly. These 

results show that listeners can't always correctly identify the speaker, even if the 

original speaker's speech is used as stimuli X; i.e., the correct answer is about 
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85% in the male 1, male 2 pair, and about 60% in the male 1, male 3 pair. Judging 

from these facts, the conversion between male 1, male 2 was satisfactorily 

performed. 

The relatively poor performance for the male 1-male 3 conversion stems from 

the fact that male l's voice quality is very similar to male 3's voice. This 

similarity can be seen by the small "distance" between the original speaker and 

target speaker shown in Fig. 2.6. This figure shows spectrum distance and pitch 

frequency distance before and after conversion. 

場

Figure 2.7. shows the results for Experiment 3 analyzed by the same method 

as in 4.2.2.1. The converted speech samples, "male 1→ male 2" and "male 2→ male 

l", are both placed close to their target speech. This indicates that the proposed 

technique can also convert speech individuality between speakers of the same-

sex. 

5. Improved Voice Conversion Algorithms 

As discussed in section 4, voice conversion based on codebook mapping 

successfully changes speech individuality. In other words, voice conversion can be 

well formulated as a mapping problem between speakers'codebooks. However, 

VQ also introduces quantization errors, which result in losing naturalness and 

clarity of synthesized speech. In this section, we propose new algorithms to 

improve the quality of converted speech itself and evaluate the performance. 

5.1 Proposed Algorithms 

On general principle, the larger the size of the codebook is, the smaller the 

quantization errors are. However, there are the following problems on increase of 

the codebook size: 
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1. To optimally design a large codebook and a mapping codebook, we need not 

only a large amount of data, but also expensive computational costs. In the 

K-means algorithm, most of the computation result from the classification 

step. For an L-level quantizer, M training vectors, and 1 iterations, the 

computational cost for training is 

NLMl = N2NRML (2.13) 

For reliable design of the codebook, one needs at least 10 and preferably 

about 50 training vectors per code vector, so that Mis on the order of lOL or 

more. 

2. Although VQ is very powerful and efficient in less than 10 bits speech 

coding, the efficiency is saturated moreしhan10 bits[Moriya, 1982]. 

Therefore we take another strategy to improve the quality of synthesized speech; 

i.e., the usage of information in input speech as much as possible. In the strategy, 

we have a hypothesis that the most important mapping rules required in speech 

individuality conversion have achieved by codebook mapping. 

5.1.1 Improvement using fuzzy VQ 

Fuzzy VQ is one technique to approximate an input vector by linear 

combination of code vectors[Ruspini, 1970]. Therefore Fuzzy VQ can represent 

various kinds of vectors beyond limitation caused by the codebook size, and 

approximate input vectors more precisely than conventional VQ. Fuzzy VQ is 

defined as follows: 

u.= 
I 
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(2.15) 

where Ui; fuzzy membership function. Ui E [0,1] 

di= II X -Vi II • Vi is a code vector in codebook V. 

m: fuzziness. 

.'し＞
 

X': decoded spectrum of input spectrum X. 

k: number of code vectors. 

The proposed algorithm using Fuzzy VQ is as follows: 

．
．
 

1

2

 

3. 

A mapping codebook is generated between speaker A and speaker B. 

In the conversion-synthesis step, input spectrum parameters X are fuzzy 

vector quantized, where k-th nearest code vectors to input spectrum are 

used(k=6). 

X'= ±u'i vi 
i=l 

(2.16) 

where Vi; a code vector in speaker A's codebook V. 

X': a fuzzy vector quantized vector. 

In local spectrum space, it could be considered that the spectrum space has 

smooth shape. A mapping codebook provides discrete (code vector) 

correspondence of spectrum space between different speakers. Therefore if 

an input vector(spectrum) is represented using k-th nearest code vectors by 

fuzzy VQ, it is reasonable hypothesis that fuzzy membership function 
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taken from speaker A's spectrum space is preserved in speaker B's 

spectrum space (refer Fig.2.8). After all, conversion is performed by 

replacing speaker A's code vectors by mapping code vectors as follows: 

k 

xmap=こu'.v'.nap 
l I 

i=l 
(2.17) 

where Vi'nap; a code vector in mapping codebook ymap_ 

xmap: a converted vector. 

5.1.2 Improvement using difference vector 

In addition to applying fuzzy VQ, an input vector is modified using difference 

'{ectors between the input vector and code vectors. The usage of difference vectors 

makes it possible to represent various spectra beyond the limitation caused by the 

codebook size. The algorithm is as follows: 

1. A mapping codebook is generated between speaker A and speaker B. 

2. Basically conversion is performed by the following equation: 

Xnwp= (X-v) + V□ iap 

= (v;nap -vi)+ X (i= 1,2, .... n) 

where Vi; a code vector in speaker A's codebook V. 

Vt0P: a code vector in a mapping codebook vmap_ 

X: an input vector. 

xmap: a converted vector. 

(2.18) 

3. In the conversion-synthesis step, input spectrum parameters X are fuzzy 

vector quantized by Eq. (2.15). Using the fuzzy membership function u'as a 

weighting function, conversion is finally performed by the following equation( 

refer Fig.2.9): 

k 

xmap=且u・lvtap_vi)+x (i=l,2, ….k) (2.19) 
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In the following evaluation experiments, difference vectors are calculated 

between LPC spectrum envelopes. LPC spectrum envelope is sampled at 256 

evenly spaced points. Once add operation is applied to LPC spectrum envelopes, 

the modified envelope can not be converted back to LPC coefficients. Therefore 

after transforming LPC spectrum envelopes to waveforms by inverse Fourier 

transform, speech is synthesized by overlap adding method. Finally, the 

synthesized speech is again analyzed by LPC method then output speech is 

synthesized by LPC. A block diagram of the algorithm using difference vectors is 

shown in Fig. 2.10. 

5.2 Evaluation by Listening Test 

1 To evaluate the performance of the improved algorithms, pair-comparison 

listening tests are carried out among a basic algorithm that was explained in 

section 3, the improved algorithm using fuzzy VQ and the improved algorithm 

using difference vectors. Ten words are synthesized using the three algorithms 

and all combinations of synthesized speech are presented to 12 listeners, and they 

are asked to indicate the better one. 

Table 2.4 shows the experiment results. Judging frorn the table, the both 

improved algorithms have significantly better performance than the basic 

algorithm, and the improved algorithm using difference vectors has the best 

performance. Main improvements of the synthesized speech are summarized in 

two points; i.e., improvements in smoothness and clarity improvements in 

consonants. 

Improvements in smoothness means reduction of click and rough noise, which 

result in reducing artificial sound and increasing naturalness of the synthesized 

speech. This effect can be obtained by both the usage of fuzzy VQ and the usage of 

difference vectors. Figure 2.11 shows speech waveform and LPC spectrum 

envelope of converted speech by VQ(the basic algorithm) and fuzzy VQ (the 

improved algorithm). As shown in the figure, both waveform and LPC spectrum 

change smoothly when fuzzy VQ is applied. That means fuzzy VQ makes it 
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possible to generate more spectrum patterns beyond the limitation by the 

codebook size and to successfully interpolate code vectors. 

Clarity improvements in consonan_ts can be obtained by only the usage of 

difference vectors. In Fig. 2.12, LPC spectrum envelope of original speech, target 

speech, converted speech using fuzzy VQ, converted speech using difference 

vectors are shown and also difference vectors are shown. According to the 

amplitude of the difference vectors, the speech segment in the figure is divided 

into two parts; i.e., part (A) where difference vectors are almost equal to zero, and 

part (B) where difference vector has large amplitude. An analysis of the result of 

the listening test reveals that the clarity in the part (A) is improved and the part 

(A) is correspond to consonant region. This improvement can be also shown in 

part (A) of Fig. 2.12. The second lowest peak of LPC spectrum can be observed in 

the converted speech using difference vectors as well as in both the original 

speech and the target speech synthesized speech. Judging from these results, the 

usage of difference vectors is very effective to represent details in spectrum 

characteristics that are ignored by VQ or fuzzy VQ. 

6. Conclusion 

In this chapter, new voice conversion algorithms based on codebook mapping 

were proposed. The advantage of this technique are summarized as follows: 

1. The mapping codebooks which make it possible to give an individuality to 

synthesized speech are generated from a limited number of word utterances. 

2. The mapping codebooks enable voice conversion of high quality between any 

two speakers. 

3. The synthesis process requires few computation and produces speech in real 

time. 

The performance of this technique is confirmed by spectrum distortion and 

pitch frequency difference. The spectrum distortion between original speech and 
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target speech decreased by a range of 27% to 66%. Pitch frequency difference 

decreased to less than 15Hz. The overall performance of this technique is also 

confirmed by listening tests. It can be concluded that the converted speech has a 

voice quality very close to the target speaker's. 

To improve naturalness and clarity of the converted speech, the usage of fuzzy 

VQ and difference vectors was discussed. According to listening test, fuzzy VQ 

makes it possible to improve smoothness by generating more spectrum patterns 

beyond the limitation by the codebook size and the usage of difference vectors is 

very effective to improve clarity by representing details in spectrum 

characteristics that are ignored by VQ or fuzzy VQ. 
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Table 2.1 Experiment conditions 

A/Ddata 12KHz sampling、16bit

window length 256points (21.3msec) 

window shift 36points (3.0msec) 

analysis order 12 

clustering measure 
WLR(Weighted 

Likelihood Ratio) 

learning samples 
5,000 frames for clusLerinl{ 

codebook size for 
spectrum parameter 256 

leai;ning words for mapping 100 
codebook size for 
pitch frequency 35~ 64 
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Table 2.2 Spectrum distortion 

speaker combination before after 

conversio. n conversi． on 

femalel→ fomale2 0.2759 0.2109 

female! → female3 0.2070 0.1489 

malel→ male2 0.3364 0.1717 

malel→ male3 0.2851 0.1550 

malel→ female! 0.6084 0.2193 
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Table 2.3 Percentage of correct responses 

correct correct 

speaker combination response(%) speaker response(%) 

male 1→ male2 69.4 male2 84.7 

male2→ male 1 75.0 male 1 85.4 

male 1→ male3 46.5 male3 64.6 

male3→ male 1 38.8 male 1 58.3 
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Table 2.4 Preference score 

Stimuli combinations Preference score(%) 

(better > worse) 

Fuzzy VQ > VQ 73.0 

Difference vector > VQ 76.0 

Difference vector > Fuzzy VQ 62.9 
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Chapter3.PITCH MODIFICATION BY SIGNAL RECONSTRUCTION 

1. Introduction 

Speech modification algorithms play an important role in speech applications. 

For example, modification of pitch frequency and duration is necessary in dyad-

based synthesis-by-rule systems, and the spectrum envelope should also be 

modified in a voice quality control system. Although the modification of such 

parameters is possible using conventional vocoder algorithms, the modified 

speech quality is not enough, especially for pitch frequency modification. In this 

chapter we propose a new algorithm which makes it possible to synthesize high 

quality speech even if pitch frequency or duration is somewhat changed. 

To achieve high quality, the proposed algorithm is developed based on the 

Short-Time Fourier Transform(STFT) synthesis. The synth~sis algorithm can 

theoretically reproduce the original speech from analysis parameters. Therefore, 

all that is necessary to achieve high quality modified speech is to modify these 

parameters appropriately. Some speech modification algorithms based on the 

STFT have been proposed[Portnoff, 198l][Seneff, 1982][Roucos, 

1985][Charpentier, 1986]. The following two points are new technical issues in 

the proposed algorithm. First, an algorithm is adopted to separate spectrum 

envelope and source components from the speech signal. The parameters which 

contribute only to a desired modification should be changed. From this point of 

view, a new cepstrum lifter is proposed. Second, a new algorithm to control phase 

spectrum is proposed. In the modification algorithms based on the STFT that 

have been proposed, the phase unwrapping and the phase control are not only 

very important but also very complex procedures. The proposed algorithm 

eliminates these problems by introducing window shift control and the signal 

reconstruction algorithm[Griffin, 1984]. 

In Section 2, STFT analysis and synthesis are briefly reviewed. In the Section 

3, the details of the proposed algorithm are explained. In Section 4, the 

performance of the algorithm is evaluated through a listening test. 
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2. Short-Time Fourier Transform of a Sequence 

In this section, we define the STFT representation for a sequence[Lim, 1988]. 

A major theme used throughout this section is that the representation for the 

STFT of a sequence is analogous to the Fourier transform representation of a 

sequence. 

2.1 Fourier Transform View 

The STFT is presented as an extension to the basic Fourier transform 

definitions for a sequence. In particular, we introduce the discrete-time STFT and 

the discrete STFT as counterparts to the discrete-time Fourier transform and the 

discrete Fourier transform, respectively. The discrete-time STFT is related to the 

discrete-time Fourier transform, which is given by 

゜X(w) = L x(n) e -JctJ/l (3.1) 

, i=  _a, 

where w is a continuous variable denoting frequency. The discrete-time STFT of 

x(n) is a set of such discrete-time Fourier transforms corresponding to different 

time sections of x(n). The time section for time n。isobtained by multiplying x(n) 

with a shifted sequence w(n。-n).The expression for the discrete-time STFT at 

timen。istherefore given by 

゜X(n0, w) = L x(n)w(n -n) e―jwn 
゜

(3.2) 

n= -"' 

where w(n) is referred to as the analysis window. The sequence fn。(n)=x(n)w(n。一

n) is generally called a short-time section of x(n) at time n。.This sequence is 

obtained by time-reversing the analysis window w(n), shifting the result by n。
points. and multiplying it with x(n). Once we have the short-time section for time 

n。,we can take its Fourier transform to obtain the frequency function X(n。,w) 

with n。fixed.To obtain X(n。+1,w), we slide the time-reversed analysis window 

one point from its previous position, multiply it with x(n), and take the Fourier 
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transform of the resulting short-time section. Continuing this way, we generate a 

set of discrete-time Fourier transforms that together constitute the discrete-time 

STFT. We obtain the mathematical representation for the STFT by replacing the 

fixed n。ofEq.(3.2)as m. We thus obtain the STFT definition: 

00 

こX(n, w) = x(m)w(n-m) e -Jtdm (3.3) 

m=-oo 

For digital processing, we use the discrete STFT, which is related to the discrete-

time STFT in the same manner as the DFT is related to the discrete-time Fourier 

transform. Recall that the DFT X(k) of a finite-duration sequence x(n) is obtained 

by sampling the discrete-time Fourier transform over one period. That is, 

X(k) = X(w)lw=2碑 RN(k) (3.4) 

切hereN is the frequency sampling factor and馬(k)is an N-point rectangular 

sequence given by 

R N(k)= u(k)-u(h-N) (3.5) 

In analogy, the discrete STFT is obtained from the disc,rete-time STFT through 

the following relation: 

X(n, k) = X(n, w)I R (k) 
w=2rr/N N (3.6) 

where we have sampled the discrete-time STFT with a frequency sampling 

interval of 2rc/N to obtain the discrete STFT. Substituting Eq.(3.3) into Eq.(3.6), 

we obtained the following relation between the discrete STFT and its 

corresponding sequence x(n): 

00 

X(n, k) = L x(m)w(n-m) e 
-j2,ckm/N 

R (k) 
N 

m=-oo 

(3.7) 

In many applications, the time variation (then dimension) of X(n,k) is decimated 

by a temporal decimation factor L to yield the function X(nL,k). 

Just as the discrete-time STFT can be viewed as a set of Fourier transforms of the 

short-time sections f/m), the discrete STFT in Eq.(3.7) is easily seen to be a set of 

DFTs of the short-time sections f,/m). When the time dimension of the discrete 
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STFT is decimated. the correspondence short-time sections f nL(m) are a sub set of 

f/m) obtained by incrementing n by multiples of L. 

2.2 Short-Time Fourier Synthesis: Overlap-Add(OLA) Method 

The OLA method is motivated from the Fourier transform view of the STFT. 

The simplest method obtainable from the Fourier transform view is in fact not the 

OLA method. It is instead a method known as the inverse discrete Fourier 

transform(IDFT) method. In this method, for each fixed time, we take the inverse 

DFT of the correspondence frequency function and divide the result by the 

analysis window. This method is generally not favored in practical applications 

because the slightest perturbation in the STFT can result in a synthesized signal 

very different from the original. For example, consider the case where the STF'l'i~ 

multiplied by a linear phase factor the form eiw110 with n。unknown.Then the 

IDFT for each fixed time results in a shifted version of the corresponding short-

time section. Since the shift n。isunknown, dividing by the analysis window 

without taking the shift into account introduces a distortion in the resulting 

synthesized signal. In contrast, the OLA method, which we describe next, results 

in a shifted version of the original signal without distortion. 

The OLA method is also best described in terms of the Fourier transform view. 

In the OLA method, we take the inverse DFT for each fixed time in the discrete 

STFT. However, instead of dividing out the analysis window from each of the 

resulting short-time sections, we perform an overlap-and-add operation between 

the short-time sections. This method works provided the analysis window is 

designed such that the overlap-and-add operation effectively eliminates the 

analysis window from the synthesized sequence. The OLA method is motivated 

by the following relation between a sequence and its discrete-time STFT: 

x(n) = I土lJ 二 ,~too X(r, w)e―i••,1,。 (3.8)
where 

00 

W(O) = L w(n) (3.9) 

ti=-oo 

48 



Chapter 3. PITCH MODIFICATION BY SIGNAL RECONSTRUCTION 

The OLA method carries out a discretized version of the operations suggested 

on the right of Eq. (3.8). That is, given a discrete STFT X(n, k), the OLA method 

synthesizes a sequence y(n) satisfying the following equation: 

y(n) = I土lp~ こ-I応X(p,k),i加WN] (3.10) 

The term inside the rectangular brackets on the right is an inverse DFT that for 

each p gives 

y (n) =x(n)w(p-n) 
p 

The expression for y(n) therefore becomes 

y(n) = [~]ミ x(n)w(p-n)
p=-oo 

which then reduces to 

y(n)~x(n)[~] ミ w(p-n)
p= -to 

(3.11) 

(3.12) 

(3.13) 

In Eq.(3.12) we note thaty(n) will be equal to x(n) provided 

co 

L w(p-n) =W(O) (3.14) 
p=-00 

Furthermore, if the discrete STFT has been decimated in time by a factor L, it can 

be similarly shown that if the analysis window satisfies 

Q') 

L w(pL-n.) = 
W(O) 

L 
(3.15) 

p=-<X> 

then x(n) can be synthesized using the following relation: 

x(n) = [~I 土［応。: X(pL, k),I加·•·NI (3.16) 

Equation (3.15) is the general constraint imposed by the OLA method on t.he 

analysis window. It requires the sum of the analysis windows(obtained by sliding 

w(n) with L-point increments at a time) to add up to a constant. 
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We can show that the OLA constraint in Eq.(3.15) is satisfied by all finite-

bandwidth analysis window whose maximum frequency is less than 2吋L,where 

Lis the temporal decimation factor. 

To see how finite-bandwidth analysis window satisfy the OLA constraint, 

suppose that the analysis window has maximum frequency we, and consequently 

bandwidth 2wc. If we let w'(p) denote the sequence w(pL-n), then the OLA 

constraint in Eq.(3.15) can be rewri~ten as 

W'(O) = [翌］ (3.17) 

where W'(w) denotes the Fourier transform of w'(p). Noting that w'(p) is a 

sampled version of w(p-n), we can easily show that 

1 
W(O) =一

L 

00 

L e-j(w-k加/L)nW(w-k2冗IL)

k= -°' 

(3.18) 

If there in no overlap between W(w) and W(w-k2冗IL)at w = 0, then Eq.(3.18) gives 

the OLA constraint expressed in Eq.(3.17). To have no overlap at w = 0 between 

W(w) and W(w-k21f!L) it is easy to see that we must have weく 2汀/L,where we is 

the maximum frequency in W(w). We conclude that any finite-bandwidth window 

whose maximum frequency is less than 2』/Lwill satisfy the OLA constraint in 

Eq.(3.15). 

The transition width of main lobe of Hamming window is 8汀IN.N is window 

length. Therefore the decimation factor L should be less than N/4 when Hamming 

window is used as the analysis window. 

2.3 Short-Time Fourier Transform Magnitude(STFTM) 
Analysis 

In speech applications, the spectrogram that can be related to the magnitude 

of the STFT has played a major role. In particular, this representation is a non-

negative time-frequency function. On the other hand, the STFT is generally a 

complex-valued function and for applications such as time scale modification of 

speech, estimation of the phase of this function is computationally difficult. In 

contrast, a number of techniques have been developed where the processed signal 
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is estimated from only the STFT magnitude(STFTM), thus circumventing the 

phase estimation problem. 

The magnitude of the STFT is an alternative time-frequency signal 

representation. That the STFT is not a unique representation in all cases is easily 

seen from the simple observation that x(n) and its negative, -x(n), have the same 

STFTM. A one-sided sequence x(n) can be recovered from its STFTM when the 

analysis window is nonzero over its finite duration and x(n) satisfies the 

appropriate zero-gap restriction. The key to recovering x(n) is the observation 

that /X(n,w)/ has additional information about the short-time sections of x(n) 

besides their spectral magnitudes. This information is contained in the overlap of 

the analysis window positions. If the short-time section at time n is known, then 

the signal corresponding to the spectral magnitude of the adjacent section at time 

n -1-1 must be consistent in the region of overlap with the known short-time 

1 section. In particular, if the analysis window were nonzero and of length N w'then 

after dividing out the analysis window, the first N w -1 samples of the segment at 

time n + 1 must equal the last N w-1 sample of the segment from its first Nw-1 

values, we could repeat this process to obtain the entire signal x(n). 

Like the STFT, the STFTM can be used for analyzing the time-varying 

spectral characteristic of a sequence. To carry out such STFTM analysis on a 

digital computer, we need to introduce the discrete STFTM. By sampling the 

frequency dimension of the STFTM, /X(n, w)/, we obtain the discrete STFTM, 

which is defined as/X(n,k)/, the magnitude of the discrete STFT. 

2.4 Signal Esthnation from Modified STFT or STFTM 

In many applications it is desired to synthesize a signal from a time-frequency 

function formed by modifying an STFT or STFTM of a signal we wish to process. 

Such modifications may arise due to quantization errors in, for example, speech 

coding or purposeful time-varying filtering for signal processing application such 

as speech enhancement. An arbitrary function of time and frequency, however, 

does not necessarily represent the STFT or STFTM of a signal. This is because the 

definition of these transforms impose a structure on their time and frequency 

variations. In particular, because of the overlap between short-time sections, 
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adjacent short-time segments cannot have arbitrary variations. A necessary but 

not sufficient condition on these variations is that the short-time section 

corresponding to each time instant must lie within the duration of the 

corresponding analysis window. Even if this time-placement constraint is 

satisfied, a further condition that the STFT or STFTM must satisfy is that 

adjacent short-time sections should be consistent in their region of overlap. When 

the STFT or STFTM of a signal is modified, the resulting time-frequency function 

does not generally satisfy such constraints. 

The synthesis method we explained in 2.2 was derived with the assumption 

that the time-frequency functions to which they are applied satisfy the 

constraints in the definitions of the STFT or STFTM. Given a function that does 

not satisfy those constraints, the synthesis method have no theoretical validity 

for their application. However, under certain conditions, those methods can be 

shown to yield reasonable results in the presence of modification. 

2.4.1 Least-squares signal estimation from modified STFT 

In this approach we estimate a signal whose STFT is closest in a least-square 

sense to the modified STFT. More specifically, we wish to minimize the mean-

square error between the discrete-time STFT X/n, w) of the signal estimate and 

the modified discrete-time STFT which we denote by Y(n, w). This optimization 

results in the following solution for the estimated signalx/n): 

00 

こ w(m-n){(n) 
m (3.19) 

m=-oo 
x(n)= -
e oo 

こ w2(m-n)

m=-oo 

where f,Jn) is the inverse Fourier transform of the frequency variation at time m 

of the modified STFT Y(m, w). Since in practice we have only the discrete function 

y(n,k), the short-time sections f,/m) can be obtained provided the frequency 

sampling factor N is large enough to avoide aliasing in the short-time sections. 

The specific distance measure used in the minimization is the squared error 

between X/ n, w) and Y(n, w) integrated over all w and summed over all n: 
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叶Xe(n,w), Y(n, w)] = 
00 

8

マ
ノ
l

-

―
,．a
 

II 

1 ,r 

五I因(m,w)-Y(m, w) l2dw 
ーバ

(3.20) 

The solution in Eq.(3.19) extends in a simple manner to the case involving 

temporal decimation. Specifically, if Lis the temporal decimation factor, then the 

solution in Eq.(3.19) becomes 

00 

こ
m=-"' 

X (n) = 
e 

w(mL -n) f,,zL (n) 

(X) 

区
m=-m 

(3.21) 

w2(mL-n) 

In general, the sum in the denominator of the right side of Eq.(3.21) is a function 

of n. However, there exist analysis windows w(n) such that the sum in the・ 

1 denominator is independent of n. It should be noted that the sum in the 

denominator has the same form as the sum in the constraint equation (3.15) for 

the OLA method except that the analysis window is replaced by its square. That 

is, any window whose square satisfies the OLA constraint will make the 

denominator sum in Eq.(3.21) independent of n. 

2.4.2 Least-squares signal estimation from modified STFTM 

The least-square approach can also be used for signal estimation from the 

modified STFTM. The resulting method estimates a sequence x/n) from a desired 

time-frequency function /XJn, w)/, which is a modified version of an original 

STFTM, /X(n, w)/. The method iteratively reduces the following distance measure 
between the STFTM /又(n,w)/ of the signal estimate and the modified STFTM 

/XIい）／：

叶X/n,w), Y(い）］＝
(X) 

I 
m=-oo 

1 7( 

戸f_"1Xe(m,w)-Xim,w)l2dw (3.22) 

The solution is found iteratively because sa yet no closed-form solution has been 

discovered for x/n) using the distance criterion in Eq.(3.22). The iteration takes 

place as follows. An arbitrary sequence(usually white noise) is selected as the 

first estimate x/(n) of x/n). We then compute the STFT of x/(n) and modified it 
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by replacing its magnitude by the desired magnitude /凡(n,w)/. From the 

resulting modified~TFT, we can obtain a signal estimate using the method based 

on Eq.(3.19) in the previous section. This process continues iteratively, as shown 

in Fig. 3.1. In particular, the (i + l)st estimate x/ +1(n) first obtained by 

computing the STFT X/(n, w) ofが(n)and replacing its magnitude by/況(n,w)/ 

to obtain Yi(n, w). The signal with the STFT closest to Yi(n, w) is found by using 

Eq.(3.19). All steps in the iteration can be summarized in the following update 

equation: 

. where 
{ 

00 

こ w(m-n)汀叫，叫cl"'11d w 

i+l m=-oo 
X (n) = 

2冗 -TC

e 00 

こ峠m-n)

m=-oo 

X1(m, w) 

Y1(m, w) = IX (m,w) I 
e 

d 
IX!(m, w)I 

(3.23) 

(3.24) 

Although we restricted the preceding discussion to the discrete STFT, these 

results are easily extendable to the case where the STFT has been decimated in 

time. 

3. A New Pitch Frequency Modification 
Algorithm 

A block diagran1 of the proposed algorithm is shown in Fig.3.1. 

3.1 Spectrum Envelope Extraction 

Homomorphic deconvolution is first applied to get the source component 

G(mL, w). The unique concept in this block is the lifter (referred to as "comb 

lifter" in this paper) that passes all cepstrum except cepstrum in the pitch 

frequency region. This is based on the idea that the parameters which contribute 

only to the pitch frequency should be changed, while the rest of the parameters 

should remain unchanged to maintain high quality. 
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Fig.3.3(a), for example, shows a magnitude spectrum of spectrum envelope 

and source that we.re separated by a conventional cepstrum lifter which passes all 

low-quefrency part cepstrum(n<30). Also, Fig.3.3(b) shows them separated by 

the "comb lifter" which passes all cepstrum except those 20 points (1.67msec in 

quefrency, at 12KHz sampling) to each side of the pitch period. Although the 

magnitude spectrum of the source component in Fig.3.3(a) has a flat spectrum 

envelope, the shape of the spectrum is not uniform; i.e., at some points (a orb in 

Fig.3.3(a)) the spectrum dips. On the other hand, the magnitude spectrum ofしhe

source component in Fig.3.3(b) is uniform and similar to a sine curve. This 

indicates that pitch modification to the output of the "comb lifter" makes it 

possible to reconstruct a signal without any side-effect in the high frequency 

region. Judging from the preliminary listening test, the "comb lifter" makes 

modified speech clear. 

3.2 Pitch Frequency Modification 

To change the pitch frequency a linear interpolation is performed by 

introducing a modification-factor k to both the real and imaginary parts of the 

source component G(mL, w). The factor k is defined as the ratio of the original 

pitch frequency to the desired pitch frequency. To achieve high spectrum 

resonance, a 512-point FFT is used for 256-point speech data. Therefore, an 

additional 256 zeros are set in the data array for FFT as shown in Fig.3.4(a). 

When the pitch frequency is raised, the resultant data that exceed the maximum 

frequency-band are discarded and when it is lowered, unknown data near the 

maximum frequency are regenerated by mirror image copying of the lower part of 

the spectrum. We get modified source spectrum G,JmL, w) through the above 

procedures. 

The copying in the pitch-lowering modification has the side-effect shown in 

Fig.3.4(6); i.e., the part where zeros are set in the original speech has non-zero 

values after the modification. To compensate for this side-effect, modified 

spectrum G'(mL, w) is obtained by the following equation. 
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. . IG (mL,w)I 
m 

G (mL,n)= G (mL,n) , 
m 

IG (mL,w)I 
m 

(3.25) 

where G',,lmL, w) is the spectrum of the residual signal, shown in Fig.3.4(b), 

whose non-zero part is replaced by zero. This procedure, as shown in Fig.3.4(c), 

brings the non-zero value close to zero. 

3.3 Phase Adjustment 

After multiplying the modified source component G'(mL, w) by the spectrum 

envelope component IV(mL, w)I, modified speech is obtained frame by frame by 

the inverse Fourier Transform. Fig.3.5 shows windowed speech signals for 

successive frames. The left speech signals are original speech and the right ones 

are pitch-raised speech. These signals are overlap added using the Eq.(3.21) in 

section 2 to make a modified speech signal x'(n). It is apparent, as shown in 

Fig.3.5, that the phase of pitch-raised speech is not continuous between frames 

because of the linear interpolation in the previous block. To cope with this, a 

method of variable window shift is used; i.e. when speech is analyzed with window 

shift Land modified with a modification-factor k, the window shift is replaced by 

L'=Llk instead of Lin overlap adding. 

3.4 Duration Adjustment 

The speech signal modified by the previous block is generally different in 

duration from the original because of the window shift control. One purpose of 

this block is to compensate for this side-effect, the other is to modify speech 

duration. Duration modification is performed by the signal reconstruction 

algorithm from the modified STFT magnitude proposed by Griffin and 

Lim[Griffin, 1984] which was described in section 2.4.2. White noise is used as the 

initial value x(n). The compensation procedure is as follows. First the modified 

speech x'(n) is again analyzed with window shift L', then reconsしructedwith 

window shift L. 
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4. Analysis-Synthesis Experiment 

To confirm potential performance of the proposed algorithm, a speech 

analysis-synthesis experiment was carried out. Figure 3.6 shows spectrograms 

and speech waves of an original speech, analysis-synthesis speech by the proposed 

method, by cepstrum vocoder[Imai, 1980], by LPC vocoder. The speech was 

uttered a male speaker. The experiment conditions are shown in Table 3.1. 

In Fig. 3.6, it is observed that the spectrogram of both cepstrum and LPC 

vocoders is too simplified, but that the spectrogram of the proposed method is very 

close to that of the original. In terms of the speech waveform, cepstrum and LPC 

vocoders synthesize speech which looks like impulse. The proposed method well 

, reconstructed pitch structure which are different from both the original speech 

1 and the outputs vocoders. Judging from the informal listening test, we could not 

find out difference between original speech and the analysis-synthesis speech by 

the proposed method. 

5. Speech Modification Experiment 

In the pitch frequency modification, the proposed algorithm also needs time 

modification. In this section, time modification experiment is first carried out, 

then pitch modification experiment is carried out to evaluate the overall 

performance. 

5.1 Time Modification 

Speech uttered by a male speaker was expanded by 1.3 and compressed by 0.7. 

The experiment condition is shown table 3.1. Figure 3.7 shows estimation error 

according to a iteration number.The estimation error monotonously decrease 

according to iteration, especially it quickly decreases during the first five 

iterations. A small amount of reverberation was detectable in the estimated 

signal, but the signal was still high quality. The estimation error of compression 

factor 0.7 converges to higher value than the error of expansion factor 1.3. 
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However, there were no difference between the two in its quality.In terms of 

iteration number, there is no improvement in.its quality after six time~. 鼻

5.2 Pitch Frequency Modification 

In this section the effect of the proposed algorithm on pitch modification is 

discussed. Two pitch frequency modifications are evaluated by listening tests. 

One modification is uniform raising or lowering, and the other is non-uniform 

modification. 

5.2.1 Experiment method 

The performance of the proposed algorithm was compared with the cepstrum 

vocoder, because its quality was the best among the vocoder speech tried. Table 

3.1 shows the analysis-synthesis conditions. Sets of two kinds of stimuli are 

randomly presented to 8 listeners who are not familiar with the synthesized 

speech. One pair consists of original speech and speech modified by the proposed 

algorithm, the other consists of original speech and speech modified by the 

cepstrum vocoder. The listeners are asked to score the pairs according to the 

similarity between the original and modified speech. The modifications for 

producing evaluation test speech samples are as follows. 

(1) Uniform modification: Pitch frequency of seven words was modified uniformly 

by modification-factors 0.9 and 1.1. 

(2) Non-uniform modification: Like Chinese which is a tonal language, some 

Japanese words with the same phonetic structure differ in meaning according 

to pitch contour. Four pairs of words that have this property are used in non-

uniform modification. Fig.3.6 shows, for example, the original pitch frequency, 

the modified pitch frequency and the modification-factor for each frame. The 

words are /ueru/, /shouhiN/, /seNryou/, and /deNki/. 

5.2.2 Experiment results 
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Table 3.2 shows the experiment results. The score that listeners gave to the 

speech of the proposed algorithm is divided by the score obtained from the vocoder 

speech. This ratio is given in the table. The reason pitch lowering is less 

satisfaction than pitch raising is the regeneration by copying described in Section 

3.2. The table indicates that in all modifications the proposed algorithm can 

modify speech better than the vocoder algorithm. 

6. Conclusion 

We proposed a new speech modification algorithm. The advantages of this 

algorithm are listed below; 

(1) This algorithm needs no phase unwrapping which is the most complex and 

t critical procedure in the conventional method. 

(2) This algorithm is easy to implement in an automatic system because explicit 

pitch frequency extraction is not required. 

(3) The quality of synthesized speech is very high and natural because residual 

signals are used as excitation. 

(4) This algorithm makes it possible to modify the spectrum envelope in a non-

parametric way because it is represented by FFT magnitude. 

The listening test reveals that the proposed algorithm can reproduce high 

quality speech sounds in pitch frequency modification for both uniform and non-

uniform pitch modification. 
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Table 3.1-0 Ex erimentConditions(common) 

NDdata 12KHz sampling、.16bit 

window Hamming window 

window length 256points (21:3msec) 

Table 3.1-1 Experiment Conditions 
(proposed method) 

window shift 

FF'l'points 

iteration for reconstruction 

32points (2.7msec) 

． 
512pomts 

20 

Table 3.1-2 Experiment Conditions 
(cepstrum synthesis) 

window shift 

cepstrurn order 

synthesis filter 

60points (5.0msec) 

30 

LMA 

Table 3. 1-3 Experiment Conditions 
(LPC synthesis) 

window shift 

cepstrum order 

68 

60points (5.0msec) 

14 



Table 3.2 Experiment result 

ratio 

uniform (0.9 times) 1.43 

uniform (1.ltimes) 1.68 

non-uniform 1.41 
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Chapter 4. CROSS-LANGUAGE VOICE CONVERSION 

1. Introduction 

In recent years, there are many opportunities to communicate with speakers 

of other languages. We must make an effort to communicate in other languages, 

sometimes making mistakes in understanding or even, if we don't know the 

language, not understanding anything at all. A system using the latest 

information processing technology to overcome this language barrier would be 

very useful. One such system is an automatic telephone interpretation system: 

i.e., a facility that enables a person speaking in one language to communicate 

readily by telephone with someone speaking another language [Kurematsu, 

1987]. Our laboratory, ATR Interpreting Telephony Res. Labs., is dedicated to 

research aimed at developing an interpreting telephony system. 

This system consists of three constituent technologies: speech recognition, 

machine translation, and speech synthesis. An interpreting telephone will 

recognize Japanese speech, translate it into English, then synthesize English 

speech. It will, of course, also work in the opposite direction. To develop an 

interpreting telephone, there are many issues to be solved in the constituent 

subsystems. In this chapter, we will discuss speech individuality control in an 

interpreting telephone. Because we can recognize a speaker over a conventional 

telephone line, we would like also to retain speaker individuality in an 

interpreting telephone. In other words, the quality of the synthesized English 

speech should be changed to sound as if the Japanese speaker uttered the English. 

We call the problem "cross-language voice conversion" [Abe, 1990a][Abe, 19906], 

because speech individuality would be preserved across different languages. 

In section 2, spectral differences between English and Japanese are 

investigated using speech from a bilingual speaker. In section 3, we propose cross-

language voice conversion algorithms and evaluate their performances. 
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2. Japanese Spectrum Space vs. 

English Spectrum Space 

To examine spectrum differences in different languages, speech uttered by a 

bilingual speaker was analyzed. The material makes it possible not only to 

eliminate spectrum differences caused by different speakers but also to 

specifically focus on the spectrum differences caused by the two languages. The 

results of this section will be used to develop a cross-language voice conversion 

based on codebook mapping in section 3. The following points are discussed. 

① How much does the spectrum space increase to deal with more than one 

language? 

Codebook size is important in our voice conversion algorithm because 

spectrum characteristics of a speaker are represented by code vectors of the 

speaker's codebook. Codebook size for mixed speech of English and Japanese is 

examined in section 2.2. 

② Are there any spectra which characterize certain English or Japanese sounds? 

Voice conversion is performed by replacing a speaker's code vector with the 

corresponding code vector of another speaker. The requirement that every 

English code vector has a corresponding Japanese code vector is examined in 

section 2.3. 

③ Which phonemes contain the spectra? 

In section 2.4, we examine phonemes that contain code vectors which 

predominantly occur in English or Japanese. 

④ How important are the spectra from a perceptual point of view? 

In section 2.5, the spectral differences are investigated from a perceptual 

point of view. 
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2.1 Speech Data and Analysis Method 

To investigate the spectrum difference between Japanese and English, speech 

uttered by a bilingual speaker was collected. The bilingual speaker whose mother 

and father are Japanese and German, respectively, was born and brought up in 

Japan. To select the bilingual speaker, we especially paid attention to his 

pronunciation. Native speakers have judged his English and Japanese 

pronunciation to be of native speaker level. The speaker read a list of 216 
phonetically balanced Japanese words and 328 phonetically balanced English 

words. Three male and three female Japanese speakers also read the list of 216 

phonetically balanced Japanese words. 

Codebooks were generated using the Linde-Buzo-Gray(LBG) algorithm[Linde, 

1980]. Table 4.1 shows analysis parameters. 

2.2 How Much does the Spectrum Space Increase to Deal with 
More than One Language? 

2.2.1 Experimental method 

Codebook sizes were examined using a spectrum distortion measure, 

WLR(Weighted Likelihood Ratio), is defined by the following equation 

[Sugiyama, 1981]: 

＂ 
D = L (ri―r.')(c.-c.') 

I I 、 (4.1) 
i= 1 

Here, ri and r: are the i-th autocorrelation coefficients and ci and C: are the i-th 

LPC cepstrum coefficients. This measure enhances the contrast between peaks 

and valleys of the LPC spectral envelope. 

Six codebooks were generated for the following data sets. 

. (1) English and Japanese words uttered by the bilingual speaker 
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(2) English words uttered by the bilingual speaker 
(3) Japanese words uttered by the bilingual speaker 
(4) Japanese words uttered by one male and one female speaker 
(5) Japanese words uttered by two male speakers 
(6) Japanese words uttered by one male speaker 

2.2.2 Experimental results 

Fig.4.1 shows spectrum distortions for data from (1) to (6) according to 

codebook size. Because the spectrum distortions in (2), (3) and (6) are almost the 

same, we can use the same codebook size in both English and Japanese to 

represent spectrum characteristics of a speaker. The distortion of (1) in an 8-bit 

codebook almost equals the distortion of (2), (3) and (6) in 7-bit codebooks, and is 

/'smaller than the distortion in (4) and (5). This indicates that, when a codebook is 

generated for speech from English and Japanese, its codebook size should be 

almost twice as large as the codebook size of English or Japanese, but does not 

have to be as much as the codebook size of two speakers. 

2.3 Are There any Spectra which Characterize Certain English 
or Japanese Sounds? 

2.3.1 Experimental method 

To investigate if there are any code vectors(spectra) which characterize 

certain English or Japanese sounds, and to know how much code vectors overlap 

in different languages, an experiment was carried out. Experimental procedures 

are as follows: 

(1) A codebook was generated using the mixed speech from the following category 
pairs: 

(A)English vs.Japanese 
(B)male speaker vs. female speaker (in Japanese) 
(C)male. speaker 1 vs. male speaker 2 (in Japanese) 
(D)word set 1 vs. word set 2 (uttered by the same speaker in Japanese) 

(2) All data from the each category pair was vector quantized using the codebook. 

75 



Chapter 4. CROSS-LANGUAGE VOICE CONVERSION 

(3) We count how many times a code vector of the codebook occurred in two 
categories. 

The distribution distance between the above categories is calculated using 

Kullback's divergence[Kullback, 1970] defined as follows: 

r P(a.lw) 

' D = L [P(a.lw) -P(ailw2)] log 1 
'1  P(a.lw) (4.2) 

i=l , 2 

where, w 1 is category 1, w2 is category 2, r is a codebook size, and P(a恥'j)is the 

posteriori probability of the code vector ai in category wj. 

2.3.2 Experimental results 

Table 4.2 shows Kullback's divergence for each category pair. Kullback's 

divergence indicates the overall distance between two distributions; the larger 

the value, the more the two categories are separated. Therefore, the data uttered 

by the male speaker and the female speaker are well separated and. the data 

utt~red by the same speaker is difficult to separate. Judging from the value of the 

English-Japanese pair, the two categories show more overlap than separation. 

To show this visually, scatter plots are shown in Figs. 4.2, 4.3, 4.4, 4.5. Points 

in the figures show code vectors, and are plotted according to the occurrence 

number in each category. Fig.4.2 indicates that some code vectors have a 

tendency to occur more frequently in Japanese, and, conversely, other in English. 

2.4 Which Phonemes Contain the Spectra which Characterize a 
Language? 

2.4.1 Experimental method 

The results in 2.3 indicate that some code vectors(spectra) predominantly 

occur in either English or Japanese. In this section, we examined correspondences 

between phonemes and code vectors. 
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The phonetic transcription was aligned for English and Japanese utterances 

produced by the bilingual speaker. For English, this was done by CASPAR, an 

automatic alignment system developed at MIT[Leung, 1985] and errors were 

corrected by hand. For Japanese, alignment was done by hand according to ATR's 

labeling style[Kuwabara, 1989]. 

2.4.2 Experimental results 

Code vectors which predominantly occurred in English or in Japanese are 

summarized in Table 4.3 in terms of the percentage of constituent phonemes for 

each code vector. Figure 4.6~4.13 shows the LPC spectrum envelope of some 

representative code vectors and percentage of constituent phonemes of each code 

vector. The following are the characteristics of each code vector(A-H). Here, 

phonetic symbols for English and Japanese are used in accordance with TIMIT 

1 conventions[Garofolo, 1988] and Roman letters respectively. As a reference, the 

Fl-F2 relationship for vowels in English and Japanese is shown in Fig.4.14[Zue, 

1985][Umeda, 1957]. 

(A)Vowels /0/,/a/,/~/. Fl and F2 are very close. This formant structure is rarely 

found in code vectors which occurred frequently in Japanese. 

(B)Vowel /ぉ/.This is a typical formant structure of/ぉ/.It is said that Japanese 

has no vowel of this formant structure. 

(C) Consonants /c/,/J/,/s/. These are voiceless consonants but the formant structure 

is very clear in the spectrum envelope. 

(D)Consonants /f/,/ti. These are voiceless consonants but the formant structure is 

very clear. 

(E) Liquid /r/. F2 and F3 are very close. This is a typical /r/ in English. 

(F)Vowel /i/. This is a typical formant structure of /i/. Fl and F2 are very far. 

English Iii is typically more centralized. 

(G)Vowel /u/. This is a typical formant structure of /u/. Fl is relatively low and F2 

is midfrequency. English /u/ is typically more centralized. 

(H) Nasal /N/. The spectrum envelope has two peaks in low frequency and high 

frequency. In the English nasal, there is no such high frequency peak. 
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2.5 How Important are the Spectra which Characterize a 
Language from the Perceptual Point of View? 

2.5.1 Experimental method 

The experimental results in 2.3 and 2.4 sho_wed that there are spectral 

differences between Japanese and English. These differences were examined 

using a perceptual experiment. 

First, two codebooks were generated for the bilingual speaker, one from English 

(English codebook) and the other from Japanese(Japanese codebook). Two kinds 

of speech were synthesized using the bilingual speaker's English speech, one is 

coded by the English codebook, then decoded(CEDE), the other is coded by the 

I Japanese codebook, then decoded(CJDJ). Because the CJDJ is represented by 

code vectors of Japanese codebook, we can predict that CJDJ will not sound like 

English if the spectral differences of English and Japanese code vectors are 

perceptually large enough. CEDE and CJDJ pairs were synthesized by a LPC 

vocoder for twenty-eight words which contain all English phonemes at least once. 

All word pairs were presented to 8 native American listeners (4 males, 4 females) 

over headphones. The listeners were asked to judge whether there was a 

difference between the pairs. If not, the next word was presented. If a difference 

was noticed, listeners indicated which sounded more like English and gave a 

reason for their choice. 

2.5.2 Experimental results 

Table 4.4 shows how often the distinction between the two words is judged 

correctly or incorrectly or judged to be indistinguishable. Since the CEDE should 

sound more like English than the CJDJ words because CEDE words were coded 

by English codebook, we use the term "correct" when CEDE is judged to be better 

than CJDJ. 

The results tended to be word dependent. Some words had a tendency to be 

judged indistinguishable, while others were judged as either correct or incorrect 

more than half the time as shown in the table. In Table 4.5, the words used in the 

. experiment are classified into these three categories. That half the words are 
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judged to be indistinguishable is not unreasonable, because, as shown in 2.3, 

English and Japanese code vectors almost overlap. 

Judging from the results in section 2.4, phonemes listed in Table 4.3 are 

expected to sound worse. However, such a tendency can not be shown in Table 4.5. 

The reasons are: (1) Because the vectors were matched to the input English frame 

by frame, the sequence in CJDJ preserved the dynamic characteristics of English 

such as formant frequency trajectories. (2) Phonemes listed in Table 4.3 are not 

composed exclusively of code vectors which predominantly occur in English, but 

also include vectors commonly occurring in Japanese. 

2.6 Summary 

Speech uttered by a bilingual speaker was analyzed. Experimental results are 

as follows: 

(1) Codebook size for mixed speech from English and Japanese is almost twice as 

large as the codebook size of either English or Japanese,.but does not have to 

be as much as the codebook size of two speakers. 

(2) Although many code vectors occurred in both English and Japanese, some 

code vectors have a tendency to predominantly occur in Japanese or in 

English. 

(3) Code vectors which predominantly occurred in English are contained in 

/r/ ,/ re/ ,If/ ,I送/,and code vectors which predominantly occurred in Japanese are 

contained in /i/,/u/,/N/. 

(4) Judging from listening tests, English speech decoded by Japanese codebook 

can be also recognized as English. 

When we apply the voice conversion algorithm based on codebook mapping to 

the cross-language voice conversion, we have to pay attention the fact there are 

some code vectors which predominantly occurred in English or Japanese. One 

solution is to teach Japanese or English speakers how to pronounce the phonemes 

which contain such code vectors. The other approach is to neglect such code 
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vectors, because the result in 2.5 indicates that they are not perceptually 

important. 

3.Cross-Language Voice Conversion Experiment 

In this section, we propose cross-language voice conversion algorithms based 

on codebook mapping, and discuss its performance. 

In the final stage of an interpreting telephony system, English is synthes~zed 

by a synthesis-by-rule system using output of the translation system. Fig.4.15 

shows the block diagram of our cross-language voice conversion model. MITalk, a 

synthesis-by-rule system for English[Allen, 1979], is presently used because it is 

easily obtainable. The aim is to modify MITalk's speech so that the output carries 

the voice characteristics of a given Japanese speaker's speech. Strategies we take 

here are (l)preserve dynamic characteristics of MITalk's speech, because the 

results in section 2.5 imply that dynamic characteristics of English help 

synthesized speech sound like English, (2)change MITalk's speech spectrum into 

the Japanese speaker's speech spectrum, because the static characteristics of the 

speech spectrum contain important information of speaker individuality. 

In terms of the strategy (2), we apply the voice conversion algorithm proposed 

in chapter 2. Because a mapping codebook is generated by supervised training, it 

is impossible to directly generate a mapping codebook using speech uttered・by a 

Japanese speaker and speech synthesized by MITalk system. To solve the 

problem is a main topic of this section. 

3.1 Methods to Make a Mapping Codebook across Different 
Languages 

A policy to design a cross-language voice conversion method is not to ask a 

speaker to pronounce a non-mother language. In other words, a method is 
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designed to be useful for anyone who can not speak the non-mother language at 

all. 

3.1.1 Methodl: Synthesize Japanese by MITalk 

To generate a mapping codebook, Japanese words are used as training data, 

i.e., Japanese speakers utter Japanese words and MITalk system synthesizes the 

same Japanese words. Two kinds of speech are synthesized. One, MITalk-E, is 

synthesized using input strings selected so that the output sounded as much like 

the Japanese word as possible, but using the default MITalk rules for English. 

The other, MITalk-Ed, is synthesized using duration control rules for Japanese. 

This modification is performed to well find out code vector correspondence in 

DTW, because durations are very different in English and Japanese. 

3.1.2 Method2: Generate a mapping codebook through a bilingual speaker 

To generate a mapping codebook, we propose making use of a bil.ingual 

speaker's speech as a bridge. First, four codebooks are generated, i.e.; using 

English uttered by an English speaker, using Japanese uttered by a Japanese 

speaker, and using English and Japanese uttered by a bilingual. Then, the 

following mapping codebooks are generated: one is between an English speaker 

and a bilingual speaker using English utterances(English mapping codebook), 

the other is between a Japanese speaker and the bilingual speaker using 

Japanese utterances(Japanese mapping codebook). Using the above codebooks, 

cross-language voice conversion is performed as follows (ref. Fig.4.16) 

(1) Speech uttered by the English speaker is vector quantized using his 

codebook. 

(2) According to the code vector obtained in (1), a code vector is selected from 

the English mapping codebook. 

(3) The English code vector is approximated by fuzzy VQ using the biling叫

speaker's Japanese code vectors. Fuzzy VQ[Ruspini, 1970], which is one 

technique to approximate a vector X by linear combination of code vectors 

VP is defined using the following equation. 
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k ui=lt[I(叫tdJll<m-1>]
j=l 

k 

x·=~[い）m-viJ1± い）m
1= 1 i=l 

where ui; fuzzy membership function. ui E [0,1] 't:J i 

叫=II X -Vi II . Vi is a codeword in codebook V. 

m: fuzziness. (m= 1.6) 

X': decoded spectrum of input spectrum X 

k: nearest neighbors (k = 6) 

(4.3) 

(4.4) 

(4) Hypothesizing that the fuzzy membership functions obtained in step (3) are 

preserved in a target Japanese speaker's spectrum space, the spectrum is 

generated as a linear combination of code vectors in the Japanese mapping 

codebook. 

3.2 Performance Evaluation 

3.2.1 Performance evaluation of Methodl 

3.2.1.1 Evaluation method for Methodl 

In Methodl, consistency of code vector correspondences is important to get 

good performance. To measure the consistency, mutual information is calculated 

by considering the voice conversion a transmission through an information 

channel(Fig.4.17). 

The input alphabet A = { ai } , i = 1,2, …，r, consists of the code vectors of 

speaker A, and the output alphabet B = { bj}, j=l,2, …，r, consists of the code 

vectors of speaker B. Mutual information I(A;B) is defined by the following 

equations; 
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I(A;B) = I-I(A) -I-I(AIB) (4.5)' 

where, 
r 

H(A) = L 1 
P(a.) log― 

1 P(a.) (4.6) 
i=l 、

H(AIB) =こP(b.)I P(a.lb .) log____]:__ 
i J 

j=l 
P(a.lb .) (4.?) 

ぃ ＝ヽ J

P(a/ a probability of code vector ai of speaker A 
P(ailb): a posteriori probability of the input symbol ai 

In this. formulation, the larger the value, the more consistent correspondences 
there are between the two code vectors. 

3.2.1.2 Performance of Method I 

The mapping codebooks are generated for all combinations of all speakers, i.e., 

male Japanese speaker, female Japanese speaker, MITalk-E, and MITalk-Ed. 

Fig.4.18 shows the mutual information for each speaker pair. 1.'he results indicate 

that the voice conversion is best in the J-J pair, and is poorest performance in the 

E-J pair. The reasons are as follows; (l)Because MITalk-Ed is given Japanese 

phoneme duration, the correspondence between the J-Ed pair is more consistent 

than that of the E-J pair. (2)Because MITalk-E and MITalk-Ed have the same 

rule of spectrum pattern generation, the distortion measure is more reliable in 

the E-Ed pair than in the E-J. Judging from these results, an adjustment of 

duration control to Japanese is necessary to improve voice conversion 

performance, but not enough. Furthermore, the distortion measure should be 

carefully selected when distortion is calculated between human and synthesizer. 

Judging from the informal listening test, the cross-language voice conversion 

performance is judged to be worse than voice conversion from Japanese. The 

degradation is caused by the inconsistency of code vector correspondences. 

3.2.2 Performance evaluation of Method2 
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3.2.2.1 Evaluation of fuzzy VQ approximation 

Because fuzzy VQ approximation is newly introduced in Method2, we discuss 

the effect of fuzzy VQ approximation. To evaluate the effects, we used bilingual 

speaker's speech, because English which is obtained by fuzzy VQ approximation 

using Japanese can be compared with English which uttered the same speaker. 

Four codebooks are generated for two bilingual speakers, i.e; male-English, male-

Japanese, female-English, female-Japanese. Table 4.1 shows the experiment 

conditions. 

Table 4.6 shows the distortion when English uttered by a bilingual speaker is 

vector quantized or fuzzy vector quantized using the Japanese codebook or the 

English codebook. Fig 4.19 shows the distortion for every phoneme when English 

is vector quantized or fuzzy vector quantized using the Japanese codebook. 

1 Judging from these results, fuzzy VQ is useful in approximating the English 

spectrum using the Japanese codebook, and the approximation is effective for all 

phonemes. 

1.,o confirm the hypothesis that the fuzzy membership function is preserved in 

the target speaker's spectrum space, an experiment is performed as follows: 

(l)A mapping codebooks are generated for male-Japanese, female-Japanese 

pairs. 

(2)English uttered by the male speaker is vector quantized or fuzzy vector 

quantized using his Japanese codebook. 

(3)To generate a converted spectrum, two methods are applied: using a 

mapping codebook, and using a mapping codebook and the fuzzy membership 

function with the hypothesis. 

(4)Spectrum distortion is calculated between the target female speaker's 

English speech and converted speech. 

If the fuzzy membership function was preserved in the target speaker's spectrum 

space, the spectrum distortion using fuzzy VQ would decrease. 

All combinations of two bilingual speakers and two languages are 

investigated using the above procedures. The experiment results are shown in 

Table 4. 7. The results indicate that the hypothesis is valid. 

84 



Chapter 4. CROSS-LANGUAGE VOICE CONVERSION 

3.2.2.2 Performance of Method2 

Codebooks, nine in total, are generated for every person and language, i.e; 

four for Japanese speakers(2 male and 2 female), four for bilingual 

speakers(male-English, male-Japanese, female-English, female-Japanese), and 

one for MITalk. Then mapping codebooks are generated for all speaker pairs. 

Table 4.1 show the experiment conditions. 

Table 4.8 shows the experiment results. In terms of codebook generation, 

spectrum distortion in MITalk is very much less than in a human, because the 

variety of spectrum patterns is quite restricted and the speech is synthesized by 

formant synthesizer. The distortion of the mapping codebook between a human 

and MITalk is considerably larger than the mapping between human. 

Judging from the informal listening test, cross-language voice conversion 

performance is judged to be worse than voice conversion from Japanese. The 

reasons are (l)mapping codebooks are used twice, (2)speech synthesized by 

synthesis-by-rule system is used instead of human speech. In terms of the 

performance, there is no difference between the Methodl and the Method2. 

4. Conclusion 

To apply a voice conversion algorithm based on codebook mapping to the cross-

language voice conversion, speech uttered by a bilingual speaker was analyzed. 

Experimental results are as follows: 

(1) Codebook size for mixed speech from English and Japanese is almost twice as 

large as the codebook size of either English or Japanese, but does not have to 

be as much as the codebook size of two speakers. 

(2) Although many code vectors occurred in both English and Japanese, some 

code vectors have a tendency to predominantly occur in Japanese or in 

English. 
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(3) Code vectors which predominantly occurred in English are contained in 

Ir/,! 函，/f/,/s/,and code vectors which predominantly occurred in Japanese are 

contained in /i/,/u/,/N/. 

(4) Judging from listening tests, English speech decoded by Japanese codebook 

can be also recognized as English. 

Secondly, we proposed cross-language voice conversion methods based on a 

codebook mapping. The experiment results indicate that, because of the 

inconsistency of code vector correspondences and large spectrum differences 

between human speech and synthesized speech, the performance in cross-

language voice conversion is less effective than in voice conversion between 

Japanese two speakers. 

In this early stage of the project, we simply neglect code vectors which 

/predominantly occurred in English or Japanese, and we used an 8-bit codebook. 

To improve the converted speech quality, we also have to increase the codebook 

size, and to estimate or extrapolate code vectors which predominantly occurred in 

English or Japanese. Because the cross-language voice conversion is a very new 

idea and also a very difficult problem, at this stage, we would like to say that we 

have at least shown the possibility of cross-language voice conversion and 

demonstrated possible methods. 
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Table 4.1 Experiment conditions 

NDdata 12KHz sampling、16bit

window length 256points (21.3msec) 

window shift 36points (3.0msec) 

analysis order 14 

clustering measure 
WLR(Weighted 

Likelihood Ratio) 

learning samples 
12,000 frames for cluster in区

codebook size for 
spectrum parameter 256 

learning words for mapping 100 
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Table 4.2 Ku If back's divergence 

Speech pair Kullback's divergence 

bilingual English vs. 
1.Zl 

bilingual Japanese 

male speaker vs. female speaker 8.59 

male speakerl vs. male speaker2 4.80 

word setl vs. word set2 0.21 
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Table 4.3 Correspondence between code vectors and phonemes 

Code- Occurence in Occurence in 
English Japanese found in phoneme: veclors (times) {times) 

A 522 1 /J/(35%), /o. /(34%), /~/(23%), etc.(8%) 

B 210 
， 畑/(78%),/ny/(10%), /.~/(7%), etc.(12%) 

C 486 19 ぼ/(28%),/.c/(24%), /J /(20%), /e/(10%), If /(10%), etc.(8%) 

108 

D 240 10 /f/(28%), /tJ(25%) /lc/(12%), /d/(7%), /v/(6%), etc.(22%) 

E 364 18 /r/(52%), /~(28%), /li/(8%0, etc.(12%) 

F 24 266 /i/(78%), / j・/(6%), etc.(16%) 

G 13 152 /u/(73%), /i/(12%), /e/(7%), etc.(8%) 

H 5 222 /N/(56%), /V(20%), /n/(12%), /u/(8%), etc.(4%) 



Table 4.4 Listening experiment result 

judged correctly 

27.2% 

judged correctly 

noise, should, finger, 

outer, cashmere, 

masquerade, moisture, 

sculpture 

judged incorrectly indistinguishableble 

54.0% 18.8% 

Table 4.5 Word category 

judged incorrectly indistinguishableble 

personnel, with, 
victor, fish, noteworthy, vocabulary, 

Irish, before, they, precaution, sweet, 
zoologist, corsage, 

earthquake, hand, sweater, nothing, 
money 

quite, ambiguous 
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Table 4.6 Spectrum distortion(WLR) in fuzzy VQ 

codebook Japanese English 

coded utterance 
VQ fuzzyVQ VQ 

English 0.140 0.102 0.101 

Table 4.7 Spectrum distortion(WLR) in fuzzy mapping 

mapping codebook Japanese English 

coded utterance VQ fuzzy VQ VQ fuzzy VQ 

English 0.304 0.285 

Japanese 0.285 0.268 
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Chapter 5. A SEGMENT-BASED APPROACH TO VOICE CONVERSION 

1. Introduction 

In chapter 2, we have already proposed a voice conversion algorithm based on 

codebook mapping and evaluated its performance. According to the mapping 

codebook, a speaker A's code vector is replaced frame-by-frame with a 

corresponding speaker B's code vector. The algorithm makes it possible to convert 

static characteristics(spectrum envelopes). However, dynamic characteristics can 

not be converted, because a code vector sequence which represents dynamic 

characteristics such as a formant trajectory, is obtained from speaker A's speech. 

This is one reason why voice convers10n performance is not satisfactory. 

In this chapter, to improve voice conversion performance, we propose to also 

convert the dynamic characteristics of speaker individuality by using speech 

segments as conversion units. Because speech segments contain both static and 

dynamic characteristics of speaker individuality, the use of segment units makes 

it possible to convert all of these parameters together. The advantages of a 

segment-based approach had been reported in the speech analysis-synthesis by 

HMM[Soong, 1989], segment vocoding[Shiraki, 1988][Peterson, 1990], and 

speech synthesis-by-rule systems[N akajima, 1988][Sagisaka, 1988]. 

As the first step of the segn1ent-based approach, we use phonemes as speech 

segment units. The reasons are as follows: (!)Because phonemes are distinctive 

features of sound in terms of speech perception and production, it is~xpected that 

speaker individuality is consistently preserved in phonemes. (2)In a segment-

based approach, whether unit length is uniform or non-uniform is a matter of 

some concern. According to a recent study in segment vocoding[Peterson, 1990], 

non-uniform length units showed good performance and their length essentially 

depended on the phonemes. (3)To use non-uniform length segments requires 

expensive computation time. If phonemes are used as segment units, we can use 

speech recognition technologies making it possible to dramatically reduce search 

space for segment boundaries and segment units. 

In section 2, we propose a voice conversion algorithm based on speech segment 

mapping. In section 3, the performance of the proposed algorithms are evaluated 

by measuring distortion and listening tests. 
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Chapter 5. A SEGMENT-BASED APPROACH TO VOICE CONVERSION 

2. A Segment Based Approach 

to Voice Conversion 

A voice conversion algorithm based on speech segment mapping is shown in 

Fig. 5.1. Both speakers had to have uttered the same training sentences or words 

in advance(hereinafter referred to as the speech database). 

The algorithm consists of both off-line and on-line procedures. In the off-line 

procedures, a "correspondence table" which indicates the corresponding segments 

between the two speakers is generated, and Hidden Markov Models(HMM) are 

generated for a speaker A. Using the correspondence table and the HMM models, 

voice conversion is performed on-line as follows. 

(1) Speech uttered by the speaker A is analyzed by LPC analysis. 

(2) The input speech is mapped(recognized) into a sequence of phonemic 

symbols and segmented by the HMM models. 

(3) A speech segment which optimally matches the segmented input speech is 

selected from the speaker A's speech database based on phonemic context 

constraints and a minimum distortion criterion. 

(4) According to the correspondence table, the optimally selected speaker A's 

segment is replaced by the corresponding speaker B's segment. 

(5) The pitch frequencies extracted from the input speech are linearly 

converted in order to match the pitch frequency range of the speaker B. 

(6) Speech is synthesized by LPC synthesizer using the replaced (speaker B's) 

segments and the converted pitch frequencies. 

In the following subsections, module specifications are described. 

2.1 Correspondence Table Generation 

Both speaker A and speaker B read a training corpus, but phonemic 

:boundaries were only assigned manually to speaker A's speech. The time 
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alignment between speaker A's and speaker B's speech was obtained by dynamic 

time warping(DTW), and phonemic boundaries for speaker B's speech were 

assigned. The correspondence table contains phoneme symbols and phoneme 

segment IDs which correspond to the・phonemic boundaries of speaker A and 

speakerB. 

2.2 Segmentation Module 

Speech segmentation was performed using the "Phonetic Typewriter" 

developed at ATR[Kawabata, 1990]. This system is not task specific, but is 

designed to map Japanese speech into a sequence of phonemic symbols based on 

the statistical model of phonemes and Japanese syllable occurrence. The system 

consists of an HMM recognition module and an LR parsing module. The total 

recognition system is shown in Fig. 5.2. Phonemic boundaries were determined by 

Viterbi algorithm. 

2.2.1 HMM recognition module 

The HMM model for five vowels, a syllabic nasal and a silence, was a 1-state 

model and the HMM model for the other phonemes, 39 in total, was a 3-state 

model. These phone units were trained using 5,557 isolated words uttered by the 

speaker A. The speech was transformed to VQ code sequence using 12th order 

LPC analysis and a 21.3 msec Hamming window with a 9msec frame shift. A 

multiple-codebook method was used, i.e., codebooks were separately generated for 

spectrum parameter, LPC cepstral difference, and power. HMM duration 

parameters were modified to match the speaking rate. 

2.2.2 LR parsing module 

The LR parser calculated the phone sequence probability based on syllable 

trigr皿 sandHMM probabilities. The syllable trigram tables were made from a 

text database of over 35,000 syllables. The text database consisted of editorial 
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columns and transcribed texts from a telephone dialog simulation. An n-gram 

probability was interpolated from k(=O, 1, 2, 3)-gram probabilities by a "deleted 

interpolation" algorithm[Jelinek, 1980]. During a beam search, only 250 phone 

sequence candidates were maintained. 

2.3 Optimal Segment Selection and Concatenation 

Figure 5.3 shows an algorithm to select a speech segment which optimally 

matches the segmented input speech. Phoneme segments were first selected 

based on triphone context constraints using recognized output symbols. If there 

was no phoneme in the database under the triphone context, the current 

phonemes were all candidates. 

Based on a minimum distortion criterion, an optimal phoneme segment was 

selected by DTW. Cepstrum distance measure was used. If there was no segment 

because of the D'fW path constraint, DTW was again performed after uniformly 

lengthening or shortening the segmented input speech. 

Finally, the selected phoneme segment was concatenated to the next phoneme 

segment in a frame which・gave the minimum spectrum distortion. The final 

procedure was necessary to adjust inadequate segment boundaries introduced by 

the correspondence table ge.1;1eration and the HMM segmentation. 

3. Performance Evaluation 

The proposed voice conversion algorithm was performed between two male 

speakers, i.e., speaker A's speech was converted to sound like speaker B's speech. 

In the off-line procedures, a correspondence table and HMM models for the 

speaker A are generated using isolated word utterances. In the on-line 

procedures, twenty-five continuously uttered sentences were converted. The 
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sentences, which contained 279 phrases, were collected through simulation of a 

secretarial service for an international conference. 

In section 3.1, a correspondence table specification is shown. In section 3.2, 

segmentation module performance is shown. Voice conversion performance is 

evaluated by spectrum distortion and listening test in sections 3.3 and 3 .4, 

respectively. In sections 3.3 and 3.4, only correctly recognized phrases were 

evaluated. Cases where recognition errors occurred in the segmentation module 

are discussed in section 3.5. 

3.1 Correspondence Table 

Both speaker A and speaker Bread a training corpus of 1,323 Japanese words. 

The speech was sampled at 12 kHz and analyzed using a 14th order LPC 

analysis. The analysis window was a 21.3 msec Hamming window with a 3.0 msec 

frame shift. 

Table 5.1 shows the phoneme symbols, phoneme segment numbers and 

average phoneme durations contained in the speech databases of both speaker A 

and speaker B. 

The phonemic boundaries which were given to speaker B's speech according to 

the D'l~path were compared with manually assigned segment boundaries of the 

speech. The average boundary errors and coincidence rate within a 20-msec time 

window are also shown in Table 5.1. Boundary assignment performance is 

relatively poor in the Ir/, /hy/, If/, lu/, /sh/, /w/, fry/ phonemes, but for the other 

phonemes, more than 70% of the boundaries are assigned within 20 msec of the 

manual segmentation point. 

3.2 Recognition and Segmentation Performance 

The phone recognition rate is 94.9% and the phrase recognition rates of the top 

choice and the top 5 choices are 78.5% and 92.1 %, respectively[Kawabata, 1990]. 
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The automatic segmentation results are depicted in Fig. 5.4 in terms of their 

coincidence rate with manual segmentation boundaries, where only the correctly 

recognized phrases were adopted. The coincidence rates are defined as the 

percentage of phonemes for which the automatic segmentation and the manual 

segmentation boundaries agree a)within a 15 msec window and b)within a 20 

msec window. Boundary assignment performance is relatively poor in voiced 

fricative /z/, and voiced affricate/j/, but for the other phonemes more than 80% of 

the boundaries are set within a 20 msec range. 

3.3 Voice Conversion Evaluation by Spectrum Distortion 

3.3.1 Experimental Procedure 

The voice conversion performance was evaluated by spectrum distortion. By 

way of comparison, both manually segmented continuous speech utterances and 

manually segmented isolated word utterances(88 words) are also converted in 

addition to automatically segmented continuous speech utterance. 

Spectrum distortion is calculated by D'IW using cepstrum distance measure 

for the following data. 

(1) Speech uttered twice by the speaker A(hereinafter referred to as the 1st 

utterance and the 2nd utterance) 

(2) The 1st utterance and a speech segment sequence which was selected 

optimally to match the 1st utterance from speaker A's 

database(hereinafter referred to as segment vocoder) 

(3) The 2nd utterance and segment vocoder 

(4) Speech uttered by speaker B and speech converted by the proposed 

algorithm(hereinafter referred to as segment conversion) 

(5) Speech uttered by the speaker B and speech converted by the codebook 

mapping frame-by-frame(hereinafter referred to as VQ conversion) 

(6) The 1st utterance of speaker A and speech uttered by the speaker B 
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VQ conversion was performed by the codebook mapping algorithm. For a fair 

comparison of VQ conversion and segment conversion, a mapping 

codebook(lObits) was trained using 1,300 words. 

3.3.2 Experimental Results 

Figures 5.5 and 5.6 show the experimental results using isolated utterances 

and continuous utterances, respectively. In both isolated and continuous 

utterance, the distortion caused by utterance times is small, 0.2481 and 0.2623 

respectively. This is considered to be the goal of the voice conversion. 

In terms of the distortion between the 1st utterance and the se即 1ent vocoder, 

the distortion in continuous speech(0.3755) is much higher than the distortion in 

1isolated utterances(0.2832), because speaker A's database consisted of isolated 

word utterances. 

In terms of the distortion between the 2nd utterance and these即 1ent vocoder, 

the distortion in manually se即 1entedspeech(0.3638) is much less than the 

distortion in automatically segmented speech(0.4471). 

Taking into account the distortion caused by utterance times, speaking styles 

and automatic segmentation, the distortion goal of this experiment is the 

distortion between the 2nd utterance and the segment vocoder, 0.4471. The 

natural distortion between speaker A and speaker B is 0.9396. The distortion 

between the segment conversion and the target speech is 0.6169. Therefore, the 

segment conversion reduces the distortion by one-third. 

When man叫 lysegmented speech is used instead of automatically segmented 

speech, the distortion between the segment conversion and the target speech is 

0.5369, which is less than the distortion between the VQ conversion and the 

target speech. The results indicates that segment-based approach has more 

potential than the frame-wise approach. 

The distortion between the 1st utterance and the segment vocoder should be 

less than the distortion between the 2nd utterance and the se印nentvocoder. 

However, the experimental results show just the opposite. This implies that 

segment variations in the speech database are not enough. 
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Judging from these results, to get higher voice conversion performance, it is 

important to improve segmentation performance and to add continuous speech to 

the speech database. 

3.4 Voice Conversion Evaluation by Listening Test 

3.4.1 Experimental procedure 

3.4.1.1 Experiment 1 

In Experiment 1, three tests(test 1.1, test 1.2, and test 1.3) were carried out by 

the ABX method. Stimuli A and B were LPC analysis-synthesis of speaker A's or 

/'speaker B's speech. In test 1.1, X was speech from the segment conversion. In test 

1.2, X was speech from the VQ conversion. In test 1.3, X was speech from the LPC 

analysis-synthesis speech of speaker B. Different phrase tokens were used for 

stimuli A, B and X, and all possible ABX combinations were generated. The ABX 

triads, 36 in total, were presented to twelve listeners using a headphone. The 

listeners were required to select the stimulus (A or B) which most closely 

resembled stimulus X in speaker identity. 

3.4.1.2 Experiment 2 

Experiment 2 was designed to evaluate the voice quality by a pair-comparison 

listening test. The following five different types of speech were synthesized as 

stimuli. 

(1) LPC analysis-synthesis speech of speaker A(A-LPC) 

(2) The segment vocoder(A-Segment) 

(3) The VQ conversion(A→ B-VQ) 

(4) The segment conversion(A-B-Segment) 

(5) LPC analysis-synthesis speech of speaker B(B-LPC) 
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Two different words were used to make speech pairs. A set of speech pairs, 40 

in total, include all possible combinations of stimuli from the five different types 

of speech. The listeners heard the speech pairs under the same listening 

conditions as in Experiment 1, and were asked to rate the similarity for each pair 

using five categories: "similar","somewhat similar","difficult to decide","slightly 

dissimilar", and "dissimilar". 

3.4.2 Experimental results 

3.4.2.l Results of Experiment 1 

The result of Experiment 1 is shown in Table 5.2. The numbers in this table 

represent the percentage of responses where stimuli X was judged to be close to 

1the LPC analysis-synthesis speech of speaker B. 

Even though stimuli X is the LPC analysis-synthesis speech of speaker B, 

listeners misjudged 3.8 percent of the time. Judging from this, the speaker 

identification accuracy(93.8%) obtained by the segment conversion is quite high. 

Segment conversion performance is about 20% higher than the VQ conversion 

performance. 

3.4.2.2 Results of Experiment 2 

Hayashi's fourth method of quantification[Hayashi, 1985] was applied to the 

experimental data of Experiment 2. This method places stimuli on a space 

according to the similarities between any two stimuli, and its formulation 

minimizes the measure Q, where 

I! I! 

Q= —ここ e(i,J"){x(i)-x面 (i色"
i=lj=l 

e(ij) denotes the similarity between stimuli i andj, x(i) represents the location of 

stimulus i in the space, and n is the number of stimuli. 

The projection onto a two-dimensional space is shown in Fig. 5.7. It represents 

the relative similarity-distance between stimuli. Contribution rates which 
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indicate the importance of the axis are 60% and 30% for axis I and axis II , 

respectively. In terms of axis I values, the converted speech by both VQ 

conversion and segment conversion are very close to the target B-LPC. Therefore, 

axis I probably represents the speech individuality. On the other hand, the axis 

Il values ofVQ conversion, segment conversion, and segment vocoder are minus 

values, and the axis II values of analysis-synthesis speech are plus values. 

Therefore, axis Il probably represents distortion caused by modifications. These 

results indicate that speech individuality is well converted, but also that the 

modification introduces some artificial noise to the converted speech. 

A
 

3.5 Analysis of Recognition Error 

In 60 phrases, recognition errors occurred. Problems introduced by recognition 

errors were examined by listening to LPC analysis-synthesis speech and segment 

vocoding speech of speaker A 

In 5 phrases, recognition errors resulted in no sound problems in these即 1ent

vocoding speech. The errors are shown in table 5.3. 

In 10 phrases, the se印nentvocoding speech did not sound perfect , but was 

relatively close to the LPG analysis-synthesis speech. In Fig. 5.8(a), 5.8(b), 5.8(c), 

spectrograms of the LPG analysis-synthesis speech and se即 1entvocoding speech 

are shown. It is observed that they show relatively close patterns. 

In th~other phrases, 45 in total, recognition errors resulted in phonemes 

different from the input speech. Figure 5.8(d) shows where recognition errors 

occurred most frequently. The reasons recognition errors resulted in different 

phonemes are (l)in the optimal se四 entselection, recognized symbols are used to 

reduce search space, (2)in the database, there were not enough ambiguous 

phoneme pairs. 
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4. Conclusion 

In this chapter, by introducing a segment based approach, we proposed a new 

voice conversion algorithm which makes it possible to control not only the static 

characteristics but also the dynamic characteristics of speaker individuality. 

The proposed voice conversion algorithm was performed between two male 

speakers using 25 sentences which contain 279 phrases. The phone recognition 

rate was 94.9% and the phrase recognition rate of the top choice was 92.1 %. 

Spectrum distortion between the target speech and the converted speech was 

reduced to one-third the natural spectrum distortion between the two speakers. A 

listening evaluation showed that, in terms of speaker identification accuracy, the 

speech converted by segment units gave a score 20 % higher than the speech 

converted frame-by-frame. We conclude that speech segments contain more 

information to represent speaker individuality than frames, and that the 

information difference between segments and frames is large enough to hear. 
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Table 5.1 Segments in the database 

number of 
average boundary coincidence 

symbols segments 
duration errors rate 
(msec) (msec) （％） 

p 22 84.0 6.42 95.5 

t 229 51.0 11.79 83.4 

k 576 72.0 12.60 81.1 

b 130 63.0 8.19 90.0 

d 105 60.0 5.16 95.2 

g- 163 60.0 13.4 77.3 

m 339 63.0 6.60 94.7 

n 195 54.0 6.36 93.3 

N 227 189.0 15.93 71.8 

s 241 129.0 8.04 92.9 

sh 115 162.0 19.8 64.3 

ch 51 114.0 9.39 86.3 

ts 97 111.0 12.66 80.4 

z 69 75.0 14.07 79.7 

i 78 108.0 15.57 76.9 

f 22 78.0 26.85 54.5 

h 130 66.0 16.47 76.9 

r 547 21.0 33.57 42.4 

y 75 72.0 9.00 89.3 

w 55 54.0 15.15 69.1 

i 783 120 15.69 75.0 

e 404 126.0 16.35 76.7 

a 874 111.0 10.26 85.5 

゜
578 111.0 8.55 90.0 

u 852 117.0 23.34 66.6 

gy 1 135.0 9.00 100 

hy 1 117.0 39.00 

゜ky 7 120.0 9.00 85.7 

rv 8 93.0 19.11 62.5 

｀
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Table 5.2 Percentages of correct responses 

LPC analysis-synthesis of 
speakerB 

96.2% 
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segment VQ 
conversion I conversion 

93.6% I 71.5% 
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Table 5.3 Recognition errors 

Input 

output 

/ei/ foul 

/eel loo/ 

feel 

/ei/ 
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Chapter 6. EPILOGUE 

In this thesis, we discussed algorithms to change speaker individuality: i.e., 

speech uttered by a speaker is changed to sound as if another speaker had uttered 

it. 

In chapter 2, we formulated voice conversion as a mapping problem by 

introducingv~ctor quantization. The advantage of this technique are summarized 

as follows: 

(1) The mapping codebooks which make it possible to impart individuality to 

synthesized speech are generated from a limited number of word utterances. 

(2) The mapping codebooks enable voice conversion between any two speakers. 

(3) The synthesis process requires minimal computation and produces speech in 

real time. 

The performance of this technique was confirmed by spectrum distortion and 

pitch frequency difference. The spectrum distortion between original speech and 

target speech decreased by a range of 27% to 66%. Pitch frequency difference 

decreased to less than 15Hz. The overall performance of this technique was also 

confirmed by listening tests. It can be concluded that the converted speech has a 

voice quality very close to the target speaker's. 

To improve the naturalness and clarity of the converted speech, the usage of 

fuzzy VQ and difference vectors was discussed. According to the listening test, 

fuzzy VQ improved smoothness by generating spectrum patterns beyond the 

limitations imposed by the codebook size, and the usage of difference vectors was 

quite effective in improving clarity by representing spectrum characteristic 

details ignored by VQ or fuzzy VQ. 

In chapter 3, we proposed a new algorithm which makes it possible to 

synthesize high quality speech even if pitch frequency or duration is somewhat 

changed. The advantages of this algorithm are listed below; 

137 



Chapter 6. EPILOGUE 

(1) This algorithm needs no phase unwrapping which is the most complex and 

critical procedure in the conventional method. 

(2) This algorithm is easy to implement in an automatic system because explicit 

pitch frequency extraction is not required. 

(3) The quality of synthesized speech is very high and natural because residual 

signals are used as excitation. 

墓

(4) This algorithm makes it possible to modify the spectrum envelope in a non-

parametric way because it is represented by FFT magnitu他

The listening test showed that the proposed algorithm was able to reproduce 

high quality speech sounds even if the pitch frequency was modified both in a 

uniform and a non-uniform manner. 

In chapter 4, speaker individuality control across different languages was 

discussed. To apply a voice conversion algorithm based on codebook mapping to 

the cross-language voice conversion, speech uttered by a bilingual speaker was 

analyzed. Experimental results are as follows: 

(1) The codebook size for mixed speech from English and Japanese is almost twice 

as large as the codebook size of either English or Japanese, but does not have 

to be as large as the codebook size of two speakers. 

(2) Although many code vectors occurred in both English and Japanese, some 

code vectors have a tendency to predominantly occur in Japanese or in 

English. 

(3) The code vectors which predominantly occurred in English are contained in 

/r/,/re/,/f/,/s/, and the code vectors which predominantly occurred in Japanese 

are contained in /i/,/u/,/N/. 

(4) Judgin,g from listening tests, English speech decoded by Japanese codebook 

can be also recognized as English. 

We proposed cross-language voice conversion methods based on codebook 

mapping. The experiment results indicated that, because of the inconsistency in 

code vector correspondences and the large spectrum differences between human 

鼻
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speech and synthesized speech, the performance in cross-language voice 

conversion was less effective than in voice conversion between two Japanese 

speakers. 

In paper 5, by introducing a segment based approach, we proposed a new voice 

conversion algorithm which makes it possible to control not only the static 

characteristics but also the dynamic characteristics of speaker individuality. 

The proposed voice conversion algorithm was performed between two male 

speakers using 25 sentences which contain 279 phrases. The phone recognition 

rate was 94.9% and the phrase recognition rates of the top choice and the top 5 

choices were 78.5% and 92.1 %, respectively. Voice conversion was evaluated 

using correctly recognized phrases. Spectrum distortion between the target 

speech and the converted speech was reduced to one-third the natural spectrum 

distortion between the two speakers. Listening evaluation showed that, in terms 

of speaker identification accuracy, the speech converted by segment units gave a 

score 20 % higher than the speech converted frame-by-frame. We conclude that 

speech segments contain more information to represent speaker individ叫 ity

than frames, and the information difference between segments and frames is 

large enough to hear. 

In summary, we have confirmed that the speaker individuality control 

problem is successfully formalized as a mapping problem. As a future work, we 

would like to expand this approach to control other kinds of speaker individuality, 

such as source characteristics, speaking styles and dialects. 
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