Internal Use Only

TR-1-0191

A STUDY ON SPEAKER INDIVIDUALITY CONTROL
R OB AR OB

Masanobu ABE
B 5 EE e

ATR Inferpreting Telephony Labs.
(ATRE SR BAEHIZE)

1991.1

Abstract

In this report, we will discuss algorithms to change speaker individuality: i.e., speech uttered
by a speaker is changed or modified to sound as if another speaker had uttered it. First, we
formulate voice conversion as a mapping problem by introducing vector quantization.
Secondly, we propose a new algorithm which makes it possible to synthesize high quality
speech even if the pitch frequency or duration is somewhat changed. Third, we discuss if
speaker individuality can be controlled across different languages. Finally, to improve voice
conversion performance, we propose also to convert the dynamic characteristics of speaker
individuality by using speech segments as conversion units.
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Chapter 1. PROLOGUE

1. Introduction

Speech is the primary communication method for human beings. Only speech
makes it possible to communicate without particular tools. In that sense, it is
often said that speech is the most convenient and natural medium. Although this
might be the primary benefit of speech, we unconsciously use other benefits of
speech in daily speech communication. One of these is speech quality. As every
person has a different face, speech sound uttered by a speaker has a particular
quality specific to the speaker, which we call "speaker individuality".

This thesis reports a study of speaker individuality control. The goal cof this
research is to change speaker individuality: i.e., speech uttered by a speaker is
changed so as to sound as if another speaker had uttered it. In the remaining
section of this chapter, speaker individuality is discussed in detail, and the scope
of this thesis is explained.

2. Speaker Individuality

2.1 The Role of Speaker Individuality

Speaker individuality p'lays an important role in smooth conmunication, and
enriches our daily communication. When we converse over the telephone, for
example, we always try to identify the speaker. If the speaker is a someone close
such as a family member or a friend, we confirm him/her through speech quality.
If this is different from what we expect, we assume he/she has a cold or is a

different person.
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When we make a vocal request, speaker individuality is important
information. Imaging that a father and daughter are in different rooms, and that
the father asks her to, "please bring my bag." The daughter would never bring her
mother's bag, because she judges the speaker to be her father through speech
quality. If speech did not contain any information on a speaker, we would always
have to confirm the speaker by extra questions. This would be very bothersome.

Why do we enjoy a radio mystery? Because we can identify the characters by
their speech quality, and that picture the story in our mind’s eye. This is also true
of radio programs such as panel discussions and interviews.

As shown in the above examples, speaker individuality is useful not only in
identifying a speaker, but also helps us communicate smoothly.

H
{

2.2 Where Does Speaker Individuality Come From?

Speaker individuality is molded by both social and physiological factors. The
social factors include the social environment in which a speaker grew up. An
extreme example is a language. Even if all human beings have the same speech
organ system, their acquired spoken-language attributes such as phonemes,
accent, intonation and so on, differ considerably according to his/her
environment. A dialect is another example. Social class also affects speaking style
or a speaker's tendency to use certain words and syntactic structures.

The physiological factors are variability in speech organs among speakers. It
is well known, for example, that the primary difference between children's speech
and adult's speech arises from the size of their speech organs. It is easy to
understand that the speech of blood relatives is very close in quality because of

the physical similarity in their speech organs.

A speech production model was usually introduced to investigate speaker
individuality. According to speech production theory, speech sound is generated
by the periodic vibration of the vocal cord. The the peculiarities of vocal cord
vibration and its periodicity are called "source characteristics". The air-flow
passing through the vocal cord is modulated according to the shape
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(configuration) of the vocal tract, which is modeled as a kind of resonant tube. The
vocal tract has particular "resonant characteristics” for any given shape, and
sounds such as different vowels and consonants, are produced as it changes shape.

Based on the speech production model, the acoustic cues of speaker
individuality have been the subject of many studies. In terms of source
characteristics, for example, large differences between male and female speech
were reported[Price, 1989][Childers, 1985]. The differences in resonant
characteristics such as formant frequencies, bandwidth, and spectrum tilt among
speakers, have been reported[Sato, 1974][Itoh, 1982][Furui, 1985][Kuwabara,
1987] [Klatt, 1990] and utilized in speaker recognition[Rosenberg, 1976][Furui,
1981](Soong, 1988]. However, not all acoustic cues of speaker individuality have
been explained. It is now commonly accepted that speaker individuality resides
not in a single feature, but is distributed over various acoustic features, and
features which characterize speaker individuality are difficult to separate from
features which characterize phonemes.

3 Thesis Scope

In this thesis, we will discuss algorithms to change speaker individuality: i.e.,
speech uttered by a speaker is changed or modified to sound as if another speaker
had uttered it, which we call "voice conversion". What we try to change is only the
speaker individuality which arises from physiological factors.

From point of view of a speaker individuality control, not only must we extract
parameters which characterize a speaker, but we must also formulate parameter
conversion rules between speakers. Even if both problems were essentially
solved, speech quality would not always be changed successfully because of the
correlation between parameters. Both formant frequency shift and formant
bandwidth modification, for example, will cause changes in spectrum tilt and vice
versa[Takagi, 1987](Hakoda, 1987]. Parameter changes in glottal volume
velocity function cause a shift in the first formant frequency and a change in its
band width. Generally speaking, it is very difficult to reasonably control
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parameters including these side effects. In chapter 2, to avoid such difficulties, we
formulate voice conversion as a mapping problem by introducing vector
quantization. An advantage of this approach is that features which represent
speaker individuality are not extracted explicitly, but implicitly. |

Because pitch frequency is important information on speaker individuality, it
is necessary to change pitch frequency for speaker individuality control.
Although the modification of pitch frequency is possible using conventional
vocoder algorithms, the modified speech quality is not good enough. In chapter 3,
we propose a new algorithm which makes it possible to synthesize high quality
speech even if the pitch frequency or duration is somewhat changed.

To take social factors into account, spoken-language is considered to be an
aspect of speaker individuality. If speaker individuality can be controlled across
different languages, in other words, if English can be synthesized as if a Japanese

| speaker uttered it, it would be very useful. In chapter 4, we discuss the possibility

and perform some experiments.

The proposed algorithm in chapter 2 makes it possible to convert only the
static characteristics of speaker individuality. In chapter 5, to improve voice
conversion performance, we propose also to convert the dynamic characteristics of
speaker individuality by using speech segments as conversion units. The
importance of the dynamic characteristics of speaker individuality is discussed.
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Chapter 2. VOICE CONVERSION BASED ON CODEBOOK MAPPING

1. Introduction

Speech individuality generally consists of two major factors: acoustic features
and prosodic features. In this chapter, we are going to discuss control of the
acoustic features. To control speech individuality, we have to know which
parameters are most important for representing the speaker, and how to control
these parameters. It is, however, difficult to ansewer such questions by analyzing
speech data, because speech individuality is distributed among various
parameters such as formant frequencies and bandwidths, spectral tilt, and glottal
waveforms [Rosenberg, 1976] {IFurui, 1981] [Childers, 1985] [Kuwabara, 1987]
[Price, 1989]. To solve the voice conversion problem in a sophisticated manner, we
formulate it as a mapping problem by introducing vector quantization [Shikano,
1986] [Abe, 1988].

Figure 2.1 shows the basic idea of the voice conversion using vector
quantization. Ellipses in Fig. 2.1 represent codebooks (spectrumn spaces) of
speaker A and speaker B, and the black dots in each ellipse are code vectors
(speech spectra). Let’s try to convert speaker A’s speech to speaker B’s speech. If
the code vectors in these codebooks have one-to-one correspondences, like code
vector Al and code vector B1 in Fig. 2.1, voice conversion is easily performed by
replacing Al with B1. In other words, a conversion of acoustic features from one
speaker to another is reduced to the problem of finding a correspondence between
the codebooks of the two speakers. However, as with A2-A3 and B2-B5, code
vectors usually dose not have one-to-one correspondences. Therefore, we would
like to generate a new codebook whose code vectors have a one-to-one
correspondence with speaker A’s code vectors. We call this new codebook a

“mapping codebook”.

In section 2, vector quantization technique is briefly reviewed. In section 3, a
method of making mapping codebooks and a synthesis procedure are described. In
section 4, the performance of the proposed algorithms are evaluated by measuring
distortion and listening tests. In section 5, improved algorithms are proposed and
evaluated.
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2. Vector QuantizationMakhoul, 1985]

The conversion of an analog source into a digital source consists of two parts:
sampling and quantization. Sampling converts a continuous-time signal into a
discrete-time signal by measuring the signal value at regular time intervals.
Quantization converts a continuous-amplitude signal into a set of discrete
amplitudes. When each of a set of parameters is quantized separately, the process
is known as scalar quantization. When the set of parameters is quantized jointly
as a single vector, the process is known as vector quantization. We shall often
abbreviate vector quantization here as VQ.

Vector quantization is presented as a process of redundancy removal that
makes effective use of four interrelated properties of vector parameters: linear
dependency, nonlinear dependency, shape of the probability density function, and
vector dimensionality itself. VQ technique is very powerful and convenient, and
has been applied in various areas. For example, VQ in speech coding has reduced
the transmission rate of 2400-bit/s vocoders so that they can operate at much
lower rates while maintaining acceptable speech intelligibility and quality (see,
for example, [Buso, 1980] [Juang, 1982]). Speech coding' at very low rates, in the
range of 200-800 bit/s, has attracted substantial interest for use in commercial
applications (see, for example, [Rocus, 1982] [Wong, 1983]). VQ has also been
used regularly and effectively in pattern-recognition types of speech applications,
such as for speech and speaker recognition (see, for example, [Levinson,
1985][Rabiner, 1983]). The VQ problem is, after all, part of the general pattern-
recognition problem of how to classify data into a discrete number of categories

that optimize some fidelity criterion.

2.1 A Problem Formulation

We assume that x=/[x, x ) xN]T is an N-dimensional vector whose

g -
components {x,, I = k = N} are real-valued, continuous-amplitude random

10
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variables. (The superscript T' denotes transpose.) In vector quantization, the
vector X is mapped onto another real-valued, discrete-amplitude, N-dimensional
vector y. We say that x is quantized as y, and y is the quantized value of x. We
write

y=q(x) (2.1)

where g(.) is the quantization operator. The vector y is also called the output
vector corresponding to x. Typically, y takes on one of a finite set of values Y={
Yy, 1 = i= L}, where y,=[y, 3, .- ¥;y]"- The set of Y is referred to as the
codebook, L is the size of codebook, and { y,/ is the set of code vectors. The vectors
y; are also known in pattern-recognition literature as the reference patterns or
templates. The size L of the codebook is also called the number of levels, a term
borrowed from scalar quantization terminology. Thus, one talks about an L-level
codebook or L-level quantizer. To design such a codebook, we partition the N-
dimensional space of the random vector x into L regionsorcells {C,, 1 = i = L}
and associate with each cell C; a vector y,. If x is in C,, the quantizer then assigns
the code vector y. ; that is,

qx)=y, ifx€C. (2.2)

This codebook design processis also known as training.

2.2 A Distortion Measure

When x is quantized as y, a quantization error results  and a distortion
measure d(x,y) can be defined between x and y. In this paper we use a measure
called WLR (Weighted Likelihood Ratio), which is based on LPC analysis
[Sugiyama, 1981]. WLR is defined so as to emphasize spectral peaks, because
human auditory system is more sensitive to the mountain-shaped portion, such as
formant frequencies, than to the valley-shaped portion of the sound spectrum
[Matsuda, 1966] [Flanagan, 1972].

The spectrum obtained through LPC analysis can be represented by an all-pole

function

11
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u-Rf
fA) = ——— (2.8)

P

n=0

v-Rg
g) = -

0]

n=0

(2.4)

where fand g are the respective LPC spectra of reference and input patterns; a
R,uandb R, vare prediction coefficients, predicted normalized residuals and

n’

powers of fand g in LPC analysis, respectively; p is the order of analysis and 2 is
the angular frequency. The WLR measure is defined as follows:

;
1

WLR = -1—[ {(lég—/; + & )-[- +<log‘g + L_ 1)-5}00 (2.5)
2r ) n g f u f g v '

In Eq.(2.5), log(fig) + (g/f) -1, log(g/f )+ (flg) - 1 are terms indicating the

differences of spectra, and f/u and g/v are terms representing the weight of peaks.

If the power ratio u/v is set so that the measured value is the minimum,
Eq.(2.5) can easily be calculated as follows using the parameters of LPC analysis:

N
WLE= ) (r —r )(c —c) (2.6)

n=1

where r , r "and ¢ , ¢’ are correlation coefficients and LPC cepstrum coefficients

non

of fand g, respectively.

2.3 Codebook Design

As mentioned above, to design an L-level codebook, we partition N-
dimensional space into L cells { C, I = i = L} and associate a vector y,with each
cell C,. The quantizer then assigns the code vector y, if x is in C. A quantizer is
said to be an optimal (minimum-distortion) quantizer if the distortion is

12
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minimized over all L-level quantizers. There are two necessary conditions for
optimality. The first condition is that the optimal quantizer is realized by using a

minimum-distortion or nearest neighbor selection rule

q(x)=y, iffd(x,y,) <d(xy), j#i, 1 =j=L. (2.7)

That is, the quantizer chooses the code vector that results in the minimum
distortion with respect to x. The second condition for optimality is that each code
vector y, is chosen to minimize the average distortion in cell C,. That is, y, is that

vector y which minimizes

D, = J d(x,y) p(x) dx . (2.8)
x€C, .

We call such a vector the centroid of the cell C,, and we write

y;=cent(C,). (2.9)

Computing the centroid for a particular region will depend on the definition of the
distortion measure. In practice, we are given a set of training vectors {x(n), I = n
= M}. A subset M, of those vector will be in cell C,. The average distortion D, is
then given by

1
D=5 ZC d(x, ;) (2.10)
For either the mean square error or the weighted mean square error criterion, one
can show that D, is minimized by

1
%S ZC s (2.11)

i

or y, is simply the sample mean of all the training vectors contained in C,. One
method for codebook design is an iterative clustering algorithm known in
pattern-recognition literature as the K-means algorithm. In our problem here,
K =L.This algorithm divides the set of training vectors {x(n)} into L clusters C, in
such a way that the two necessary conditions for optimality are satisfied. Below,

13
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m is the iteration index and C(m) is the i-th cluster at iteration m, with y (m) its
centroid. The algorithm is as follows:

Step 1:  Initialization: Set m =0. Choose, by an adequate method, a set of initial
code vectors y(0),1 = i = L.

Step2: Classification: Classify the set of training vectors {x(n), I = n = M}
into the clusters C, by the nearest neighbor rule.

x € C(m), iff d[x,y(m)] = d[x,y{m)], for allj #1i.

Step 3: Code Vector Updating: m « m+1. Update the code vector of every
cluster by computing the centroid of the training vectors in each

cluster
y(m) =cen(C(m)),1 = i= L.

Step 4: . Termination Test: If the decrease in overall distortion D(m) at iteration
m relative to D(m-1) is below a certain threshold, stop; otherwise go to
Step 2. '

The above algorithm can be shown to convérge_ to a local optimum.
Furthermore, any such solution is, in general, not unique. Global optimality may
be approximately achieved by initializing the code vectors to different values and
repeating the above algorithm for several sets of initializations and then choosing
the codebook that results in the minimum overall distortion.

3. Voice Conversion based on Codebook Mapping

The voice conversion algorithm consists of two steps: a learning step and a
conversion-synthesis step. The learning step generates the mapping codebooks,
and the conversion-synthesis step uses them to synthesize.

14
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3.1 Learning Step

The mapping codebooks describe a mapping function between the vector
spaces of two speakers. Figure 2.2 shows a block diagram of the procedure for
generating a mapping codebook for spectrum parameters.

Step 1: Speakers, A and B, pronounce a learning word set used to generate a
codebook for each speaker. Then, learning words uttered by speaker A
are vector quantized using his/her codebook. The same words uttered by
speaker B are also vector quantized in the same way.

Step 2:  The correspondence between the vectors of the same words from the two
speakers is determined by using the Dynamic Time Warping (DTW).

Step 3:  The vector correspondences between the two speakers are accumulated
as histograms for all learning words.

Step4: Using the histogram for each code vector of speaker A as a weighting
function, a mapping codebook from speaker A to B is defined as a linear

combination of speaker B's vectors.
Step 5:  Steps 2, 3, and 4 are repeated to refine the mapping codebook.

Pitch frequencies and power values contribute heavily to speech individuality.
Mapping codebooks for these parameters are also generated at the same time
using almost the same procedure mentioned above, with these differences:

1. pitch frequencies and power values are each scalar-quantized, and

2. the mapping codebook for pitch frequencies is defined based on the
maximum occurrence in the histogram.

3.2 Conversion-Synthesis Step

15
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Figure 2.3 shows a block diagram of the conversion-synthesis step. First,
speaker A's speech is analyzed by the linear prediction method. Then the
spectrum parameters are vector-quantized using his/her codebook, and
parameters for pitch frequencies and power values are scalar-quantized using
his/her codebooks. Next, all parameters are decoded using the speaker A to B
mappihg codebooks between speakers A and B. Finally, speech is synthesized by
an LPC vocoder. The output speech will have the voice individuality of speaker B.

4. Performance Evaluation

i

4.1 Evaluation by Distortion

To evaluate the performance of this conversion technique, we measured the
distortion of the spectrum parameters as well as of the pitch frequencies.

4.1.1 Spectrum conversion experiments

Experiment conditions are listed in Table 2.1. A set of 100 phonetically-
balanced learning words was used to produce mapping codebooks. Spectrum
conversions were made between female and male voices, between male and fnale,
and between female and female voices. Six speakers (3 male and 3 female
speakers, all professional announcers) provided speech material.

Table 2.2 lists the results of the open test. After vector-quantization, two kinds
of spectrum distortions between two speech samples were calculated: between the
input and target speaker's ("before conversion”), and the converted and target
speaker's speech ("after conversion”). For the female-to-female conversion, the
distortion decreased by 27% compared to nonconversion, for the male-to-male
conversion by 49%, and for the male-to-female conversion by 66%. These results

16
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show that this conversion technique is highly effective when there is a large
enough difference between two speakers’s voices.

4.1.2 Pitch frequency conversion experiments

Pitch frequency was also converted using the same process described in 4.1.1,
and the experiment results are shown in Fig. 2.4. This figure shows the
relationship between the number of learning words and the average pitch
frequency differences after conversion. The value at 0 learning word shows the
natural average pitch frequency difference between the two speakers. Regardless
of speaker combinations, 60 words are enough to make a mapping codebook for
pitch frequency that reduces the average pitch frequency difference to less than
15 Hz.

4.2 Evaluation by Listening Test

To evaluate the overall performance of this technique, three kinds of listening
tests were carried out. The first dealt with male-to-female conversion and the
other two with male-to-male conversion.

4.2.1 Experiment procedure
4.2.1.1 Experiment 1

Experiment 1 was designed to evaluate voice quality for male-to-female voice
conversion by a pair-comparison listening test. In addition to the fully converted
speech, pitch and spectrum parameters were also converted separately in order to
examine their individual contributions to speech individuality. The following is a
list of 5 different speech conversions performed in this experiment.

1. vector-quantized original male speech (m)

2. male-to-female converted speech: pitch frequency conversion only (mp-{p)
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3. male-to-female converted speech: spectrum conversion only (ms-fs)
4. male-to-female converted speech: all parameters (m-f)

vector-quantized original female speech that is the target for the

%7

conversions (f)

To avoid unnecessary cues for the judgment of voice quality, different words
were used to make speech pairs for the listening test. A set of speech pairs
consisted of all possible stimuli combinations from the 5 different conversions, 40
in total. They were presented to listeners through a loud-speaker in a sound-proof
room, Twelve listeners were asked to rate the similarity of each pair into five
categories: "similar", "slightly similar", "difficult to decide", "slightly dissimilar",
"dissimilar".

i

4.2.1.2 Experiment 2

Experiment 2 was designed to evaluate the conversion between two male
speakers by the so-called ABX method. Stimuli A and B are vector-quantized
original speech tokens for speakers A and B. The stimulus X takes either the
converted token ( A—B or B—A) or the vector-quantized original token (A orB).
Four different words were used for the conversions and each triad was a
combination of 3 different words. A total of 96 speech triads were presented to the
listeners. The listeners were required to select the stimulus (A or B) more closely
resembling the stimulus X.

4.2.1.3 Experiment 3

Experiment 3 was designed to evaluate the conversion between male speakers
in the same way as in 4.2.1.1. Conversions for pitch frequencies alone and
spectrum parameters alone, however, were excluded. The following is a list of the
4 conversions used.

1. vector-quantized male speech (male 1)

2. same as 1 but for another male speaker (male 2)
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3. converted speech from male 1 to male 2 (male 1—male 2)
4. converted speech from male 2 to male 1 (male 2—male 1)

A total of 72 speech pairs were generated using the same procedures as in
Experiment 1.

4.2.2 Experiment results
4.2.2.1 Evaluation of male-to-female conversion ( Experiment 1)

Hayashi's fourth method of quantification[Hayashi, 1985] was applied to the
experimental data obtained by the listening test. This method places stimuli in a
space according to the similarities between every two stimuli. Its formulation
minimizes the measure Q,

Q= - Ze(i,j){x(i) —y(l')}z | (2.12)
ij
where e(i,j) denotes the similarity between stimuli ¢ and j, and x(i), y(j) represent
the locations of stimulus i in the space.

The projection onto a two-dimensional space is shown in Fig. 2.5. This figure
shows the relative similarity-distance between stimuli. "m—f{" converted speech
is very close to the speech "f", indicating that this technique properly converted
the male speech to the target female speech. Judging from the positions of
"mp—f{p" and "ms—1{s", we see that the first and second axes roughly correspond
to pitch frequency and spectrum differences, respectively. This indicates that
neither pitch frequency nor spectrum carries enough information about speech

individuality, and that both are necessary.
4.2.2.2 Evaluation of male-to-male conversion ( Experiments 2 and 3)

The results of Experiment 2 are listed in Table 2.3. The numbers in this table
are the percentages of responses in which stimuli X was judged éorrectly. These
results show that listeners can't always correctly identify the speaker, even if the
original speaker's speech is used as stimuli X; i.e., the correct answer is about
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85% in the male 1, male 2 pair, and about 60% in the male 1, male 3 pair. Judging
from these facts, the conversion between male 1, male 2 was satisfactorily

performed.

The relatively poor performance for the male 1-male 3 conversion stems from
the fact that male 1’s voice quality is very similar to male 3’s voice. This
similarity can be seen by the small "distance” between the original speaker and
target speaker shown in Fig. 2.6. This figure shows spectrum distance and pitch

frequency distance before and after conversion.

Figure 2.7. shows the results for Experiment 3 analyzed by the same method
asin 4.2.2.1. The converted speech samples, "male 1—male 2" and "male 2—male
1", are both placed close to their target speech. This indicates that the proposed
technique can also convert speech individuality between speakers of the same-

i
sex.

5. Improved Voice Conversion Algorithms

As discussed in section 4, voice conversion based on codebook mapping
successfully changes speech individuality. In other words, voice conversion can be
well formulated as a mapping problem between speakers' codebooks. However,
VQ also introduces quantization errors, which result in losing naturalness and
clarity of synthesized speech. In this section, we propose new algorithms to
improve the quality of converted speech itself and evaluate the performance.

5.1 Proposed Algorithms

On general principle, the larger the size of the codebook is, the smaller the
quantization errors are. However, there are the following problems on increase of
the codebook size:
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1. To optimally design a large codebook and a mapping codebook, we need not
only a large amount of data, but also expensive computational costs. In the
K-means algorithm, most of the computation result from the classification
step. For an L-level quantizer, M training vectors, and 1 iterations, the
computational cost for training is

NLMI = N2NrM], (2.13)

For reliable design of the codebook, one needs at least 10 and preferably
about 50 training vectors per code vector, so that M is on the order of 10L or

more.

2. Although VQ is very powerful and efficient in less than 10 bits speech
coding, the efficiency is saturated more than 10 bits[Moriya, 1982].

Therefore we take another strategy to improve the quality of synthesized speech;
i.e., the usage of information in input speech as much as possible. In the strategy,
we have a hypothesis that the most important mapping rules required in speech
individuality conversion have achieved by codebook mapping.

5.1.1 Improvement using fuzzy VQ

Fuzzy VQ is one technique to approximate an fnput vector by linear
combination of code vectors[Ruspini, 1970]. Therefore Fuzzy VQ can represent
various kinds of vectors beyond limitation caused by the codebook size, and
approximate input vectors more precisely than conventional VQ. Fuzzy VQ is
defined as follows:

1

<di ) (m-1)
d.
J

(2.14)
k

Jj=1
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k
=D uV, (2.15)

\;vhere u;; fuzzy membership function.u; € [0,1] i
di= | X—=V;|.V;isacodevectorin codebook V.
m: fuzziness.
X’: decoded spectrum of input spectrum X.
k: number of code vectors.
The proposed algorithm using Fuzzy VQ is as follows:

1. A mapping codebook is generated between speaker A and speaker B.

2. In the conversion-synthesis step, input spectrum parameters X are fuzzy
vector quantized, where k-th nearest code vectors to input spectrum are

used(k =6).

X =

£
i=

1”1- v (2.16)

where V;; a code vector in speaker A’s codebook V.
X’: a fuzzy vector quantized vector.

3. Inlocal spectrum space, it could be considered that the spectrum space has
smooth shape. A mapping codebook provides discrete (code vector)
correspondence of spectrum space between different speakers. Therefore if
an input vector(spectrum) is represented using k-th nearest code vectors by
fuzzy VQ, it is reasonable hypothesis that fuzzy membership function
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taken from speaker A’s spectrum space is preserved in speaker B’s
spectrum space ( refer Fig.2.8). After all, conversion is performed by
replacing speaker A’s code vectors by mapping code vectors as follows:

k
xmep Z u,i V::nap (2017)

i=1

where V;™9; a code vector in mapping codebook V™o,

Xmap. g converted vector.

5.1.2 Improvement using difference vector

In addition to applying fuzzy VQ, an input vector is modified using difference
vectors between the input vector and code vectors. The usage of difference vectors
malkes it possible to represent various spectra beyond the limitation caused by the
codebook size. The algorithm is as follows:

1. A mapping codebook is generated between speaker A and speaker B.

2. Basically conversion is performed by the following equation:
XM= (X— Vi) + V;mp

= (V;nap_ Vi) + X (i=1,2,..n) (2.18)

where V;; a code vector in speaker A’s codebook V.
Ve a code vector in a mapping codebook V™7,
X:an input vector.
Xmap: a converted vector.

3. In the conversion-synthesis step, input spectrum parameters X are fuzzy
vector quantized by Eq. (2.15). Using the fuzzy membership function u’ as a
weighting function, conversion is finally performed by the following equation(
refer Fig.2.9):

k B
xmap _ Z u»i(vrinap _ Vi> +X (i=1,2,..k) (2.19)
i=1
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In the following evaluation experiments, difference vectors are calculated
between LPC spectrum envelopes. LPC spectrum envelope is sampled at 256
evenly spaced points. Once add operation is applied to LPC spectrum envelopes,
the modified envelope can not be converted back to LPC coefficients. Therefore
after transforming LPC spectrum envelopes to waveforms by inverse Fourier
transform, speech is synthesized by overlap adding method. Finally, the
synthesized speech is again analyzed by LPC method then output speech is
synthesized by LPC. A block diagram of the algorithm using difference vectors is
shown in Fig. 2.10.

5.2 Evaluation by Listening Test

; To evaluate the performance of the improved algorithms, pair-comparison
listening tests are carried out among a basic algorithm that was explained in
section 3, the improved algorithm using fuzzy VQ and the improved algorithm
using difference vectors. Ten words are synthesized using the three algorithms
and all combinations of synthesized speech are presented to 12 listeners, and they
are asked to indicate the better one.

Table 2.4 shows the experiment results. Judging from the table, the both
improved algorithms have significantly better performance than the basic
algorithm, and the improved algorithm using difference vectors has the best
performance. Main improvements of the synthesized speech are summarized in
two points; i.e., improvements in smoothness and clarity improvements in

consonants.

Improvements in smoothness means reduction of click and rough noise, which
result in reducing artificial sound and increasing naturalness of the synthesized
speech. This effect can be obtained by both the usage of fuzzy VQ and the usage of
difference vectors. Figure 2.11 shows speech waveform and LPC spectrum
envelope of converted speech by VQ(the basic algorithm) and fuzzy VQ (the
improved algorithm). As shown in the figure, both waveform and LPC spectrum
change smoothly when fuzzy VQ is applied. That means fuzzy VQ makes it
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possible to generate more spectrum pdtterns beyond the limitation by the
codebook size and to successfully interpolate code vectors.

Clarity improvements in consonants can be obtained by only the usage of
difference vectors. In Fig. 2.12, LPC spectrum envelope of original speech, target
speech, converted speech using fuzzy VQ, converted speech using difference
vectors are shown and also difference vectors are shown. According to the
amplitude of the difference vectors, the speech segment in the figure is divided
into two parts; i.e., part (A) where difference vectors are almost equal to zero, and
part (B) where difference vector has large amplitude. An analysis of the result of
the listening test reveals that the clarity in the part (A) is improved and the part
(A) is correspond to consonant region. This improvement can be also shown in
part (A) of Fig. 2.12. The second lowest peak of LPC spectrum can be observed in
the converted speech using difference vectors as well as in both the original
speech and the target speech synthesized speech. Judging from these results, the
usage of difference vectors is very effective to represent details in spectrum
characteristics that are ignored by VQ or fuzzy VQ.

6. Conclusion

In this chapter, new voice conversion algorithms based on codebook mapping
were proposed. The advantage of this technique are summarized as follows:

1. The mapping codebooks which make it possible to give an individuality to
synthesized speech are generated from a limited number of word utterances.

2. The mapping codebooks enable voice conversion of high quality between any
two speakers.

3. The synthesis process requires few computation and produces speech in real

time.

The performance of this technique is confirmed by spectrum distortion and
pitch frequency difference. The spectrum distortion between original speech and
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target speech decreased by a range of 27% to 66%. Pitch frequency difference
decreased to less than 15Hz. The overall performance of this technique is also
confirmed by listening tests. It can be concluded that the converted speech has a
voice quality very close to the target speaker’s.

To improve naturalness and clarity of the converted speech, the usage of fuzzy
VQ and difference vectors was discussed. According to listening test, fuzzy VQ
makes it possible to improve smoothness by generating more spectrum patterns
beyond the limitation by the codebook size and the usage of difference vectors is
very effective to improve clarity by representing details in spectrum
characteristics that are ignored by VQ or fuzzy VQ.
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Table 2.1 Experiment conditions

A/Ddata

12KHz sampling. 16bit

window length

256points (21.3msec)

window shift

-36points (3.0msec)

analysis order 12
) WLR(Weighted
clustering measure Likelihood Ratio)
learning samples
for cluslering 5,000 frames
codebook size for
spectrum parameter 256
learning words for mapping 100
codebook size for
pitch frequency 35 ~ 64
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Table 2.2 Spectrum distortion

speaker combination before ~ after
conversion conversjon
m

femalel—f{emale2 0.2759 0.2109

femalel—female3 0.2070 0.1489
5 S T s A D

malel—male2 0.3364 0.1717

malel—male3 0.2851 0.1550
N _m

"malel—femalel 0.6084 0.2193
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Table 2.3 Percentage of correct responses

correct correct
speaker combination response(%) speaker response(%)
mw_ R RN
male 1—male 2 69.4 male 2 84.7
male 2—»male 1 75.0 male 1 85.4
male 1—male 3 46.5 male 3 64.6
male 3—»male 1 38.8 male 1 58.3
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Table 2.4 preference score

Stimuli combinations

( better > worse )
U

Preference score (%)

Fuzzy VQ > VQ 73.0
Difference vector > VQ 76.0
Difference vector > Fuzzy VQ 62.9
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Chapter 3. PITCH MODIFICATION BY SIGNAL RECONSTRUCTION

1. Introduction

Speech modification algorithms play an important role in speech applications.
For exarriple, modification of pitch frequency and duration is necessary in dyad-
based synthesis-by-rule systems, and the spectrum envelope should also be
modified in a voice quality control system. Although the modification of such
parameters is possible using conventional vocoder algorithms, the modified
speech quality is not enough, especially for pitch frequency modification. In this
chapter we propose a new algorithm which makes it possible to synthesize high
quality speech even if pitch frequency or duration is somewhat changed.

' To achieve high quality, the proposed algorithm is developed based on the
Short-Time Fourier Transform(STEFT) synthesis. The synthesis algorithm can
theoretically reproduce the original speech from analysis parameters. Therefore,
all that is necessary to achieve high quality modified speech is to modify these
parameters appropriately. Some speech modification algorithms based on the
STFT have been proposed[Portnoff, 1981][Seneff, 1982][Roucos,
1985][Charpentier, 1986]. The following two points are new technical issues in
the proposed algorithm. First, an algorithm is adopted to separate spectrum -
envelope and source components from the speech signal. The parameters which
contribute only to a desired modification should be changed. From this point of
view, a new cepstrum lifter is proposed. Second, a new algorithm to control phase
spectrum is proposed. In the modification algorithms based on the STFT that
have been proposed, the phase unwrapping and the phase control are not only
very important but also very complex procedures. The proposed algorithm
eliminates these problems by introducing window shift control and the signal
reconstruction algorithm[Griffin, 1984].

In Section 2, STFT analysis and synthesis are briefly reviewed. In the Section
3, the details of the proposed algorithm are explained. In Section 4, the
performance of the algorithm is evaluated through a listening test.
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2. Short-Time Fourier Transform of a Sequence

In this section, we define the STFT representation for a sequence[Lim, 1988].
A major theme used throughout this section is that the representation for the
STFT of a sequence is analogous to the Fourier transform representation of a
sequence.

2.1 Fourier Transform View

The STFT is presented as an extension to the basic Fourier transform
definitions for a sequence. In particular, we introduce the discrete-time STFT and
the discrete STFT as counterparts to the discrete-time Fourier transform and the
itliscrete Fourier transform, respectively. The discrete-time STFT is related to the
discrete-time Fourier transform, which is given by

@

Xw= D x(ne " 3.1)
n=—o
where  is a continuous variable denoting frequency. The discrete-time STFT of
x(n) is a set of such discrete-time Fourier transforms corresponding to different
time sections of x(n). The time section for time n, is obtained by multiplying x(n)
with a shifted sequence w( n,-n). The expression for the discrete-time STET at
time n is therefore given by

X(no, w) = Z x(n)w(n.o—n) e Jon (3.2)
where w(n) is referred to as the analysis window. The sequence fy,(n) =x(n)w(n,-
n) is generally called a short-time section of x(n) at time n,. This sequence is
obtained by time-reversing the analysis window w(n), shifting the result by n,
points. and multiplying it with x(n). Once we have the short-time section for time
n, we can take its Fourier transform to obtain the frequency function X(n), )
with n, fixed. To obtain X(n,+1, »), we slide the time-reversed analysis window
one point from its previous position, multiply it with x(n), and take the FFourier
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transform of the resulting short-time section. Continuing this way, we generate a
set of discrete-time Fourier transforms that together constitute the discrete-time
STFT. We obtain the mathematical representation for the STFT by replacing the
fixed n,of Eq.(3.2) as m. We thus obtain the STFT definition:

o

X(n,w)= Z (m)wln—m) g~ Jom (3.3)

m=—c

For digital processing, we use the discrete STFT, which is related to the discrete-
time STFT in the same manner as the DFT is related to the discrete-time Fourier
transform. Recall that the DFT X(k) of a finite-duration sequence x(n) is obtained
by sampling the discrete-time Fourier transform over one period. Thatis,

X(k) = XN _, R (k) (3.4)

where N is the frequency sampling factor and R\ (k) is an N-point rectangular
sequence given by )

RN(k)= ulk)—u(k—N) (3.5)

- In analogy, the discrete STFT is obtained from the discrete-time STFT through
the following relation:

X(n, k)= X(n, )l _, R (k) (3.6)

where we have sampled the discrete-time STFT with a frequency sampling
interval of 2=/N to obtain the discrete STFT. Substituting Eq.(3.3) into Eq.(3.6),
we obtained the following relation between the discrete STFT and its
corresponding ‘sequence x(n):

[+ <]

X(n, k)= Z 2(m)wln—m) e_jz”k"'/NRN(k) | 3.7)

m=—wo

In many applications, the time variation (the n dimension) of X(n,%) is decimated
by a temporal decimation factor L to yield the function X(nL,k).

Just as the discrete-time STIFT can be viewed as a set of Fourier transforms of the
short-time sections f (m), the discrete STFT in Eq.(3.7) is easily seen to be a set of
DFTs of the short-time sections f, l( m). When the time dimension of the discrete
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STFT is decimated. the correspondence short-time sections f,;(m) are a sub set of
f (m) obtained by incrementing n by multiples of L.

2.2 Short-Time Fourier Synthesis: Overlap-Add(OLA) Method

The OLA method is motivated from the Fourier transform view of the STFT.
The simplest method obtainable from the Fourier transform view is in fact not the
'OLA method. It is instead a method known as the inverse discrete Fourier
transform(IDFT) method. In this method, for each fixed time, we take the inverse
DFT of the correspon'dence frequency function and divide the result by the
analysis window. This method is generally not favored in practical applications
because the slightest perturbation in the STFT can result in a synthesized signal
yery different from the original. For example, consider the case where the STFT is
multiplied by a linear phase factor the form /"0 with n, unknown. Then the
IDFT for each fixed time results in a shifted version of the corresponding short-
time section. Since the shift n, is unknown, dividing by the analysis window
without taking the shift into account introduces a distortion in the resulting
synthesized signal. In contrast, the OLA method, which we describe next, results
in a shifted version of the original signal without distortion.

The OLA method is also best described in terms of the Fourier transform view.
In the OLA method, we take the inverse DFT for each fixed time in the discrete
STIT. However, instead of dividing out the analysis window from each of the
resulting short-time sections, we perform an overlap-and-add operation between
the short-time sections. This method works provided the analysis window is
designed such that the overlap-and-add operation effectively eliminates the
analysis window from the synthesized sequence. The OLA method is motivated
by the following relation between a sequence and its discrete-time STFT:

1 g < —Jjwn

A p— 0
where
w

n=—a
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The OLA method carries out a discretized version of the operations suggested
on the right of Eq. (3.8). That is, given a discrete STFT X(n, k), the OLA method
synthesizes a sequence y(n) satisfying the following equation:

o

1
=55 3

L M-t
L Z X(p, ) 2N (3.10)
N o

The term inside the rectangular brackets on the right is an inverse DFT that for
each p gives

yp(n) =x(n)w(p—n) (3.11)

The expression for y(n) therefore becomes

1 [re]
=| — — (3.12)
Y = %o ] 2wt -

Y’ p=—@

which then reduces to

1 [+d]
= z - (3.13)
y(n) x(n)l . ] R w(p—n)

In Eq.(3.12) we note that y(n) will be equal to x(n) provided

[

> wp—n) =W0O) (3.14)

p= - 00
Furthermore, if the discrete STFT has been decimated in time by a factor L, it can
be similarly shown that if the analysis window satisfies

o

S wpL—n) = ."fg)l (3.15)

p: - 00
then x(n) can be synthesized using the following relation:

[

L
o = 5 2

= —00

N-1

N k=0

Equation (3.15) is the general constraint imposed by the OLA method on the
analysis window. It requires the sum of the analysis windows(obtained by sliding
w(n) with L-point increments at a time) to add up to a constant.
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We can show that the OLA constraint in Eq.(3.15) is satisfied by all finite-
bandwidth analysis window whose maximum frequency is less than 2x/L, where

L is the temporal decimation factor.

To see how finite-bandwidth analysis window satisfy the OLA constraint,
suppose that the analysis window has maximum frequency w_, and consequently
bandwidth 2w . If we let w’(p) denote the sequence w(pL-n), then the OLA

constraint in £q.(3.15) can be rewritten as

)
WL

where W(w) denotes the Fourier transform of w'(p). Noting that w'(p) is a

W) = (3.17)

sampled version of w(p-n), we can easily show that

o«

1 .
W) =~ > ey, _kexlL) (3.18)

k= — 00

If there in no overlap between W(w) and W(w-k2r/L) at w =0, then Eq.(3.18) gives
the OLA constraint expressed in Eq.(3.17). To have no overlap at =0 between
W(w) and W(w-k27/L) it is easy to see that we must have w_ < 27/L, where «, is
the maximum frequency in W(w). We conclude that any finite-bandwidth window
whose maximum frequency is less than 2n/L will satisfy the OLA constraint in
Eq.(3.15).

The transition width of main lobe of Hamming window is 8x/N. N is window
length. Therefore the decimation factor L should be less than N/4 when Hamming
window is used as the analysis window.

2.3 Short-Time Fourier Transform Magnitude(STFTM)
Analysis

In speech applications, the spectrogram that can be related to the magnitude
of the STFT has played a major role. In particular, this representation is a non-
negative time-frequency function. On the other hand, the STFT is generally a
complex-valued function and for applications such as time scale modification of
speech, estimation of the phase of this function is computationally difficult. In

_contrast, a number of techniques have been developed where the processed signal
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is estimated from only the STFT magnitude(STFTM), thus circumventing the
phase estimation problem.

The magnitude of the STFT is an alternative time-frequency signal
representation. That the STFT is not a unique representation in all cases is easily
seen from the simple observation that x(n) and its negative, -x(n), have the same
STFTM. A one-sided sequence x(n) can be recovered from its STFTM when the
analysis window is nonzero over its finite duration and x(n) satisfies the
appropriate zero-gap restriction. The key to recovering x(n) is the observation
that [X(n,w)/ has additional information about the short-time sections of x(n)
besides their spectral magnitudes. This information is contained in the overlap of
the analysis window positions. If the short-time section at time n is known, then
the signal corresponding to the spectral magnitude of the adjacent section at time
n--1 must be consistent in the region of overlap with the known short-time

"section. In particular, if the analysis window were nonzero and of length NV, then
after dividing out the analysis window, the first N -1 samples of the segment at
time n+1 must equal the last N -1 sample of the segment from its first N -I
values, we could repeat this process to obtain the entire signal x(n).

Like the STFT, the STFTM can be used for analyzing the time-varying
spectral characteristic of a sequence. To carry out such STFTM analysis on a
digital computer, we need to introduce the discrete STFTM. By sampling the
frequency dimension of the STFTM, [X(n, w)/, we obtain the discrete STFTM,
which is defined as [X(n,k)/, the magnitude of the discrete STFT.

2.4 Signal Estimation from Modified STFT or STFTM

In many applications it is desired to synthesize a signal from a time-frequency
function formed by modifying an STI'T or STFTM of a signal we wish to process.
Such modifications may arise due to quantization errors in, for example, speech
coding or purposeful time-varying filtering for signal processing application such
as speech enhancement. An arbitrary function of time and frequency, however,
does not necessarily represent the STI'T or STFTM of a signal. This is because the
definition of these transforms impose a structure on their time and frequency
variations. In particular, because of the overlap between short-time sections,
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adjacent short-time segments cannot have arbitrary variations. A necessary but
not sufficient condition on these variations is that the short-time section
corresponding to each time instant must lie within the duration of the
corresponding analysis window. Even if this time-placement constraint is
satisfied, a further condition that the STEFT or STFTM must satisfy is that
adjacent short-time sections should be consistent in their region of overlap. When
the STFT or STFTM of a signal is modified, the resulting time-frequency function
does not generally satisfy such constraints.

The synthesis method we explained in 2.2 was derived with the assumption
that the time-frequency functions to which they are applied satisfy the
constraints in the definitions of the STFT or STFTM. Given a function that does
not satisfy those constraints, the synthesis method have no theoretical validity
ffor their application. However, under certain conditions, those methods can be

shown to yield reasonable results in the presence of modification.

'2.4.1 Least-squares signal estimation from modified STFT

In this approach we estimate a signal whose STFT is closest in a least-square
sense to the modified STFT. More specifically, we wish to minimize the mean-
square error between the discrete-time STFT X (n, w) of the signal estimate and
the modified discrete-time STFT which we denote by Y(n, «). This optimization
results in the following solution for the estimated signal x (n):

v

z wlm-mf (n) (3.19)

n=—w

2 w2(m — r;)

m=-—ow

xe(n) =

where [, (n) is the inverse Fourier transform of the frequency variation at time m
of the modified STFT Y(m, w). Since in practice we have only the discrete function
y(n,k), the short-time sections f (m) can be obtained provided the frequency
sampling factor N is large enough to avoide aliasing in the short-time sections.
The specific distance measure used in the minimization is the squared error
between X (n, w) and Y(n, ) integrated over all w and summed over all n:
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oo

= > i] |X (n,w)=Y(m, o) Pde (3:20)
2 ) _, ¢

D

X (n, @), ¥(n, o)

m= —o
The solution in Eq.(3‘.19) extends in a simple manner to the case involving
temporal decimation. Specifically, if L is the temporal decimation factor, then the
solution in Eq.(3.19) becomes

o

2. wlmL-n)f, () (3.21)

m= -

xe(n) =

Z w2(mL——n)
M= —o

In general, the sum in the denominator of the right side of Eq.(3.21) is a function
of n. However, there exist analysis windows w(n) such that the sum in the’
! denominator is independent of n. It should be noted that the sum in the
denominator has the same form as the sum in the constraint equation (3.15) for
the OLA method except that the analysis window is replaced by its square. That
is, any window whose square satisfies the OLA constraint will make the
denominator sum in Eq.(3.21) independent of n.

2.4.2 Least-squares signal estimation from modified STFTM

The least-square approach can also be used for signal estimation from the
modified STFTM. The resulting method estimates a sequence x (n) from a desired
time-frequency function [X (n, w)/, which is a modified version of an original
STFTM, [X(n, w)]. The method iteratively reduces the following distance measure
between the STFTM [X (n, w)] of the signal estimate and the modified STFTM

/Xd(n, w)/:

o0

X (n, ), Y(n, w)] = > Elﬂ X (m,0) =X m, o) e (3.22)

m=—ow - .

D

The solution is found iteratively because sa yet no closed-form solution has been
discovered for x(n) using the distance criterion in Eq.(3.22). The iteration takes
place as follows. An arbitrary sequence(usually white noise) is selected as the
first estimate x,/(n) of x (n). We then compute the STFT of x (n) and modified it
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by replacing its magnitude by the desired magnitude /X (n, »)/. From the
resulting modified STFT, we can obtain a signal estimate using the method based
on Eq.(3.19) in the previous section. This process continues iteratively, as shown
in Fig. 3.1. In particular, the (i+1)st estimate x 7*¥(n) first obtained by
computing the STFT X !(n, ) of x (n) and replacing its magnitude by [X (n, o)/
to obtain Y{n, ). The signal with the STFT closest to Yi(n, w) is found by using
Eq.(3.19). All steps in the iteration can be summarized in the following update

equation:
< 1 (" [ jeon
> wm—n)==|  Y'mw)d" du
Tl _n . _
A¥ ) = 22 - , (3.23)
Z wXm—n) '
m= —wo
 Where
, Xt (m, w)
Yim, w) = IXd(m,a;)l——_————' (3.24)
| X:(m, w)| .

Although we restricted the preceding discussion to the discrete STFT, these
results are easily extendable to the case where the STFT has been decimated in
time.

3. A New Pitch Frequency Modification
Algorithm

A block diagram of the proposed algorithm is shown in Fig.3.1.

3.1 Spectrum Envelope Extraction

Homomorphic deconvolution is first applied to get the source component
G(mL, w). The unique concept in this block is the lifter (referred to as "comb
lifter" in this paper) that passes all cepstrum except cepstrum in the pitch
frequency region. This is based on the idea that the parameters which contribute
only to the pitch frequency should be changed, while the rest of the parameters
should remain unchanged to maintain high quality.
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Fig.3.3(a), for example, shows a magnitude spectrum of spectrum envelope
and source that were separated by a conventional cepstrum lifter which passes all
low-quefrency part cepstrum(n<30). Also, Fig.3.3(b) shows them separated by
the "comb lifter" which passes all cepstrum except those 20 points ( 1.67msec in
quefrency, at 12KHz sampling ) to each side of the pitch period. Although the
magnitude spectrum of the source component in Fig.3.3(a) has a flat spectrum
envelope, the shape of the spectrum is not uniform; i.e., at some points (a or b in
Fig.3.3(a)) the spectrum dips. On the other hand, the magnitude spectrum of the
source component in Fig.3.3(b) is uniform and similar to a sine curve. This
indicates that pitch modification to the output of the "comb lifter" makes it
possible to reconstruct a signal without any side-effect in the high frequency
region. Judging from the preliminary listening test, the "comb lifter" makes
modified speech clear.

3.2 Pitch Frequency Modification

To change the pitch frequency a linear interpolation is performed by
introducing a modification-factor & to both the real and imaginary parts of the
source component G(mL, w). The factor & is defined as the ratio of the original
pitch frequency to the desired pitch frequency. To achieve high spectrum
resonance, a 512-point FFT is used for 256-point speech data. Therefore, an
additional 256 zeros are set in the data array for FFT as shown in Fig.3.4(a).
When the pitch frequency is raised, the resultant data that exceed the maximum
frequency-band are discarded and when it is lowered, unknown data near the
maximum frequency are regenerated by mirror image copying of the lower part of
the spectrum. We get modified source spectrum G, (mL, w) through the above
procedures.

The copying in the pitch-lowering modification has the side-effect shown in
Fig.3.4(b); i.e., the part where zeros are set in the original speech has non-zero
values after the modification. To compensate for this side-effect, modified
spectrum G’(mL, w) is obtained by the following equation.
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, , IGm(mL,w)l
G(mL,n)=G@ (mL,n) —————
i IG_ (mL,w) (3.25)
where G’ (mL, w) is the spectrum of the residual signal, shown in Fig.3.4(b),
whose non-zero part is replaced by zero. This procedure, as shown in Fig.3.4(c),
brings the non-zero value close to zero.

3.3 Phase Adjustment

After multiplying the modified source component G'(mL, w) by the spectrum
envelope component |V(mL, )i, modified speech is obtained frame by frame by
the inverse Fourier Transform. Fig.3.5 shows windowed speech signals for
successive frames. The left speech signals are original speech and the right ones
are pitch-raised speech. These signals are overlap added using the Eq.(3.21) in
section 2 to make a modified speech signal x’(n). It is apparent, as shown in
Fig.3.5, that the phase of pitch-raised speech is not continuous between frames
because of the linear interpolation in the previous block. To cope with this, a
method of variable window shift is used;i.e. when speech is analyzed with window
shift L and modified with a modification-factor k, the window shift is replaced by
L'=L/k instead of L in overlap adding.

3.4 Duration Adjustment

The speech signal modified by the previous block is generally different in
duration from the original because of the window shift control. One purpose of
this block is to compensate for this side-effect, the other is to modify speech
duration. Duration modification is performed by the signal reconstruction
algorithm from the modified STFT magnitude proposed by Griffin and
Lim[Griffin, 1984] which was described in section 2.4.2. White noise is used as the
initial value x(n). The compensation procedure is as follows. First the modified
speech x’(n) is again analyzed with window shift L' then reconstructed with
window shift L.
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4. Analysis-Synthesis Experiment

To confirm potential performance of the proposed algorithm, a speech
analysis-synthesis experiment was carried out. Figure 3.6 shows spectrograms
and speech waves of an original speech, analysis-synthesis speech by the proposed
method, by cepstrum vocoder[Imai, 19801, by LPC vocoder. The speech was
uttered a male speaker. The experiment conditions are shown in Table 3.1.

In Fig. 3.6, it is observed that the spectrogram of both cepstrum and LPC
vocoders is too simplified, but that the spectrogram of the proposed method is very
close to that of the original. In terms of the speech waveform, cepstrum and LPC
vocoders synthesize speech which looks like impulse. The proposed method well
reconstructed pitch structure which are different from both the original speech
“and the outputs vocoders. Judging from the informal listening test, we could not
find out difference between original speech and the analysis-synthesis speech by
the proposed method. ‘

5. Speech Modification Experiment

In the pitch frequency modification, the proposed algorithm also needs time
modification. In this section, time modification experiment is first carried out,
then pitch modification experiment is carried out to evaluate the overall
performance.

5.1 Time Modification

Speech uttered by a male speaker was expanded by 1.3 and compressed by 0.7.
The experiment condition is shown table 3.1. Figure 3.7 shows estimation error
according to a iteration number.The estimation error monotonously decrease
according to iteration, especially it quickly decreases during the first five
iterations. A small amount of reverberation was detectable in the estimated
signal, but the signal was still high quality. The estimation error of compression
factor 0.7 converges to higher value than the error of expansion factor 1.3.
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However, there were no difference between the two in its quality.In ‘terms of

iteration number, there is no improvement in'its quality after six times.

5.2 Pitch Frequency Modification

In this section the effect of the proposed algorithm on pitch modification is
discussed. Two pitch frequency modifications are evaluated by listening tests.
One modification is uniform raising or lowering, and the other is non-uniform

modification.

5.2.1 Experiment method

;  The performance of the proposed algorithm was compared with the cepstrum
vocoder, because its quality was the best among the vocoder speech tried. Table
3.1 shows the analysis-synthesis conditions. Sets of two kinds of stimuli are
randomly presented to 8 listeners who are not familiar with the synthesized
speech. One pair consists of original speech and speech modified by the proposed
algorithm, the other consists of original speech and speech modified by the
cepstrum vocoder. The listeners are asked to score the pairs according to the
similarity between the original and modified speech. The modifications for

producing evaluation test speech samples are as follows.

(1) Uniform modification: Pitch frequency of seven words was modified uniformly
by modification-factors 0.9 and 1.1.

(2) Non-uniform modification: Like Chinese which is a tonal language, some
Japanese words with the same phonetic structure differ in meaning according
to pitch contour. Four pairs of words that have this property are used in non-
uniform modification. Fig.3.6 shows, for example, the original pitch frequency,
the modified pitch frequency and the modification-factor for each frame. The
words are /ueru/, /shouhilN/, /seNryou/, and /deNki/.

5.2.2 Experiment{ results

58



Chapter 3. PITCH MODIFICATION BY SIGNAL RECONSTRUCTION

Table 3.2 shows the experiment results. The score that listeners gave to the
speech of the proposed algorithm is divided by the score obtained from the vocoder
speech. This ratio is given in the table. The reason pitch lowering is less
satisfaction than pitch raising is the regeneration by copying described in Section
3.2. The table indicates that in all modifications the proposed algorithm can
modify speech better than the vocoder algorithm.

6. Conclusion

We proposed a new speech modification algorithm. The advantages of this
algorithm are listed below;

(1) This algorithm needs no phase unwrapping which is the most complex and
¢  critical procedure in the conventional method.

(2) This algorithm is easy to implement in an automatic system because explicit
pitch frequency extraction is not required.

(3) The quality of synthesized speech is very high and natural because residual
signals are used as excitation. |

(4) This algorithm makes it possible to modify the spectrum envelope in a non-
parametric way because it is represented by FFT magnitude.
The listening test reveals that the proposed algorithm can reproduce high

quality speech sounds in pitch frequency modification for both uniform and non-

uniform pitch modification.
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Fig.3.8 Pitch-modification-factor for
non-uniform modification

67

fuerw/ fshouhilN/ /seNryow fdeNki/
s 533 R Ted>0a S AT =S iR TAZ
pltch pitch piteh : piten
{requency frequency frequency frequency
' hY E S
158 |- R 158 |- I 158 |- - \. 150 - —
) Ak AN
J \} ,\"—\ i.’l ‘:'I I
. . “ et
10 | -4 1ee Wy 100 |- \ 100 |- '\' =
. \ - 0‘ ' -
\ ™
50 3 50 50
time time time time
original pitch
#1s >TF R LsST0 A HATs> TR Ths
pitch . pitch pitch _ pitch
frequency frequency frequency frequency
¢ . f
¢ B B HV & 1
150 | 139 158 u \\{"\ 150 |- ',\“
/\ v \ .
4 : 1
b s - 1 . | Ao
199 : \ 199 ‘ \\ 10¢ \ 190 \ \ \
50 58 50 : s0
time time time time
modified pitch
flxd - Ex3 f — AR ot i - BR
conversien conversion canversion conversion
ratio ratie ratie Tratio '
1.7 1.7 1.7 1.7
1.9 1.0 1.8 ————/’\/— 1.0
[ X) * .4 6.4 0.4
time time time time
modification factor



Table 3.1-0 ExperimentConditions(common)

A/Ddata 12KHz sampling,” 16bit
window | Hamming window
window length ‘ 256points (2 1.3msec)

Table 3.1-1 Experiment Conditions

(proposed method)
window shift 32points (2.7msec)
FI'T points 512points
iteration for reconstruction 20

Table 3.1-2 Experiment Conditions

(cepstrum synthesis)
window shift 60points (5.0msec)
cepstrum order 30
synthesis filter LMA

Table 3.1-3 Experiment Conditions
(LPC synthesis)

window shift 60points (5.0msec)

cepslrum order 14
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Table 3.2 Experiment result

ratio -
uniform (0.9 times) 1.43
uniform (1.1times) 1.68
non-uniform 1.41
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Chapter 4. CROSS-LANGUAGE VOICE CONVERSION

1. Introduction

In recent years, there are many opportunities to communicate with speakers
of other languages. We must make an effort to communicate in other languages,
sometimes making mistakes in understanding or even, if we don't know the
language, not understanding anything at all. A system using the latest
information processing technology to overcome this language barrier would be
very useful. One such system is an automatic telephone interpretation system:
i.e., a facility that enables a person speaking in one language to communicate
readily by telephone with someone speaking another language [Kurematsu,
1987]. Our laboratory, ATR Interpreting Telephony Res. Labs., is dedicated to
research aimed at developing an interpreting telephony system.

This system consists of three constituent technologies: speech recognition,
machine translation, and speech synthesis. An interpreting telephone will
recognize Japanese speech, translate it into English, then synthesize English
speech. It will, of course, also work in the opposite direction. To develop an
interpreting telephone, there are many issues to be solved in the constituent
subsystems. In this chapter, we will discuss speech individuality control in an
interpreting telephone. Because we can recognize a speaker over a conventional
telephone line, we would like also to retain speaker individuality in an
interpreting telephone. In other words, the quality of the synthesized English
speech should be changed to sound as if the Japanese speaker uttered the English. -
We call the problem “cross-language voice conversion” [Abe, 1990a][Abe, 1990b],
because speech individuality would be preserved across different languages.

In section 2, spectral differences between English and Japanese are
investigated using speech from a bilingual speaker. In section 3, we propose cross-
language voice conversion algorithms and evaluate their performances.
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2. Japanese Spectrum Space vs.
English Spectrum Space

To examine spectrum differences in different languages, speech uttered by a
bilingual speaker was analyzed. The material makes it possible not only to
eliminate spectrum differences caused by different speakers but also to
specifically focus on the spectrum differences caused by the two languages. The
results of this section will be used to develop a cross-language voice conversion
based on codebook mapping in section 3. The following points are discussed.

"D How much does the spectrum space increase to deal with more than one
language? ‘

Codebook size is important in our voice conversion algorithm because
spectrum characteristics of a speaker are represented by code vectors of the
speaker’s codebook. Codebook size for mixed speech of English and Japanese is
examined in section 2.2,

(@ Are there any spectra which characterize certain English or Japanese sounds?
Voice conversion is performed by replacing a speaker’s code vector with the
corresponding code vector of another speaker. The requirement that every
English code vector has a corresponding Japanese code vector is examined in
section 2.3.

® Which phonemes contain the spectra? ‘
In section 2.4, we examine phonemes that contain code vectors which
predominantly occur in English or Japanese.

@ How important are the spectra from a perceptual point of view?
In section 2.5, the spectral differences are investigated from a perceptual
point of view.
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2.1 Speech Data and Analysis Method

To investigate the spectrum difference between Japanese and English, speech
uttered by a bilingual speaker was collected. The bilingual speaker whose mother
and father are Japanese and German, respectively, was born and brought up in
Japan. To select the bilingual speaker, we especially paid attention to his
pronunciation. Native speakers have judged his Ehglish and Japanese
pronunciation to be of native speaker level. The speaker read a list of 216
phonetically balanced Japanese words and 328 phonetically balanced English
words. Three male and three female Japanese speakers also read the list of 216
phonetically balanced Japanese words.

Codebooks were generated using the Linde-Buzo-Gray(LBG) algorithm[Linde,
1980]. Table 4.1 shows analysis parameters.

2.2 How Much does the Spectrum Space Increase to Deal with
More than One Language?

2.2.1 Experimental method

Codebook sizes were examined using a spectrum distortion measure,
WLR(Weighted Likelihood Ratio), is defined by the following equation
[Sugiyama, 1981]:

D= Z (r;=r e, —¢)) (4.1)
i=1

Here, r; and r’ are the i-th autocorrelation coefficients and c; and ¢/ are the i-th
LPC cepstrum coefficients. This measure enhances the contrast between peaks
and valleys of the LPC spectral envelope.

Six codebooks were generated for the following data sets.

(1) English and Japanese words uttered by the bilingual speaker
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(2) English words uttered by the bilingual speaker

(3) Japanese words uttered by the bilingual speaker

(4) Japanese words uttered by one male and one female speaker
(5) Japanese words uttered by two male speakers

(6) Japanese words uttered by one male speaker

2.2.2 Experimental results

3

Fig.4.1 shows spectrum distortions for data from (1) to (6) according to
codebook size. Because the spectrum distortions in (2), (3) and (6) are almost the
same, we can use the same codebook size in both English and Japanese to
represent spectrum characteristics of a speaker. The distortion of (1) in an 8-bit
codebook almost equals the distortion of (2), (3) and (6) in 7-bit codebooks, and is
smaller than the distortion in (4) and (5). This indicates that, when a codebook is
generated for speech from English and Japanese, its codebook size should be
almost twice as large as the codebook size of English or Japanese, but does not
have to be as much as the codebook size of two speakers.

2.3 Are There any Spectra which Characterize Certain English
or Japanese Sounds?

2.3.1 Experimental method

To investigate if there are any code vectors(spectra) which characterize
certain English or Japanese sounds, and to know how much code vectors overlap
in different languages, an experiment was carried out. Experimental procedures
are as follows:

(1) A codebook was generated using the mixed speech fromn the following category
pairs:

(A)English vs. Japanese

(B)male speaker vs. female speaker (in Japanese)

(C)male speaker 1 vs. male speaker 2 (in Japanese)

(D)word set 1 vs. word set 2 (uttered by the same speaker in Japanese)

(2) All data from the each category pair was vector quantized using the codebook.
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(3) We count how many times a code vector of the codebook occurred in two
categories.

The distribution distance between the above categories is calculated using
Kullback's divergence[Kullback, 1970] defined as follows:

P(ailwl)
Plaw,) (4.2)

D=3 [P@lw) - Plalo)llog
i=1 '
where, wy is category 1, wg is category 2, r is a codebook size, and P(ajlw;) is the
posteriori probability of the code vector a; in category wj.

2.3.2 Experimental results

{
Table 4.2 shows Kullback's divergence for each category pair. Kullback's

divergence indicates the overall distance between two distributions; the larger
the value, the more the two categories are separated. Therefore, the data uttered
by the male speaker and the female speaker are well separated and the data
uttered by the same speaker is difficult to separate. Judging from the value of the
English-Japanese pair, the two categories show more overlap than separation.

To show this visually, scatter plots are shown in Figs. 4.2, 4.3, 4.4, 4.5. Points
in the figures show code vectors, and are plotted according to the occurrence
number in each category. Fig.4.2 indicates that some code vectors have a

tendency to occur more frequently in Japanese, and, conversely, other in English.

2.4 Which Phonemes Contain the Spectra which Characterize a
Language?
2.4.1 Experimental method

The results in 2.3 indicate that some code vectors(spectra) predominantly
occur in either English or Japanese. In this section, we examined correspondences
between phonemes and code vectors.
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The phonetic transcription was aligned for English and Japanese utterances
produced by the bilingual speaker. For English, this was done by CASPAR, an
automatic alignment system developed at MIT[Leung, 1985] and errors were
corrected by hand. For Japanese, alignment was done by hand according to ATR's
labeling style[Kuwabara, 1989].

2.4.2 Experimental results

Code vectors which predominantly occurred in English or in Japanese are
summarized in Table 4.3 in terms of the percentage of constituent phonemes for
each code vector. Figure 4.6~4.13 shows the LPC spectrum énvelope of some
representative code vectors and percentage of constituent phonemes of each code
vector. The following are the characteristics of each code vector(A-H). Here,
phonetic symbols for English and Japanese are used in accordance with TIMIT

! conventions[Garofolo, 1988] and Roman letters respectively. As a reference, the
F1-F2 relationship for vowels in English and Japanese is shown in Fig.4.14[Zue,
1985){Umeda, 1957].

(A)Vowels /2/,/a/,/3/. F1 and F2 are very close. This formant structure is rarely
found in code vectors which occurred frequently in Japanese.

(B)Vowel /=/. This is a typical formant structure of //. It is said that Japanese
hasno vowel of this formant structure.

(C)Consonants /¢/,/j/,/8/. These are voiceless consonants but the formant structure
is very clear in the spectrum envelope.

(D)Consonants /f/ /t/. These are voiceless consonants but the formant structure is
very clear.

(B)Liquid /r/. F2 and F3 are very close. This is a typical /r/ in English.

(F) Vowel /i/. This is a typical formant structure of /i/. F1 and F2 are very far.
English /i/ is typically more centralized.

(G)Vowel /w/. This is a typical formant structure of /u/. F1 is relatively low and F2
ismidfrequency. English /u/is typically more centralized.

(H)Nasal /N/. The spectrum envelope has two peaks in low frequency and high
frequency. In the English nasal, there is no such high frequency peak.
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2.5 How Important are the Spectra which Characterize a
Language from the Perceptual Point of View?

2.5.1 Experimental method

The experimental results in 2.3 and 2.4 showed that there are spectral
differences between Japanese and English. These differences were examined
using a perceptual experiment.

First, two codebooks were generated for the bilingual speaker, one from English
(English codebook) and the other from Japanese(Japanese codebook). Two kinds
of speech were synthesized using the bilingual speaker’s English speech, one is
coded by the English codebook, then decoded(CEDE), the other is coded by the
{Japanese codebook, then decoded(CJDJ). Because the CJDJ is represented by
code vectors of Japanese codebook, we can predict that CJDJ will not sound like
English if the spectral differences of English and Japanese code vectors are
perceptually large enough. CEDE and CJDJ pairs were synthesized by a LPC
vocoder for twenty-eight words which contain all English phonemes at least once.
All word pairs were presented to 8 native American listeners (4 males, 4 females)
over headphones. The listeners were asked to judge whether there was a
difference between the pairs. If not, the next word was presented. If a difference
was noticed, listeners indicated which sounded more like English and gave a

reason for their choice.

2.5.2 Experimental results

Table 4.4 shows how often the distinction between the two words is judged
correctly or incorrectly or judged to be indistinguishable. Since the CEDE should
sound more like English than the CJDJ words because CEDE words were coded
by English codebook, we use the term "correct” when CEDE is judged to be better
than CJDJ.

The results tended to be word dependent. Some words had a tendency to be
judged indistinguishable, while others were judged as either correct or incorrect
more than half the time as shown in the table. In Table 4.5, the words used in the

.experiment are classified into these three categories. That half the words are
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judged to be indistinguishable is not unreasonable, because, as shown in 2.3,

English and Japanese code vectors almost overlap.

Judging from the results in section 2.4, phonemes listed in Table 4.3 are
expected to sound worse. However, such a tendency can not be shown in Table 4.5.
The reasons are: (1) Because the vectors were matched to the input English frame
by frame, the sequence in CJDJ preserved the dynamic characteristics of English
such as formant frequency trajectories. (2) Phonemes listed in Table 4.3 are not
composed exclusively of code vectors which predominantly occur in English, but
also include vectors commonly occurring in J apénese.

2.6 Summary

¢
Speech uttered by a bilingual speaker was analyzed. Experimental results are

as follows:

(1) Codebook size for mixed speech from English and Japanese is almost twice as
large as the codebook size of either English or Japanese, but does not have to
be asmuch as the codebook size of two speakers.

(2) Although many code vectors occurred in both English and Japanese, some
code vectors have a tendency to predominantly occur in Japanese or in
English.

(3) Code vectors which predominantly occurred in English are contained in
Ix/ Jeel,/fl,/$/, and code vectors which predominantly occurred in Japanese are
contained in /i/,/u/,/N/. v

(4) Judging from listening tests, English speech decoded by Japanese codebook
can be also recognized as English.

When we apply the voice conversion algorithm based on codebook mapping to
the cross-language voice conversion, we have to pay attention the fact there are
some code vectors which predominantly occurred in English or Japanese. One
solution is to teach Japanese or English speakers how to pronounce the phonemes
which contain such code vectors. The other approach is to neglect such code
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vectors, because the result in 2.5 indicates that they are not perceptually
important.

3.Cross-Language Voice Conversion Experiment

In this section, we propose cross-language voice conversion algorithms based
on codebook mapping, and discuss its performance.

In the final stage of an interpreting telephony system, English is synthesized
by a synthesis-by-rule systenﬁ using output of the translation system. Fig.4.15
shows the block diagram of our cross-language voice conversion model. MITalk, a

f synthesis-by-rule system for English[Allen, 1979], is presently used because it is
easily obtainable. The aim is to modify MITalk’s speech so that the output carries
the voice characteristics of a given Japanese speaker’s speech. Strategies we take
here are (1)preserve dynamic characteristics of MITalk's speech, because the
results in section 2.5 imply that dynamic characteristics of English help
synthesized speech sound like English, (2)change MITalk's speech spectrum into
the Japanese speaker's speech spectrum, because the static characteristics of the

speech spectrum contain important information of speaker individuality.

In terms of the strategy (2), we apply the voice conversion algorithm proposed
in chapter 2. Because a mapping codebook is generated by supervised training, it
is impossible to directly generate a mapping codebook using speech uttered by a
Japanese speaker and speech synthesized by MITalk system. To solve the
problem is a main topic of this section.

3.1 Methods to Make a Mapping Codebook across Different
Languages

A policy to design a cross-language voice conversion method is not to ask a

speaker to pronounce a non-mother language. In other words, a method is
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designed to be useful for anyone who can not speak the non-mother language at
all. ' '

3.1.1 Method1: Synthesize Japanese by MITalk

To generate a mapping codebook, Japanese words are used as training data,
i.e., Japanese speakers utter Japanese words and MITalk system synthesizes the
same Japanese words. Two kinds of speech are synthesized. One, MITalk-E, is
synthesized using input strings selected so that the output sounded as much like
the Japanese word as possible, but using the default MITalk rules for English.
The other, MITalk-Ed, is synthesized using duration control rules for Japanese.
This modification is performed to well find out code vector correspondence in
DTW, because durations are very different in English and Japanese.

!
3.1.2 Method2: Generate a mapping codebook through a bilingual speaker

To generate a mapping codebook, we propose making use of a bilingual
speaker's speech as a bridge. First, four codebooks are generated, i.e.;' using
English uttered by an English speaker, using Japanese uttered by a Japanese
speaker, and using English and Japanese uttered by a bilingual. Then, the
following mapping codebooks are generated: one is between an English speaker
and a bilingual speaker using English utterances(English mapping codebook),
the other is between a Japanese speaker and the bilingual speaker using
Japanese utterances(Japanese mapping codebook). Using the above codebooks,
cross-language voice conversion is performed as follows (ref. Iig.4.16)

(1) Speech uttered by the English speaker is vector quantized using his
codebook.

(2) According to the code vector obtained in (1), a code vector is selected from
the English mapping codebook.

(3) The English code vector is approximated by fuzzy VQ using the bilingual
speaker's Japanese code vectors. Fuzzy VQ[Ruspini, 1970], which is one
technique to approximate a vector X by linear combination of code vectors
V., is defined using the following equation.
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w =1/ [ i (dildJ.)l/(m—l)] (4.3)

Jj=1

w3 (el S (e

where u,; fuzzy membership function. s, € (0,1] Vi
d,= | X~ V,|l.V,isacodeword in codebook V.
m: fuzziness. (m=1.6)
X’: decoded spectrum of input spectrum X
k: nearest.neighbors (k=6)

(4) Hypothesizing that the fuzzy membership functions obtained in step (3) are
preserved in a target Japanese speaker's spectrum space, the spectrum is
generated as a linear combination of code vectors in the Japanese mapping
codebook.

3.2 Performance Evaluation

3.2.1 Performance evaluation of Method1
3.2.1.1 Evaluation method for Methodl

~ In Methodl, consistency of code vector correspondences is important to get
good performance. To measure the consistency, mutual information is calculated
by considering the voice conversion a transmission through an information
channel(Fig,4.17).

The input alphabet A = { a, } , i=1,2,...,r, consists of the code vectors of
speaker A, and the output alphabet B = { bj },3i=1,2,...r, consists of the code
vectors of speaker B. Mutual information I(A;B) is defined by the following
equations;

82



Chapter 4. CROSS-LANGUAGE VOICE CONVERSION

I(A;B) = H(A) — H(AIB) (4.5)

where,

’ 1
H(A) = D Pla)log o (4.6)

i=1

r r
H(AIB) = D P(b) > P(alb ) log

1
4.7
i=1 Jj=1 P(ﬂllb.’) ( )

P(a): a probability of code vector a, of speaker A
P( ailbj): a posteriori probability of the input symbol a,

In this formulation, the larger the value, the more consistent correspondences
there are between the two code vectors.

3.2.1.2 Performance of Methodl

The mapping codebooks are generated for all combinations of all speakers, i.e.,
male Japanese speaker, female Japanese speaker, MITalk-E, and MITalk-Ed.
Fig.4.18 shows the mutual information for each speaker pair. The results indicate
that the voice conversion is best in the J-J pair, and is poorest performance in the
E-J pair. The reasons are as follows; (1)Because MITalk-Ed is given Japanese
phoneme duration, the correspondence between the J-Ed pair is more consistent
than that of the E-J pair. (2)Because MITalk-E and MITalk-Ed have the same
rule of spectrum pattern generation, the distortion measure is more reliable in
the E-Ed pair than in the E-J. Judging from these results, an adjustment of
duration control to Japanese is necessary to improve voice conversion
performance, but not enough. Furthermore, the distortion measure should be
carefully selected when distortion is calculated between human and synthesizer.

Judging from the informal listening test, the cross-language voice conversion
performance is judged to be worse than voice conversion from Japanese. The
degradation is caused by the inconsistency of code vector correspondences.

3.2.2 Performance evaluation of Method2
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3.2.2.1 Evaluation of fuzzy VQ approximation

Because fuzzy VQ approximation is newly introduced in Method2, we discuss
the effect of fuzzy VQ approximation. To evaluate the effects, we used bilingual
speaker’s speech, because English which is obtained by fuzzy VQ approximation
using Japanese can be compared with English which uttered the same speaker.
Four codebooks are generated for two bilingual speakers, i.e; male-English, male-
Japanese, female-English, female-Japanese. Table 4.1 shows the experiment

conditions.

Table 4.6 shows the distortion when English uttered by a bilingual speaker is
vector quantized or fuzzy vector quantized using the Japanese codebook or the
English codebook. Fig 4.19 shows the distortion for every phoneme when English
is vector quantized or fuzzy vector quantized using the Japanese codebook.

{Judging from these results, fuzzy VQ is useful in approximating the English
spectrum using the Japanese codebook, and the approximation is effective for all
phonemes. '

To confirm the hypothesis that the fuzzy membership function is preserved in

the target speaker's spectrum space, an experiment is performed as follows:

(1)A mapping codebooks are generated for male-Japanese, fernale-Japanese
pairs.

(2)English uttered by the male speaker is vector quantized or fuzzy vector
quantized using his Japanese codebook.

(3)To generate a converted spectrum, two methods are applied: using a
mapping codebook, and using a mapping codebook and the fuzzy membership
function with the hypothesis.

(4)Spectrum distortion is calculated between the target female speaker’s
English speech and converted speech.

If the fuzzy membership function was preserved in the target speaker’s spectrum
space, the spectrum distortion using fuzzy VQ would decrease.

All combinations of two bilingual speakers and two languages are
investigated using the above procedures. The experiment results are shown in
Table 4.7. The results indicate that the hypothesis is valid.
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3.2.2.2 Performance of Method2

Codebooks, nine in total, are generated for every person and language, i.e;
four for Japanese speakers(2 male and 2 female), four for bilingual
speakers(male-English, male-Japanese, female-English, female-Japanese), and
one for MiTalk. Then mapping codebooks are generated for all speaker pairs.
Table 4.1 show the experiment conditions.

Table 4.8 shows the experiment results. In terms of codebook generation,
spectrum distortion in MITalk is very much less than in a human, because the
variety of spectrum patterns is quite restricted and the speech is synthesized by
formant synthesizer. The distortion of the mapping codebook between a human
and MITalk is considerably larger than the mapping between human.

¢ Judging from the informal listening test, cross-language voice conversion

performance is judged to be worse than voice conversion from Japanese. The
reasons are (1)mapping codebooks are used twice, (2)speech synthesized by
synthesis-by-rule system is used instead of human speech. In terms of the
performance, there is no difference between the Methodl and the Method2.

4. Conclusion

To apply a voice conversion algorithm based on codebook mapping to the cross-
language voice conversion, speech uttered by a bilingual speaker was analyzed.
Experimental results are as follows:

(1) Codebook size for mixed speech from English and Japanese is almost twice as
large as the codebook size of either English or Japanese, but does not have to
-be as much as the codebook size of two speakers.

(2) Although many code vectors occurred in both English and Japanese, some
code vectors have a tendency to predominantly occur in Japanese or in
English.
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(3) Code vectors which predominantly occurred in English are contained in
Il Jel /f],/§/, and code vectors which predominantly occurred in Japanese are
contained in /i/,/u/,/N/.

(4) Judging from listening tests, English speech decoded by Japanese codebook
can be also recognized as English.

Secondly, we proposed cross-language voice conversion methods based on a
codebook mapping. The experiment results indicate that, because of the
inconsistency of code vector correspondences and large spectrum differences
between human speech and synthesized speech, the performance in cross-
language voice conversion is less effective than in voice conversion between

Japanese two speakers.

In this early stage of the project, we simply neglect code vectors which
{predominantly occurred in English or Japanese, and we used an 8-bit codebook.
To improve the converted speech quality, we also have to increase the codebook
size, and to estimate or extrapolate code vectors which predominantly occurred in
English or Japanese. Because the cross-language voice conversion is a very new
idea and also a very difficult problem, at this stage, we would like to say that we
have at least shown the possibility of cross-language voice conversion and

demonstrated possible methods.
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Fig. 4.1 Spectrum distortion for various codebooks
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Table 4.1 Experiment conditions

A/Ddata

12KHz sampling. 16bit

window length

256points (21.3msec)

window shift

36points (3.0msec)

analysis order 14
l . WLR(Weighted
clustering measure Likelihood Ratio)
learning samples
for clustering 12,000 frames
codebook size for
spectrum parameter 256
learning words for mapping 100

106




Table 4.2 Kullback’s divergence

Speech pair Kullback’s divergence
bilingual English vs. L21
bilingual Japanese
male Speaker vs. female speaker 8.59
male speakerl vs. male speaker2 4.80
word setl vs. word set2 0.21
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Table 4.3 Correspondence between code vectors and phonemes

Code-

Occurence in

Occurence in

veclors | bl | Japanese | found in phoneme:
A 599 1 |/9/(35%), /o [(34%), /2/(23%), etc.(8%)
B 210 9 [@/('18%), /a”/(10%), [E/(T%), etc.(12%)
C 486 19 | /$/(28%), [E/(24%), 1Y /(20%), 16/(10%), / f /(10%), etc.(8%)
D 9240 10 | /f/(28%), /t/(25%) /&/(12%), /A/(T%), Iv/(6%), etc.(22%)
E 364 18 | /r/(52%), 19(28%), /h/(8%0, etc.(12%)
F 94 266 | /i/(78%), 1)/(6%), etc.(16%)
13 152 | //(73%), 1i/(12%), /e/(T1%), etc.(8%)
H 5 222

IN/(E56%), /1/(20%), m/(12%), /u/(8%), etc.(4%)



Table 4.4 Listening experiment result

judged correctly judged incorrectly iridistinguishableble
27.2% 18.8% 54.0%
Table 4.5 Word category
judged correctly judged incorrectly indistinguishableble

noise, should, finger,
outer, cashmere,

masquerade, moisture,

sculpture

personnel, with,
zoologist, corsage,

money

victor, fish, noteworthy, vocabulary,
Irish, before, they, precaution, sweet,
earthquake, hand, sweater, nothing,

quite, ambiguous

109




Table 4.6 Spectrum distortion(WLR)} in fuzzy VQ

codebook Japanese English
coded utterance vQ fuzzy VQ vQ
English 0.140 0.102 0.101

Table 4.7 Spectrum distortion(WLR) in fuzzy mapping

mapping codebook Japanese English
coded utterance vQ fuzzy VQ vQ fuzzy VQ
English 0.304 0.285 - -
Japanese - - 0.285 0.268
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Chapter 5. ASEGMENT-BASED APPROACH TO VOICE CONVERSION

1. Introduction

In chapter 2, we have already proposed a voice conversion algorithm based on
codebook mapping and evaluated its performance. According to the mapping
codebook, a speaker A's code vector is replaced frame-by-frame with a
corresponding speaker B's code vector. The algorithm makes it possible to convert
static characteristics(spectrum envelopes). However, dynamic characteristics can
not be converted, because a code vector sequence which represents dynamic
characteristics such as a formant trajectory, is obtained from speaker A's speech.

This is one reason why voice conversion performance is not satisfactory.

; In this chapter, to'improve voice conversion performance, we propose to also

convert the dynamic characteristics of speaker individuality by using speech
segments as conversion units. Because speech segments contain both static and
dynamic characteristics of speaker individuality, the use of segment units makes
it possible to convert all of these parameters together. The advantages of a
segment-based approach had been reported in the speech analysis-synthesis by
HMM[Soong, 1989], segment vocoding[Shiraki, 1988][Peterson, 1990], and
speech synthesis-by-rule systems[Nakajima, 1988][Sagisaka, 1988].

As the first step of the segment-based approach, we use phonemes as speech
segment units. The reasons are as follows: (1)Because phonemes are distinctive
features of sound in terms of speech perception and production, it is éxpected that
speaker individuality is consistently preserved in phonemes. (2)In a segment-
based approach, whether unit length is uniform or non-uniform is a matter of
some concern. According to a recent study in segment vocoding{Peterson, 19901,
non-uniform length units showed good performance and their length essentially
depended on the phonemes. (3)To use non-uniform length segments requires
expensive computation time. If phonemes are used as segment units, we can use

~ speech recognition technologies making it possible to dramatically reduce search
space for segment boundaries and segment units.

In section 2, we propose a voice conversion algorithm based on speech segment
mapping. In section 3, the performance of the proposed algorithms are evaluated
by measuring distortion and listening tests.
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2. A Segment Based Approach
to Voice Conversion
A voice conversion algorithm based on speech segment mapping is shown in

Fig. 5.1. Both speakers had to have uttered the same training sentences or words
in advance(hereinafter referred to as the speech database).

The algorithm consists of both off-line and on-line procedures. In the off-line
procedures, a “correspondence table” which indicates the corresponding segments
between the two speakers is generated, and Hidden Markov Models(HMM) are
generated for a speaker A. Using the correspondence table and the HMM models,
voice conversion is performed on-line as follows.

(1) Speech uttered by the speaker A is analyzed by LPC analysis.

(2) The input speech is mapped(recognized) into a sequence of phonemic
-symbols and segmented by the HMM models.

(3) A speech segment which optimally matches the segmented input speech is
selected from the speaker A's speech database based on phonemic context
constraints and a minimum distortion criterion.

(4) According to the correspondence table, the optimally selected speaker A's
segment is replaced by the corresponding speaker B's segment.

(6) The pitch frequencies extracted from the input speech are linearly
converted in order to match the pitch frequency range of the speaker B.

(6) Speech is synthesized by LPC synthesizer using the replaced (speaker B's)
segments and the converted pitch frequencies.

In the following subsections, module specifications are described.

2.1 Correspondence Table Generation

Both speaker A and speaker B read a training corpus, but phonemic
boundaries were only assigned manually to speaker A's speech. The time
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alignment between speaker A's and speaker B's speech was obtained by dynamic
time warping(DTW), and phonemic boundaries for speaker B's speech were
assigned. The correspondence table contains phoneme symbols and phoneme
segment IDs which correspond to the phonemic boundaries of speaker A and
speaker B.

2.2 Segmentation Module

Speech segmentation was performed using the "Phonetic Typewriter"
developed at ATR[Kawabata, 1990]. This system is not task specific, but is
designed to map Japanese speech into a sequence of phonemic symbols based on
the statistical model of phonemes and Japanese syllable occurrence. The system
lconsists of an HMM recognition module and an LR parsing module. The total
recognition system is shown in Fig. 5.2. Phonemic boundaries were determined by

Viterbi algorithm.

2.2.1 HMM recognition module

The HMM model for five vowels, a syllabic nasal and a silence, was a 1-state
model and the HMM model for the other phonermnes, 39 in total, was a 3-state
model. These phone units were trained using 5,557 isolated words uttered by the
speaker A. The speech was transformed to VQ code sequence using 12th order
LPC analysis and a 21.3 msec Hamming window with a 9msec frame shift. A
multiple-codebook method was used, i.e., codebooks were separately generated for
spectrum parameter, LPC cepstral difference, and power. HMM duration
parameters were modified {o match the speaking rate.

2.2.2 LR parsing module |

The LR parser calculated the phone sequence probability based on syllable
trigrams and HMM probabilities. The syllable trigram tables were made from a
text database of over 35,000 syllables. The text database consisted of editorial
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columns and transcribed texts from a telephone dialog simulation. An n-gram
probability was interpolated from k(=0, 1, 2, 3)-gram probabilities by a "deleted
interpolation" algorithm[Jelinek, 1980]. During a beam search, only 250 phone
sequence candidates were maintained.

2.3 Optimal Segment Selection and Concatenation

Figure 5.3 shows an algorithm to select a speech segment which optimally
matches the segmented input speech. Phoneme segments were first selected
based on triphone context constraints using recognized output symbols. If there
was no phoneme in the database under the triphone context, the current
phonemes were all candidates.

Based on a minimum distortion criterion, an optimal phoneme segment was

selected by DTW. Cepstrum distance measure was used. If there was no segment
because of the DTW path constraint, DTW was again performed after uniformly
lengthening or shortening the segmented input speech.

Finally, the selected phoneme segment was concatenated to the next phoneme
segment in a frame which ‘gave the minimum spectrum distortion. The final
procedure was necessary to adjust inadequate segment boundaries introduced by
the correspondence table generation and the HMM segmentation.

3. Performance Evaluation

The proposed voice conversion algorithm was performed between two male
speakers, i.e., speaker A’s speech was converted to sound like speaker B’s speech.

In the off-line procedures, a correspondence table and HMM models for the
speaker A are generated using isolated word utterances. In the on-line
procedures, twenty-five continuously uttered sentences were converted. The
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sentences, which contained 279 phrases, were collected through simulation of a
secretarial service for an international conference. '

In section 3.1, a correspondence table specification is shown. In section 3.2,
segmentation module performance is shown. Voice conversion performance is
evaluated by spectrum distortion and listening test in sections 3.3 and 3.4,
respectively. In sections 3.3 and 3.4, only correctly recognized phrases were
evaluated. Cases where recognition errors occurred in the segmentation module

are discussed in section 3.5.

3.1 Correspondence Table

. Both speaker A and speaker B read a training corpus of 1,323 Japanese words.
"The speech was sampled at 12 kHz and analyzed using a 14th order LPC
analysis. The analysis window was a 21.3 msec Hamming window with a 3.0 msec
frame shift.

Table 5.1 shows the phoneme symbols, phoneme segment numbers and
average phoneme durations contained in the speech databases of both speaker A
and speaker B.

The phonemic boundaries which were given to speaker B's speech according to
the DTW path were compared with manually assigned segment boundaries of the
speech. The average boundary errors and coincidence rate within a 20-msec time
window are also shown in Table 5.1. Boundary assignment performance is
relatively poor in the /r/, /hy/, /fl, I/, Ish/, Iwl/, lry/ phonemes, but for the other
phonemes, more than 70% of the boundaries are assigned within 20 msec of the

manual segmentation point.

3.2 Recognition and Segmentation Performance

The phone recognition rate is 94.9% and the phrase recognition rates of the top
choice and the top 5 choices are 78.5% and 92.1%, respectively[Kawabata, 1990].
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The automatic segmentation results are depicted in Fig. 5.4 in terms of their
coincidence rate with manual segmentation boundaries, where only the correctly
recognized phrases were adopted. The coincidence rates are defined as the
percentage of phonemes for which the automatic segmentation and the manual
segmentation boundaries agree a)within a 15 msec window and b)within a 20
msec window. Boundary assignment performance is relatively poor in voiced
fricative /z/, and voiced affricate/j/, but for the other phonemes more than 80% of
the boundaries are set within a 20 msec range.

3.3 Voice Conversion Evaluation by Spectrum Distortion

3.3.1 Experimental Procedure

4
|

The voice conversion performance was evaluated by spectrum distortion. By
way of comparison, both manually segmented continuous speech utterances and
manually segmented isolated word utterances(88 words) are also converted in
addition to automatically segmented continuous speech utterance.

Spectrum distortion is calculated by DTW using cepstrum distance measure
for the following data.

(1) Speech uttered twice by the speaker A(hereinafter referred to as the 1st
utterance and the 2nd utterance) '

(2) The 1st utterance and a speech segment sequence which was selected
optimally to match the 1st utterance from speaker A's
database(hereinafter referred to as segment vocoder)

(3) The 2nd utterance and segment vocoder

(4) Speech uttered by speaker B and speech converted by the proposed
algorithm(hereinafter referred to as segment conversion)

(5) Speech uttered by the speaker B and speech converted by the codebook
mapping frame-by-frame(hereinafter referred to as VQ conversion)

(6) The 1st utterance of speaker A and speech uttered by the speaker B
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VQ conversion was performed by the codebook mapping algorithm. For a fair
comparison of VQ conversion and segment conversion, a mapping
codebook(10bits) was trained using 1,300 words.

3.3.2 Experimental Résults’

Figures 5.5 and 5.6 show the experimental results using isolated utterances
and continuous utterances, respectively. In both isolated and continuous
utterance, the distortion caused by utterance times is small, 0.2481 and 0.2623
respectively. This is considered to be the goal of the voice conversion.

In terms of the distortion between the 1st utterance and the segment vocoder,
the distortion in continuous speech(0.3755) is much higher than the distortion in
/isolated utterances(0.2832), because speaker A's database consisted of isolated
word utterances.

~ In terms of the distortion between the 2nd utterance and the segment vocoder,
the distortion in manually segmented speech(0.3638) is much less than the
distortion in automatically segmented speech(0.4471).

Taking into account the distortion caused by utterance times, speaking styles
and automatic segmentation, the distortion goal of this experiment is the
distortion between the 2nd utterance and the segment vocoder, 0.4471. The
natural distortion between speaker A and speaker B is 0.9396. The distortion
between the segment conversion and the target speech is 0.6169. Therefore, the
segment conversion reduces the distortion by one-third.

When manually segmented speech is used instead of automatically segmented
speech, the distortion between the segment conversion and the target speech is
0.5369, which is less than the distortion between the VQ conversion and the
target speech. The results indicates that segment-based approach has more
potential than the frame-wise approach.

The distortion between the 1st utterance and the segment vocoder should be
less than the distortion between the 2nd utterance and the segment vocoder.
However, the experimental results show just the opposite. This implies that
segment variations in the speech database are not enough.

119



Chapter 5. A SEGMENT-BASED APPROACH TO VOICE CONVERSION

Judging from these results, to get higher voice conversion performance, it is
important to improve segmentation performance and to add continuous speech to

the speech database.

3.4 Voice Conversion Evaluation by Listening Test

3.4.1 Experimental procedure
- 3.4.1.1 Experiment 1

In Experiment 1, three tests(test 1.1, test 1.2, and test 1.3) were carried out by

the ABX method. Stimuli A and B were LPC analysis-synthesis of speaker A’s or

ispeaker B’s speech. In test 1.1, X was speech from the segment conversion. In test
1.2, X was speech from the VQ conversion. In test 1.3, X was speech from the LPC

analysis-synthesis speech of speaker B. Different phrase tokens were used for

stimuli A, B and X, and all possible ABX combinations were generated. The ABX

triads, 36 in total, were presented to twelve listeners using a headphone. The

listeners were required to select the stimulus (A or B) which most closely

resembled stimulus X in speaker identity.

3.4.1.2 Experiment 2

Experiment 2 was designed to evaluate the voice quality by a pair-comparison
listening test. The following five different types of speech were synthesized as
stimuli.

(1) LPC analysis-synthesis speéch of speaker A(A-LPC)

(2) The segment vocoder(A-Segment)

(3) The VQ conversion(A—B-VQ)

(4) The segment conversion(A— B-Segment)

(5) LPC analysis-synthesis speech of speaker B(B-LPC)
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Two different words were used to make speech pairs. A set of speech pairs, 40
in total, include all possible combinations of stimuli from the five different types
of speech. The listeners heard the speech pairs under the same listening
conditions as in Experiment 1, and were asked to rate the similarity for each pair

using five categories: "similar","somewhat similar","difficult to decide","slightly -
dissimilar", and "dissimilar".

3.4.2 Experimental results
3.4.2.1 Results of Experiment 1

The result of Experiment 1 is shown in Table 5.2. The numbers in this table
represent the percentage of responses where stimuli X was judged to be close to
‘the LPC analysis-synthesis speech of speaker B.

Even though stimuli X is the LPC analysis-synthesis speech of speaker B,
listeners misjudged 3.8 percent of the time. Judging from this, the speaker
identification accuracy(93.8%) obtained by the segment conversion is quite high.
Segment conversion performance is about 20% higher than the VQ conversion

performance.
3.4.2.2 Results of Experiment 2

Hayashi's fourth method of quantification[Hayashi, 1985] was applied to the
experimental data of Experiment 2. This method places stimuli on a space
according to the similarities between any two stimuli, and its formulation

minimizes the measure @, where

1 n

Q== > M- (%))

i=1j=1

e(i,j) denotes the similarity between stimuli i and j, x(i) represents the location of
stimulus i in the space, and n is the number of stimuli.

The projection onto a two-dimensional space is shown in Fig. 5.7. It represents

the relative similarity-distance between stimuli. Contribution rates which
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indicate the importance of the axis are 60% and 30% for axis I and axis II,
respectively. In terms of axis I values, the converted speech by both VQ
conversion and segment conversion are very close to the target B-LPC. Therefore,
“axis I probably represents the speech individuality. On the other hand, the axis
I values of VQ conversion, segment conversion, and segment vocoder are minus
values, and the axis II values of analysis-synthesis speech are plus values.
Therefore, axis II probably represents distortion caused by modifications. These
results indicate that speech individuality is well converted, but also that the
modification introduces some artificial noise to the converted speech.

3.5 Analysis of Recognition Error

;  In 60 phrases, recognition errors occurred. Problems introduced by recognition
errors were examined by listening to LPC analysis-synthesis speech and segment

vocoding speech of speaker A

In 5 phrases, recognition errors resulted in no sound problems in the segment
vocoding speech. The errors are shown in table 5.3.

In 10 phrases, the segment vocoding speech did not sound perfect , but was
relatively close to the LPC analysis-synthesis speech. In Fig. 5.8(a), 5.8(b), 5.8(c),
spectrograms of the LPC analysis-synthesis speech and segment vocoding speech
are shown. It is observed that they show relatively close patterns.

In the other phrases, 45 in total, recognition errors resulted in phonemes
different from the input speech. Figure 5.8(d) shows where recognition errors
occurred most frequently. The reasons recognition errors resulted in different
phonemes are (1)in the optimal segment selection, recognized symbols are used to
reduce search space, (2)in the database, there were not enough ambiguous
phoneme pairs.
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4. Conclusion

In this chapter, by introducing a segment based approach, we proposed a new
voice conversion algorithm which makes it possible to control not only the static

characteristics but also the dynamic characteristics of speaker individuality.

The proposed voice conversion algorithm was performed between two male
speakers using 25 sentences which contain 279 phrases. The phone recognition
rate was 94.9% and the phrase recognition rate of the top choice was 92.1%.
Spectrum distortion between the target speech and the converted speech was
{reduced to one-third the natural spectrum distortion between the two speakers. A
listening evaluation showed that, in terms of speaker identification accuracy, the
speech converted by segment units gave a score 20 % higher than the speech
converted frame-by-frame. We conclude that speech segments contain more
information to represent speaker individuality than frames, and that the
information difference between segments and framesis large enough to hear.
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Table 5.1 Segmentsin the database

average boundary | coincidence

number of . ,
symbols segments duration errors rate
(msec) {msec) (%)
P 22 84.0 6.42 95.5
t 229 51.0 11.79 83.4
k 576 72.0 12.60 31.1
b 130 63.0 8.19 90.0
d 105 60.0 5.16 95.2
g 163 60.0 13.4 71.3
m 339 63.0 6.60 94.7
n 195 54.0 6.36 93.3
N 227 189.0 15.93 71.8
S 241 129.0 8.04 92.9
sh 115 162.0 19.8 64.3
ch 51 114.0 9.39 86.3
ts 97 111.0 12.66 80.4
z 69 75.0 14.07 - 79.7
i 78 108.0 15.57 76.9
f 22 78.0 26.85 54.5
h 130 66.0 16.47 76.9
r 547 21.0 33.57 42.4
y 75 72.0 9.00 89.3
w 56 54.0 15.16 69.1
i 783 120 15.69 75.0
e 404 126.0 16.35 76.7
a 874 111.0 10.26 85.5
0 578 111.0 8.55 90.0
u 852 117.0 23.34 66.6
gy 1 135.0 9.00 100

hy 1 117.0 39.00 0
ky 7 120.0 9.00 85.7
ry 8 93.0 19.11 62.5
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Table 5.2 Percentages of correct responses

LPC analysis-synthesis of segment vQ
speakerB conversion | conversion
96.2% 93.6% 71.5%
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Table 5.3 Recognition errors

Input leil lou/ leel

autput fee/ loo/ feil
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Chapter 6. EPILOGUE

In this thesis, we discussed algorithms to change speaker individuality: i.e.,
speech uttered by a speaker is changed to sound as if another speaker had uttered
it.

In chapter 2, we formulated voice conversion as a mapping problem by
introducing vector quantization. The advantage of this technique are summarized
as follows:

(1) The mapping codebooks which make it possible to impart individuality to
synthesized speech are generated from a limited number of word utterances.

(2) The mapping codebooks enable voice conversion between any two speakers.

‘(3) The synthesis process requires minimal computation and produces speech in
real time.

The performance of this technique was confirmed by spectrum distortion and
pitch frequency difference. The spectrum distortion between original speech and
target speech decreased by a range of 27% to 66%. Pitch frequency difference
decreased to less than 15Hz. The overall performance of this technique was also
confirmed by listening tests. It can be concluded that the converted speech has a
voice quality very close to the target speaker's.

To improve the naturalness and clarity of the converted speech, the usage of
fuzzy VQ and difference vectors was discussed. According to the listening test,
fuzzy VQ improved smoothness by generating spectrum pattérns beyond the
limitations imnposed by the codebook size, and the usage of difference vectors was
quite effective in improving clarity by representing spectrum characteristic
details ignored by VQ or fuzzy VQ.

In chapter 3, we proposed a new algorithm which makes it possible to
synthesize high quality speech even if pitch frequency or duration is somewhat
changed. The advantages of this algorithm are listed below;
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(1) This algorithm needs no phase unwrapping which is the most complex and
critical procedure in the conventional method.

(2) This algorithm is easy to implement in an automatic system because explicit

“pitch frequency extraction is not required.

(3) The quality of synthesized speech is very high and natural because residual
signals are used as excitation. '

(4) This algorithm makes it possible to modify the spectrum envelope in a non-
parametric way because it is represented by FFT magnitude.

The listening test showed that the proposed algorithm was able to reproduce
high quality speech sounds even if the pitch frequency was modified both in a
,uniform and a non-uniform manner.
{

In chapter 4, speaker individuality control across different languages was
discussed. To apply a voice conversion algorithm based on codebook mapping to
the cross-language voice conversion, speech uttered by a bilingual speaker was
analyzed. Experimental results are as follows:

(1) The codebook size for mixed speech from English and Japanese is almost twice
as large as the codebook size of either English or Japanese, but does not have
to be as large as the codebook size of two speakers.

(2) Although many code vectors occurred in both English and Japanese, some
code vectors have a tendency to predominantly occur in Japanese or in
English.

(3) The code vectors which predominantly occurred in English are contained in
Irl/=l,/fl,/§/, and the code vectors which predominantly occurred in Japanese
are contained in /i/,/u/,/N/.

4)d udgin‘g from listening tests, English speech decoded by Japanese codebook
can be also recognized as English.

We proposed cross-language voice conversion methods based on codebook
mapping. The experiment results indicated that, because of the inconsistency in
code vector correspondences and the large spectrum differences between human
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speech and synthesized speech, the performance in cross-language voice
conversion was less effective than in voice conversion between two Japanese
speakers.

In paper 5, by introducing a segment based approach, we proposed a new voice
conversion algorithm which makes it possible to control not only the static
characteristics but also the dynamic characteristics of speaker individuality.

The proposed voice conversion algorithm was performed between two male
speakers using 25 sentences which contain 279 phrases. The phone recognition
rate was 94.9% and the phrase recognition rates of the top choice and the top 5
choices were 78.5% and 92.1%, respectively. Voice conversion was evaluated
using correctly recognized phrases. Spectrum distortion between the target
speech and the converted speech was reduced to one-third the natural spectrum
f‘distortion between the two speakers. Listening evaluation showed that, in terms
‘of speaker identification accuracy, the speech converted by segment units gave a
score 20 % higher than the speech converted frame-by-frame. We conclude that
- speech segments contain more information to represent speaker individuality
than frames, and the information difference between segments and frames is
large enough to hear.

In summary, we have confirmed that the speaker individuality control
problem is successfully formalized as a mapping problem. As a future work, we
would like to expand this approach to control other kinds of speaker individuality,
such as source characteristics, speaking styles and dialects.
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