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ABSTRACT 
In this paper, interpretations of a feed-forward 
neural network are described. For the 
interpretations, a network is decomposed into a 
successive combination of unit transformations. 
A unit transformation stands for a 
transformation from one layer output to the next 
higher layer output. This transformation is 
further divided into an afime part and a sigmoid 
non-linear part. The affine part is interpreted 
using the singular value decomposition 
technique and the sigmoid non-linear part is 
interpreted based on a classification of its input 
space into direction-invariant subspaces. Also 
described is an application of the 
interpretations, which is applied to an exclusive 
OR feed-forward neural network. 
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1. INTRODUCTION 
Neural networks have been applied to many 
areas such as speech recognition, image coding, 
e入q>ertsystems, and so forth, because of their 
potential capabilities[1][2]. In such applications, 
one of the major problems is the inability to 
e>..-plain the neural network internal functions. 
At present there are few papers which describe 
interpretations of neural network internal 
functions compared with the number of papers 
which describe specific applications of neural 
networks. 

Although there have been theoretical studies 
concerning the capabilities of feed-forward 
neural networks which state that a three-or 
four-layered feed-forward neural network <;:an, 
in principle,. realize any continuous non-linear 
mapping[3][ 4][5][6][7][8][9], the proofs are based 
on the Kolmogorov or Stone-Weierstrass 
theorems, or multi-dimensional Fourier 

transform, and thus assume special structures 
on neural networks, or are existence theorems. 
They are difficult to use for interpretations of a 
feed-forward neural network with a specified 
number of hidden units. They are, of course, 
important in neural network theory, but in order 
to interpret a feed-forward neural network, a 
different approach seems to be required. 
In this paper, based on the singular value 
decomposition technique of linear algebra and a 
classification of an input space of a non-linear 
mapping, a feed-forward neural network is 
interpreted and the interpretations are applied 
to an exclusive OR neural network. 
In Section 2, the interpretations of a feed-
forward neural network are described. In Section 
3, an application of the interpretations to an 
exclusive OR network is described. 

2. INTERPRETATIONS 
The feed-forward neural network considered 
here is a network which is allowed all 
connections between layers. The transformation 
from a network input to a network output is 
made by successive applications of a unit 
transformation, which stands for a 
transformation from one layer output to the next 
higher layer output. Thus, interpreting a unit 
transformation is essential. 

2-1. UNITTRANSFORl¥1ATION 
A unit transformation is a transformation from 
one layer output to the next higher layer output 
of a feed-forward neural network. "¥Ve assume 
here that all the units at the next higher layer, 
or the output layer of a unit transformation, 
have a slightly modified sigmoid function. Fig. 1 
shows the plot of this sigmoid function which 
takes values b~tween -1 and 1. The gradient atェ
= 0 is normalized to 1 for simplicity. Fig. 2 

ー
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Fig. 1Sigmoid function 
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Fig. 2 Unit transformation 

discussion below ,also holds for the case where n 
<m. 

2-2. The affine transformation 
Formula (1) stands for the affine transformation. 
A vector xis linearly transformed by the matrix 
A and next is shifted by the vector b. To see the 
structure of the linear transformation, A: Rn --> 
Rm., the singular value decomposition 
technique[6] can be used. 
It is known that an optimal lower dimensional 
approximation of a finite dimensional linear 
mapping, T: R8 --> Rt, can be given by singular 
value decomposition of the mapping. H.Bourlard 
& Y.Kamp pointed out that the identity 
mapping network, or the auto-association 
network performs data compression by singular 
value decomposition[7]. In this paper, however, 
the singular value decomposition technique is 
adopted to structure the linear transformation 
part,A: Rn-> R匹

Let the rank of A be rn. By singular value 
decomposition, A is decomposed into a product of 
matrices and a diagonal matrix, i.e. 

A=  unvt 
illustrates the unit transformatfon. The 
numbers of units at the input and output layers 
of the unit transformation are assumed to be n 
and m, respectively. Let x be an n-dimensional 
input vector of the unit transformation, and z an 
m-dime.nsional output vector of the unit 
transformation. Using matrix notation, x and z 
can be related as follows: 

(t:transpose) 

y = Ax + .b -----(1) z = f (y J -----(2) 

where A is an mXn matrix of the connection 
weights between layers, b an m-dimensional 
bias vector, y an m-dimensional vector of the 
input to f, and f an m-dimensional sigmoid 
function, i.e. fi = (1・-exp(2y;}Jl(l +exp(-2yJ) (i 

= 1.2.3, …, m). 
Formula (1) expresses the affine part of the 
transformation and Formula (2) expresses the 
purely non-linear part of the transformation. An 
input vector of the transformation, x, is first 
transformed by Formula (1) and then deformed 
by Formula <2). Here, the case where n迄 mis
considered. and a standard Euclidean distance 
and a standard inner product are assumed. The 

where V is an nX m matrix and its column 
vectors v1,v2,---,Vm are orthonormal vectors of 
the space R匹 U is an m X m matrix and its 
column vectors u1 ,u公..,um are orthonormal 
vectors of the space R匹Dis an m X m diagonal 
matrix, diag(d迅2,... ,d叫 (d1~d2~...~dm~O). 
di is called a singular value. In the process of 
calculating Ax, x is fi江stprojected onto each row 
vector of vt to give new orthonormal coordinate 
values in the space R匹 Second,each new 
orthonormal coordinate value is re-scaled by 
being multiplied by a corresponding singular 
value, di. And last, an exchange of orthonormal 
coordinates in the space Rm is carried out. From 
these considerations, the following can be stated: 

(1) The first transformation vt can be regarded 
as the linear characteristic measuring operator. 
These linear characteristics are determined by 
the orthonormal column vectors of V. Thus, the 
generalization of the unit transformation is 
realized in the space which is orthogonal to the 
linear subspace spanned by the column vectors 
of V. The unit transformation outputs the same 
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vector z if the input vectors all have the same 
projection onto the linear subspace spanned by 
the column vectors of V. This transformation is 

related to~e input space R庄

(2) The second transformation D re-scales each of 
these linear characteristics of the input vector. 

The generalization of the unit transformation is 
realized mainly in the directions of the 

orthonormal coordinate axes which correspond 

to the smaller singular values. 

(3) The last transformation U carries out an 
exchange of orthonormal coordinates in the 
space R匹 Becausethis last transformation 
performs only an exchange of orthonormal 

coordinates, this transformation doesn't change 
any geometric feature in the space. This 

transformation alone seems to have no meaning 
and is related. to the sigmoid non-linear 
transformation, whose output depends on the 
input vector position. It can also be seen that no 

generalization occurs at this~tage of the unit 
transformation. 

After the linear transformation A, the position 

shift by the vector b is carried out. Of course, 
this shift operation doesn't change any 

geometric features at all and thus this 
transformation is also related to the sigmoid 

non-linear transformation. 

2-3. The sigmoid non-linear transformation 
Formula (2) stands for the sigmoid non-linear 

transformation. By Formula (2), the input vector 

lengths and directions are changed and this 

effect is dependent on the input vector position. 

Let us consider a classification of the input 
space of the transformation in terms of vector 

directions. Let the input vector of the non-linear 

transformation y = (Yl,Y2, …, Ym) and the 
output vector z = (z1名2,…，Zni). If /Y1I = /y2/ = 
…= /y ml, it can be seen that these input vector 
directions are not changed by this 
transformation because each element of the 
input vector is compressed equally, and the 
sigmoid function doesn't change the input vector 

element sign. And if /yりI=IYi2'== , ... , =!Yi)= 

0 and /yjJ/ = fYJi = :••·, = /Yj/::;:: 0 where a. + b 
= m, 1~a:b, it can also be seen that these 
input vector directions are not changed by the 

transformation because the sigmoid function 
maps Oto 0. Thus, there are 2m (corresponding 

to /y1/ = /y2/ =…= /ym/) + {ふ*2m-1+ 
ふ *2m-.2+ mC正 1*2} (corresponding to /Yi,/ 

= /YiJ = , ... , = IYi。/= 0 and /yji/ = /Yi2'= , ... , = 
/yjJキ 0where a + b = m, I~a,b) one-
dimensional subspaces where vector directions 
are preserved after the transformation. They are 
determined by, for example, vectors (1,1, .. ~,l) , ( 

ー1,1,... ,1), (1, ー1,1,…, 1 J , ... (0,1, ... ,1 J, (1,0,1, ... ,1 
) , ... and so forth. 

Let us consider the region R: (YI ,Y2,・・-,Ym) of the 

input space, where O~Yl, 0~Y2, …, 0~Ym
Because the sigmoid function maps positive 
values to positive values, first, it can be seen 
that the transformation maps this region into 

th e same region R : (z1,z2, ... ,zm) where O~ 
z1, 0~z2, …, 0~Zm. Let the angle between a 
・vector a and b be Angle(a,b). 

Angle(a,b J~acos((a,b)/ II a II * II・b II) 

where(a,bJ is an inner product of a and b, and 
II • II stands for a norm of a vector, i.e. square root 
((v,v)). 

The direction-invariant subspace of this region 
is, for example, determined by the vector ( 

1,1, …，1). Now let s be (1,1, ... ,l) and let us 
consider Angle (s,z J z E R'. 

Then, 

(s,z) = z 1 + z2 +… +zm 
II z II = square root(が+z名＋．．．十 Z,nり
II s II = square root(m) 

Both the inner product and norm are unchanged 

by a permutation of the vector z elements, and 
the element-permuted output vector z obviously 

corresponds to the element-permuted input 
vector y. Thus, in terms of the vector angle with 
respect to the vector s, considering only a 
subregion, 

subR = {(Yl ,Y2,---, Ym); 0 < .Yl < Y2 < , …, < Ym} 

is necessary and sufficient. Other subregions, { ( 

Ys(l),Y!;(2),·~·, Ys(m)); 0 < Yl < Y2 <, …, < Ym}( 
s(): permutation) are mapped onto this region, 
subR, using the inverse permutation operation, 
-1 s : s(i) -> i (i = 1.2 ..... rn.). The s1gmo1d non-
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linear transformation maps this region into 
subR', where 

subR'= {(z」,z2, …，z叫；0 < z1 < z2 <, ... , < zmJ 

In this subregion, consider the angles between s 
and y ,z. Let us take a projection of the subregion 
onto a two-dimensional linear subspace, which is 
determined by a combination of two natural 
bases i.e. 
ei = (0, ... ,0,l ,O, …，0) and ej = (0, ... ,0,l ,O, …, OJ 

i-tli element j-th element 

(i < j).Let a projection of an input vector y be 
y'and let a projection of the corresponding 
output vector be z . Of course, y = (Yi,Yj) , 
z = .r z吃;)ands , a projection of s, is (1,1). 
Using・two constants Ci, Cj, the ratio zjlzi is 
written as follows: 

0 -45・, 9'-45・are the angles between y'and 
s'and between z'ands', respectively. Thus 
it is proved that, in terms of the angle, y' 
approaches s'by the sigmoid non-linear 
transformation. Fig. 3 shows a sample projection 
of input and ouiput vectors of the 
transformation. 

2
 

ej 

s
 

e; 

＾ 
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Zjほ=(CjYj)/(CiJi) ---(11) 
Fig. 3 Projection of input and output vectors of the 
transformation 

ci, Cj is the compression ratio _of the sigmoid. 
Because the sigmoid is a s~rictly monotonic 
increasing function and because Jj,Yi (i < j) are 
positive, the following holds. 

0 < CiJ'i <~ 印

0 < Cj < Ci< 1 

1 < (Cj)'j)I(CiYi) < Y/Yi 

---(12) 

Because the sigmoid function is increasingly 
saturate as its input grows larger, also holds the 
following inequality: 

---(13) 

Using (13) , the right side of the・equation (11) 
can be written as follows: 

(CjYj)I(Ci:Ji) == (cjlci)()'. か） < Y/Yi ---(14) 

From the equation (12), (CjYj JI(Ci.J'i) is larger 
than 1. Thus, from the inequality (14), 

---(15 J 

h.olds. Taking an arc-tangent of each term of the 
inequality (15) : we obtain the fallowing 
inequality. 

~ 

--・ 夕

45・< 8'< 8 ---(16) 

The discussion above is obviously independent 
of the specific choice of ei,ej, and thus, in any 
projection onto any ei-ej-linear subspace, y' 
approaches s'by the transformation. Hence, it 
can be concluded that the sigmoid non-linear 
operation makes an input vector in the region R 
closer to the direction-invariant subspace of the 
region. The same thing applies to the other 

regions, i.e. {(y立 2,---,YmJ;0~Yl & 0~Y2, …，0 
:;i Ym-1 & Ym :;i 0}, {(:t1,Y2, …, YmJ; 0~Yl & 0 
~Y2, …, 0~Ym-2 & Ym-1~0 & 0~Ym }, {( 
Yl,Y2, …， Ym) ; 0~Y l & 0~Y2, …， 0~y正3&
Ym-2~0 & 0~Ym-1 & 0 :;i玩｝，…， {(Yl,Y2,--・,
Ym) ; Y 1~0 & Y2~0, …, Ym~0 }. The proof is 
almost the same as the proof above. 
Fig. 4 shows 2-dimensional input and output 
vectors of the transformation. It can be observed 
that vectors in each region of { (y 1,Y2) ; y 1~0 
& Y2~0 } , { (Y l ,Y2) ; Y l~0 & Y2~0 } , { (Y 1 S2 
) ； Y l~0 & Y2 s;; 0 } , { (Y 1,Y2) ; Y 1~0 & Y2~ 〇
} are 1nade closer to the direction-invariant 
subspace of the region. 
To summarize, the sigmoid non-linear 
transformation makes all vectors in each region 
closer to the direction-invariant subspace of the 
region. This effect is, of course, dependent on the 
input vector length. The longer the input vector 
is. the larger this effect becomes. 
Each region can be further divided into sub-

regions. { (:r~(1J,.V.-:f2>····,.\'!:(m)) ; IY1/~/y2/~ …•• 
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Fig. 4 Sample input and・output of the transformation 

~/ymf } (() .) s : permutation and these re郡ons
are equivalent in terms of the deformation of the 
sigmoid non-linear transformation. 

2-4. A structured unit transformation 
From these considerations, the unit 
transformation from one layer output to the next 
higher layer output can be structured. Fig. 5 
illustrates this structured unit transformation. 

＾ 
layers 

， 

units at layer 4 are also linear units and have 
bias values. Layer 5 corresponds to the next 
higher layer of the original unit transformation 
and thus all the units at this layer have 
sigmoids. 
The transformation from the layer 1 output to 
the layer 2 output corresponds to matrix vt 
operation in Section 2-1 and thus is a 
characteristic measuring liner transformation. 
The next transformation, from layer 2 to layer 3, 
corresponds to the matrix D, diag(d迅2,... ,d叫
in Section 2-1. Each unit has only one link to a 
layer 3 unit. This transformation deforms layer 
2 output vectors using singular values. The 
transformation from the layer 3 output to the 
layer 4 output corresponds to the matrix U 
operation and adds the bias vector b in Section _2-
1. This transformation adjusts layer 3 output 
vector positions properly in the space Rm for the 
next non-linear transformation. The last non-
linear transformation at layer 5 is the sigmoid 
non-linear transformation of Section 2-2. This 
transformation non-linearly deforms vector 
position relationships in the layer 4 space. 

3. AN APPLICATION TO AN EXCLUSIVE 
OR NETWORK 
A feed forward neural network realizing 

hidden layer 

input layer 

Fig. 6 Exclusive OR network 

layerl 

Fig. 5 Structured unit transformation 

All the units at layer 1, layer 2 and layer 3 are 
linear units and have no bias values. All the 

exclusive OR[12] is shown in Fig. 6. In this case, 
the output unit and all the input units have no 
sigmoid. The numbers within circles・indicate a 
unit number. Fig. 7 shows the input vectors to 
the network. The network maps solid circles to -
1 and hollow circles to 1. Table 1 shows the 
parameters of the exclusive OR neural network 
obtained by the back-propagation learning 
algorithm[12]. Wi,j is a link weight from unitj to 
unit i. b1 and b2 correspond to bias values of 

5
 



1゚ ． 
-1 

． ゚1 
ー1

network. Let us consider this unit 
transformation. 
Coefficients A, b of the affine part are as follows: 
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Fig. 7 Input vectors to the Exclusive OR network 

units 3 and 4, respectively, and b'1 is a bias of 
unit 5. 

connection weights 
I 

W印 -1.27863 

w3、2 1.27863 

W4,7 -1.42848 

W4,2 1.42848 

ws、3 -1.90863 

w5,4 1.89593 

biases 

戸
Table 1. Parameters of the Exclusive OR 
net 

This network can be divided into two unit 
transformations. One is the transformation from 
the input layer output to the hidden layer 
output, and the other is the transformation from 
the hidden layer output to the output unit. 
Fig. 8 illustrates an equivalent structured unit 
transformation. This corresponds to the 

゜゚
layer 5 

layer 4 

layer 3 

layer 2 

layer 1 

Fig. 8 Structured unit transformation 

transformation from the input layer output of 
the network to the hidden layer output of the 

(t:transpose) 
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Layer 1 to layer 2: As described in Section 2-3, 

t operator V measures input vector 
characteristics. These characteristics are 
determined by the row ve~tors of yt. In this case 
these characteristics are determined by the 
vectors, 

0.707107 -0.707107 

vi = C0.707107) v2 = (.。.707107)

Interestingly, the direction of v 1 is equal to the 
f江 stprincipal axis of the data of category "1" and 
the direction of v2 is equal to the fl正stprincipal 
axis of the data of category "-1". At the first 
stage of a structured unit transformation 
between layers, the network must take as much 
category "1" as well as category "-1"-information 
as possible. Thus, this result seems reasonable. 
Fig. 9 shows the plot of the transformation 
output. 
Layer 2 to layer 3: This transformation is 
determined by the matrix D. The first element of 
the input vector is multiplied by the constant 
2.71125, and the second element by zero. The 
dimension of the input space is reduced to one. 
From this result, it can be seen that the 
generalization has been realized in the direction 
of the characteristic measuring vector v2, Fig. 10 
is the plot of the transformation output. 
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Fig. 9 Output of the transformation from layer 1 to 
layer 2 
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、, Fig. 10 Output of the transformation from layer 2 to 
layer 3 

Layer 3 to layer 4: Here, first, an exchange of 

coordinates which is determined by the matrix U 
is carried out. Because the determinant of the 

matrix U is negative, an inversion of the 

coordinates has been carried out. The inverted 
coordinates, (1,0), (0,-1), are rotated 131.832' 

clockwise. Fig. 11 shows this transformation 
output.The output vectors are shifted by the 

／
ー
~

Fig. 11 Output of the transformation from layer 3 to 
.layer 4 

vector b. Fig. 12 is the plot of the shifted output. 
At layer 5: As Fig. 12 illustrates, the outputs of 
the affine transformation part are not linearly 

separable. After the sigmoid non-linear 
operation at layer 5, only an affine 

Fig. 12 Output of the transformation from layer 3 to 
layer4 

transformation, which is the transformation 
between the hidden layer and the output unit, is 

carried out. This affine transformation measures 

a signed distance of a vector from a specified 
line. In this case, the distance of vectors in 

category "l" .should be 1 and the distance of 
vectors in category "-1" should be -1. Thus, the 

sigmoid operation must deform the input vectors 
so that the vectors in category "l" and the 

vectors in category "-1" are linearly separable. 
As can be seen in Fig. 12, the input vectors in 

category "l" belong to regions { (Ylが2);匁三〇

& Y2;,;;; 釘，{(Y 1,Y2) ; Y 1 ;,;;; 〇＆匁 ~0} and the 
input vectors in category "-1" belong to a region 

{(Yl,Y2); 匁；；；；； 0 &y2;,;;; 〇｝・ Itcan also be seen 
in Fig. 12 that the input vector lengths of 
category "l" are much longer than those of the 

input vectors of category "-1". Thus, the sigmoid 
non-linear transformation makes the input 

vectors of category "l" much closer to the 
direction-invariant subspaces of the regions. 

This causes the vectors in category "l" and the 

vectors in category "-1" to become linearly 

separable. Fig. 13 shows the output of the 

sigmoid non-linear transformation and a 
distance-measuring line (a dotted line) 

determined by the link weights wふ4,wふ4,and 
the bias b'1-As can be seen in Fig. 13, the 
sigmoid non-linear transformation has 
successfully deformed the input vectors. The 
transformations between layer 2 and layer 3 and 
between layer 3 and layer 4 have contributed to 

properly arrange the vectors for the sigmoid non-
linear deformation. The sigmoid non-linearity is 
essential in this task. 
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Fig. 13 Output of the transformation at layer 5 

4. CONCLUSION 

In this paper, the interpretations of a feed-
forward neural network have been described. 

Based on singular value decomposition and a 
classification of an input space of the sigmoid 
non-linear transformation, the following have 

been clarified. 

(1) The first transformationザ canbe regarded 

as the linear characteristic measuring operator. 

These linear characteristics are determined by 

the orthonormal column vectors of V. The 
generalization of the unit transformation is 

realized in the space which is orthogonal to the 
linear subspace spanned by the column vectors 

ofV. 

(2) The second transformation Dre-scales each of 
these linear characteristics of the input vector. 

The generalization of the unit transformation is 

realized mainly in the directions of the 

orthonormal coordinate axes which correspond 

to the smaller singular values. 

(3) The last transformation U carries out an 
exchange of orthonormal coordinates in the 

space R匹 Thistransformation is related to the 

sigmoid non-linear transformation. No 
generalization occurs at this stage of the unit 
transformation. 

(4) The sigmoid non-linear transformation 
makes all vectors in the each region of the input 

space closer to the direction-invariant subspace 
of the region. 
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