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内容梗概

決定論的ボルツマンマシン (DBM)とは従来の統計論的ボルツマンマシンよりも学習がはるか

に速いニューラルネットワークであり、統計論的ボルツマンマシンから導かれるものであ

る。本論文では、決定論的ボルツマンマシン (DBM)の理論について簡単に説明した後、決定

論的ボルツマンマシンの音声認識への適用について述べる。音素の時間軸方向の伸縮を考慮

しない静的な DBMは、 bdgの認識に於て、平均98.6% (最高99.1%)の認識率を達成した。

また、全子音では97%の認識率を達成した。音素の時間軸方向の伸縮を考慮した動的な

DBMでは、静的な DBMに較べて数パーセントの音素認識率の低下が認められるものの、状

態フィードバックの動的な構造の効果が確認された。
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Shift-invariant 
Boltzmann 
for Phoneme 

Deterministic 
Machines 
Recognition 

Abstract The Deterministic Boltzmann Machine (DBM) is a form of neural 

network that learns much faster than the original stochastic Boltzmann 

Machine that it is derived from. In this paper we overview briefly the theory 

of DBMs, and describe their application to speech recognition. In a static 

phoneme configuration task the DBM obtained an average recognition rate of 

98.6 % (best: 99.1 %} for the "bdg" task, and 97 % for an all-consonant task. In 
a dynamic recognition task {including time-shifts), rates are less good by a 

few percent, but a state-feedback dynamic architecture provided some 

improvement. 

Introduction 

Boltzmann Machines are neural networks of 
stochastic binary units. They use a learning 
algorithm which derives from a probabilistic 
model [1 ]. Studies have shown that their 
performance in pattern recognition tasks can be 
very good, but at the cost of a very large amount 
of computing time [2]. This large computational 
requirement results from the necessity to 
simulate a stochastic process and perform 
simulated annealing. Such a drawback makes the 
Bolztmann Machines impractical for speech 
recognition tasks [3,4]. 
A variant of the Boltzmann Machine 

algorithm, based on a mean field theory 
approximation has been proposed by Peterson and 
Anderson [5], and also studied by Hinton [6]. In 
this new model the network is composed of analog 

units which are activated according to a 
deterministic rule. These characteristics and the 
fact that simulated annealing is not needed make 
the so-called Deterministic Boltzmann Machines 
(DBM's) learn much faster than the original 
stochastic Boltzmann Machines (SBM's). 
This paper is split into four main sections. In 

the first one which is a synthesis of [5] and [6] 
we expose the theory of DBM's. In the second 
section we describe experiments where DBM's are 
applied to static phoneme recognition. The next 
section deals with dynamic recognition of phoneme 
segments with DBM's. We propose two 
architectures and evaluate their performance on 
the recognition of the phonemes b , d , g . Finally 
we discuss the DBM algorithm with respect to the 
shift-invariance property. 
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1. Overview of DBM theory 

1.1 Network 

DBM's are neural networks of analog units 
connected by symmetric links. The links between 
units can be arbitrary but with the restriction 
that no unit should be connected to itself. With 
respect to the network dynamics DBM's are 
similar to analog networks described by Hopfield 
[7] and Cohen-Grossberg [8]. These networks are 
characterized by・the existence of an energy 

quantity which is minimized by the network during 
its activation. 
More specifically in the case of the DBM's 

the so-called free energy is defined by : 

F= - L~ijOjOj + 

i < J 

}2 [ Oj log Oj + (1-Oj) log (1-Oj)] (1) 

Fig. 1 Symmetric connections 

Note that the derivation is possible thanks to the 
existence of the logarithmic term in the 
expression for F . 

where Oj is the activity value of unit i 

and wij is the weight value between units i and j 

This name of'free energy'comes from a 
similarity with the systems of statistical 
mechanics. The first term in formula (1) 
corresponds to a quadratic energy while the 
second term corresponds to an entropy. This 
second term is needed to have continuous values 
for the units activation values. 
Derivation of F with respect to oi yields : 

oF 
OOj 

=— L w.. Oj + log ( )  
Oj 

IJ 
j :;t: i 

1 -o j 
(2) 

Solving (2) for 
aF 
aoi 
= 0 , we get: 

Oj = cr (L町jOj 

j-:t-i 

~
 

where cr is the logistic activation function : 

i 
cr(x} = 

1 + exp(-x) 
~
 

Equation (3) gives the relative minimum of F 
with respect to oi for o・, j -:1. i kept constant. In j 

the version of the algorithm with asynchronous 

update 1, each unit is activated sequentially 
according to (3). F decreases with each 
activation and after enough iterations we expect 
to reach a stable point where all the partial 

d . . aF envat1ves - are zero, 1.e. a local minimum 
OOj 

of F. This is different from the stochastic 
Bolztmann Machine where a global minimum is 
searched by simulated annealing. 
It appears that DBM's should be faster 

than SBM's for at least two reasons. First the 
deterministic activation function (3) eliminates 
the need for a costly stochastic simulation : we 
don't have to run the network for a large number 
of times in order get probability estimates. 
Moreover simulated annealing is not necessary 
since we only look for a local minimum of F. 

1.2 l,..ei:!rnlng algori~hrn 

So far the network we have described is no 

more than an analog network of the Hopfield type. 
The true originality of DBM's lies in their learning 
algorithm which is adapted from the original 
SBM's. Peterson and Anderson [5] show how this 
algorithm can be derived from the SBM's using an 

approximation method well-known to physicists as 

1 It is also psoosible to activate the units in 
parallel. We didn't choose this solution because it seemed 
more likely subject to oscillatory behavior (see [5] for 
details on parallel update). 
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mean field theory. Hinton [6] shows how DBM's 
can be viewed in a rigorous way as exact systems 
and not only as approximations of SBM's. We 
present here the learning algorithm in an intuitive 
manner, and the reader should refer to the above 
mentioned papers for more theoretical 
justifications. 
For the purpose of pattern recognition, the 

units of the network are separated, into input, 
output and hidden units. The input units will 
contain the pattern to be recognized while the 
output units will give the response of the network. 
The hidden units act as extra feature detectors to 
catch high order relationships between input-
output pairs. 

Fig. 2 Network 

1.2.1 Minus~nd PI¥J$ pt,ases 

outputs 

hidden units 

inputs 

Learning each・input pattern in a DBM consist 

propagation networks. Given an input, we look at 
the spontaneous response of the network. 

Minus phase 

free 

free 

clamped 

activate 1-> 2-> 3-> 4-> 5-> 6-> 7-> 8 

Fig. 3 Minus phase 

-Plus phase 
In the Plus phase, the input units are set with 

the input pattern, and the output units are set with 
the output which the network has to learn. 
These units are clamped while the hidden units are 
free. For initial conditions they are initialized with 
the values of the hidden units from the minimum 

of the minus phase F.. • Then they are activated 

until a minimum F+ is reached. The reason for 

using the state of the hidden units in F.. as initial 

of two phases, so-called'Plus'and'Minus'phase. values is that we expect F.. and F+ to be quite 
These two phases are quite similar in principle and 

follow the same order of operation. close. Starting from a point close to the local 
For each phase the units of the network are minimum allows the network to reach it faster. 

divided into two groups : one group of'free'units 
which will be activated and will change their value 
and one group of'clamped'units whose value will I Plus phase 

remain constant throughout the activation 
process. The clamped units are a way to impose a I~clamped 
constraint to the network, and their value is 
determined by the outside world. In the case of I~ 硲~free
pattern recognition the input units are always 

clamped. I~ や!(clamped

• Minus phase 
In the Minus phase, only the input units are 

set with one input pattern and they are clamped, 
while the output units and the hidden units are 
free. The free units are first initialized with some 
initial values (a neutral value of 0.5 for each unit 
seems best), and they are activated until a 

minimum F. is reached. This phase is the 

counterpart of the forward pass for back-

activate 1-> 2-> 3-> 4-> S 

Fig. 4 Plus phase 

The Plus phase can be compared to the 
backward pass of the back-propagation algorithm. 
The important difference is that in the Plus phase, 
the actual output value is given to the network 

instead of the error signal in the case of back-
propagation. Thus the teaching information is more 

direct than for back-propagation. This property 
will hopefully allow the network to learn faster. 
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aF 1.2.2 W~ight 1,1pd~t~The partial derivative ー一(F+)
- aw・・ IJ 

After performing the Plus and Minus phases, 
aF the weights are updated according to the (resp. —一(F.)) is the variation of F at the 

following law : aw,j 

△ Wjj = E (-―― 
aF• • • • 

OW" 
(F+) +近 F.))
IJ OW" IJ 

(5) 

minimum F+ (resp. F.) over a small change in 

wr. We have for the expression of -
aF 

j aw・・lj 
where£is a small positive constant (step size) 

Eq. (5) has a simple intuitive explanation. The 
first term in equation (5) lowers the energy of 

F + , the state which we would like to teach to the 

network. On the other hand, the second term in 

Eq. (5) raises the energy of F. . In the end, we 

. . 
expect F+ to become lower than F. , so that 

hopefully F+ will become the response of the 

network (Figs. 5, 6). 

before update 

＇ 

．
 

Fig. 5 . Before weight update 

after update 

Fig. 6 After weight update 

aF* 
--( 

aF 
cJWjj F*) =冠i?F*) I + 

Ok 

I 
cJF 

k 
~(F*) I 

Wpq 

(6) 

The second term in eq. (6) is zero because F* is a 
minimum of F. Thus・in a first-order 
approximation, a variation of the weights changes 
the value of F at the minimum, without changing 
its position. 

Deriving Eq. (1) with respect to oi , we get : 

oF 
OWjj 
(F*) = 

＊＊  

-o・o・ I J 

From (5) and (7) : 

~
 

△ w ii =£(Of oj _ -oj oj) 

＋ where o・and o・are the values of the units for the I . I 
• * 

minima F+ and F.: respectively. 

~
 

／
 

1.2.3, l.,ef.lrning a data l;if;!t 

To learn a sample set, each sample data is 
presented to the network, the Plus and Minus 
phases are performed, and the weights updated . 
The whole training set is presented repeatedly as 
many times as necessary. A convenient estimate 
of the performance of the network on the training 
data is the mean square error between the outputs 
of the network and the correct values. So we 

considered that the training was over when the 
mean square error fell below a given threshold. 
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2. Static phon~me r~~ogni,ion 
We applied the theory of DBM's to phoneme 

recognition. In a first step we evaluated the 
model on speaker dependent, static recognition 
problems. 

2.1 Pata $et 

We used the same training and testing sets as 

in the TDNN's experiments of Waibel et al. (9). 
The speech segments were extracted from ATR's 
large vocabulary database of 5240 common 
Japanese words uttered in isolation by one male 
native speaker (a professional announcer). All 
utterances were recorded in a soundproof booth 
and digitized at a 12 kHz sampling rate. Frames 
consisting of 16 melscale coefficients were then 
computed at intervals of 1 O ms. The tokens were 
15 frames long (150 ms) and centered around 
the hand-labeled vowel onset. 

2. 2 Network architecture 

For all our experiments, we used a fully 
connected architecture (see Fig. 7). Note in 
particular that the output units are directly 
connected to the input units. The bias unit is an 

~nput unit which is always set to 1. Its effect is to 
introduce an offset in the activation function of 

the units. 

output units hidden units 

input units 

口 bias unit 

- full connection 

Fig. 7 Network for static phoneme 
recognition 

2. 3 l;xperiment~ 

2.3.1 b , d , g 

Our first task was the recognition of the 
phonemes b , d , g . The results have been 

reported in [1 OJ. Recognition rate on test data 

was 98.6% on average, with a maximum of 
99.1 %. However the training time was quite long 
due to the large number of hidden units (100 
hidden units). 
We have since found out that it is indeed 

possible to reduce the number of hidden units (to 
10 -20) without loss of performance. Learning 
becomes very fast (several minutes of CPU time 

on an Alliant parallel computer with eight 
processors). The same average recognition rate 
of 98.6% was observed. 

2. 3. 2 All consonants 

After these very encouraging results, we 
trained a DBM for the discrimination of all 18 
consonants. The network was just an expanded 
version of our b , d , g network, which means 
that all the units where connected. It had 241 
inputs (15 x 16 melscale coefficients + 1 bias 
unit), 18 outputs (one for each category) and 
10 hidden units. 

The results of our experiment are shown in 
Table 1. All the training samples were correctly 
learned. On average, the recognition rate on test 
data was 97.0%. 

We didn't encounter any problem of 
convergence with the DBM algorithm. About 90 
presentations of the training set were needed for 
training, and it took 5 hours of cpu time with an 
Alliant. 

phoneme # tokens # correct % correct 

b 227 226 99.6 

d 179 164 91.6 

゜
252 231 91. 7 

p 15 13 86.7 

t 440 426 96.8 

k 1164 1132 97.3 

m 481 461 95.8 

n 265 249 94.0 

N 488 483 99.0 

s 538 534 99.3 

sh 177 177 100.0 

h 207 204 98.6 

z 11 5 114 99.1 

ch 71 64 90.1 

ts 177 163 92.1 

r 722 713 98.8 

w 81 79 97.5 

V 174 169 97.1 

total 5773 5602 97.0 

Table 1 Recognition results on testing 

data for all consonants task 
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3. $hift-inv"'ri~nt phQn~m~ 
recognition 

The very good results which we obtained on 
static phoneme recognition show that DBM's are 
powerful classifiers and that they could be used in 
speech recognition systems. However it would be 
very desirable to have an architecture which is 
invariant under translations in time in order to 
achieve reliable phoneme spotting. 
We have tried two architectures to deal 

with this problem. the first one uses shifted 
samples to train a network. The second one 
improves this method by using delay links. The 
task was the recognition of b , d , g on the same 
data as the static experiment. 

3.1 Shifted network 

The most straightforward way to achieve 
shift-invariance is to train a static network on 
shifted samples, using a small temporal window as 

input (see Fig. 8). 

3 outputs 

50 hidden units 

., .. ........ ー,....,

7 frame input window 

Fig. 8 Shifted network 

Training on shifted segments results in a larger 
data set. This approach was used by McDermott et 
al. in their LVQ-based system [11 ]. 
The network of our experiment had 113 

inputs (7 x 16 melscale coefficients + one bias 
unit), 50 hidden units and 3 outputs. Contrary to 
the static case, we found out that convergence 
was very slow. Training took about 500 iterations 
(compared to 40 for the .static network). in 5 

hours of cpu time. 

Table 2 shows the recognition results on 

training _and testing data. The performance on 
testing data is much lower than in the static case 
(98.6%). The network seems to have a lot of 
difficulty to learn this task. Contrary to the 
results that McDermott reports for LVQ2, shifting 
the samples didn't improve the performance of the 
network. 

~:t~e;~~nition rate I tr:~>,~Q I te;~ り
Table 2 Recognition results for b , d , g with 

shifted network 

3.2 Stat~-f~~~b~~k ne,wor~ 

We tried an architecture described by Prager 
et al. in their pioneer work on SBM's applied to 
speech recognition. This architecture is a 
improvement of the preceding one in that it uses 
delay links (see Fig. 9). These links are used to 
give as input to the network at time t the state of 
both input and output units of the network at time 
t-1 . This realizes a kind of state feedback. The 
network has two types of information at its 
disposal : one is given by the input window and the 
other by the state of the previous time step. Thus 
it benefits from some kind of memory which will 
help it to make its decision, and accumulates 

information over time. 

--■  • 

delay links 

3 outputs 

40 hidden units 

t ー且t 

ー→

＼
 

＼
 

（＼ 

7 frame input window 

Fig. 9 State-feedback network 
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し）

We trained the network depicted on Fig. 9 for 

the recognition of b , d , g. Training time was 

substantially lower than for the shifted network : 

about 2 hours and a half. It required only 240 
iterations to converge. 

Table 3 shows the recognition results. As 

expected, the introduction of delay links improved 

the recognition performance. Still the rate of 

97.0% is lower than in the static case. 

~:t~e:~:nition rate I tr; 悶し~Q I te;;i.~ 

Table 3 Recognition results for b , d , g with 

recognition performance fell to 95.1 % . This 
result could be improved to 97.4% with the 
introduction of a state-feedback architecture, but 

still lower than in the static case. 

The preceding facts suggest that other 

dynamic phoneme recognition methods using DBMs 

should be studied in order to use DBM's pattern 

recognition ability to the full extent. 

state-feedback network ReferE;)nCe$ 

4. Di$CUSSiQn 

Our experiments have shown that DBM's can 

achieve very high performance on static 

recognition. But on dynamic tasks it decreased by 

several percents. 

How can we explain this degradation of 

performance ? A possible reason is that we give 

to the network conflicting information during 

training. When the network is shifted over a 

sample, the desired output value is kept constant, 

with a value of one for the correct class and zero 

for all other outputs. But it may well happen that 

two samples from different classes have 

nevertheless similar beginnings or endings. Thus 

we may state that a given segment is in one case 

'b'and in another case'd'. This amounts to have 

overlapping categories. The characteristics of the 

DBM algorithm make it more difficult to deal with 

such overlapping categories than for example 

L VQ2, where several reference vectors are 

available for each class. 

Another point which may account for the 

lower performance of the state-feedback is that 

the ideal response of such a network should be 

undetermined at the beginning of the sample where 

no information is available, and it should 

progressively become more pronounced at the end 

where all the sample has been input and all the 

relevant clues have been detected. So that giving a 

constant teaching output signal is not the best 

method to teach this kind of network. 

5. Conclu$ion 

We showed that DBM's can be very powerful 

pattern recognizers. We got very high 

performance on static phoneme recognition of 

98.6% for the discrimination of b , d , g, and 
97.0% for all consonants. For a shifted network 
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