
TR-1-162 

The FS-LF Manual 
Version 1.2 

FS-LFシステムマニュアル

バーション 1.2

John K. Myers 

真龍主•星音

April 27, 1990 

Abstract 

Internal Use Only 

This manual presents user documentation for the ATR Interpreting Telephony 
Research Laboratories FS-LF, tl~e Feature Structure to Logical Form Translator. 
This package translates information represented in feature structure format into 
a logical form representation. Feature structures are translated directly, in a 
one-to-one format. 
The FS-LF translator was developed to allow natural-language understanding 

programs that work with logical forms to be able to take input from the results of 
programs that work with feature structures. 
The FS-LF translator version 1.2 is a special-purpose system that only works 

with Nadine-s_tyle feature structures, as defined by the Hasegawa RWS rewriting 
system. This system only translates information that is actually present, from 
one representation scheme to another; different efforts are required to add 
infonnation that is not explicitly present in the feature structure (by doing 
anaphora resolution, etc.). The translation is performed using automatically 
constructed functions.'l'he・FS-LF system is thus similar to a compiler-compiler. 
This allows the translation to be extremely rapid, which permits use of the 

package in a run-time system. 

◎ ATR Interpreting Telephony Research Laboratories 
◎ ATR自動翻訳電話研究所



---

＾ 

~ 

THE FS-LF MANUAL 
Version 1.2 
Dec 27, 1989 

John K. Myers 

ATR Interpreting Telephony Research Laboratories 
Sanpeidani, lp.uidani, Sei証 cho,Soraku-gun 

Kyoto 619-02 Japan 
N etmail: myers◎ atr-la.atr.co.jp 

Abstract 

This manual presents user documentation for the ATR Interpreting Telephony Re-
search Laboratories FS-LF, the Feature Structure to Logical Form Translator. This pack-
age translates information represented in feature structure format into a logical form 
representation. Feature structures are translated directly, in a one-to-one format. 

The FS-LF translator w邸 developedto allow natural language understanding pro-
grams that work with logical forms to be able to take input from the results of programs 
that work with feature structures. 

The FS-LF translator version 1.2 is a special-purpose system that only works with 
Nadine-style feature structu,;es, 邸 definedby the Hasegawa RWS rewriting system. This 
system only translates information that is actually present, from one representation 
scheme to another; different efforts are required to add information that is not explic-
itly there in the feature structure (by doing anaphora resolution, etc.). The translation is 
performed using automatically constructed functions. The FS-LF system is thus similar 
to a compiler-compiler. This allows the translation to be extremely rapid, which permits 
use of the package in a run-time sys tern. 

Copyright (c) 1989 ATR Interpreting Telephony Research Laboratories. 



Contents 

．．
 

1

2

3

4

 

Introduction and Background 

Usage 

How it works 

1

1

2

 

4.3 

＾ 
4.4 

Data and Command Explanation 
4.1 System Data Types . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 
4.2 Commonly Used Commands ......................... . 

4.2.1 Initialization Commands ....................... . 
4.2.2 Translation Commands . . . . . . . . . . . . . . . . . . . . . . . . . 
Support Commands . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 
4. 3.1 Translation Commands . . . . . . . . . . . . . . . . . . . . . . . . . 
4.3.2 Documentation and Debugging Commands . . . . . . . . ..... . 
4.3.3 System Generated Translation Functions 
Significant Variables . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 

3

3

4

4

4

5

5

5

6

6

 
5

6

7

8

9

 

Design philosophy 

Features and Known Problems 

Timing 

Future Extensions 

Conclusion 

A Examples 

B

C

 

Specifications Used in the Examples 

List of Commands and Variables 

7

7

8

8

9

0

8

3

 

1

1

2

 

＾ 



1 Introduction and Background 

．．
 

＾ 

The aim of this work is to provide a translation facility that can translate, in a literal fash-
ion, information that is contained in a feature structure format into the same information 
contained in a logical form format. 

This is important because at ATR there is a parsing program that works with informa-
tion in feature structure format, while there is also an understanding system that works 
with information in logical forms. Previously, the understanding system has been forced 
to use hand-generated logical forms as input, that approximate the output information 
from the parser. In order to allow the understanding system to take actual input from 
the results of the parser, it is important to translate the information into a format that 
the understanding system can work with. 

It must be noted that the system integration of such an understanding system with 
such a. parser actually comprises two issues. The first, and perhaps more important 
problem, is the interpretation of the information contained in the results of the parser 
into information that the understanding system can use. This may involve, for example, 
ellipsis and anaphora resolution. This problem is non-trivial. The second problem is 
the literal translation of the format of the results of the parser into a format that the 
understanding system can use. Information is simply rearranged; it is not reprocessed or 
used to create new information. The FS-LF system has been designed to perform this 
second task (format translation). The problem of reworking the information to fill in 
missing pieces must be handled by a more sophisticated system, for instance perhaps a 
re'Y{riting system or a plan inference system. 

~ 

2 Usage 

The FS-LF system can be used either automatically or by people. It is designed to 
translate structures as fast as possible, so it can be used as part of an on-line system. 
There are basically only two main functions. First of all, the user specifies a number of 
rewriting rules, using FS-to-LF-spec. These tell the system how to rewrite a particular 
type of feature structure into a logical form. Then, the user tells the system to translate a 
feature structure, using FS-to-LF. The translated logical form is returned. This process 
will now be discussed in more detail. 

The system assumes that there are different types of feature structures, and that each 
type should be translated in a different manner. 

First, before sending a particular feature structure to the FS-LF system, a recognition 
program should rewrite the structure into a unique feature structure format that is (1) 
easily recognizable (i.e., has an identifiable type), (2) has all required information, and 
(3) does not vary topologically (the structure "shape" is always the same for that type of 
feature structure). 

This feature structure is passed to the FS-LF system. The system identifies the type 
of the feature structure, and looks up a translation method which corresponds to the FS 
identification type. The proper translation method is applied to the feature structure, 
resulting in a logical form. This should then be passed to a logical form understanding 
program. Thus, a logical form understanding program can be part of a run-time system 

ー



by using the FS-LF package to rapidly translate feature structures. 
Feature structure types in version 1.2 are currently identified by the highest, most 

important slot value in the structure. Usually, this is the first "rein" value. 
The translation method for each type of feature structure that the system can en-

counter should be specified ahead of time. Translation is basically a rewriting process 
from a feature structure into a logical form (instead of the more common.feature structure-
into-feature structure rewriting). A translation method is thus defined by specifying a 
rewriting rule consisting of a feature structure pattern and a resulting logical form pattern 
template to be filled in. The patterns can have constants and variables. In version 1.2, 
only one translation method is allowed for each type of feature structure. ,̀-

3 How it works 

A translation specification rewriting rule consists of an input feature structure pattern, 
and an output logical form pattern. When a specification is entered into the system, the 
system builds a special translation function for that type of feature structure. The name of 
the function is "Trans-identification-to-LF". {The feature structure type's identification 
is taken from the feature structure pattern, using FS-LF-get-name-tag; the identifica-
tion is typically the first-level rein feature's slot value for the specified pattern.) The 
translation function, when it is called with a feature structure of the appropriate type, 
will return a list that is the desired logical form, with all of the logical form pattern's 
variables filled in. 

The value for each variable in the instantiated logical form is obtained by calling 
one of a set of special mapping functions, named "Map-identification-varname". These 
functions are also compiled automatically by the system. They access a particular branch 
of a feature structure, and return its contents. The system creates these functions in the 
following manner. First, a variable in the logical form pattern is discovered. Variables 
in version 1.2 are marked by beginning with question marks (e.g., "?var"). Next, the 
corresponding location of the same variable in the feature structure pattern is discovered 
and recorded. The access path to this location is compiled into the corresponding Map 
function. 

When the FS-to-LF system is asked to translate a feature structure, it first identifies 
the type of the feature structure. Next, it builds the name of the translation function 
from the identified type using string concatenation, and invokes that function. {Note that 
this indexing process requires constant time that should not change when a large base 
of translation rules is used. In other words, it is 0(1), not O{log n).) The translation 
function is applied to the feature structure. The translation function calls each of its 
mapping functions on the feature structure, and assembles the results into the logical 
form, which is returned. 

＾ 

~ 

2
 



4 Data and Command Explanation 

°̀ 

This section presents a description of the system's data and commands. First, the types 
of data used by the system are described. Next, the most commonly used commands 
are detailed. The commands are arranged in the order in which they are typically used. 
After this, other support commands that can be used are listed, and important system 
variables are also described. 

＾ 

＾ 

4.1 System Data Types 

There are five explicit kinds of data in the FS-LF system. These are: 

Explicit Feature Structure An explicit feature structure is a written representation of 
a Hasegawa-style Nadine feature structure, used mostly by people as an input speci-
fication. An example is [ [reln greet] [speaker GUEST]] . It will be represented in 
this manual by the symbol "[FS]". An explicit feature structure is actually a series 
of unbound atoms in the input stream; the Lisp reader temporarily gets modified2 
to be able to accept these atoms as input. 

Internal Feature Structure An internal feature structure is a variable containing a 
Lisp structure of type RvVS::NODE, used mostly by programs. An example is 
the value #S (RWS : : NODE : VALUE ((RELN ...)) ...) . It will be represented in this 
manual by the symbol "{FS}". Internal feature structures are usually verbose 
and inconvenient to read, and are therefore typically converted into explicit feature 
structure format by a pretty-printing program before being displayed to the user. 

Unspecified Feature Structure An unspecified feature structure can be either an ex-
plicit [FS] or an internal {FS} feature structure. It will be represented by the 
symbol "FS". Unspecified feature structures are used only for input. 

Logical Form A logical form is a variable (or a quoted form) containing a list of atoms 
or lists. An example is the expression'((reln greet) (speaker guest))) (note 
the beginning quote). It will be represented by the symbol "LF". 

Logical Form Literal A logical form literal is an unquoted logical form expression (in-
cluded in the system for convenience in input). An example is the literal expression 
((reln greet) (speaker guest))). It will be represented by the symbol "LFq". 

2This function was written by Hasegawa-san. 

3
 



4.2 Commonly Used Commands 

4.2.1 Initialization Commands 

{reset-FS-LF) Clears out the documentation hash-table. Allows new translation speci-
fications to be defined. Note that in version 1.2, this function does not unintern the 
old translation functions. Thus, the old translation functions will still work, until 
they have been replaced by new ones. This feature may change in the future. 

{FS-to-LF-spec FS LFq) Enters a specification for translating between a feature struc-
ture and a logical form into the system. The feature structure can be in explicit or 
internal format. The logical form should be a logical form literal (without a quote). 
The feature structure should have a unique identification. (The identification of a 
feature structure is its highest-level "rein" value, or other comparable tag.) All of 
the variables in the logical form should be found somewhere in the feature structure. 
However, the feature structure can have extra variables that are not included in the 
logical form. Variables start with question marks. 

Because this function creates and then invokes the compiler on a series of mapping 
access functions, it is especially slow (about 4 seconds per call, depending on the size 
of the logical form pattern). It is expected that this function will be used off-line, 
before run-time of the actual translation task. 

The feature structure pattern in version 1.2 currently only serves to determine the 
branch-path location of the logical form's variables. Thus, the recognition performed 
is very weak; the feature structure is allowed to have more structure than is shown 
in the pattern. In other words, matching does not have to be exact.3 

Example: 

(FS-to-LF-spec [[reln my-reln][value ?vaェ]] (output form (?var))) 

4.2.2 Translation Commands 

{FS-to-LF FS) Translates an FS into an LF. Returns the LF. The feature structure can 
be in explicit or internal format. The translation is performed by keying on the 
identification ("reln" value, etc.) of the feature structure. The translation method 
for this type of feature structure must have been previously specified by a FS-to-
LF-spec command. Since this function tests to see whether the FS is in explicit or 
internal format, it should be used by people. 

Example: (FS-to-LF [[reln my-reln] [value my-input]]) 

This will result in the form (output form (my-input)), given the previous speci-
fication. 

"-

＾ 

＾ 

-）
 

3It can even have less entries, as long as all the variables'information is there. 

4
 



雷
｀

4.3 Support Commands 

4.3.1 Translation Commands 

([FS]-to-LF FS) Another name for FS-to-LF. The FS may be in explicit format. Trans-
lates an FS into an LF. Returns the LF. 

(Fast-FS-to-LF {FS}) Translates an FS into an LF. Returns t~e LF. The feature struc-
ture must be in internal format. Since this function does not test to see whether the 
FS needs to be converted into internal format, it should be used by other computer 
systems. 

Example:・(Fast-FS-to-LF my-fs) 

({FS }-to-LF {FS}) Another name for F邸 t-FS-to-LF.Translates an FS into an LF. 
Returns the LF. The feature structure must be in internal format. 

Example: (FS-to-LF my-f s) 

＾ 

r---., 

4.3.2 Documentation and Debugging Commands 

(get-trans-func name-or-FS) This function prints a report on the specified translation 
function. This is needed because the translation function is created and compiled 
internally, and no source code is otherwise available. The translation function is 
specified by the name (identifier) of the function, or equivalently by providing an 
example of the type of feature structure that the function translates (in explicit 
or internal format). The report in version 1.2 currently consists of a listing of the 
specification used to create the translation function, and a source listing of the defun 
used by the system to define the function. 

Example: (get-trans-func my-reln) . 

{get-mapping-func name-or-{FS} varname) This function prints a report on the 
specified mapping function. This is needed because the mapping function is created 
and compiled internally, and no source code is otherwise available. The mapping 
function is specified by the name (identifier) of the feature structure type that it 
performs a mapping for, or equivalently by providing an example of the type of 
feature structure that the function translates (in internal format). The variable is 
specified by name, without a quote. The report in version 1.2 consists of a source 
listing of the defun used by the system to define the function. 

Example: (get-mapping-func my-reln ?var) . 

(print-FS-LF-funcs) This function prints a table of the names of all the known trans-
lation functions. It is useful for seeing whether a function has been defined or not. 

(print-FS-LF-mappings) This function prints a table of the names of all the known 
translation functions. It is useful for seeing whether a function has been defined or 
not. 

5
 



4.3.3 System Generated Translation Functions 

(TRANSーident-TO-LF{FS}) This internal function builds a logical form that corre-
sponds to the feature structure identified by ident. It implements the specified 
rewriting method for that type of feature structure. It gets created and com-
piled by the FS-LF system. The listing for this function can be found by using 
(get-trans-func ident). 

The name for this function is determined by the FS-LF internal function 
(make-translation-function-name'ident). 

(MAP-ident-varname {FS}) Each instance in this class of internal functions accesses 
a particular branch in a feature structure, and returns the contents of that branch. 
These functions are called by TRANS-ident-TO-LF. The type of feature structure 
that they should be applied to is identified by ident. These functions get created 
and compiled by the FS-LF system. The listing for one of these functions can be 
found by using (get-mapping-func ident varname). 

(where-is'TRANS-ident-TO-LF) This Lisp function checks to see whether a given 
function has・been interned (is present in the system) or not. 

＾ 4.4 Significant Variables 

FS-LF-specs-hash This hash-table holds the documentation for the translation func-
tions. In version 1.2, the hash-key is the name of the function. 

FS-LF-mappings-hash This hash-table holds the documentation for the mapping func-
tions. In version 1.2, the hash-key is the name of the function. 

~-

6
 



5 Design philosophy 

ea 

_, 

＾ 

Because this system may be used as the logical form translator in an on-line system, it 
is important to make the translation itself be as fast as possible. (Since the translation 
specifications will be performed offiine, it is alright for them to be not so fast.) 

To accomplish this aim, a function-compiler was produced. The translation itself is 
performed by a special-purpose function that is dedicated to translating only a single 
specified kind of feature structure. Because it is a dedicated function, it is extremely 
fast. This function is built and compiled by the FS-LF system. Which special-purpose 
function to call is handled by a master switching function in FS-to-LF. In order to fill 
in the variables in the logical form, the translation function calls other special-purpose 
functions that access specific branch paths in the feature structure. These functions are 
also built and compiled by the system. The result is an extremely fast access-function-
based system that basically uses no conditionals nor pattern-matching. 

There is a small trade-off in space to achieve this speed. Because of this design, the 
system must create a function for every kind of feature structure it translates, and for 
every kind of variaple-in every kind of fe~ture structure it accesses. However, since these 
routines are only a few lines long apiece, this should not be a significant penalty in memory 
space. 

6 Features and Known Problems 

＾ 

The current version of the system, version 1.2, has some particular features. These include: 

• Returns {FS} value if FS is unexpectedly deep. The translation routines 
in version 1.2 work by accessing and returning the value of a slot in a FS. If this 
slot unexpectedly contains a (deeper) {FS} instead of an atomic value, this {FS} is 
returned in the appropriate place in the middle of the LF. This feature is expected 
to be corrected in the next version. 

• FSs have only one method of translation. Each type of FS h邸 onlyone handler 
function that translates it into an LF. This serves to make translation simple and 
easy to understand. It is assumed that if one kind of FS can be translated into 
one of two different kinds of LFs, it will be classified by a preprocessor (such as a 
nonmonotonic rewriting system or a plan recognition system) which will reassign 
it an appropriate unique identification for translation. This design feature may be 
changed in the future if it turns out to be inconvenient. 

• The highest-level indicator in a feature structure pattern specification 
must be a constant. (This is usually the value of the first reln.) This again is a 
result of identifying feature structures by their top level. 

• The significant contents of a FS must be known ahead of time. One of the 
advantages of£ 蕊 turestructures is that they can be arbitrarily expanded at run-time, 
by adding new (and perhaps previously unknown) feature slots and data. Version 
1.2 of the FS-LF system allows unspecified expansion but does not take advantage 
of it: any extra data is simply not translated. The reasoning behind this is that 

7
 



logical forms encode information based on the position of an item in the form; thus, 
the interpretation of each position in the form must be known and specified ahead 
of time in order for the logical form to be meaningful. Since logical forms can only 
represent known information classes, any unknown information should probably be 
discarded. 

• Reset does not unintern translation functions. The old translation functions 
are still present after a reset. This feature may get corrected if there is sufficient 
demand. 

• Currently in version 1.2 no dotted lists are allowed in the output logical 
form. 

• The FS-LF system is specialized for Hasegawa-style Nadine feature struc-
tures. Other styles of feature structures, e.g. RETIF, are not handled in version 
1.2. 

7 Timing 

An experiment was performed to test the speed of the FS-LF system, version 1.2. The 
feature structures representing the surface speech acts of utterances from conversation 
1 were processed. The system processed 20 surface speech act feature structures, using 
15 FS-to-LF-spec rules. During five runs, the system took an average of 0.07 seconds 
to process all of the utterances, for an average of about 0.0035 seconds per feature 
structure translation. The logical forms were all three levels of parenthises deep, and 
used an average of 7 variables apiece. (Translation time is basically a linear function of 
the number of variables in the resulting logical form.) The experiment was performed on 
a 3620 Symbolics Lisp Machine. 

The 20 input feature structure utterances and their resulting output logical forms 
are presented in Appendix A. The 15 FS-to-LF-spec rewriting rules used to specify the 
translations are presented in Appendix B. 

8 Future Extensions 

Some of the system's features should be modified. One example is the method of trans-
lating non-atomic variable values, i.e. when a desired feature slot does not contain an 
atom but contains a deeper feature structure. Some acceptable convention will have to 
be determined for translating arbitrary feature structures into useful logical forms, for 
instance a paired list or a dotted-pair assoc list. 

Other extensions will depend upon what is needed and/ or useful. Perhaps one exten-
sion that will eventually be required is a logical form to feature structure (LF-FS) inverse 
translator. 

A third extension might be to concentrate on making the system run faster. For 
instance, if the legal function check is removed, the system will probably run in less than 
half of the current time required. The indexing process can also be improved. 

~ 

’ 

8
 



9 Conclusion 

っゞ

This manual has presented the theory and practice of the use of "FS-LF", the ATR Feature 
Structure to Logical Form Translator. With the functions and examples described here, 
the user can specify translation r_ules, and can translate feature structures into logical 
forms. Translation is performed by directly rewriting informa~ion extracted from the 
feature structure into logical-form format. This is done in a rapid manner using dedicated 
functions; The resulting system can be used at run-time as a translation system to enable 
a logical-form-based understanding program to use the output of a feature-structure-based 
semantic parser. 

＾ 

t-'¥ 

，
 



A Examples 

** FS-LF DEMO ** 

**Translating utterances from number Oto 19.** 

(FS-to-LF 

[[RELll GREETING-OPEN) 

[ACTION [[RELH PRED&CASESJ 

[AGENT SP1J 

[PREDICATE MOSHIMOSHI]JJ 

[CLUE ?CLUE$1J 

[HR SP2J 

[SP SP1J 

[TOPIC ?TOPIC$1JJ 

） 

••• gives: 

(GREETING-OPEH SP1.SP2 ?CLUE$1 ?TOPIC$1 (PREDi:CASES (PREDICATE MOSHIMOSHI) (AGENT SP1))) 

(FS-to-LF 

[[RELN CONFIRM-VALUE-A] 

[ACTION [[RELN PRED.tCASES] 

[IDENTIFIER KOKUSAIKAIGI_JIMUKYOKU] 

[OBJECT SP2] 

[PREDICATE DESU]]] 

[CLUE ?CLUE$1] 

[HR SP2] 

[SP SP1] 

[TOPIC ?TOPIC$1]] 

） 

••• gives: 

(CONFIRM-VALUE-A SP1 SP2 ?CLUE$1 ?TOPIC$1 

(PRED&:CASES (PREDICATE DESU) (OBJECT SP2) (IDENTIFIER KOKUSAIKAIGI_JIMUKYOKU))) 

(FS-to-LF 

[ [RELN AFFIRMATIVE] 

[ACTION [[RELN PRED臥CASES]

[IDENTIFIER ?ID$1J 

[OBJECT SP2] 

[PREDICATE DESUJJJ 

[CLUE ?CLUE$1J 

[HR SP1J 

[SP SP2J 

[TOPIC ?TOPIC$1]J 

） 

••• gives: 

10 

＾ 

， 

｀ -・ 



(AFFIRMATIVE SP2 SP1 ?CLUE$1 ?TOPIC$1 

(PRED&CASES (PREDICATE DESU) (OBJECT SP2) (IDENTIFIER ?1D$1))) 

・"‘
(FS-to-LF 

[_[RELN ASK-TOPIC] 

[ACTION [[RELN PREDi:CASES] 

[IDENTIFIER ?ID$1] 

[OBJECT ?OBJECT$1] 

[PREDICATE DESU]]] 

[CLUE ?CLUE$1] 

[HR SP1] 

[SP SP2] 

[TOPIC ?TOPIC$1]] 

） 
.. ・.gives: 

＾ 
(ASK-TOPIC SP2 SP1 ?CLUE$1 ?TOPIC$1 

(PRED&CASES (PREDICATE DESU) (OBJECT ?OBJECT$1) (IDENTIFIER ?!D$1))) 

(FS-to-LF 

[ [RELN INTRODUCE-OBJECT] 

[ACTION [ [RELN PRED&CASES] 

[AGENT SP2] 

[OBJECT KAIGI-MOUSHIKOMI] 

[PREDICATE OSHIERU] 

[RECIPIENT SP1]]] 

[CLUE ?CLUE] 

[HR ?HEARER] 

[SP ?SPEAKER] 

[TOPIC KAIGI-MOUSHIKOMI]] 

） 

... gives: 

＾ 
(INTRODUCE-OBJECT ?SPEAKER ?BEARER ?CLUE KAIGI-MOUSBIKOMI 

(PRED&CASES (PREDICATE OSBIERU) (AGENT SP2) (RECIPIENT SP1) (OBJECT KAIGI-MOUSHIKOMI))) 

(FS-to-LF 

[(RELN ASK-ACTION] 

[ACTION [[RELH PRED&CAS四］

[AGENT SP1] 

[OBJECT ?OBJ$1] 

[PREDICATE ?PRED$1]]] 

[CLUE ?CLUE$1] 

[HR SP2] 

[SP SP1] 

11 



[TOPIC ?TOPIC$1]] 

） 

... gives: 

(ASK-ACTION SP1 SP2 ?CLUE$1 ?TOPIC$1 

(PRED&:CASES (PREDICATE ?PRED$1) (AGENT SP1) (OBJECT ?OBJ$1))) 

(FS-to-LF 

[[RELH DIRECTION] 

[ACTION [[RELH PRED&CASES] 

[AGENT SP1] 

[HEAH FORM] 

[OBJECT ?OBJ$1] 

[PREDICATE TETSUDUKIWOSURU]]] 

[CLUE ?CLUE$1] 

[HR SP1] 

[SP SP2] 

[TOPIC ?TOPIC$1]] 

） 

... gives: 

(DIRECTION SP2 SP1 ?CLUE$1 ?TOPIC$1 

(PRED&:CASES (PREDICATE TETSUDUKIWOSURU) (AGENT SP1) (OBJECT ?OBJ$1) (MEAN FORM))) 

(FS-to-LF 

[[RELN ASK-TRUTH-NJ 

[ACTION [[RELH PRED&:CASES] 

[AGENT SP1] 

[OBJECT FORM] 

[PREDICATE MOTSU]]] 

[CLUE ?CLUE$1] 

[HR SP1] 

[SP SP2] 

[TOPIC ?TOPIC$1]] 

） 
... gives: 

(ASK-TRUTH-N SP2 SP1 ?CLUE$1 ?TOPIC$1 (PRED&CASES (PREDICATE MOTSU) (AGENT SP1) (OBJECT FORM))) 

(FS-to-LF 

[[RELN NEGATIVE-TRUTH] 

[ACTION [[RELN PRED&:CASES] 

[PREDICATE DESU]]] 

[CLUE ?CLUE$1] 

[HR SP2] 

[SP SP1] 

12 

t-... 

， 



＾ 

＾ 

[TOPIC ?TOPIC$1]] 

） 

... gives: 

(NEGATIVE-TRUTH SP1 SP2 ?CLUE$1 ?TOPIC$1 (PRED紅 ASES (PREDICATE DESU))) 

(FS-to-LF 

[[RELN CONFIR旧
[ACTION [[RELN PREDtCASES] 

(AGENT SP2] 

[MANNER ?MANNE邸 1-10]

[OBJECT ?OBJ$1-10] 

[PREDICATE WAKARUJ 

[RECIPI皿T?RECIP1-10]JJ 

[CLUE ?CLUE$1J 

[HR SP1] 

[SP SP2] 

[TOPIC ?TOPIC$1]] 

） 

... gives: 

(CONFIRM SP2 SP1 ?CLUE$1 ?TOPIC$1 

(PREDtCASES (PREDICATE WAKARU) (AG皿TSP2) (RECIPIENT ?RECIP1-10) (OBJECT ?OBJ$1-10) 

(MANNER ?MANNER$1-10))) 

(FS-to-LF 

[[RELH WILL-DO-ACTION-A] 

[ACTION [[RELN PRED&CASES] 

[AGENT SP2] 

[MANNER ?MANNE邸 1-11]

[OBJECT FORM] 

[PREDICATE OKURU] 

[RECIPIENT SP1]]] 

[CLUE ?CLUE$1] 

[HR SP1] 

[SP SP2] 

[TOPIC ?TOPIC$1]] 

） 

... gives: 

(WILL-DO-ACTION-A SP2 SP1 ?CLUE$1 ?TOPIC$1 

(PRED&CASES (PREDICATE OKURU) (AGENT SP2) (RECIPIENT SP1) (OBJECT FORM) 

(MANNER ?MANNER$1-11))) 

(FS-to-LF 

[ [RELN ASK-VALUE] 

13 



[ACTION [[RELN PREDiCASES] 

[IDENTIFIER ?ID$] 

[OBJECT ADDRESS] 

[PREDICATE DESU]JJ 

[CLUE ?CLUE$] 

[HR SP1] 

[SP SP2] 

[TOPIC ADDRESS]] 

） 

... gives: 

(ASK-VALUE SP2 SP1 ?CLUE$ ADDRF.SS 

(PRED&CASES (PREDICATE DESO) (OBJECT ADDRESS) (IDENTIFIER ?ID$))) 

(FS-to-LF 

([RELH ASK-VALUE] 

[ACTION [[RELH PRED&CASFS] 

[IDENTIFIER $ID] 

[OBJECT NAME] 

[PREDICATE DESU]]] 

[CLUE ?CLUE$] 

[BR SP1] ・

[SP SP2] 

[TOPIC NAME]] 

） 

... gュves:

(ASK-VALUE SP2 SP1 ?CLUE$ NAME (PRED紅 ASES(PREDICATE DESU) (OBJECT NAME) (IDENTIFIER $ID))) 

(FS-to-LF 

[[RELH I町 ORM-VALUE]

[ACTION [[RELH PREDtCASES] 

[IDENTIFIER OOSAKASHI_KITAKU_CHAYAMACHI_23J 

[OBJECT ADDRESS] 

[PREDICATE DESU]]] 

[CLUE ?CLUE$1] 

[HR SP2] 

[SP SP1J 

[TOPIC ADDRESS]] 

... gives: 

(INFORM-VALUE SP1 SP2 ?CLUE$1 ADDRESS 

(PREDtCASES (PREDICATE DESU) (OBJECT ADDRESS) (IDENTIFIER OOSAKASHI_KITAKU_CHAYAMACHI_23))) 

(FS-to-LF 

14 

＾ 

~ 



~ 

~ 

[[RELN INFORM-VALUE] 

[ACTION [[RELN PREDctCASFS] 

[IDENTIFIER SUZUKI_MAYUMI] 

[OBJECT NAME] 

[PREDICATE DESU]]] 

[CLUE ?CLUE$1] 

[HR SP2] 

[SP SP1] 

[TOPIC NAME]] 

） 

... g1 ves: 

(INFORM-VALUE SP1 SP2 ?CLUE$1 BAME 

(PREDtCASES (PREDICATE DESU) (OBJECT BAME) (IDENTIFIER SUZUKI_MAYUMI))) 

(FS-to-LF 

[ [RELN CONFIRM] 

[ACTION .[[RELN PREDl:CASESJ 

[AGENT SP2] 

[MANNER ?MAHHER$1] 

[OBJECT ?OBJECT$1] 

[PREDICATE WAKARU] 

[RECIPIENT ?RECIP$1]]] 

[CLUE ?CLUE$1] 

[HR SP1] 

[SP SP2] 

[TOPIC NAME]] 

） 

... gives: 

(CONFIRM SP2 SP1 ?CLU認1NAME 

(PREDtCASES (PREDICATE WAKARU) (AGENT・SP2) (RECIPI四 T?RECIP$1) (OBJECT ?OBJECT$1) 

(MANNER ?MANNER$1))) 

(FS-to-LF 

[ [RELH CONFIRM] 

[ACTION [[RELH PREDtCASFS] 

[AGENT SP2] 

[HANNER ?HAHNER$!] 

[OBJECT ?OBJECT$!] 

[PREDICATE WAKARU] 

[RECIPIENT ?RECIP$1]]] 

[CLUE ?CLUE$1] 

[HR SP1] 

[SP SP2] 

[TOPIC ADDRESS]] 

） 

... gives: 

15 



(CONFIRM SP2 SP1 ?CLUE$1 ADDRESS 

(PRED紅CASES(PREDICATE WAKARU) (AG四TSP2) (RECIPI四 T?RECIP$1) (OBJECT ?OBJECT$1) 

(MANNER ?MANNER$1))) 

(FS-to-LF 

[[RELH WILL-D0-ACTIOH-A] 

[ACTION [[RELi PRED&CASES] 

[AGENT SP2] 

[M紐 HER?MAIHER$1-16] 

[OBJECT FORM] 

[PREDICATE OKURU] 

[RECIPIENT SP1]]J 

[CLUE ?CLUE$] 

[BR SP1] 

[SP SP2] 

[TOPIC ?TOPIC$]] 

） 
... gives: 

(WILL-DO-ACTION-A SP2 SP1 ?CLUE$ ?TOPIC$ 

(PRED&CASES (PREDICATE OKURU) (AGENT SP2) (RECIPIENT SP1) (OBJECT FORM) (MANNER ?MANNER$1-16)) 

(FS-to-LF 

[[RELN ACCEPT-OFFER] 

[A CTI OH [ [RELN PREDtCASES] 

[AGENT SP1] 

[PREDICATE NEGAU]]] 

[CLUE ?CLUE$1] 

[HR SP2] 

[SP SP1] 

[TOPIC ?TOPIC$1JJ 

） 

... gives: 

(ACCEPT-OFFER SP1 SP2 ?CLU蕊 1?TOPIC$1 (PRED&CASES (PREDICATE NEGAU) (AGNT SP1))) 

(FS-to-LF 

[[~GREETIHG-CLOSE—暉IT]

[ACTIOH [[RELN PREDICAS区］

[AGENT SP1] 

[PREDICATE SBITSUREISURU]]J 

[CLUE ?CLUE$1] 

[HR SP2] 

[SP SP1] 

[TOPIC ?TOPIC$1]] 

16 

＾ 

＾ 



‘
 

•• 
‘
 

． 
... g1 ves: 

(GREETING-CLOSE-UNIT SP1 SP2 ?CLUE$1 ?TOPIC$1 (PRED&CASES (PREDICATE SHITSUREISURU) (AGNT SP1)) 

．ヽ
Time taken to translate 20 utterances using Fast-FS-TO-LF, version 1.2: 
Evaluation of (LOOP FOR UTrERAHCE-NUM FROM OTO ...) took 0.064971 seconds ot elapsed time incli: 

0.002 seconds processing sequence breaks, 

0.003 seconds in the storage system (including 0.000 seconds vaiting for pages): 

0.000 seconds processing 11 page faults including O fetches, 

0.003 seconds in creating and destroying pages, and 

0.000 seconds in miscellaneous storage system tasks. 
341 list, 230 structure vords consed in WORKING-STORAGE-AREA. 

<end of demo> 

~"' 

＾ 

17 



B Specifications Used in the Examples 

;;; -•- Mode: LISP; Syntax: Common-lisp; Package: USER; Base: 10 -*一

; ; ; H AME: FS-LF-SPECS-EX1 

; ; ； VERSION: 1.0 
; ; ； WHAT IT DOES: Provides an example of the FS-LF translation specifications. 
... 
''' ; ; ； HISTORY 
... -------
''' 
; ; ； Dec 21'89 John Myers 

(reset-FS-LF) 

(fs-to-lt-sp~c .・ ・・'...p. 
．．． 

[[reln greeting-open] 
[sp ?s1] 

[hr ?s2] 

[clue ?clue] 

[topic ?topic] 

[action [[reln pred&cases] 
[predicate ?pred] 
[agent ?s1]]]] 

(greeting-open ?s1 ?s2 ?clue ?topic 
(pred&cases (predicate ?pred) (agent ?s1))) 

ヽ`ノ

;------
(fs-to-lf-spec 

[[reln confirm-value-a] 
[sp ?s1] 

[hr ?s2] 

[clue ?clue] 

[topic ?topic] 

[action [[reln pred&:cases] 

[predicate ?pred] 
[object ?obj] 

[identifier ?ID]]]] 

(confirm-value-a ?s1 ?s2 ?clue ?topic 
(pred.tcases (predicate ?pred) (object ?obj) (identifier ?ID))) 

‘,‘ 
,------------------------------------------------------------------

9
"
 

，↓ 

＾ 

~ 

、.. 
！ 

(fs-to-lf-spec 

[ [reln affirmative] 

[sp ?s1] 
[hr ?s2] 

[clue ?clue] 

,
1
會
）

18 



[topic ?topic] 

[action [[reln predtcases] 

[predicate ?pred] 

[object ?obj] 
[identifier ?IDJJJJ 

‘
 

(affirmative ?s1 ?s2 ?clue ?topic 

(predtcases (predicate ?pred) (object ?obj) (identifier ?ID))) 

J
 

‘,‘ 

,----------------------------------------------------------

＾ 

(fs-to-lf-spec 

[[reln ask-topic] 
[sp ?s1] 

[hr ?s2] 

[clue ?clue] 

[ topic ?topic] 

[action [[reln predtcasesJ 
[predicate ?predJ 

[object ?obj] 

[identifier ?IDJJJJ 

(ask-topic ?s1 ?s2 ?clue ?topic 
(predi:cases (predicate ?pred) (object ?obj) (identifier ?ID))) 

‘,‘ 

＾ 

， 
(fs-to-lf-spec 

[[reln introduce-object] 

[sp ?s1] 

[hr ?s2] 

[clue ?clue] 

[ topic ?topic] 
[action [[reln predtcases] 

[predicate ?pred] 

[agent ?agnt] 

[recipient ?recp] 

[object ?obj]]]] 

(introduce-object ?s1 ?s2 ?clue ?topic 

(pred&cases (predicate ?pred) (agent ?agnt)(recipient ?recp)(object ?obj))) 

、冒．，
I ------------------------------------------------------------------------------

•
、1

(fs-to-lf-spec 

[[reln ask-action] 

[sp ?s1] 
[hr ?s2] 

[clue ?clue] 

[topic ?topic] 

[action [ [reln predtcases] 

19 



[predicate 

[agent 

[object 

?pred] 

?agntJ 
?obj]]]] 

(ask-action ?s1 ?s2 ?clue ?topic 

(pred&cases (predicate ?pred) (agent ?agnt)(object ?obj))) 

ヽ`
ノ

，
 

(fs-to-lf-spec 

[ [reln direction] 

[sp ?s1] 

[hr ?s2] 

[clue ?clue] 
[ topic ?topic] 

[action C [reln pred&cas es] 

[predicate ?pred] 

[agent ?agnt] 

[object ?obj] 

[mean ?meaning]] J] 

し

＾ (direction ?s1 ?s2 ?clue ?topic 

(pred~cases (predicate ?pred) (agent ?agnt)(object ?obj)(mean ?meaning))) 

‘,‘ 

(fs-to-lf-spec 

[[reln ask-truth-n] ;NOTE: ASK-TRUTH in dialog; none in plan-set. 

[sp ?s1] 

[hr ?s2] 

[clue ?clue] 

[topic ?topic] 

[action [[reln pred~cases] 
[predicate ?pred] 

[agent ?agnt] 

[object ?obj]]]] 

(ask-truth-n ?s1 ?s2 ?clue ?topic 

(pred~cases (predicate ?pred) (agent ?agnt)(object ?obj))) 

＾ ‘,‘ 
,--------------------------------------------------------
(fs-to-1£-spec 

((reln negative-truth] 

(sp ?s1] 
(hr ?s2] 

(clue ?clue] 

(topic ?topic] 
[action [(reln pred.tcases] 

[predicate ?pred]JJJ 

9
ー

(negative-truth ?s1 ?s2 ?clue ?topic 

(pred&:cases (predicate ?pred))) 

20 



、_‘

＼
 

贔“

(fs-to-lf-spec 

[[reln confirm] 

[sp ?s1] 

[hr ?s2] 

[clue ?clue] 

[topic ?topic] 

[action [[reln predtcases] 

[predicate ?pred] 

[agent ?agnt] 

[recipient ?recp] 

[object ?obj] 

[manner ?manner]]]] 

(confirm ?s1 ?s2 ?clue ?topic 

(predtcases (predicate ?pred) (agent ?agnt)(recipient ?recp)(object ?obj)(manner ?manner))) 

）^ ;----------------------------------------------------------
(£s-to-lf-spec 

[[reln vill-do-action-a] 

[sp ?s1] 

[hr ?s2] 

[clue ?clue] 

[ topic ?topic] 

[action [[reln predtcases] 

[predicate ?pred] 

[agent ?agnt] 

[recipient ?recp] 

[object ?obj] 

[manner ?manner]]]] 

＾ 
(~ill-do-action-a ?s1 ?s2 ?clue ?topic 

(predtcases (predicate ?pred) (agent ?agnt)(recipient ?recp)(object ?obj)(manner ?manner))) 

‘,‘ 

~
、
1

(fs-to-lf-spec 

[ [reln ask-value] 

[sp ?s1] 

[hr ?s2] 

[clue ?clue] 

[topic ?topic] 

[action [[reln pred&cases] 

[predicate ?pred] 

[object ?obj] 
[identitier ?ID]]]] 

(ask-value ?s1 ?s2 ?clue ?topic 

21 



(pred&cases (predicate ?pred)(object ?obj)(identitier ?ID))) 

‘,‘ 

-------------------------------------------------==--------------------， 
(fs-to-lf-spec 

[[reln inform-value] 

[sp ?s1] 
[hr ?s2] 

[clue ?clue] 

[ topic ?topic] 

[action [[reln predtcases] 

[predicate ?pred] 

[object ?obj] 
[identifier ?ID]]]] 

ー

ヽ

(inform-value ?s1 ?s2 ?clue ?topic 

(pred.tcases (predicate ?pred)(object ?obj)(identi'fier ?ID))) 

‘,．、

＾ (fs-to-lf-spec 

[[reln accept-offer] 
[sp ?s1] 

[hr ?s2] 

[clue ?clue] 

[ topic ?topic] 

[action [[reln pred~cases] 
[predicate ?pred] 

[agent ?agntJJ]] 

(accept-offer ?s1 ?s2 ?clue ?topic 

(predtcases (predicate ?pred)(agnt ?agnt))) 

‘,‘ 
,----------------------
(fs-to-lf-spec 

[[reln GREETING-CLOSE-UNIT] 
[sp ?s1] 

[hr ?s2] 

[clue ?clue] 

[topic ?topic] 

[action [ [reln pre拉 cases]

[predicate ?pred] 

[agent ?agnt]]]] 

~ 

(greeting-close-unit ?s1 ?s2 ?clue ?topic 

(pred&cases (predicate ?pred)(agnt ?agnt))) 

‘,‘ 9̀,＇ 

22 



(へ｝

C List of Commands and Variables 

(reset-F S-LF) 

(FS-to-LF-spec FS LFq) 

(FS-to-LF FS) 

([FS]-to-LF FS) 

(Fast-FS-to-LF {FS}) 

({FS}-to-LF {FS}) 

(get-trans-func name-or-FS) 

(get-mapping-func. name-or-{FS} varname) 

(print-FS-LF-funcs) 

(prin t-FS-LF-mappings) 

(TRANS—ident-TO-LF {FS}) 

(MAP-ident-varname {FS}) 

FS-LF-sp ecs-hash 

FS-LF-mappings-hash 

.<-.: 

(、--) 

.、¥

ー

23 


	0162本体
	nakami01
	nakami02

	162coveral



