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Abstract 

This report describes a continuous speech recognition method called HMMふR.
This method uses an efficient parsing mechanism, a generalized LR parser, 
driving an HMM-based speech recognizer directly without any intervening 
structures such as a phoneme lattice. Very accurate, efficient speech 
recognition/parsing is achieved through the integrated processes of speech 
recognition and language analysis. 
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1 Introduction 

This report describes the application of Generalized LR parsing [21,22] to 
speech recognition. In particular, we will focus on a method called HMM-
LR, first introduced by [8], which is an integration of Hidden Markov l¥1odels 
[12,18,19] and Generalized LR parsing. 

Speech recognition is a technology that transforms an utterance into a text. 
With this technology, we can construct an intelligent machine that can listen 
to a speech utterance and then carry out the instructions appropriately. There 
have been many approaches to speech recognition, for example: 

1. The Feature-Based approach [6,26], 

2. The Neural Net work approach [14,23], 

3. The Hidden Markov Model approach [5,11]. 

Among these, the Hidden Markov Model is now the most widely used approach. 
The Hidden Markov Model is a powerful stochastic model and it has the ability 
to cope with the acoustical variations of speech. Moreover, any word models can 
be composed of phone models, thus it is easy to construct a large vocabulary 
speech recognition system. 

One of the major problems in speech recognition is coping with large search 
spaces. As search space size increases, recognition performance decreases. Gram-
matical constraints are effective in reducing the search space and hence increase 
processing speed and recognition accuracy. Generalized LR parsing is one of the 
best mechanisms for dealing with grammatical constraints based on a context-
free grammar. 

There are two approaches using natural language parsers. In the first ap-
proach, the speech recognizer and the parser are used independently, that is, 
the speech recognizer is used to produce a phone/word lattice (a set of hypoth-
esized phones/words with different starting and ending positions in the input 
speech). Then the parser is applied to obtain legal phone/word sequences. The 
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second approach is to use grammatical constraints during speech recognition. 
It goes without saying that the first approach is not desirable, because of the 
information loss due to signal-symbol conversion. In HMM-LR, the LR parser 
drives Hidden Markov Models directly without any intervening structures such 
as a phone/word lattice. Thus, very accurate and efficient speech parsing is 
achieved. 

2 Generalized LR Parsing 

2.1 LR Parsing 

LR parsing (1] was originally developed for programming languages. It is 
applicable for a large class of context-free grammars. 

The LR parser is deterministically guided by an LR parsing table with two 
subtables (action table and goto table). The action table determines the next 
parser action AGTION(s, a] from the states currently on top of the stack and 
the current input symbol a. There are four kinds of actions, shift, reduce, accept 
and error. Shift means shift one word from input buffer onto the stack, reduce 
means reduce constituents on the stack using the grammar rule, accept means 
input is accepted by the grammar, and error means input is not accepted by the 
grammar. The goto table determines the next parser state GOTO(s, A] from 
the state s and the grammar symbol A. ・ 

The LR parsing algorithm is summarized below. 

1. Initialization. Set p to point to the first symbol of the input. Push the 
initial state O on top of the stack. 

2. Consult AGTION[s, a] wheres is the state on top of the stack and a is 
the symbol pointed to by p. 

3. If ACTION(s, a] ="shift s'", push s'on top of the stack and advance p 
to the next input symbol. 

4. If AGTION(s, a] ="reduce A→ /3", pop 1/31 symbols off the stack and 
push GOTO(s', A] where s'is the state now on top of the stack. 

5. If ACTION(s, a)= "accept", parsing is completed. 

6. If ACTION(s, a]= "error", parsing fails. 

7. Return to 2. 

~ 

＾ 
2.2 Generalized LR Parsing 

Standard LR parsing cannot handle ambiguous grammars. For an ambiguous 
grammar, the LR parsing table will have multiple entries (conflicts). As a 
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general method, a stack-splitting mechanism can be used to cope with multiple 
entries. Whenever a multiple entry is encountered, the stack is divided into two 
stacks, and each stack is processed in parallel. Thus, it is possible to use LR 
parsing to handle an ambiguous grammar which describes natural language. 

A simple example grammar is shown in Table 1, and the LR parsing table, 
compiled from the grammar automatically, is s_hown in Table 2. The left part is 
the action table and the right part is the goto table. The entry "ace" stands for 
the action "accept", and blank spaces represent "error". The terminal symbol 
"$" represents the end of the input. 

＾ 
3 Hidden Markov Models 

Hidden Markov Models (HMM) are effective in expressing speech statistically 
and have been used widely for speech recognition. 

3.1 Basic Concepts 

An example of a Hidden Markov Model is shown in Figure 3. A model has 
a collection of states connected by transitions. Two sets of probabilities are 
attached to each transition. One is a transition probability ai;, which provides 
the probability for taking a transition from state i to state j. The other is an 
output probability bi;(k), which provides the probability of emitting symbol k 
when taking a transition from state i to state j. 

Formally, a Hidden :Markov Model M is defined by a 4-tuple M = (S, Y, A, B). 

• S: A set of states {si} including an initial state S1 and a final state SF. 

~ 
• Y : A set of output symbols. 

• A : A set of transitions { ai;} where ai; is the probability of taking a 
trans1t1on from state i to state j, and E; aij = 1. 

• B: The output probability distribution {bi;(k)} where bi;(k) is the prob-
ability of emitting symbol k when taking a transition from state i to state 
j, and E占 (k)= 1. 

Typically, vector quantization (VQ) [13] is used as the acoustic frond-end for 
HMM. Vector quantization is a discrete representation of spectral space. A set 
of fixed prototype vectors is called a codebook, and an output symbol of a model 
comes from these prototype vectors. 
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Figure 1: An example of a grammar 
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Figure 2: An example of an LR parsing table 
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Figure 3: An example of a Hidden Markov Model 

3.2 Recognition Problem 

In a stochastic approach, having observed acoustic data y, a speech recog-
nizer must decide a word sequence w that satisfies the following condition: 

P(wly) = maxP(wly) 
” 

＾ 

By Bayes'rule, 

P(wly) = 
P(ylw)P(w) 

P(y) 

Since P(y) does not depend on w, maximizing P(wly) is equivalent to maximiz-
ing P(ylw)P(w). P(w) is the a priori probability that the word sequence w will 
be uttered, and is estimated by the language model. In the case of a language 
model where all words are equally likely, this term is negligible. P(ylw) is es-
timated by the acoustic model. Here we are using HMM as an acoustic model. 
Next we address the problem of how to estimate P(ylw). 

The forward algorithm can be used to compute the probability that a given 
model generated an observation sequence. 

‘,＇‘ yt 
、,`‘．＇ i
 

b
 .

‘ 5
9
 

ーヽ、ー
一t 

、冒'̀̀d, 

0

1

E
・9

、
ー

'
v
•—  ̀l-、

)t
 

‘、`̀5
 

t = O & it= S1 
t = O & i = S1 
t > 0 

ai(t) is the probability that the Markov process is in state i having generated the 
sequence yぃy2,... , YT• The final probability for the model is given by asF(T). 

The trellis diagram in Figure 4 shows all possible state sequences. Each 
circle includes the cumulative probability at a particular state and time. 
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Figure 4: A trellis diagram 

A slightly modified version of the forward algorithm is known as the Viterbi 
algorithm. 

゜a;(t) = { 1 

t=O&浮Sr
t = 0 & i = Sr 

m~a;(t -l)a;i知(yヽ） t > 0 

In each recursion, if we remember the state that has the highest probability, 
we can obtain the most likely state sequence in the model that produced the 
observations. 

3.3 Estimation of HMM Parameters 

The parameters of the model (transition probabilities and output probabil-
ities) can be estimated by the forward-backward algorithm given a collection of 
training data. The forward-backward algorithm is also known as the Baum-
Welch algorithm. It is based on the Maximum Likelihood Estimation. 

First, we define the backward calculatio祖 (t),which is a counterpart of the 
forward calculation a,(t). 

゜邸）=! ~ 茄；（恥）P; (t + 1) o :s; t < T 

t = T& i #: SF 
t=T&i=SF 

＾ 
9
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/3i(t) is the probability that the Markov process is in state i, and will generate 
the sequence Yt+1, Yt+2, ... , YT・

Now given some initial parameters of the model, we could re-estimate them 
using the following iterative calculations. 

＾ 

T 

I:oi(t-I)a曲 (yヽ）釘(t)

勁＝
t=l 

白五(t-l)a心（追(t)
t=l k 

I: a,(t -l)a,; 妬(Yt)釘(t)

局；(k) = 
t:y、=k

T 

I: oi(t -l)a砂；佃）釘(t)
t=l 

The forward-backward algorithm has been proven to converge [2]. 

4 

4.1 

HMM-LR Method 

Basic Mechanism 

＾ 

This subsection gives an informal description of the HMM-LR method. We 
assume here that the HMM unit is the phone, although HMM can be used 
to represent any unit of speech, for example, word-based HMM, syllable-based 
HMM and phone-based HMl¥il, etc. 

In standard LR parsing, the next parser action (shift, reduce, accept or error) 
is determined using the cur~ent parser state and next input symbol to check the 
LR parsing table. This parsing mechanism is valid only for symbolic data and・ 
cannot be applied simply to continuous data such as speech. 

In HMM-LR, the LR parser is used as a language source model for word/phone 
prediction/ generation. Thus, we will hereafter call the LR parser the predic-
tive LR parser. A phone-based predictive LR parser predicts next phones at 
each generation step and generates many possible sentences as phone sequences. 
The predictive LR parser determines next phones using the LR parsing table 
of the specified grammar and splits the parsing stack not only for grammatical 
ambiguity but also for phone variation. Because the predictive LR parser uses 
context-free rules whose terminal symbols are phone names, the phonetic lexicon 
for the specified task is embedded in the grammar. An example of context-free 
grammar rules with a phonetic lexicon is shown in Figure 5. Rule (5) indicates 
the definite article "the" before consonants, while rule {6) indicates the "the" 
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(1) s → NP VP 

腐
NP → DETN 
VP → V 

4) VP → VNP 

(5) DET → → → → → → //////zzmsai/ y/ f e/ / / ///f/iia// ht,,a/ p/ ef / / ///nang/ / / //1/ sf 

(6) DET 

((78) ) N N 

(9) V 
(10) V 

＾ Figure 5: An example of a grammar with phonetic lexicon 

before vowels. Rules (7), (8), (9) and (10) indicate the words "man", "apple", 
"eats" and "sings", respectively. 

The HMM-LR continuous speech recognition system (see Figure 6) consists 
of the predictive LR parser and IIMM phone verifiers. First, the parser picks 
up all phones predicted by the initial state of the LR parsing table and invokes 
the HMM models to verify the existence of these predicted phones. The parser 
then proceeds to the next state in the LR parsing table. During this process, 
all possible partial parses are constructed in parallel. The HMM phone verifier 
receives a probability array (see Figure 7) which includes end point candidates 
and their probabilities, and updates it using an HMM probability calculation. 
This probability array is attached to each partial parse. When the highest 
probability in the arraY. is under a certain threshold level, the partial parse is 
pruned. The parsing process proceeds in this way, and stops if the parser detects 
an accept action in the・LR parsing table. In this case, if the best probability 
point reaches the end of the speech data, parsing e~ds successfully. 

Very accurate, efficient speech parsing is achieved through the integrated 
processes of speech recognition and language analysis. 

t-¥ 

4.2 Algorithm 

This subsection gives the algorithm for HMM-LR as a recognizer, which 
produces no parse trees. It is, however, easy to extend the algorithm to produce 
parse trees. 

First, we introduce a data structure called a cell. A cell is a structure with 
information about one recognition candidate. The following are kept in the cell. 

• LR parsing stack, with information for parsing control. 

• Probability array, which includes end point candidates and their probabil-
ities. 

干’
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Figure 7: Stacking of a probability array 

＾ The algorithm is summarized below. 

1. Initialization. Create a new cell C. Push the LR initial state O on top of 
the LR parsing stack of C. Initialize the probability array Q of C; 

Q(t)= u 雷~T
2. Ramification of cells. Construct a set 

S = {(C, s, a,z)IヨC,s, a, x(C is a cell which is not accepted 

& s is the state on top of the LR parsing stack of C 

& x = ACTION[s,a) & x :/;"error''}) 

＇ 
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For each element (C, s, a, x) E S, do operations below. If a set S is empty, 
parsing is completed. 

3. If x ="shift s'", verify the existence of phone a. In this case, update the 
probability array Q of the cell C using the following computation. 

Cki(t) 

＾ 
Q(t) 
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If max1s1:ST Q(t) is below a certain threshold, cell C is abandoned. Else 
push s'on top of the LR parsing stack of cell C. 

4. If z = "reduce A→ {J", pop I/JI symbols off the LR parsing stack and push 
GOTO[s', A] wheres'is the current state on top of the stack. 

5. If z = "accept" and Q(T) exceeds a certain threshold, cell C is accepted. 
If not, cell C is abandoned. 

6. Return to 2. 

Recognition results are kept in accepted cells. Generally, many recognition 
candidates exist, and it is possible to rank these candidates using a value Q(T) 
of each cell. 

＾ 
4.3 Refinements of the Algorithm 

The algorithm described above is a simple one. It is possible to make some 
refinements to the algorithm. 

1. Using the beam-search technique. 
The beam-search technique was first used in the HARPY speech recog-
nition system [15]. It is a modification of the breadth-first search tech-
nique, in which a group of near-miss alternatives around the best path 
are selected and processed in parallel. The beam-search technique reduces 
search cost and maintains search efficiency. Generally, a set S constructed 
in step 2 in the algorithm is quite large. The beam-search technique can 
be used to select a group of likely cells. The value maxisヽSTQ(t) of each 
cell can be used邸 anevaluation score. 

2. Using the graph-structured stack. 
The graph-structured stack is one of the key ideas in Generalized LR pars-
ing. In the above algorithm, when making a set S, copies of an LR parsing 
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stack are created. By using the graph-structured stack, it is not necessary 
to copy the whole stack. Copying only the necessary portion of the stack 
is sufficient. Thus, the amount of computation is reduced. 

5 ATR HMM-LR Continuous Speech Recogni-
tion System 

・In this section, we describe the implementation of a continuous speech recog-
nition system based on HMM-LR method, developed at ATR Interpreting Tele-
phony Resean:h Laboratories [5]. This system recognizes Japanese phrase-wise 
utterances, and is used as the frond-end of the SL-TRANS, a卸 okenlanguage 
kfil1!lation system from Japanese into English (17]. 

5.1 Signal Processing 

The speech is sampled at 12 KHz, pre-emphasized with a filter whose trans-
form function is (1 -0 .97戸）， andwindowed using a 256-point Hamming win-
dow every 9 msec. Then, 12-order LPC analysis is carried out. Spectrum, 
difference cepstrum coefficients, and power are computed. Multiple VQ code-
books for each feature were generated using 216 phonetically balanced words. 

5.2 HMM Phone Models 

A three-loop model for consonarits and a one-loop model for vowels are 
trained using each phone data extracted from the ATR isolated word database 
[10]. 

To represent phone models with less distortion, separate vector quantiza— 
tion (multiple codebooks) are used, where spectrum, LPC cepstral difference 
and power are quantized separately. In the training stage the output vector 
probabilities of these three codebooks are estimated simultaneously and inde-
pendently, and in the recognition stage all the output probabilities are calculated 
as the product of the output vector probabilities in these codebooks. 

HMM is effective in expressing speech data statistically, but phone duration 
information from speech data is not modeled statistically in the HMM phone 
models. In order to make a statistical duration model, an HMM state duration 
control is realized as a state duration penalty calculated from an HMM state 
duration distribution of the training data. 

As described above, HMM phone models were trained using the word utter-
ances, whereas the recognition is carried out for continuous speech. To realize 
accurate duration control, HMM duration parameters were modified according 
to the speaking rates of word and phrase utterances. 

,,-...., 
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5.3 Grammar 

The grammar is designed to cover many linguistic phenomena common in 
Japanese. The complexity of the grammar is me邸 uredby task entropy and 
phone perplexity [7]. Task entropy is defined as average information obtained 
when an utterance is recognized correctly. The phone perplexity is defined as 
the average number of phones predicted at each step. The complexity of the 
grammar is summarized in Table 1. 

There are 1,461 grammar rules including 1,035 different word, and the phone 
perplexity is 5.9. Assuming that the average phone length per word is three, 
the word perplexity will exceed 100. 

Table 1: Grammar complexity 

Vocabulary 1,035 words 
Task Entropy 17.0 

Phone Perplexity 5.9 
Estimated Word Perplexity more than 100 

5.4 Performance 

The system was tested for four speakers (three male, one female) both in 
the speaker-dependent condition and in the speaker-adapted condition. 

The result is shown in Table 2. Average phrase recognition rate is 89.5%, 
and a rate of 99.3% is achieved for the top five choices in the speaker.:dependent 
condition. In the speaker-adapted condition, rates are 80.2% and 98.1%, re-
spectively. 

＾ 
Table 2: Recognition performance 

Rank Recognition Rate (%) 
Speaker Dependent Speaker Adapted 

1 89.5 80.2 
2 96.4 93.1 
3 98.6 95.8 
4 99.0 97.4 
5 99.3 98.1 

｀ 13 
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6 Concluding Remarks 

In this report, we have described HMM-LR, an accurate and efficient speech 
recognition/parsing method. We have also introduced a speech recognizer based 
on this method. 

In HMM-LR, Generalized LR parsing is used as a language source model for 
word/phoneme prediction/generation. This characteristic of Generalized LR 
parsing can be applied to other approaches of speech recognition. Indeed, Gen-
eralized LR parsing is successfully integrated with Time-Delay Neural Networks 
(23] and attains good performance (16]. 

We have not considered the stochastic language modeling so far. From the 
viewpoint of information theory, every language has its own information en-
tropy which includes probabilities of word occurrences and probabilities of word 
sequences. For example, N-gram language models (bigram, trigram, etc.) are 
extensively used to correct recognition errors and improve recognition accuracy 
(11,20]. An N-gram language model is an extremely rough approximation of a 
language, but it is effective in correcting local syntax errors. Another approach 
to making a stochastic language model is to use a probabilistic context-free 
grammar (3,4] or a probabilistic LR parsing (24,25]. These stochastic language 
models can be incorporated into the HMM-LR speech recognizer, and attain 
better performance (9]. 

＾ 
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