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Abstract 

Two feature structure unification methods called the lazy incremental 
copy graph unification method and the strategic incremental copy graph 
unification method have been developed. The former method achives structure 
sharing with constant order data access time which reduces required memory. 
The latter method uses an early failure finding strategy which tries to unify 
substructures tending to first fail in unification. This method is based on 
stochastic data and reduces unnecessary computation. The two methods can be 
combined into a method called the strategic lazy incremental copy graph 
unification method. The combined method not only makes each feature structure 
unification efficient, but also reduces garbage collection and page swapping 
occurrences, thus increasing total efficiencies of TFS unification-based natural 
language processing systems such as a spoken Japanese sentence analysis system 
based on HPSG .. 
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1 Introduction 

Various kinds of grammatical formalisms without transformation were proposed 
from the late 1970s through the 1980s [3,2,5,10,11]. These formalisms were de-
veloped independently and were made assure that they had common properties, 
that is, using feature structures and being based on their unification operation. 
These formalisms were applied in the field of natural language processing[6,1] 
and machine translation systems based on these formalisms were developed. 

In such unification-based formalisms, feature structure (FS) unification, or 
unification of directed graphs (DG) representing FSs, is the most fundamental 
and significant operation. Efficiencies of systems based on such formalisms, such 
as natural language analysis and generation systems very much depend on their 
FS unification efficiencies. This dependency is especially crucial for lexicon-
driven approaches such as HPSG[ll] and JPSG[4] because large numbers of DG 
structures are used to represent rich lexical information and phrase structure 
information in terms of FSs. For example, a spoken Japanese sentence analysis 
module based on HPSG uses 90% ~ 98% of the elapsed time in FS unification1. 

Several FS unification methods were proposed in [9,6,12]. Previous research 
identified DG copying as the most significant overhead. Wroblewski[12] pro-
posed an incremental copy graph unification method to avoid overheads called 
'over copying'2 and'early copying'3. He claimed that his method was at least 
as efficient as other unification methods. 

However, the problem with his method is that a unification result graph con-
sists only of newly created structures. This is not necessary because there are 
often input subgraphs which can be used as part of the result graph without any 
modification, or sharable parts between one of the input graphs and the result 
graph. Copying sharable parts is named'redundant copying'. A better method 
would minimize sharable part copying. The redundantly copied parts are rel-
atively large when input graphs have few common feature paths. In natural 
language processing, such cases occur ubiquitously. For example, in combining 
a head and complement constituent, such cases occur quite frequently. More-
over, in Kasper's disjunctive feature description unification[7], such cases occur 
quite frequently in unifying definite and indefinite parts of disjuncts. Memory 
is wasted by such redundant copying and this causes frequent garbage collection 

,＇¥ 

( 

1 Experiment results show this significance which the module becomes 5 ~ 50 times faster 
by looking up a unification res1ut table instead of applying FS unification. 

2In destructive unification, copies are made of both input DGs. These copies are then 
ravaged by the unification method to build a r℃ sult DG. This would appear to require new 
materials for two DGs in order to create just one new DG. A better method would be only to 
allocate enough memory for the resulting DG. 

3In destructive unification, the input DGs are copied before unification is started. If the 
unification fails, some of the copying is a wasted effort. A better method would be to copy 
incrementally, so that if a failure occurred, only copying would only be minimal before the 
failure was detected. 
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and page swapping, which decrease total system effi.ency4. Developing a method 
which avoids memory wasting is very important. 

Pereira's structure sharing FS unification method, which achieves structure 
sharing by using a data structure consisting of a skeleton part to represent 
original information, and an environment part to represent updated information, 
can avoid this problem. The skeleton part is shared by one of the input FSs and 
the result FS. Therefore, his method needs few new structures when two input 
FSs are different in size and which input FS is larger is known before unification. 

However, his method can create skeleton-environment structures, for exam-
ple, in recursively constructing large phrase structures from their parts, which 
are too deeply embedded. This embedding causes O(log d) graph node access. 
overhead assembling the whole DG from the skeleton and updates in the envi-
ronments where dis the number of nodes in the DG. 

In this. paper, an FS unification method is proposed which allows structure 
sharing with constant ordet node access time. This method achieves structure 
sharing by introducing lazy copying to Wroblewski's incremetal copy graph uni-
fication. The method is called the Lazy Incremetal Copy Graph unification 
method (the LING unification method in short). 

The advantages of natural language processing systems based on declarative 
constraint rule descriptions in terms of FSs include: 

1. rule writers are not required to describe control information such as con-
straint application order in a rule, and 

2. rule descriptions can be used in different processing directions, i.e., natural 
language analysis and generation. 

However, these advantages in describing rules are disadvantages in applying 

them because of the lack of control information. For example, when construct-
ing a constituent from from its parts (e.g., a subject NP and a definite VP), 
unncessary computation can be reduced if the semantic component is assem-
bled from its parts only after checking conditions such as grammatical agree-
ments, which may fail. This is impossible in straightforward unification-based 
formalisms. 

In contrast, in a procedure-based system which uses IF-THEN style rule, it 
is possible to construct the semantic structure (THEN part) after examining the 
agreements (IF part). Such a system has the advantage of processing efficiency 
but the disadvantage of lack of multi-directionalit炉．

4For ex四nple,in the Spoken Japanese analysis module mentioned previously, analysis is 
much faster when neither garbage collection nor page swapping occur during analysis than 
when they do occur. Moreover, when a sentence is analyzed twice, the second analysis process 
takes much more elapsed time compared to the first process. Sometime, the second analysis 
process takes more than 5 times of that required by the first process. 

5For example, in a topdown generation process, agreement features are not determined 
before lexical entries. To do so would be inefficient. 
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In this paper, some of the efficiency of the procedure-based system is intro-
duced into an FS unification-based system. That is, an FS unification method is 
proposed which introduces a strategy called the Early Failure Finding Strategy 
(the EFF strategy) to make FS unification efficient. In this method, FS uni-
fication orders are not described by constraint writers (e.g., separating IF and 
THEN parts), but are controlled by learned tendencies of FS constraint satis-
faction failures. This method is called the Strategic Incremental Copy Graph 
Unification (SING method). 

These two unification methods can be combined and the combined method, 
called the Strategic Lazy Incremental Copy Graph unification method (SLING 
method), is used in a spoken Japanese sentence analysis module based on 
HPSG(8]. 

Section 2 explains a typed feature structure (TFS) unification method based 
on Wroblewski's method and then explains the problem with his method. The 
section also introduces the key idea of the EFF s・trategy which comes from 
observations of his method. Sections 3 and 4 introduce the LING method and 
the SING method, respectively. 

(
¥
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2 Wroblewski's Incremental Copy Graph Uni-

fication Method and its Problems 

In TFS unification based on Wroblewski's method, a DG is represented by us-
ing the NODE and ARC structures shown in Fig. 2. A NODE structure 
represents a TFS, and an ARC structure represents a feature-value pair. The 
NODE structure has the slots TSYMBOL to represent a type symbol, ARCS 
to represent a set offeature-value pairs, GENERATION to specify the unifica-
tion process in which the structure has been created, FORWARD and COPY. 

That a NODE structure's GENERATION value is equal to the value of a 
global variable (e.g., *GENERATION*) means that the structure has been 
created in the current unification process, or that the structure is'current'. 

The characteristics which allow incremental copy are the NODE structure's 
two different slots FORWARD and COPY for representing forwarding rela-

tionships. A FORWARD slot value represents an eternal forwarding relation-
ship while a COPY slot value represents a temporal relationship. When a 
NODE structure nodel has a NODE structure node2 as its FORWARD slot 
value, the other contents of the nodel are always ignored and the contents of 
node2 are used. If node2 also has a NODE structure node3 as its FORWARD 
value, the contents of the node2 are ignoreed, too. However, when a NODE 
has a NODE structure as its COPY value, the contents of the COPY value 
are used only when the COPY value is current (and there is no COPY node). 
After the global variable is updated, all COPY slot values are ignored and both 
the newly created and original data can be accessed. 

The unification procedure based on Wroblewski's method takes as its input 

two NODE structures which are roots of the DGs to be unified (See Fig. 2). The 
procedure copies NODE and ARC structures on the subgraphs of each input 
DG incrementally until a NODE structure with an empty ARCS slot value 
is found. This procedure can be illustrated with an example of the unification 
of two FSs as shown in Fig. 2 (a) and (b). The procedure first dereferences 
two input nodes (i.e., it follows up FORWARD and COPY slot values. See 
Fig. 2) and then calculates'the most general specifier'of their type symbol, 
or their'meet'見byretrieving the type symbol meet table. If the meet is ..l_, 

which means inconsistency, the procedure finishes and returns ..l_, Otherwise, 

the procedure obtains the output node with the meet as its TSYMBOL in the 
following way (See Fig. 2): 

l. if both input nodes are current, the output node is one of the input nodes 
and is the FORWARD slot value of the other input node; 

2. if one of input nodes is current, the output node is the current node, and 
is the COPY slot value of the other input node; or 

6Type symbols constic1ct a lattice 
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NODE 

TSYMBOL <type symbol> 

ARCS <a list of ARC structures> 

FORWARD <a NODE structure or NIL> 

COPY <a NODE structure or NIL> 

GENERATION <an integer> 

ARC 

LABEL <a symbol> 

VALUE <a NODE structure> 

／

＼
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Figure 1: Data Structures for Wroblewski's method 

copying copying 
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／
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(a) input graph GI (c) output graph G3 (b) input graph G2 

Figure 2: Incremental Copy Graph Unification 
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3. otherwise, a new node is created as the output node. Both input node 

have the output node as their FORWARD values. 

Next, the procedure then treats arcs7. by first treating arc pairs whose labels 
exist in both input nodes. The procedure applies itself recursively to each such 

arc pair values and adds an arc with the unification result of their values to the 

output node. Next, the procedure treats arcs with labels that are unique to an 
input node with respect to each other. Each arc value is copied and the arc with 
the copied value is added to the output node. For example, the node specified 

by the feature path (a〉frominput graph Gl (Gl/(a〉)has an arc with the label 
c and the corresponding node of input graph G2 (i.e., G2/〈a〉)does not. The 
whole subgraph rooted by X(Gl/ (a c)) is then copied. This is because such 
subgraphs can be modified later. For example, the G3/ (a c g) node will be the 
copy of subgraph D. 

The problem with Wroblewski's method is that the whole result DG is cre-

ated by using only newly created structures. In the case of the example, the 

subgraphs of the result structure surrounded by the dashed rectangle can be 
shared with subgraphs of input structures Gl and G2. In Section 3, a method 

that avoids this problem is proposed. 
Wroblewski's method first treats arcs with labels that exist in both input 

nodes and then treats arcs with unique labels. This order is related to unifica-

tion failure tendency. Unification can fail in treating arcs with common labels 

but not in treating arcs with unique labels unless the output structure has 
cyclic structures. Finding failure can stop further computation as previously 

described, and thus finding failure first reduces unncessary computation. This 

order strategy can be generalized to the EFF mentioned previously and applied 

to the ordering of arcs with common labels. In Section 4, a method which uses 

this generalized strategy is proposed. 

7The procedure assumes the existence of two procedures, namely, SharedArcs and Com-
plementArcs. The SharedArcs procedure takes two lists of arcs as its arguments and gives 
two lists of arcs each of which contains arcs whose labels exists in both lists with the same 
arc label order. The ComplementArcs procedure takes two lists of arcs as its arguments and 
gives a set of arcs whose label is unique to an input set with respect to the other. 
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Incremental Copy Unification 

PROCEDURE Unify(nodei, node2) 

nodei = Dereference(nodei) 

node2 = Dereference(node2) 

meet = Tsymbo1Meet(node1.tsymbol, node2.tsymbol) 

IF Equal(meet, Bottom) THEN 

return(Bottom) 

ELSE 

outnode = Get□utNode(nodei, node2, meet) 
(sharedsi, shareds2) = SharedArcs (nodei, node2) 

complements!= ComplementArcs(nodei, node2) 

complements2 = ComplementArcs(node2, nodei) 

FOR ALL (shared!, shared2) in (sharedsi, shareds2) DO 

arcnode = Unify(shared 1. value, shared2. value) 

IF Equal(arcnode, Bottom) THEN 

return(Bottom) 

ELSE 

AddArc(outnode, shared!. label, arcnode) 

ENDIF 

IF Eq(outnode, nodei) THEN 

complements= complement2 

ELSE IF Eq(outnode, node2) THEN 

complements= complement! 

ELSE 

complements= UnionArcs(complementi, complement2) 

ENDIF 

FOR ALL coplement IN complements DO 

newnode = CopyNode(complement.value) 

AddArc(outnode, complement.label, newnode) 

ENDIF 

ENDPROCEDURE 

＼
 

／
 

Figure 3: TFS unification procedure based on Wroblewski's method (1) 
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Dereferencing 

PROCEDURE Dereference(node) 

IF Node?(node.forward) THEN 

return(Dereference(node.forward)) 

ELSE IF CurrrentNode?(node.copy) THEN 

return(Dereference(node.copy)) 

ELSE 

return(node) 

ENDIF 

ENDPROCEDURE 

Figure 4: TFS unification procedure based on Wroblewski's method (2) 
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Getting Ou-tput Node 
¥
 

PROCEDURE GetOutNode(node1, node2, meet) 

IF CurrentNode?(node1) 8c CurrentNode?(node2) THEN 

outnode = node2 

outnode.tsymbol = meet 

node1.forward = node2 

ELSE IF CurrentNode?(node1) THEN 

outnode = node1 
outnode.tsymbol = meet 

node2.copy = node1 

ELSE IF CurrentNode?(node2) THEN 

outnode = node2 

outnode.tsymbol = meet 

node1.copy = node2 

ELSE 

outnode = CreateNode(meet) 

node 1 . copy = outnode 

node2.copy = outnode 

ENDIF 

return(outnode) 

ENDPROCEDURE 

／
ー
＼

Figure 5: TFS unification procedure based on Wroblewski's method (3) 
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3 The Lazy Incremental Copy Graph U nifica-

tion Method 

In Wroblewski's method, copying unique label arc values whole in order to treat 
cases like Fig. 2 disables structure sharing. However, this whole copying is not 
necessary if a lazy evaluation method is used. With this method, it is possible 
to delay copying a node until either its own contents need to change (e.g., node 
Y in Fig. 2) or until it is found to have an arc to a node that needs to be copied 
(e.g., node X in Fig. 2 due to change of node Y's contents). To achieve this, 
the LING unification method which uses copy dependency information has been 
developed. 

The LING unification procedure uses a revised CopyNode procedure (the 
CopyNodeLING procedure) which does not copy structures immediately. The 
revised procedure uses a newly introduced slot COPY-DEPENDENCY. The 
slot has its value pairs of nodes and arcs. The revised procedure takes as its 
arguments the node to be copied8 nodel叫thearc arcl whose value is the node 
nodel and the mother node nodeが0which has the arc, and then returns the 
following value: 

1. if the dereference result node is current, it returns the dereference result 
nod el'and the arc arcl pair to indicate that immediately copying is ilec-
essary; 

2. otherwise, the procedure adds the mother node2 and the arc arcl pair 
into the node nodel's COPY-DEPENDENCY slot. It then recursively 
applies itself to each arc value with the node as the new mother node. 
If the recursive application returns a non-NIL value for several arcs, the 
node is copied immediately and the procedure returns the newly copied 
node and the arc. If it doesn't, the procedure returns NIL. 

When a new copy of a node is required, the LING unification procedure 
copies structures according to the COPY-DEPENDENCY slot value of the 
node. That is, mother nodes in the COPY-DEPENDENCY are also copied 
(See the definition of the ParcolateCopy procedure). 

In the above explanation, both COPY-DEPENDENCY and COPY slots 
are used for the sake of simplicity. However, this method can be achieved 
with only the COPY slot because a node does not have non-NIL COPY-
DEPENDENCY and COPY slot values simultaneously. 

The data in the COPY-DEPENDENCY slot are temporary and are dis-
carded during an extensive process such as analyzing very ambiguous structures. 
However, this does not result in any incompleteness or in any partial analysis 

8Strictly, the node which may have to be copied later 
, an arc's destination node 

10 an arc's departure node 
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NODE 

TSYMBOL <type symbol> J 

ARCS <a list of ARC structures> 

FORWARD <a NODE structure or NIL> 

COPY <a NODE structure, 

(<an integer> . <a list of ANCESTOR structures>) 

or NIL> 

GENERATION <an integer> 

ARC 

LABEL <a symbol> 

VALUE <a NODE stェucture>
ANCESTOR 

NODE <a NODE structure> ( 
ARC <an ARC structure> 

Figure 6: Data Structures for the LING method 
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Incremental Copy Unification (LING method) 

PROCEDURE UnifyLING(node1, node2) 

node1 = DereferenceLING(node1) 

node2 = DereferenceLING(node2) 

meet= Tsymbo1Meet(node1.tsyrnbol, node2.tsyrnbol) 

IF Equal(rneet, Bottom) THEN 

return(Bottom) 

ELSE 

outnode = Get□utNodeLING(node1, node2, meet) 
(shareds1, shareds2) = SharedArcs(node1, node2) 

cornplements1 = CornplernentArcs(node1, node2) 

cornplernents2 = CornplernentArcs(node2, node1) 

FDR ALL (shared1, shared2) in (shareds1, shareds2) DD 

arcnode = UnifyLING(shared1.value, shared2.value) 

IF Equal(arcnode, Bottom) THEN 

return(Bottorn) 

ELSE 

AddArc(outnode, shared1.label, arcnode) 

ENDIF 

IF Eq(outnode, nocle1) THEN 

complements= complement2 

ELSE IF Eq(outnode, node2) THEN 

complements= complement1 

ELSE 

complements= UnionArcs(complement1, complement2) 

ENDIF 

FDR ALL coplement IN complements DD 

newnode = CopyNodeLING(compelement.value) 

AddArc(outnode, complement.label, newnode) 

ENDIF 

ENDPRDCEDURE 

Figure 7: TFS unification procedure based on the LING method (1) 
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Dereferencing 

PROCEDURE DereferenceLING(node) 

IF Node?(node.forward) THEN 

return(DereferenceLING(node.forward)) 

ELSE IF CurrentNode?(node.copy) THEN 

return(DereferenceLING(node,copy)) 

ELSE 
return(node) 

ENDIF 

ENDPRDCEDURE 

／
ー
．
＼
~

Figure 8: TFS unification procedure based on the LING method (2) 

structures being lost11. Moreover, data can be accessed in a constant order time 
relative to the number of DG nodes and need not be reconstructed because this 

method does not use data structures consisting of skeleton and environments as 
does Pereira's method. 

The efficiency of the LING method depends on the proportion of newly cre-
ated nodes in the result structures. The following worst cases can be considered. 

1. If there are no arcs whose labels are unique to an input node with respect 
to each other, the procedure in the LING method behaves in the same 

way as the procedure in Wroblewski's method. 

2. In the worst cases in which there are unique label arcs but all result nodes 
are newly created, the method has the disadvantage of treating COPY-

DEPENDENCY slot data. 

However, such cases are very rare. Usually, the number of features which exists 
in two input FSs is relatively small and the sizes of two input FSs are often very 

different. For example, ・ 

1. In Kasper's disjunctive feature description unification, a definite part FS 
is usually much larger than a disjunct definite part FS. 

2. In sentence analysis based on HPSG or JPSG, a head constituent FS of 

a PP-VP complement-head construction is usually much larger than a 

11 Without structure sharing, analyzing皿 biguousor long sentences by using a tabular 
parsing algorithm such as active chart parsing causes frequent garbage collection and page 
swapping occurrences. In order to avoid this, prunning partial structure candidates can be 
adopted. However, the adoption introduces incompleteness. 

／ 
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Getting Output Node for the LING method 

PROCEDURE GetOutNodeLING(node1, node2, meet) 

IF CurrentNode?(node1) &; CurrentNode?(node2) THEN 

outnode = node2 
outnode.tsymbol = meet 

node1.forward = node2 
ELSE IF CurrentNode?(node1) THEN 

outnode = node1 

outnode.copy = node2.copy 

outnode.tsymbol = meet 

node2.copy = node1 

ParcolateCopy(outnode) 

ELSE IF CurrentNode?(node2) THEN 

outnode = node2 
outnode.copy = node1.copy 

outnode.tsymbol = meet 

node1. copy = node2 

ParcolateCopy(outnode) 

ELSE 

outnode = CreateNode(meet) 
outnode.copy = Append(node1.copy, Rest(node2.copy)) 

node1.copy = outnode 

node2.copy = outnode 

ParcolateCopy(outnode) 

ENDIF 
return(outnode) 

ENDPROCEDURE 

Figure 9: TFS unification procedure based on the LING method (3) 
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Copying Ancestors 

PROCEDURE ParcolateCopy(node) 

IF HasCurrentAncestors?(node) THEN 

FOR ALL ancestor in Rest(node.copy) DO 

IF ancestor.node is current THEN 

newarc = CreateArc(ancestor.arc。label,node) 

ReplaceArc(ancestor.node, newarc) 

ELSE 

newnode = CreateNode(ancestor.node.tsymbol) 

newnode.copy = ancestor.node.copy 

ancestor.node.copy= newnode 

CopyArcs(ancestor.node, newnode) 

ReplaceArc(newnode, ancestor.arc) 

ParcolateCopy(newnode) 

ENDIF 

ENDIF 

ENDPROCEDURE 

／
 

Figure 10: TFS unification procedure based on the LING method (4) 

ヽ
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Finding Arcs to Be Copied 

PROCEDURE ArcsToBeCopeid(node callers) 

newarcs = NIL 
FOR. ALL arc IN node.arcs DO 

newcallers = Cons(CreateAncestor(node, arc), callers) 

newnode = CopyNodeLING(arc.value, nevcallers) 

IF NotNIL?(ne~mode) THEN 
newarc = CreateArc(arc.label, ne~node) 
newarcs = {newarc} U newarcs 

ENDIF 
return(newarcs) 

ENDPR.OCEDUR.E 

Figure 12: TFS unification procedure b邸 edon the LING method (6) 

complement constituent FS12, and a complement constituent FS of a VP-
AUXV complement-head construction is usually much larger than a head 
constituent FS豆

To compare the efficiencies of Wroblewski's method and the LING method, 
brief experiments have been applied. TFSs like the followings have been applied 
both to Wroblewski's method and the LING method. 

To compare efficiencies of Wroblewski's method and the LING method, TFSs 
like the followings are applied to both methods: ヽ

~

＇ 
／
 

12E.g., jimukyoku ni (complement)+ touro畑 youshlo shlkyuu okuru (head) 
13E.g., jimukyoku ni tourokuyouslu o shikyuu okura (complement)+ s叩 (head)
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Table 1: Co~arison of Wroblewski's and the LING method 
Elapsed Time (sec) 

Number of result nodes Wroblewski's method LING method 
44 ＼ 0.015 0.014 

125 0.112 0.035 
368 0.540 0.249 
1461 1.782 0.656 
4377 5.790 2.038 
13125 43.025 8.102 

，
 

‘
9
l
_

＼
 

Eiperiment results are summarized in Table. 1 and Fig. 3. Each elapsed time 
is the average of 50 evaluations~n Symbolics Common Lisp. Elaspsed times are 
aproximated by the following fotmulas; 

T Wroblewski 

TuNG ： 1.60 X 10-4N1.29 

2.25 X 10-4N1.1o 

where N is the number of result nodes. These results indicate that the LING 
method is more efficient than Wroblewski's method when result FSs are large. 

／
ー
＼
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Figure 13: Comparison of Wroblewski's and the LING method 
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4 The Strategic Incremental Copy Graph Uni-
fication Method 

In certain processes where FS unification is applied, there are features whose 
values fail in unification with other values relatively often and there are features 
whose values do not fail so often. For example, in Japanese analysis, unification 
of features for conjugation forms, case markers, and sortal restrictiohs14 tends 
to fail but unification of features for semantic representations15 does not. In 
such cases, application of the EFF strategy, that is, treating features tending 
to fail in unification first, reduces unncessary computation when the unification 
finally fails. For example, when unification of features for case markers does fail, 
treating these features first avoids treating features for semantic representations. 
The strategic incremental copy graph unification -(SING unification) method 
uses this failure tendency. 

These unification failure tendencies depend on a process within which FS 
unification is applied, such as analysis or generation. Contrary to the analysis 
case, unification of features for semantic representation tends to fail. In this 
method, therefore, the failure tendency information is aquired by a learning 
process. That is, the SING unification procedure applied in an analysis process 
uses the failure tendency information acquired by a learning analysis process, 
and the procedure applied in a generation process uses the information acquired 
by a learning generation process. 

In the learning process, when FS unification is applied, feature treatment 
orders are randomized for the sake of random extraction. As in TFS unification, 
failure tendency information is recorded in terms of triple consisting of the most 
generic specifier type symbol of the input TFSs'type symbols, a feature, and 
sucess/failure flag. This is because the type symbol of a TFS represents salient 
information on the whole TFS. 

By using learned failure tendency information, feature value unification is 
applied in an order that first treats features which tend to fail. This is achieved 
by sorting shared arc pairs. 

The efficiency of the SING method depends on the following factors: 

The overall unification failure rate of the process: in extreme~ases, if 
no unification failure occurs, the method has no advantages except the 
overhead of feature unification order sorting. However, such cases do not 
occur in practice. 

Number of features feature structures have: if each feature structure has 
only a small number offeatures, the efficiency gain from the SING method 
is small. 

14In the current NADINE granunar, CFORM, FORM and SEMF features 
15SEM feature 

~
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Unevenness of feature unification failure tendency: in extreme cases, if 
every feature has the same failure tendency, this method has no advan-
tage. However, such cases are very rare, and for example, in many cases 
of natural language analysis, FS unification failures occur in treating only 
limited kinds of features related to grammatical agreement such as num-
Qer/person agreeQ.1.ent and case marker agreement and semantic selectional 
constraints. In such cases, the SING method is efficient. 

The above factors can be examined by inspecting acquired failure tendency 
information, from which the efficiency gain from the SING method can be pre-
dieted. Moreover, it is possible for each type symbol to select whether to apply 
f~ature unification order sorting or not. 
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Strategic Iucremental Copy Unification (SING metl1,od ） 

PROCEDURE UnifySING(node1, node2) 

node1 = DereferenceLING(node1) 
riode2・= Derefe:tenceLING(node2) 

meet = Tsymbo1Meet(node1.tsymbol, node2.tsyrnboi) 

IF Equal(meet, Bottom) THEN 

return(Bottom) 

ELSE 

outnode = Get0utNode(node1, node2, meet) 

(shareds1, shareds2) = SharedArcs(node1, node2) 

complements1 = ComplementArcs(node1, node2) 

complements2 = ComplementArcs(node2, node1) 

(shareds1, shareds2) 

= SortArcPairs(meet, shareds1, shareds2) 

FOR ALL (shared1, shared2) in (shareds 1, shareds2) DO 

arcnode = UnifySING(shared1.value, shared2.value) 

IF Equal(arcnode, Bottom) THEN 

RegisterTendency(meet, shareds1.label, FAILURE) 

return(Bottom) 

ELSE 

RegisterTendency(meet, shareds1.label, SUCCESS) 

AddArc(outnode, shared1.label, arcnode) 

ENDIF 

IF Eq(outnode, node1) THEN 

complements= complement2 

ELSE IF Eq(outnode, node2) THEN 

complements= complement1 

ELSE 

complements= UnionArcs(complementl, complement2) 

ENDIF 

FOR ALL coplement IN complements DO 

ne皿 ode=CopyNode(compelement.value) 

AddArc(outnode, complement.label, newnode) 

ENDIF 

ENDPROCEDURE 

','.'.: 

,, .-,: . 

c令，',,.・,

＼ ／ 
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Figure 14: TFS unification procedure based on the SING method 
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5 Conclusion 

。

This technical report proposes two incremental copy graph unification meth-
ods, the Lazy I~cremental Copy Graph unification method and the Strategic 
Incremental Copy Graph unification method. The LING unification method 
achieves structure sharing without the (logd) data access overhead of Pereira's 
method, Structure sharing avoids wasting memory. Furthermore, structure 
sharing increases the porpotion of token identical substructures of FSs which 
makes keeping unification results of substructures of FSs and reusing them efli-
ciently. This reduces repeated'calculation of substructures. 

The SING unification method introduces the concept of feature unifica-
tion strategy. These two unification methods can be combined and the com-
bined method is called the Strategic Lazy Incremental Copy Graph unification 
method. The combined method not only makes each FS unification efficient but 
also red.uces garbage collection and page swapping occurrences, thus increasing 
total efficiencies of TFS unification-based natural language processing systems 
such as a spoken Japanese sentence analysis system based on HPSG. 

u 
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