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Abstract 

＾ 

In recent years there has been a growing interest amongst the speech research 
community into the use of spectral estimators which circumvent the traditional 
quasi-stationary assumption and provide greater time-frequency(t-f) resolution 
than conventional spectral estimators, such as the short time Fourier power spec-
trum (STFPS). One distribution in particular, the Wigner distribution (~ 砂
has attracted considerable interest. However, experimental studies have md1-
cated that, despite its improved t-f resolution, employing the WD as the front 
end of a speech recognition system actually reduces recognition performance; 
only by explicitly re-introducing t-f smoothing into the WD are recognition 
rates improved. This paper, by making explicit the role of the variance of the 
spectral estimator, provides a theoretical explanation for these previous exper-
imental findings. 
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1 Introduction 

Most researchers would agree that the speech signal is best represented for 
recognition purposes as a joint function of both time and frequency, or a pa-
rameterisation thereof. 
Such a joint representation is both intuitively and biologically plausible. Bi-
ological studies for instance, have revealed that the ear acts essentially as a type 
of spectral analyser [10]. Thus by implication the spectral shape of the speech 
signal must contain important cues as to its information content. However, a 
spectral representation alone results in poor recognition performance, despite 
the fact that it may be a complete description of the signal (complete in the 
sense that the original acoustic waveform is uniquely recoverable). It is clear 
that the temporal ordering of speech events is also important for understanding 
the orthographic content of the acoustic waveform. Thus any useful represen-
tation must have both time and frequency dimensions. However, despite its 
obvious intuitive appeal, the mathematical description of temporal frequency 
variation has proven surprisingly difficult. This difficulty has arisen from the 
fact that the properties we would ideally require of such distributions (6] are mu-
tually inconsistent. As a consequence of this fact, numerous t-f descriptions [5] 
have been proposed over the years; each satisfying only a non-conflicting subset 
of the ideal property set. 
One of the first requirements of any t-f spectral estimation task is the selec-
tion of an appropriate estimator. In speech recognition this selection is largely 
based on previous empirical experience. One area of spectral analysis which has 
achieved impressive empirical results is that of perceptual modelling, i.e. modify-
ing a given estimator to imitate the the way in which we believe that the human 
ear works. Yet, while such auditory modelling schemes have undoubtedly led 
to improved recognition performance, the question as to why this should be the 
case is left unanswered. Simply saying that one spectral estimator is better than 
another, because it models the behaviour of the human auditory system is, in 
our view, not enough. After all, a hidden Markov model, for example, makes no 
attempt to model the human brain, so why should it perform well with a human 
auditory style front end? Clearly there is something fundamentally right about 
these perceptually based spectral estimators, since they provide improved per-
formance when coupled with almost any type of pattern recognition algorithm. 
If we could determine in an objective fashion exactly what they are optim函ng,
then perhaps we could hope to improve upon them. 
In recent years several authors [14] [15] have attempted to improve recog-
nition performance by employing "high resolution" spectral estimators, such as 
the Wigner distribution (WD). Their argument being that conventional quasi-
stationary estimators, such as the short time Fourier power spectrum (STFPS), 
introduce too much t-f "blurring" into the speech spectrum, thus masking impor-
tant time varying features. However, in many cases, the use of "high resolution" 
estimators such as the WD has actually reduced recognition performance; only 
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by explicitly reintroducing t-f smoothing into the spectrum have recognition 
rates been increased. In this paper we argue that this is due to the higher vari-
ance of the "high resolution" estimators. To demonstrate the effect of variance 
on the recognition process we concentrate here on one particular family of t-f 
spectral estimators, namely the t-f smoothed WD's. 

2 The T-F Smoothed Wigner Distribution 

The mathematical properties of the WD  have already been well documented 
elsewhere [1][2], consequently this section contains only a minimal introduc-
tion. The WD  of the harmonisable stochastic process S(t) is defined by the 
equation [8] 

＾ 
Wg(t,w) =「00発(t,r)e-;w, む

-oo 

where Rg(t, T) is the time-varying covariance kernel 

Rg(t, r) = E[S(t + T/2)S*(t -T/2)] 

(1) 

(2) 

and E[・] denotes expectation over an ensemble of realisations. In practice en-
semble averages are rarely available. For non-stationary random processes, such 
邸 speech,this necessitates replacing ensemble averages with local time averages. 
However, since speech is not a qu邸 icorrelation-ergodic process this邸sumption
introduces a bias into the resulting spectral estimates. These bi邸 edspectral 
estimates are defined by the equation 

＾ 

於(t,w;ef>)=「OO廃(t,T; ,{,)e一;... dT 
-oo 

where R5(t, Ti VJ) is in turn defined by the equation 

徳(t,T池）＝「00,t,(加）S(t + T1 + T/2)S"(t + T1 -T/2)dT1 (4) 
-oo 

and'r/J(T1, T) is a. window function, usually of finite spread and monotonic de-
creasing away from the origin. The window 1/J(T1, T) is related to a corresponding 
t-f window tf,(t,w) by a 1-D Fourier transform, i.e. 

(3) 

如）＝「co,f,(t, T)e-j匹む．
-oo 

(5) 

For the purposes of this paper we assume that¢(t,w) is a non-orientated 2D 
g皿ssianwindow function, i.e. 

1 -t2 -研
ef,(t,w) =―exp(-)exp(-

<ft心 2が 2<fw2).
(6) 
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This window function is of particular interest, as for an appropriate choice of 
Ut and叩， thesmoothed WD  is identical to the STFPS [13]. Note that the 
normalising factor l/<1t<1w is chosen such that </,(t,w) satisfies the equation 

l J ,f,(t,w)dwdt = 2.-. 
-00 

This particular normalisation being chosen to ensure the equality 

「J細 S(t,w;ql)]dtdw=「J咋 (t,w)dtdw.

(7) 

(8) 
-oo -00 

From Moyal's formula [1] it can be seen that equation 8 implies that the ex-
pected energy of the smoothed spectral estimates W s (t, w; q,) is equal to that 
of Wg(t,w). 
Two important properties of the window function ef,(t, w) are its time spread 
（△ T)2 and its frequency spread (△ B)2, defined respectively by equations 9 and 
10, i.e. 

00 

（△ T)2 =・...!._ j j t憎(t,w)j2dwdt
E,t, -oo 

00 

（△ B)2 =己ff心 (t,w)l2dt血
t/> -oo 

where Et/> is defined as 

00 

Et/>= f l</>(t,w)l2dt心．
-00 

(9) 

{10) 

(11) 

In the case of the non-orientated 2D gaussian defined in equation 6, the time 
and frequency spreads of the smoothing window are directly proportional to <Tt 
and四 respectively.Thus Ut and <Tw can be regarded as measures of the locality 
of the window function in time and frequency respectively. 

＾ 

＾ 3 Variance of妬(t,w;¢)as a Function of the T-
F Spread of the Smoothing Window¢(t,w) 

One important, though often ignored, performance measure that can be at-
tributed to the t-f smoothed estimates Wg(t,w;<f,), is their variance, defined 
as 

var(W5(t,w;<f,)] = E((Ws(t,w;<f,)-E(Wg(t,w;<f,)])2]. (12) ,`̀
 
．
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In order to make an analysis of equation 12 mathematically tractable we make 
the simplifying assumption that the speech signal S(t) is a white zero mean 
complex analytic gaussian process. Obviously in practice this assumption is not 
satisfied by real speech. However, as long as the speech spectrum is relatively 
flat and smooth, then the analysis will still hold in an approximate sense. Since 
we are not attempting to draw any detailed conclusions from the analysis, but 
instead just looking for overall trends, we feel that the simplifying assumption 
is probably reasonable for this purpose. Given the above assumption then, the 
variance of the spectral estimates can be approximated by the equation 

00 

var佃S(t,w; 4>)] "'紐(w)J J 14>(t',w')l2 dt'dw'(13) 
-oo 

＾ 
where St(w) is the spectral density of the tangential stationary process approx-
imating S(t) at t, i.e. 

+oo 

紐）= j E[S(t + r/2)S(t -r/2)]e―jwT dr. {14) 
-oo 

~quation 13 is a straightforward generalisation of the discrete time case treated 
by Martin and Flandrin [8]. For the sake of completeness a detailed derivation 
is given in appendix A. 

It is important to note that equation 13 implies that var飩s(t,w;<J>)]is a 
monotonic decreasing function of the smoothing window parameters <Tt and u w, 
since evaluating the integral on the right hand side of equation 13 gives 

00 

var佃s(t,w;q¥)] ,., 認 (w)JJ怜(t',w')i2 dt'dw' 
-oo 

~ 

var佃s(t,w;<t,)]

var佃s(t,w;<t,)]

00 

～上S2t(w)~JJ exp ゴ~exp~dt'dw'
2;r (<1t<1w)2 

1 

_00 (u,2) (uり2)

~s召(w)一. (15) 
2<1t<1w 

In the next section we discuss the conflict between minimising estimator vari-
ance while simultaneously maximising the expected distance between spectral 
estimates corresponding to different speech sounds. 
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4 The Problem of Minimising the Inter-Sound 
Variance of Spectral Estimates While Simul-
taneously Maximising their Expected Intra— 
Sound Distance 

We assume here a simplified model of the word generation process, where each 
orthographic word is modelled by a single unique stochastic process, which 
produces all acoustic realisations of that word. 
Given two different stochastic processes, U(t) and V(t), corresponding to 
two different words in the recogniser vocabulary, we wish to choose </,(t,w) so 
as to minimise the probability of recognising estimates Wy(t,w; </,) as having 
been generated by the process U(t), and visa versa. In other words, we wish 
to choose </,(t,w) so as to maximise the word recognition rate. A closed form 
solution of the recognition rate as a function of </,(t, w) is clearly beyond our 
grasp. Consequently the following arguments are necessarily intuitive rather 
than rigorous. 
Viewing the problem from a geometric point of view, each t-f spectral esti-
mate will occupy a single point in an infinite dimensional Euclidean space. We 
would reasonably expect the spectral estimates associated with different words 
to produce different, identifiable, perhaps overlapping clusters in this space. An 
obvious optimisation criterion would be to choose </,(t,w) so as to maximise the 
spacing between the cluster centroids, while simultaneously minim誌ingtheir 
spread. 
Assuming a Euclidean distance measure, then the spacing between cluster 
centroids is by definition 

~ 

V(E[Wu],E[Wy]) =「JIE[Wu(t,w; ¢,)]-E[的 (t,w;¢,)]12dtdw. (16) 
-oo 

Equation 16 can be re-expressed in the form (AppendLx B) 

傘 [Wu],E[Wy]) =「J怜(<,T)l21Au(<, T) -Av(<, T)i2d,dT 
-oo 

(17) 

where Au(e, r) is the Ambiguity Function of U(t) (equation 49), and <1'(e, r) 
is obtained from <f,(t,w) via a 2D Fourier transform (equation 52). A detailed 
description of the Ambiguity function, widely used in radar signal processing, is 
given in (12]. Importantly appendix B shows that if t/J(t,w) is an appropriately 
normalised (i.e. satisfies equation 7), real separable 2D gaussian, then l<1'(e, r)l2 
must satisfy the inequality 

＾ 
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l<I?(e, r)l2~1 Ve, r. (18) 

＾ 

Furthermore, l~(c, r)l2 is a monotonic everywhere (apart f~om£= r = 0) de-
creasing function of the t-f spread of¢(t, w). Thus TJ(E(Wu], E(的])m~st 
also be a monotonic decreasing function of the t-f spread of the smoothing wm-
dow </>(t,w). Hence to increase the distance between cluster centroids we must 
reduce the spread of the smoothing window. However, this conflicts with the 
requirement of minimising the variance of the different individual clusters, since 
equation 13 shows that var[Wg(t,w; </>)] is a decreasing function of the smoothing 
window spread. Hence the best that we can hope for is to select a compromise 
value of window spread which min虹傘essome combination of cluster centroid 
separation and variance. For example, one mathematically convenient optimisa— 
tion criterion is to minim函 theexpected sum of the variance and squared bias, 
which is equivalent to minim函ngthe mean squared error of the estimates [11). 
For an adaptive approach to this mean squared error minimisation problem see 
for example (4) (11). The mean squared error optimisation criterion of course 
assumes that we have no a priori information about the class to which a par-
ticular speech spectrum belongs. If such information is available then it makes 
more sense to smooth the spectra so as to maximise some discriminant func-
tion, rather than minimise residual error. However, such a discussion is beyond 
the scope of this paper, which seeks only to make explicit the role of estimator 
variance in the speech recognition process, thus clarifying the reasons for the 
failure of "high resolution" estimators, such as the WD. 

＾ 

5 Summary 

The aim of this paper has been to explain, from a theoretical point of view, 
the reason why the use of''high resolution" estimators, such as the WD, has 
not led to improved speech recognition performance. We have argued that the 
reason for the poor performance of the WD is the relatively high variance of 
the resulting spectral estimates. Thus although quasi-stationary estimators, as 
as the STFPS, produce "blurrini'of the spectral features, this is more than 
compensated for by the reduced variance of these resulting''blurred" spectra. 
Hence, while the cross terms of the WD [11] are a major disadvantage from the 
point of view of visual interpretation, the high estimator variance is the main 
problem from an automatic speech recognition point of view. 
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6 Appendix A -The C ovar1ance of the T-F 
Smoothed Wigner Distribution -A Deriva-
tion 

This appendix derives th~following approximate relationship for the variance 
of the t-f smoothed WD  Wg(t,w; <f,), i.e. 

00 

var佃S(t,w;~)] "'却。(w)l2j j仲(t',w')i2血1dt'. (19) 
-oo 

when S{t) is a white zero mean complex analytic gaussian process. 
The proof of the above equation is a straightforward extension of the discrete 
time proof given by Martin and Flandrin [7). The derivation of equation 19 is 
邸 follows;for notational simplicity the shorthand notation Ws(t氾 1;</>) = W1 
and Ws(t公叫；"') = W2 IS used. Beginning with the expression for cov [W1, W2) 
印ves

cov [W1, W2] = E [(W1 -E [W1])(W2 -E [W2])*]. (20) 

Substituting for W1 and W2 in eqn. 20 using the definition given in eqn. 3, i.e. 

Wnd~ 「Jル(T1,T)S(t + T1 + T/2)S*(t + T1 -T/2)e-jwrむ dT1 (21) 
-oo 

． 
gives 

cov[W1, W2] = J !J f ,f,(虹）か（凸）e―;(w1T1—如）cov[st宮]dT1如 dT3dT4
-oo 

(22) 
where 

＾ 

＾ s = S(t1 + T3 + T1/2) 
U = S(t2 + T4 + T2/2) 

t = S(t1 + r3 -ri/2) 
v = S(t2 + T4 -r2/2) 

(23) 

Using the relationship (originally formulated by Isserlis [3]) 

cov [st・, uが]= E [st•u拿 v] -E [st•] E [u寧v]

then ifs, t, u, v are real joint Gaussian variates with zero averages 

{24) 
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cov [st*, uが]= E [su*] E [t*v] + E [sv) E [t*u*]. (25) 

This result is easily derived from the characteristic function [9). If however 
s, t, u, ッarecomplex analytic zero mean gaussian variates it is straightforward 
to show that eqn. 25 reduces to 

cov [st*, uが]= E [su*] E [t*v]. (26) 

This is because E [wz] = 0 where wz are zero mean analytic gaussian vari-
ables (9]. Thus for complex analytic zero mean gaussian variables cov (W1, W2] 
is simply 

cov[W1, W2] = A (27) 

＾ 
where 

A=  J「jJ'P(か）か（→）e→(w, r, -w2r2) E [su•] E [t寧v]dT1 dT2如如
-00 

(28) 
To evaluate A expand E [sが]E[t寧v]

E [su*] E [t*v] = E [S(t1 + T3 + r1/2)S*(t2 + T4 +乃/2)]
E [S*(t1 + T3ー巧/2)S(t2+ T4一乃/2)] (29) 

and temporarily substitute for r1, r2, T3, r4 using 

r'= a+b 

t'= (c+d)/2 

＾ 
where 

a = t1 -t2 + T3 -T4 

C = t1 + t2 + T3 + T4 

r"=a-b 

t" = (c -d)/2 

b = (r1ー乃）/2 

d = (r1 +巧）/2. 

(30) 

{31) 

Equation 29 can now be written in the form 

｀
ー
し

E[sか]E [t•v] = E [S(t'+ r'/2)S•(t'- r'/2)] E拿 [S(t"+ r" /2)S拿(t"-r" /2)]. 
(32) 

Making the quasi-stationary assumption 

.... 

，
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E[S(t。+T/2)S*(t。— T/2)]~E[S(t'+ T/2)S*(t'-T/2)] 
~E [S(t" + T/2)S*(t" -T/2)] (33) 

where t。=(t1 + t2)/2 gives 

E [su*] E [t*v] :::::: E [S(t。+T1 /2)S*(t。— T1/2)] 

E* [S(t。+T11 /2)S* (t。— T11/2)]. (34) 

Expressing the quasi-stationary covariance E [(S(t。+r/2)S*(t。— r/2))in ternぉ
of the Fourier transform of the stationary process St。(t),tangential to S(t) in 
t。,i.e. 

1 E[(S(t。 +T/2)5寧 (t。— T/2)) "'五1-:疇）呼dO {35) 

＾ . 
gives 

00 

E(su']E(t'v] =~J JS,。仰）s,。仰）,,i(T'応"n•Jdfl心. (36) 
-oo 

Substituting for E [sが]E[t→ ] in eqn. 28 using eqn. 36, rearranging factors and 
expanding -r', -r''using equations 31 and 31 

／
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Defining <I>(Oa,01,) to be 2D Fourier transform of 7/J(Ta,T1>),i.e. 

螂，06)竺'「J,t,(戸）e―;n.,•• -;n,,,dr; 占 (38)
-oo 

then substituting for the braced integrals in eqn. 37 using eqn. 38 and performing 
the co-ordinate transformation:-O'= {02 -01)/2, O" = (釦+02)/2. The 
modulus of the Jacobian is 2 and hence d01 d02→ 2dfl'dO" giving 

~ 

.~Y l̀' 
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A吋~[」 { 4>(20', 四— n")e-;2n'ti}{ q,*(20',w2 -n")e+;2n't,} 

s,。(O"-O')s;Jo" + O') dO'dO". 

Defining <ll(O,w) as a lD Fourier transform of q,(t,w),i.e. 

00 

細，u浮 jtf,(t,w)e―;ntdt 
-oo 

(39) 

(40) 

then eqn. 39 can be re-written as 

＾ 疇 ![ff St。(n"-n')s;.。{fl"+!l')e-i20'(t'—t") 

<f,(t'-t1泡 1-fl")が(t"-t2 , w2 -fl") d!l'd!l" dt'dt". 

{41) 

Since S(t) is a white noise process, Si。(w)is flat and eqn. 41 is equivalent to 

疇!]} IS,。(0")12{j_: e企'(•'—•"ldO'} 

q,(t'-tぃ叫ーn")が(t"-t2泡2-n") dn" dt'dt". 

(42) 

Noting that f~oo e-i20'(t'-t") dO'is equal to戒(t'-t") then eqn. 42 reduces to 

＾ 
00 

1 As:,~J !1s,。(0")12,P(t'-t心,-n")が(t'-t,, w, -n") dn" dt'. (43) 
-00 

Using exactly the same set of arguments it can be shown that 

00 

1 B,.,~J !1s,。(n")l2</>(t'-t心 1-fl")が(t'-t2心+fl")ぬ"dt'. (44) 
-oo 

9
i』

Hence, when the random process S{t) is a white zero mean complex analytic 
gaussian process, the covariance of its smoothed WD is approximately equal to 
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cov 佃setぃ叫；¢)咋 (t2心；¢)]~
00 

1 ~J /1s,。(0")12,P(t'-t1 ,w1 -n")が(t'-t2泡2-O") dO" dt'. (45) 
-oo 

Letting t1 and t2 equal t, and w1 and w2 equal w, we obtain the following 
approximate relationship for the variance of the WD, i.e. 

var [ w5 (t, w; <J,)] :::::: 
00 

1 
石ff協(!'!")12,P(t'-t,w項")が(t'-t, w -!'!") dl'!" dt'. (46) 
-co 

＾ Finally, using the fact the St。(w)is flat in frequency, then we obtain the desired 
result 

00 

var [Ws(t,w;,fo>] ""紐(wl2J J l4>(t',w')l2 dw'dt'. (47) 
-oo 

~ 
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7 Appendix B -Changes in V(E[加],E[加])as 
a function of the t-f spread of ef>(t, 叫

This appendix shows that if q,(t,w) is a real separable gaussian window, which 
satisfies the normalisation criterion of equation 7, then V (E[Wu], E[Wy]) must 
be a monotonic decreasing function of the t-f spread of q,(t,w), irrespective of 
the choice U(t) and V(t). 
Beginning with the definition of V(E[Wu], E防vDgiven in equation 16, 
i.e. 

＾ 
露 [Wu],E[Wy))=「JIE[Wu(t,w;~))- E[Wy(t,w;~)]l2dtdw (48) 

-00 

we re-formulate・this equation in the Ambiguity plane. The Ambiguity function 
(AF), widely used in radar signal processing [12], is defined by the equation 

As(E, r) =ア(Ws(t,w)) (49) 

where 

F(Ws(t,w)) = t; jJ Ws(t,w)e―i(d-wrldt血．
-oo 

Similarly 

A(e,r;~) =ア(W(t,w; <t,)) 

where 

＾ 

<f?{E, r) = :F(tf,(t,w)). 
Making use of Parseval's relationship, and the equality 

As(E, r)<I?{ E, r) =伶(E,r;<f?)
equation 48 can be re-expressed in the form 

(50) 

(51) 

(52) 

(53) 

V(E[WuJ.E[Wy]) =「J険(<,T)i21Au(<, T) -Av(<, T)l2d<dT. (54) 
-oo 

If¢,(t,w) is a real separable 2D gaussian smoothing window, defined by the 
equation 

1 -t2 -研
¢,(t,w) =―exp(-)exp(-), 

U1<lw 2ut2 2叩，2
(55) 

▼
 13 
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which can be shown to satisfy the required normalisation of equation 7, then it 
is straightforward to derive that 

-£2がーT2匹,2
~(e,r) = exp(-)exp(). 

2 2 
(56) 

Thus~(e, T) will also be a real separable 2D gaussian which satisfys the inequal— 
ities 

〇(0,0)= 1 and 4>(€,-r) :5 1 Vf,T. (57) 

Furthermore, since l~(e, T)l2 must also be less or equal to 1 for all e, T, then 
equation 54 implies the following inequality, i.e. 

'D(E[Wu), E[Wy])幻'D(Wu,Wy). (58) 

Or in other words, the distance between the expected values of the smoothed 
spectral estimates must be less than the distance between the unsmoothed esti-
mates. Furthermore, l<I?(f, r)l2 is a monotonic decreasing function of Ut and Uw, 
for all c, T. Hence'D(E[Wu], E[Wv]) must be monotomc decreasmg function 
of window spread, and our original claim is proven. ＾ 

＾ 

14 ．．
 



． 

． 

References 

[1] T. A. S. M. Classen and W. F. G. Mecklenbra.uker. The Wigner Distribution 
-A Tool for Time-Frequency Analysis Part 1: Continuous-Time Signals. 
Philips J. Res., pages 217-250, 1980. 

[2] T. A. S. M. Classen and W. F. G. Mecklenbra.uker. The Wigner Distribu-
tion -A Tool for Time-Frequency Analysis Part 2: Discrete-Time Signals. 
Philips J. Res., pages 276-300, 1980. 

[3] L. Isserlis. On a Formula for the Product-Moment Coefficient of Any Order 
of a Normal Frequency Distribution in Any Number of Variables. Biomet-
rica, 12:134-139, 1918. 

[4] N. C. Sedgwick J. S. Bridle. A Method for Segmenting Acoustic Speech 
Patterns, With Applications to Automatic Speech Recognition. ICASSP, 
1977. 

[5] D. Lowe. Joint Representations in Quantum Mechanics and Signal Pro-
cessing Theory: Why a Probability Function of Time and Frequency is 
Disallowed. Technical Report 4017, Royal Signals and胆 darEstablish-
ment, 1986. 

[6] R. M. Loynes. On the Concept of the Spectrum for Non-Stationary Pro-
cesses. J. Roy. Statist. Soc. ser. B, vol.SO, pages 1-20, 1968. 

[7] W. Martin and P. Flandrin. Analysis of Non-Stationary Processes: Short 
Time Periodogroms Versus a Pseudo Wigner Estimator, pages 455-458. 
Elsevier Science Publishers, 1983. 

[8] W. Martin and P. Flandrin. Wigner-Ville Spectral Analysis of Nonsta— 
tionary Processes. IEEE Trons. Acoust., Speech, Signal Processing, pages 
1461-1470, 1985. 

[9] A. Papoulis. The Fourier Integral and Its Applications. McGraw-Hill, 1962. 

[10] J. 0. Pickles. An Introduction to the Physiology of Hearing. Academic 
Press, 1982. 

[11] D. 胆 inton. Time-Frequency Spectral Estimation of Speech. Technical 
Report CUED/F-INFENG/TR.39, Cambridge U・ ruvers1ty Engineering De-
partment, 1990. 

[12] A. W. Rihaczek. Principles of High Resolution Radar. McGraw-Hill Book 
Company, 1969. 

[13] M. D. Riley. Beyond Quasi-Stationarity: Designing Time-Frequency Rep-
resentations for Speech Signals. In Proc ICASSP, pages 657-660, 1987. 

15 



[14] E. F. Velez and R. G. Absher. Transient Analysis of Speech Signals using 
the Wigner Time-Frequency Representation. In Proc ICASSP, pages 2242-
2245, 1989. 

[15] J. Wilbur and F .J. Taylor. Consistent Speaker Identification via Wigner 
Smoothing Techniques. In Proc ICASSP, pages 591-594, 1988. 

J' 

16 


	cover
	0164本体
	last2
	last



