
TR-1-0114

Multiple Inheritance in RETIF

Martin EMELE and Remi ZAJAC

1989. 09

Abstract

This report describes the new version of a prototype of rewriting system for
~ped feature structures. The formalism is based on a lattice theoretic approach
ue to Ait-Kaci. The semantics of Ait-Kaci treats disjunction and simple

inheritance. This semantics has been extended to multiple inheritance, and the
interpreter has been reimplemented to treat multiple inheritance.

In section 1 we present the shntax of the formalism; in section 2、thesemantics of
the formalism; in section3, t e user's interface; in section 4, an HPSG grammar
for English written in RETIF.

ATR Interpreting Telephony Research Laboratories
ATR自動翻訳電話研究所

c(株）ATR自動翻訳電話研究所 1989
c1989 by ATR Interpreting Telephony Research Laboratories

Multiple Inheritance in RETIF*

Martin Emele and Remi Zajac

A TR Interpreting Telephony Research Laboratories

Sanpeidani, Inuidani, Seilca-cho, Soraku-gun, Kyoto 619-02, Japan

｀

Abstract

＾
We describe the new version of a prototype of a rewriting system for typed

feature structures. The formalism is based on a lattice theoretic approach due to

[Ait-Kaci 84]. The semantics of Ait-Kaci treats disjunction and simple

inheritance. This semantics has been extended to multiple inheritance, and the

interpreter has been reimplemented for treating multiple inheritance.

In section 1 we present the syntax of the formalism and the partial order of type

symbols derived from a set of defi血lions.The new interpreter is described in the

next section, in particular the rewriting process and the eval function which

defines the operational semantics of the interpreter. In section 3, we describe the

new user's interface. The last section is devoted to the presentation of a linguistic

example: an HPSG grammar for English written in RETIF.

~

Key-Words multiple inheritance, types, sorts, rewriting system, unification-based

fonnalisms, feature s血 ctures.

'`

* Rewriting system for TYped Feature structures

multiple inheritance in retif

TABLE

Introduction

1. Definitions

1.1 Disjunction and multiple inheritance

1.2 Embedding the partial ordering in a meet semi-lattice

A. The embedding

B. The meet operation

｀
C. Typed unification

~ 2. Interpretation

2.1 The EV AL function

2.2 The rewriting algorithm

2. 3 A detailed example

3. The user's interface

3 .1 General commands

reset

read

read-from-string

load

~ wn． te

write-to-string

write-to-file

syntax

syntax-options

reset-syntax-options

printer-options

reset-printer-options

trace

3 .2 Knowledge base related comm皿ds

get-kbs

get-kb

in-kb

create-kb

2

multiple inheritance in retif

rename-kb

delete-kb

print-kb-names

print-kb

print-label-order

print-suppressed-labels

3. 3 Type related commands

eval-type

get-types

get-type

get-internal-type

delete-type

rename-type

print-type-names

print-type

print-internal-type

partial-order

caller-dependency

，

4 • An HPSG grammar for English

Conclusion

References

Appendix 1: a DCG-like grammar
,.....,

Appendix 2: an HPSG grammar for English

Appendix 3: a sample session

3

mulliple inheri、血ceinretif

Introduction

In [Emele and Zajac 89], we described a first implementation of a typed feature structure rewriting

system which handled disjunction and single type inheritance. The main purpose of this new version is

to enhance the expressive power of the formalism by introducing multiple inheritance.

Disjunctions can be used to represent ambiguity. The introduction of conjunctions (i.e. multiple

inheritance) enhances modularity: bits of information common to several different types can be factored

out and described separately. Furthermore, new types can be defined by combining several different

types, much like objects can be defined in object-oriented programming paradigms.

Refering to other unification-based grammar formalisms (see [Shieber 86] for example), multiple

~inheritance could at first glance look like template mechanisms. There is however a major difference.

The type rewriting system uses a type inference mechanism to derive new types dynamically during

computation whereas templates are statically expanded at compile time (lilce macros in more traditional

programming languages).

We ,describe the new version of a prototype of a rewriting system for typed feature structures. The

formalism is based on a lattice theoretic approach due to [Ait-Kaci 84]. The semantics of Ait-Kaci

treats disjunction and simple inheritance. This semantics has been extended to multiple inheritance, and

the interpreter has been reimplemented for treating multiple inheritance.

~

In section 1 we present the syntax of the formalism and the partial order of type symbols derived

from a set of definitions. The new interpreter is described in the next section: in particular, the

rewriting process, and the eval function which defines the operational semantics of the interpreter. In

section 3, we describe the new user's interface. The last section is devoted to the presentation of a

linguistic example: an HPSG grammar for English written in RETIF.

4

呻 ltipleinheritance in retif

1. Definitions

1.1・Disjunction・and multiple inheritance

A type can be・defined as a disjunction of叩esor a conjunction of types, or any combination of

conjunctions and disjunctions. The symbol for the operator of disjunction is'I'and the symbol for the

operator of conjunction is'&'. Syntactically, a type definition is written as:

<type-sy1:11bol>・=・<logical expression of typed feature structures> .

There are two constraints'・1inposed on-defi血tions:

1) Definitions must~ot lead to a cycle in the type system, otherwise, the type system cannot be

ordered. Hence, some simple・dependency tests are performed to check possible loops during

rewnttng.

2)・Tags are local to a feature structure and cannot refer to an other feature structure m a logical

expression. ＾
A definition A =. <exp> states that an object (a feature structure) of type A must verify the

constraints・expressed・by the expression <exp>. Evaluation・of a typed feature structure is constraint

checking: during・the ev・aluadon・process, any typed feature structure SA of type A must verify the

constraints stated in the defmition of A: for a disjunction, SA must verify at least one of the constraints

stated as disjuncts; for a conjun~tion, SA must verify all the constraints stated as conjuncts. If the

constraint is a type~ymbol, SA inherits from the constraints of the defmition of this symbol, if it has

one; if. the constraint :is a feature structure, SA must be compatible (unifiable) with this feature

structure.

＾ The three cubes example

A knowledge base for the three cubes problem is defined as follows.

:KB 3cubes

COLOR= GREEN I NON-GREEN.

NON-GREEN= BLUE I OTHERS.

3CUBES = % 3CUBES is-a STACK which-has top, middle and bottom slots. 号

STACK[top:GREEN,

middle:COLOR,

bottom:BLUE].

5

multiple inheritance in retif

ON=号 ONis either a 3CUBES where top = above and middle = below

or a 3CUBES with middle = above and bottom = below. %

3CUBES &

[top: ix,

middle:iy,

above:ix,

below:iy]

[middle:iz,

bottom:#t,

above:iz,

below:it]).

＾ QUERY:= 号 A variable that contains a typed feature structure

"Is there a green cube on top of a non green cube?" %

ON[above:GREEN, below:NON-GREEN].

1. 2 Embedding the partial ordering in a meet semi-Lattice

A • The embedding

The normal form of the definitions

~
In order to be interpreted, the defmitions of the KB are put in Normal Form as follows.

1. A disjunction of typed feature structures is replaced with a disjunction of new symbols, one for

each disjunct: A[k1 :R1, … ~:Rm] I B[11 :Sじ… 1n:Sn1 is replaced with A'I B'where A'=

A[k1:R1, …lcm:Rm1 and B'= B[11:S1, …tn:Sn1-

2. A conjunction of typed feature structures is replaced with a conjunction of new symbols, one for

each conjunct: A[k1 :R1,. ・・ lcm:Rml & B[l1:Sじ… In:Snl is replaced with A'& B'where A'=

A[k1:R1, …lcm:Rml and B'= B[l1:Sぃ… ln:Snl•

3. A typed feature structure A[11 :S 1, …In:Snl of type A is replaced with the conjunction A & S',

where S'is a new symbol defined as S'= [11 :S1,・.. ln:Snl (of type T).

6

皿 ltipleinheritance in relif

+. The resulting logical expression of type symbols is put in a disjunctive normal form using the

following simplification laws:

zero and one elements

A I *top* = *top* I A = *top*
A I *bottom* = *bottom* I A = A

A & *top* = *top* & A = A

A & *bottom* = *bottom* & A = *bottom*
idempotency

AIA =A

A&A=A

commutativity

AIB = BIA

A&B=B&A

associativity

(A I B) I C = A I (B I C) = A I B I C

(A&B)&C = A&(B&C) = A&B&C

distributivity

(A I B) & C = A & C I B & C

absorption

(A & B & C) I (A & B) = (A & B)

＾

Using these rules, the set of definitions of the knowledge base 3cubes is replaced with:

COLOR= GREEN I NON-GREEN.

NON-GREEN・= BLUE 1- OTHERS.

＾ 3CUBES = STACK .. & S3.

S3 = {top:GREEN,

middle:COLOR,

bottom:BLUE].

ON = O~l I ON2 •

ONl = 3CUBES & S1

ON2 = 3CUBES & S2.

S1 = [top:#x,

midctl・e : .#y,

above:#x,

below:#y].

7

multiple inheritance in retif

S2 = [middle::ftz,

bottom: 寺t,

above: 和z,

below: 春t].

The partial order on type symbols extracted from the KB definitions is shown in Figure 1.

＾

T

co/
／＼

, NON-GREEN・GREf.:N

OTH/~UE-

'-
Figure 1: The partial ordering onり'J)esymbols exヽractedfromヽheKB definitions

~

B. The Meet Operation

The requirement that the partial order extracted from the set of type definitions has to be a lattice is

a much too strong restriction on the kind・of definitions that could be written in the formalism. But in

the previous example there are two maximal elements for the meet of ON and 3CUBES: ONI and ON2.

The solution is to embed the partial ordering P extracted form the KB definitions in the (restricted)

power set 2<P) (the set of all non-empty fmite subsets of pairwise not comparable elements of P).

The meet operation can be def med using the inclusion ordering in 2cP) : the meet of two elements X

and Y of 2(P) is then defined as the maximal restriction of the intersection of the sets of subtype

symbols for each pair of symbols x and y of X and Y.

8

multiple inheritance in retif

If X and Y are elements of 2cP), the meet of X and Y is defmed as

XAY=「UxeX,yeY(Ix r. ly)l. (Note that this construction does not preserve LUBs)

The maximal restriction「Eltakes the set of maximal elements of P: when 2 elements are

comparable, the smaller is removed: 「El={x e EI y S x⇒ x = y}. The set of subtypes symbols of

xis called山eprincipal ideal of E generated by x : Ix = { y E E I y S x}.

＾

Figure 3: The embedding in the set of all principal ideals preserve the GLBs.

Example: ON A 3CUBES

principal ideals→ {ON, ONl, ON2} rt { 3CUBES, ONl, ON2}

intersection of principal ideals→ {0Nl,ON2}

maximal restriction→ {0Nl,ON2}

~

Implementation note

The efficiency of the meet operation is crucial for the overall performance of the interpreter. The

evaluation of the cost of the unification algorithm (which is almost linear with the number of nodes)

does not take into account the cost of the meet operation.

，

multiple inheritance in retif

If p=IPI the number of symbol in the type system P, then the size of X and Y, elements of 2(P) is

bound by p. The cost of computing an ideal is the cost of a traversal of the graph which represents the

partial order, and is linear with the number of nodes p, and there are at most 2p such traversals (one

for each element of X and Y): 2p2. The size of an ideal, element of 2(P) is bounded by p. The cost of

an intersection is then p2 and there are also at most p2 intersections: p4. The cost of each union is also

p2, and there are at most p2 unions: p4. The maximal restriction compares each element of the set with

each other: p2 comparison. Each comparison requires a traversal of the graph and costs p. The cost of

the maximal restriction is then in p3. Finally, we get 0(2p3 + p伍 p4+p3) =O(pりforthe cost of the

meet operation.

During the construction of the partial order out of the KB defi血tions,all ideals are pre-computed.

~However, contrary to our previous implementation, the meet between two symbol is not precomputed

because most often the meet is now performed between conjunctions of symbols, and we don't

precompute all possible conjunctions (nor all possible disjunctions, otherwise the size of the graph

representing the order would be in 0(2P)). As a consequence, we need to compute each time

intersections and maximal restrictions between conjunctions of symbols. But the worst case is of

course still the same: in O(pり．

~

C • Typed unification

The unification on ordinary feature structures is defined as a meet operation on the set of feature

structures partially ordered by the subsumption ordering (see for example [Shieber 86]). This is

extended straightforwardly to typed feature structures using the meet operation on the lattice of types to

compute the new type associated with the result of the unification of two feature structures.

middle bottom

さ
above below

Figure 4: STACK[m血 le:COLOR, bottom: BLUE, above: GREEN, below: NON-GREEN]

10

muiliple inheritance in re、if

middle above bottom below

Figure 5: 3CUBES[middle:#z, bottom: 樹，above:#z,below:#t]

The unification of the・two feature structures above (Fig. 4 and 5) can be done essentially like

ordinary-unification. The only extension we need is to compute the meet of two type symbols which

are associated with the feature structures. When two paths are merged, the new type associated to the

subterm under these paths is the meet of the types of the two subterms which are unified (Fig. 6).

merged paths associated types new type symbol

£ 3CUBES & STACK 3CUBES

middle GREEN & COLOR GREEN
above

bottom BLUE & NON-GREEN BLUE
below

Figure 6: the meet/or merged paths.

The merging of common paths and the computation of the meet (that is typed unification) yields the

typed feature structure of Figure 7.

11

，

＾

multiple i油eritancein retif

middle above bottom below

Figure 7: 3CUBES[middle: #z = GREEN, bottom:#ヽ=BLUE, above: #z, below: #t J

＾

~

12

皿、ltipleinheritance in retif

2. Interpretation

2 .1 The EV AL function

A knowledge base KB consists of a set of definitions ti=KB(ti), where ti is a type symbol and

KB(ti) is a term (a feature structure) [11: t1, …, 10: t0], a disjunction of type symbols t1 I ... tn, or a

conjunction of type symbols t1 &…tn.

We can defme a function EV AL : term→ term

(1) EV AL(tt I…tn) =vi= 1…n EVAL(ti)

(2) EV AL(t1 &… tn) = Ai= 1…n EVAL(ti)

(3) EVAL([11: t1, ... , 10: t0]) = [11: EVAL(t1), ... , In: EVAL(tn)]

Equations (1), (2) and (3) define an operational semantics which reflects the type-as-set semantics

of terms in the sense that they compute unions and intersections of sets.

2. 2 The rewriting algorithm

込： A Symbol Rewriting System (SRS) on :I: (signature of type symbols) is a system S of n

equations si = Ei, i = 1, …, n where Si e 2, and Ei is a term: S = { Si = Ei } .

The set of symbols of I, which have a definition is E = { s1, …, s0 } , the set of S-expandable

symbols. The set of symbols of I, which do not have a definition is N = L -E, the set of

non-S-expandable symbols. In the three cubes example, E = { COLOR, NON-GREEN, 3CUBES, ON, ONl,

ON2, S1, S2, S3 } and N = { GREEN, BLUE, PURPLE, OTHERS, STACK}.

込： A one step rewriting relation t 1→ t2 is defined iff there exists a symbol si e E at some

address (path) u in t1 such that Ei is≪substituted≫at address u: Ei is unified with the subtenn

at address u, and the result of unification is inserted at that address. The new term is called t2:

t2 = t1[Ej/u] = t1[u: T] A u.Ei

13

，

＾

multiple inheritance in relif

SI= S[EI].

t2

／

／

／

／

，
Figure 8: one step rewriting relation.

2.3 A detailed example

Let's take the three cubes KB:

~

COLOR= GREEN I NON-GREEN. (= E1)

NON-GREEN= BLUE I PURPLE I OTHERS. (= E2)

3CUBES = STACK & S3. (= E3)

S3 = [top:GREEN, middle:COLOR, bottom:BLUE]. (= E4)

ON= ONl I ON2. (= E5)

ONl = 3CUBES & Sl. (= E6)

ON2 = 3CUBES & S2 . (= E7)

Sl = [top:#x, middle:#y, above:ix, below:#y]. (= Es)

S2 = [middle:#z, bottom:#t, above:#z, below:#t]. (= E9)

We shall show the behavior of the interpreter on the evaluation of the term

ON[above:GREEN, below:NON-GREEN] : is there a green cube on top of a non-green cube? This term is

expandable with symbol ON at address e (at each step, expandable symbols are written in bold face).

The set of S-expandable symbols is the set of all left hand side symbols.

t1 = ON[above:GREEN, below:NON-GREEN]

14

multiple inheritance in retif

t2 =口 [E4 /£]

(ONl I ON2) &

[above:GREEN, below:NON-GREEN]

The rewriting of t1 leads to the term t2 which contains a disjunction of type symbols at the root.

This disjunction has to be further expanded because ONI and ON2 belong to the set of S-expandable

symbols. The next step expands the disjunction ONI I ON2 and creates two new terms t2'and t2" with

type symbols ONI and ON2 respectively. These terms are further expanded in two different branches of

computation.

Branch 1 of the disjunction: expand ONI.

tz'= ONl [above・: GREEN, below: NON-GREEN]

t3 = t2'[E6 /£] = 3CUBES & S1 &

[above: GREEN , below: NON-GREEN]

Now there are 2 expandable symbols at address£: 3CUBES and s I. These symbols can be
rewritten in any order: 3CUBES for example.

t4 = t3[E4 / £] = STACK & S3 & Sl &

[above: GREEN , below: NON-GREEN]

STACK doesn't have definition and is not expandable, and S3 and St are expandable. Their

defmition is a feature structure which will be unified with the term at address E.

t5 = t4[E5 /£]=STACK & Sl &

[top: GREEN,

middle: COLOR,

bottom: BLUE,

above: GREEN,

below: NON-GREEN]

tG = t5[E9 / E] = STACK

[top: #x=GREEN,

middle: #y=NON-GREEN,

bottom: BLUE,

above: ix,

below: #y]

15

，

＾

＾

~

multiple inheritance in relif

First solution:

切 =tG匡2/middle] = STACK

[top: #x=GREEN,

middle: #y= BLUE I PURPLE I OTHERS,

bottom: BLUE,

above: #x,

below:・iy]

Branch 2 of the disjunction: expand ON2.

t2" = ON2[above: GREEN, below: NON-GREEN

t7 = t2"[E7 /£] = 3CUBES & S2 &

[above: GREEN, below: NON-GREEN]

tg = t7[E7 /£]=STACK & S3 & S2 &

[above: GREEN, below: NON-GREEN]

tg = t9[E4 /£]=STACK & S2 &

Second solution:

[top: GREEN,

middle: COLOR,

bottom: BLUE,

above: GREEN,

below: NON-GREEN]

t10 = tg[Eg / E] = STACK

[top: GREEN,

middle: #z = GREEN,

bottom: #t = BLUE,

above: #z,

below: #t]

16

mu/Jiple inheritance in retif

3. The user's interface

We give here a list of commands available for the users. An EMACS mode has been defined for

LISP machines. It will automatically be invoked using the pathname extension'tfs'.

(TFS-help)

Gives a general help. More documentation is available for particular functions using TFS-help with

the name of the topic.

(TFS-reset)

Resets the whole TFS universe.

(TFS-read &optional stream)

Reads statements in the stream until EOF.

Default stream: *standard-input*.

(TFS-read-from-string string)

Reads statements from a string.

(TFS-load file-name)

Reads statements from ftle-name.

(TFS-write object &key

(stream

(mode

(minor-mode

(macro

(comment

(line-length

standard-output)

tfs-printer-mode)

tfs-printer-minor-mode)

tf s-printer-macro)

tfs-printer-print-comment)

tfs-printer-line-length)

(init-indent *tfs-printer-init-indent*)

(rel-indent *tf s-printer-relative-indentation*)

s-pnnter-newhne-p*) (newline-p *tf・

(init-tag-counter *tfs-printer-init-tag-counter*)

(all-tag-p *tfs-printer-all-tag-p*)

(level

(length

(label-order

*tfs-printer-level *)

tfs-printer-length)

tfs-printer-label-order)

(suppressed-labels *tfs-printer-suppressed-labels*)))

17

，

~

~

~

mulliple inheritance in retif

(TFS-write-to-string object &key

(mode *tfs-printer-mode*)

(minor-mode *tfs-printer-minor-mocle*)

(macro *tfs-printer-macro*)

(comment *tfs-printer-pnnt-comment*)

(line-length *tfs-printer-line-length*)

(init-indent

(rel-indent

(newline-p

(init-tag-counter

(all-tag-p

(level

(length

(label-order

tfs-printer-init-indent)

tfs-printer-relative-indentation)

tfs-printer-newline-p)

tfs-printer-init-tag-counter)

tfs-printer-all—tag-p)

tfs-printer-level)

tfs-printer-length)

tfs-printer-label-order)

(suppressed-labels *tf s-printer-suppressed-labels*))

(TFS-write-to-file object pathname &key

(mode *tfs-printer-mode*)

(minor-mode

(macro

(comment

(line-length

(init-indent

(rel-indent

tfs-printer-minor-mode)

tfs-printer-macro)

tf . s-pnnter-pnnt-comment)

tfs-printer-line-length)

tfs-printer-init-indent)

tfs-printer-relative-indentation)

(newline-p *tfs-printer-newline-p*)

(init-tag-counter *tfs-printer-init-tag-counter*)

(all-tag-p *tfs-printer-all-tag-p*)

(level *tfs-printer-level*)

(length

(label-order

tfs-printer-length)

tfs-printer-label-order)•

(suppressed-labels *tfs-printer-suppressed-labels*))

(tfs-printer-options)

Menu for choosing the printer options.

(tfs-reset-printer-options)

Resets the printer options to the initial settings.

18

multiple inheritance in retif

(TFS-syntax &optional stream)

Specifications of the TFS syntax
＊＊＊＊＊＊＊＊＊＊＊＊＊＊＊＊＊＊＊＊＊＊＊＊＊＊

COMMENTS: There are 2 kinds of comments.

1. IN-LINE comments begin with the';'character and end with the end of line.

These comments can appear anywhere where a white space is expected in the

syntax. These comments will be skipped during reading.

2. SYNTACTIC comments are enclosed with the'%'character.

These comments can appear as specified in the BNF syntax specification.

They will be attached to the structure produced by the reader.

IDENTll-叱 RS:Identifiers are case-sensitive.

BNF: The following extensions are used:

[x] denotes the optional element x.

[x]* denotes the free iteration of element x.

[x]+ denotes the iteration of element x.

If there might be a confusion with the symbols of the BNF, symbols of

the described syntax are enclosed in quotes: I denotes the alternation in the

BNF f onnalism and'I'denotes the disjunction symbol of the TFS syntax.

<tfs-entity> ::= <knowledge-base> I <with-kb>

I <label-order> I <suppressed-labels>

I <tf s-declaration>

<knowledge-base>::= :KB <idf> [<comments>]

<with-kb> ::= :WITH-KB <idf> [<comments>]

<label-order>::= :LABEL-ORDER [<tfs-selector> [, <tfs-selector>]*].

<suppressed-labels>::= SUPPRESSED-LABELS

[<tfs-selector> [, <tfs-selector>]*] .

<tfs-declaration> ::= <tfs-type-defintion> I <tfs-variable-declaration>

<tfs-type-defmtion> ::= <idf> = <tfs-logical-expression>.

<tfs-variable-declaration> ::= <idf> := <tfs-logical-expression>.

<tfs-logical-expression> ::= [<comments>] <tfs-logical-term> ['I'<tfs-logical-expression>]

<tfs-logical-term> ::= [<comments>] <tfs-logical-complement> [& <tfs-logical-term>]

19

＾

，

mulliple inheritance in relif

<tfs-logical-complement> ::= [<comments>] [[<tfs-logical-factor>] ¥] <tfs-logical-factor>

<tfs-logical-factor> ::= [<comments>] (<tfs-logical-expression>)

I [<comments>] <tagged-structure>

<tagged-structure> ::= <tag> [=<typed-structure>]

I <typed-structure>

<typed-structure> ::= <idf> [<structure>]

I <structure>

I <list-s血 cture>

<s血 cture>::='['<selector-structure> [,<selector-structure>]*']'

<selector-structure>::= <selector>: <tfs-logical-expression>

<selector> ::= <idf>

~<list-s血cture> ::=く [<tagged-s血 cture>]*>

l く [<tagged-structure>]+. <tagged-s血 cture>]

<comments>::= [% <char>*%]*

<key-word>::= :<idf>

<tag> : := #<idf>

<idf> : := <idf—char> [<idf>]

I 11 <char>* 11 (Note: the II is doubled in strings)

<idf-char> ::= <letter> I <digit> I_ I -I+ I* (Note: kanjis are read as <idf-char>)

(tfs-syntax-options)

Menu for choosing the TFS syntax.

(Note: this feature exists only for compatibility with other systems.)

r-11¥ (tf s-reset-syntax-ophons)

Resets the TFS syntax to the initial settings.

(Note: this feature exists only for compatibility with other systems.)

. (tfs-trace)

Menu for choosing the 1FS trace.

(tf s-reset-trace)

Resets the TFS trace.

20

multiple inheritance in retif

(eval-type type-name &optional interactive? &rest kb-names)

Evaluate the:type.<type':'name?-in the list of KBs <kb-names>.

If <kb-names> is not provided, the・type is evaluated in the current KB

otherwise the type is evaluated in the frrst KB, then

the result is evaluated in the second one, and so on.

The final result is stored in global variable *TFS-result* as a LIST

of internal terms.

If :interactive? is NIL, the evaluation proceeds without interaction.

If :interactive? is T, the interpreter asks what to do for each solution.

If :interactive? is an integer N, the interpreter asks what to do after

the Nth solution.

Default for :interactive?: *ask-for-other-solutions*.

Possible answers for interaction:

NI <carriage-return>= Next solution and continue

p = Proceed without interaction

E I <any other char> == Exit

(get-kbs)

Returns all KBs. •

(get-kb &optional kb-name)

Returns the KB <kb-name>.

(create-kb kb-name)

Creates a new (empty) KB <kb-name>.

(in-kb kb-name)

Set the current KB as <kb-name> (contained in the variable *kb*).

(delete-kb kb-name)

Deletes the KB <kb-name>.

(rename-kb old-name new-name)

Renames a KB <old-name> to <new-name>.

(print-kb-names &optional stream)

Print all KB names.

Default stream: *standard-output*.

21

＾

＾

皿 IJipleinheritance in retif

(print-kb &optional kb-name stream)

P血 tsall definitions of KB <kb-name>.

Default KB: *kb* (the current KB).

Default stream: *standard-output*.

(print-label-order &optional kb-name stream)

Prints the partial order of labels used for printing.

Default KB: *kb* (the current KB).

Default stream: *standard-output*.

(print-suppressed-labels &optional , kb-name stream)

~Prints the list of labels which are suppressed during printing.

Default KB: *kb* (the current KB).

Default stream: *standard-output*.

(get-internal-type type-name &optional kb-name)

Returns the internal (compiled) form of the definition of

<type-name> in KB <kb-name>.

Default KB: *kb* (the current KB).

(get-type type-name &optional kb-name)

Returns the right hand side of the defi血tionof <type-name> in KB <kb-name>.

Default KB: *kb* (the current KB).

~(get-types &optional kb-name)

Returns all right hand side types in KB <kb-name>.

Default KB: *kb* (the current KB).

(delete-type type-name &optional kb-name)

Remove the definition of type <type-name> in KB <kb-name>.

Default KB: *kb* (the current KB).

(print-type-names &optional kb-name stream)

Prints the list of left hand side type names defined in KB <kb-name>.

Default KB: *kb* (the current KB).

Default stream: *standard-output*.

22

mulliple inheritance in retif

(print-type type-name &optional kb-name stream)

Prints the definition of type <type-name>.

Default KB: *kb* (the current KB).

Default stream: *standard-output*.

(print-internal-type type-name &optional kb-name stream)

Prints the definition of type <type-name>.

Default KB: *kb* (the current KB).

Default stream: *standard-output*.

(partial-order &key kb-name type-names stream orientation)

Prints the partial order of KB <kb-name>・starting with the list of

type names <type-names>.

Default KB: *kb* (the current KB).

Default stream: *standard-output*.

Default type-names: TOP

Default orientation: :horizontal

(partial-order &key kb-name type-names stream. orientation)

Prints the partial order of KB <kb-name> starting with the list of

type names <type-names>.

Default KB: *kb* (the current KB).

Default stream: *st皿dard-output*.

Default type-names: NIL (means all lbs symbols).

Default orientation: :horizontal

23

，

＾

multiple inheritance in retif

4. An・HPSG Grammar'for English

The following grammar used in this system for generating English is based on a version of

Head-driven Phrase Structure Grammar (HPSG) as described in [Pollard & Sag 87]. This formalism

is perfectly suited to the generation task, because it elitninates category-specific phrase-structure rules

in favor of very partially specified combinational schemata that constrain the relation of constituency

among the linguistic objects. Further specifications of a token linguistic object arise from the lexical

entries which contain phonological, syntactic, and semantic information. Together with

language-specific and language-universal principles of well-fonnedness, the final result is obtained by

unifying the infom皿ionfrom all these various sources. Yet the grammar itself is purely declarative in

the sense that it characterizes what" constraints are brought to bear during generation independent of the

order the constraints are applied. In addition, the grammar itself is unbiased as to the kind of

~processing task at hand: it is reversible in the sense that it is neutral with respect to analysis versus

generation. Viewing the grammar as nothing else but a set of constraints enh皿cesthe possibility of the

grammar functioning as a filter for the planning phase of the generation. More specifically, for the

translation task at hand, the grammar will filter out ungrammatical choices from the possibilities of

expressing the content of an utterance by various surface fom砥 Onlythose which are compatible with

the grammar will fmally survive and will be generated. The actual production of the surface string is

done. by unifying the input description with the combinational rules of the grammar.

~

In the fallowing part we・would like to present a simplified version of the grammar and the

morphological rules. The kind of rules which are used can easily be generalized so that they separate

the immediate dominance relationships (ID) and the linear precedence constraints (LP) as described in

[Pollard & Sag 87]. The only difference is in the way of combining the phonological values of the

daughters in order to get the phonological value of the whole phrase. The. simple functional application

of append will be replaced by a function order-constitutents which obeys the independent stated

language-specific principles of constituent ordering.

For expository purposes the treatment of lexical entries, and especially the morphological

description of the individual part of speeches has been_ simplified. It is beyond the focus of this report

to describe in detail the_ lexical hierarchy of types as suggested in.the HPSG-framework. By using

typed feature structures as the basic representational device, such an incorporation of the lexical

hierarchy could be reformulated straightforwardly in the type system by assigning an individual type

definition for・each element of the lexical type hierarchy.

The minimal approach which has been adopted in order to factor out information about words

which is not idiosyncratic to a specific lexical item led to a schema like (1). It simply states that a

MエNORlexical category will be rewritten as a LEXICAL-sエGN,neglecting the fact that every noun,

adjective, or verb belongs to an inflectional paradigm which actually produces the phonological surface

24

mlllliple inheritance in relif

description according to the value of certain kinds of features (like number, gender, tense, etc.).

Instead, it just creates an initial list of the phonological string which is identical to the lexem itself as

m江kedby the identical tag in the feature description of minor).

(1)

MINOR=% Lexical head: relates lexem with the phonological string%

LEXICAL-SIGN

[phon: <#string>,

syn: ・[head: [lexem: #string]]] .

There is a fu~damental division of all linguistic objects or signs into either a LEXICAL-s IGN

(respectively, MINOR lexical category) or a PHRASAL-SIGN (respectively, MAJOR category). Thus, every

sign or linguistic object which is not an instance of a MINOR lexical category belongs to one of the~

MAJOR categories which can be described by a specific grammar rule.

(2)

SIGN= PHRASAL-SIGN I LEXICAL-SIGN.

So far we need only two grammar rules which are stated as a disjunction of type symbols in (2),

namely CH_CO_FP and HC* _CO_FP, together with a conjunction of general feature principles like

the Head Feature Principle (HFP) and the Subcategorization Principle which they inherit from.

(3)

MAJOR=告 GrannnarRulesき

PHRASAL-SIGN & HEAD FP & SUBCAT FP &

（令 SubjectPredicate Rule告

CH CO FP I % Head Complements Rule令

HC* CO FP) .

MAJOR categories will be rewritten to PHRASAL-SIGN. PHRASAL-SIGNS differ from LEXICAL-SIGNS

in having a daughter attribute that gives information about the (lexical or phrasal) signs which are the

immediate constituents of the sign in question. This attribute encodes the kind of information about

constituency .that is contained in conventional constituent-structure tree diagrams. In addition, the

various daughters are distinguished according to what kinds of information they contribute to the sign

as a whole. Thus daughters are classified as heads and complements respectively as in standard X-bar

theory.

25

＾

~

~

multiple inheritance in relif

The'Complement Head Constituent Order Feature Principle', given in (4) below, corresponds to

the rules usually expressed in the form S→ NPVP,NP→ Det Noun. This rule simply states that one
of the possibilities for a PHRASAL-SIGN is~o be a saturated (i.e. [subcat: <>]) sign which has as

constituents a single complement daughter (i.e.[comp-dtrs: <>]) and a head daughter, which in turn is

constrained to be of type PHRASAL-SIGN rather than LEXICAL-SIGN.

(4)

CH_CO_FP = き ComplementHead Constituent Order Feature Principle告

[phon: iphon,

dtrs: [head-dtr: PHRASAL-SIGN

[phon: ihead-phon],

comp-dtrs: <[phon: icomp-phon]>],

patch_phon: APPEND

[front: #comp-phon,

back: #head-phon,

whole: #phon]] .

The'Head Complements Constituent Order Feature Principle', as given in (5) below, describes

how an unsaturated phrasal sign can be constructed by combining any number of complements

(including no complement at all) with the head-daugther. In order to do so, one additional type MAP is

defined as a disjunction that describes the recursive'way of mapping over the individual complements

and combining the corresponding phonological values. The result of this recursion is the concatenation

of the phonological values of all the complements. The phonological value of the whole phrase can

than be computed by concatenating the head phonology value with the complement phonology value.

(5)

HC* CO FP =%Head Complements Constituent Order Feature Principle%

[phon:

dtrs:

#phon,

MAP

[head-dtr: LEXICAL-SIGN

[phon: #head-phon],

compyhon: #comp-phon],

patchyhon: APPEND

[front: #head-phon,

back: #comp-phon,

whole: #phon]] .

26

mulliple i油eritancein retif

The recursion bottoms out after there are no more complements left (i.e. [comp-dtrs <>]). Thus the

complement phonology value is empty as well.

The second disjunct of MAP combines one complement at a time by consuming the fi江stelement of

the complement-daughters'list and applying the same rule recursively to the rest of the

complement-daughters'list. The new phonological value is than derived by concatenating the

phonological value of the first complement with the phonological value of all the remaining

complements whose value itself is obtained as the result of the recursive application of this rule.

(6)

MAP=% Empty comp-dtrs list%

TREE

[comp-dtrs: <>,

comp__:phon: <>]

告 Nonemptycomp-dtrs list%

TREE

[comp-dtrs: く[phon: ifirst-comp-phon] . #rest-comp>,

patch_comp」》hon:APPEND

comp_J>hon:

map_J>atch:

[front: ifirst-comp-phon,

back: #rest-comp-phon,

whole: #comp-phon],

#comp-phon,

MAP

[comp-dtrs: #rest-comp,

compyhon: irest-comp-phon]] .

The'Head Feature Principle'ensures that the head features of the head-daughter are always shared

with their phrasal projections.

(7)

HEAD FP =告 HeadFeature Principle%

[syn: [head: #head],

dtrs: [head-dtr: [syn: [head: #head]]]] .

27

，

＾

＾

＾

mulliple i叫eritancein relif

The'Subcat Feature Principle'states that in any phrasal sign the subcat list of the head-daughter is

the concatenation of the list of complement daughters and the subcat list of the mother.

(8)

SUijCAT_FP =. %・Subcat E'eature Principle %

[syn:

dtrs:

[subcat: irest-subcat],

[head-dtr: [syn: [subcat: isubcat]],

comp-dtrs: #comps],

patch_subcatfp: APPEND

[front: #comps,

back: #rest-subcat,

whole: #subcat]] .

28

皿 ltゆlei油eritancein retif

Conclusion

We have defined a type as set semantics for multiple inheritance and gave one possible

implementation of it by combining a partial ordering of type symbols and the associated meet

operation. Furthermore, we have shown that this formalism can be used in a very natural way for

describing complex linguistics objects as a combination of simpler objects.

29

＾

＾

mulliple inheritance in retif

References

Hassan AIT-KACI, 1984, A Lattice Theoretic Approach to Computation Based on a Calculus of

Partially Order~d Type Structures, Ph.D. Thesis, University of Pennsylvania.

Hassan AIT-KACI, 1986, An Algebraic Semantics Approach to the Effective Resolution of Type

Equations, Theoretical Computer Science 45, pp 293-351.

Hassan AIT-KACI and Roger NASR, 1986, LOGIN: a Logic Programming Language with

Built-in Inheritance, J. of Logic Programming, 3, pp 185-215.

Martin EMELE, 1988, A Typed Feature Structure Unification-based Approach to Generation,

~Proceedings of the WGNLC of the IECE, Oiso University, Japan.

＾

Martin EMELE and Remi ZAJAC, 1989, RETIF: A Rewriting System for Typed Feature

Structures. ATR Technical Report TR-1-0071.

Andreas EISELE and Jochen DORRE, 1988, Unification of Disjunctive Feature Descriptions,

Proc. of the 26h Annual Meeting of the ACL, 7-10 June, Buffalo, pp 286-294.

Pierre ISABELLE and Eliot MACKLOVITCH, 1986, Transfer and MT Modularity, Proceedings

of COUNG-86, Bonn.

Ron KAPLAN and J. BRESNAN, 1982, Lexical Functional Grammar, a Formal System for

Grammatical Representation. In J. Bresnan (ed.), The Mental Representation of Grammatical

Relations, The M汀 Press,1982, pp 173-381.

Robert T. KASPER and William C. ROUNDS, 1986, A Logical Semantics for Feature

Structures, Proceedings of the 24th Annual Meeting of the ACL, 10-13 June, Columbia University,

New-York, pp 257-266.

Robert T. KASPER, 1987, A Unification Method for Disjunctive Feature Descriptions, Proceedings

of the 25th Annual Meeting of the ACL, 6-9 June, Stanford University, pp 235-242.

Robert T. KASPER, 1988, Conditional Descriptions in Functional Unification Grammar,

Proceedings of the 26hAnnual Meeting of the ACL, 7-10 June, Buffalo, pp 233-240.

Martin KAY, 1984, Functional Unification Grammar: a Formalism for Machine Translation,

Proceedings of COUNG-84, Stanford.

30

multiple inheritance in retif

Kiyoshi KOGURE, Hitoshi IIDA, Kei YOSHIMOTO, Hiroyuki MAEDA, Masako KUME,

and Susumo KATO, 1988, A Method of Analyzing Japanese Speech Act Types, 2nd International

Conference on Theoretical and Methodological Issues in Machine Translation of Natural Languages,

June 12-14, Pittsburgh.

lkuo KUDO and Hirosato NOMURA, 1986, Lexical-Functional Transfer: A Transfer Framework

in a Machine Translation System based on LFG, Proceedings of COUNG-86, Bonn, 112-114.

Masako KUME, Gayle K. SATO, and Kei YOSHIMOTO, 1989, A Descriptive Framework for

Translating Speaker's Meaning -Towards a Dialogue Translation System between Japanese and

English, 4th Conference of ACL-Europe, Manchester.

Kuniaki MUKAI, 1988, Partially Specified Terms in Logic Programming for Linguistic Analysis,

Proc. of the International Conference on Fifth Generation Computer Systems, Nov.28-Dec.2, Tokyo,

pp 479-488.

Carl POLLARD and Ivan A. SAG, 1987, Information-based Syntax and Semantics, CSLI,

Lecture Notes Number 13.

Stuart M. SHIEBER, 1986, An Introduction to Unification-based Approaches to Grammar, CSLI,

Lecture Notes Number 4.

Gert SMOLKA, 1988, A Feature Logic with Subsorts, LILOG-REPORT 33, IBM Deutschland

GmbH, Stuttgart.

Kei YOSHIMOTO, Kiyoshi KOGURE, 1988, Japanese Sentence Analysis by means of Phrase

Structure Grammar, ATR Technical Report TR-1-0049.

David A. WROBLEWSKI, 1987, Nondestructive Graph Unification, Proc. of the 6th National

Conference on AI, AAAI-87, July 13-17, Seattle, pp 582-587.

Remi ZAJAC, 1989, A Transfer Model Using a TFS Rewriting System with Inheritance, 27th

Annual Meeting of the ACL, 26-29 June, Vancouver.

31

＾

＾

＾

~

皿 llipleinheritance in relif

Appendix 1 : a DCG-Iike grammar

:KB・G3

% A KBL implementation of the second sample grammar of [Shieber 86].

告

Uses a DCG like mechanism do establish the correspondance between
the feature description and strings. As the mechanism is most
simple, no left recursive rules are allowed.
The string is specified in the'phon'feature

:LABEL-ORDER phon, lex, cat, head, subcat, first, rest,
form, agreement, person, number, gender, np, vp, v, comp,
whole, front, back, patch, patchO, first, rest.

:SUPPRESSED-LABELS patch, patchO.

LIST=<> I CONS.

APPEND= [front:<>, back:#a=LIST, whole:#a] I
[front:<#x. #y>,
back:#z=LIST,
whole: <#x. #u>,
patch: APPEND[front:#y, back:#z, whole:#u]] .

X =告 Listof non-terminal symbols of the grammar. %
S I VP I NP IV.

s =告 S-> NP VP%
[phon: #phon,
head: #head=[form: finite],
subcat: <>,
np: #subj=NP[phon: #np-phon=CONS],
vp: VP [phon: #vp-phon=CONS,

head: #head,
subcat: <#subj>],

patch: APPEND[front:#np-phon, back:#vp-phon, whole:#phon]].

VP = VPO I VPl.

VPO =%trivial verb phrase VP-> V %
[phon: #phon=CONS,
head: #head,
subcat: #subcat=<T>,
vp: V [phon: #phon,

head: #head,
subcat: #subcat]].

32

maltiple inheritance in relif

VPl = % 1 complement VP-> V NP • %
% Not VP-> VP NP 告

% because in DCG style grammars left-recursive rules are not allowed.%
[phon: iphon,
head: #head,
subcat: isubcat-rest,
vp: V [_phon: #vp-phon=CONS,

head: #head,
subcat: #subcat=<春obj=NP[phon: inp-phon=CONS] . #subcat-rest>],

np: #obj,
patchO:APPEND[front:<iobj>, back:#subcat-rest, whole:#subcat],
patch:APPEND[front:#vp-phon, back:#np-phon, whole:iphon]].

, , The LEXICON

;; -----------

Verb= verb[cat: v].
Noun= noun[cat: np].

LEX= NP IV.

NP= UTHER I CORNWALL I KNIGHTS •
V = SLEEP I SLEEPS I STORM I STORMS I STORMED.

;; The nouns

II ---------

UTHER = Noun
[phon: <Uther>,
head: [agreement: [gender: masculine,

person: third,
number: singular]]].

CORNWALL= Noun
[phon: <Cornwall>,
head: [agreement: [gender: masculine,

person: third,
number: singular]]].

KNIGHTS= Noun
[phon: <knights>,
head: [agreement: [gender: masculine,

person: third,
number: plural]]].

33

，

＾

mulliple inheritance in relif

, , The verbs

., .,

SLEEPS= Verb
[phon: <sleeps>,
head: [form: finite],
subcat: <[cat: np,

head: [agreement: [person: third,
number:singular]]]>].

SLEEP

＾

= Verb
[phon: <sleep>,
head: [form: finite],
subcat: <[cat: np,

head: [agreement: [number :plural]]]>]

Verb
[phon: <sleep>,
head: [form: nonfinite],
subcat: <>] .

STORMS= Verb
[phon:
head:
subcat:

<storms>,
[form: finite],
く[cat: np]
[cat: np,
head: [agreement: [number: singular,

person: third]]]>].

~

STORMED= Verb
[phon: <stormed>,
head: [form: finite],
subcat: <[cat: np]

[cat: np]>].

STORM = Verb
[phon: <storm>,
head: [form: finite],
subcat: <[cat: np]

[cat: np,
head: [agreement: [number:plural]]] >]

Verb
[phon: <storm>,
head: [form: nonfinite],
subcat: <[cat: np]>] .

;; EX細 LES

., .,

Al :=%Analysis 令

S[phon: <Uther sleeps>].

Gl :=告 Generation令

S[np:UTHER, vp: [vp:SLEEPS]].

34

multiple inheritance in retif

A2 :=%Analysis %
S[phon: <knights sleep>].

G2 :=%Generation %
S[np:KNIGHTS, vp:[vp:SLEEP]].

A3 :=%non finite verb form%
S[phon:< Uther sleep>].

G3 := %'sleep'doesn't have object%
S[phon: <Uther sleeps Cornwall>].

A4 :=告 Analysis 告

S[phon: <Uther storms Cornwall>].

G4 :=%Generation告

S[np:UTHER, vp: [vp:STORMS, np: CORNWALL]].

AS :=告 Analysis%
S[phon: <Uther stormed Cornwall>].

GS :=告 Generation告

S[np:UTHER, vp: [vp:STORMED, np: CORNWALL]].

A6 :=%non finite verb form%
S[phon: <Uther storm Cornwall>].

A7 := %'storm'should have an object%
S[phon: <Uther storms>].

AS :=%Analysis 告

S[phon: <knights storm Cornwall>].

GS :=%Generation %
S[np:KNエGHTS, vp:[vp:STORM, np: CORNWALL]].

A9 :=告 Analysis%
S[phon: <knights stormed Cornwall>].

G9 :=告 Generation告

S[np:KNIGHTS, vp: [vp:STORMED, np: CORNWALL]].

AlO :=%Number agreement 令

S[phon: <knights storms Cornwall>].

All := % Subcategorisation令

S[phon: <Uther stormed knights storm Cornwall>].

35

＾

＾

叩 ,lliplei油eru皿 ceinretif

Appendix 2 : an HPSG grammar for English

:KB E-GEN-LEX

:LABEL-ORDER phon, relation, agent, recipient, object, source, manner,

syn, head, subcat, dtrs, head-dtr, comp-dtrs, subcat,

front, back, whole, first, rest,

patch, patchyhon, patch_compyhon, patch_subcatfp, patch_map.

DETP =%Determiner phrase%

E-A IE-THE.

;; Determiner:

E-A = MINOR[syn: CATEGORY[head: [lexem: "a"]]].

E-THE = MINOR[syn: CATEGORY[head: [lexem: "the"]]].

~;; Pronouns:

E-SPEAKER = MINOR[syn: CATEGORY[head: [lexem: "I"],

subcat: <>]].

E-HEARER = MINOR[syn: CATEGORY[head: [lexem: "you"],

subcat: <>]].

; ; Nouns:

E-REGISTRATエON-FORM=MINOR[syn: CATEGORY[head: [lexem: "registration-form"],

subcat: <LEXICAL-SIGN>]].

; ; Verbs:

E-SLEEP = MINOR[syn: CATEGORY[head: [lexem: "sleep"],

subcat: <PHRASAL-SIGN>]].

E-LOVE = MINOR[syn: CATEGORY[head: [lexem: "love"],

~subcat: <PHRASAL-SIGN PHRASAL-SIGN>]].

E-SEND = MINOR[syn: CATEGORY[head: [lexem: "send"],

subcat: <PHRASAL-SIGN PHRASAL-SIGN PHRASAL-SIGN>]].

E-CAN = MINOR[syn: CATEGORY[head: [lexem: "could"],

subcat: <PHRASAL-SIGN PHRASAL-SIGN>]].

;; Pronoun instances:

E-SPEAKER-1 := PRONOUN[relation: E-SPEAKER].

E-HEARER-1 := PRONOUN[relation: E-HEARER].

; ; NP instances:

E-REGISTRATION-FORM-1 := NP[relation: E-REGISTRATION-FORM,

spec: DETP].

36

mu/Jiple inheritance in retif

;; intransitive VP instances:

E-SLEEP-VP-1 := E-VP-INTRANS[relation: E-SLEEP].

E-SLEEP-1・:= E-INTRANS[relation: E-SLEEP,

agent: E-SPEAKER-1].

;; transitive VP instances:

E-LOVE-VP-1 := E-VP-TRANS[relation: E-LOVE,

object: E-HEARER-1].

E-LOVE-1 := E-TRANS[relation: E-LOVE,

agent: E-SPEAKER-1,

object: E-HEARER-1].

;; ditransitive VP instances:

E-SEND-VP-1 := E-VP-~ITRANS[relation: E-SEND,

recipient: E-HEARER-1,

object: E-REGISTRATION-FORM-1].

E-SEND-1 := E-DITRANS[relation: E-SEND,

agent: E-SPEAKER-1,

recipient: E-HEARER-1,

object: E-REGISTRATION-FORM-1).

37

，

＾

＾

＾

multiple inheriヽ血ceinrelif

:KB E-GEN-TEMPL

:LABEL-ORDER phon, relation, agent, recipient, object, source, manner,
syn, head, subcat, dtrs, head-dtr, comp-dtrs, subcat,

front, back, whole, first, rest,
patch, patch_phon, patch_comp_phon, patch_subcatfp, patch_map.

PRONOUN= % Pronouns define fully saturated simple NPs %

MAJOR
[relation: :ftPronoun,
dtrs: TREE[head-dtr: #Pronoun]].

NP= 毛 abstractedNP head will be filled with relation slot, 毛

告 determinerwith spec slot 令

MAJOR

[relation: :ftNoun,

spec: #Det,

dtrs: TREE
[head-dtr: MAJOR[dtrs: TREE[head-dtr:#Noun]],

comp-dtrs: <春Det>]].

E-PROP = E-VP-INTRANS IE-VP-TRANS I E-VP-DITRANS.

E-DITRANS = % partial tree for ditransitive clause 告

MAJOR
[relation: #Pred,

agent : #Subj,

recipient: #Obj2,

object: #Obj,
dtrs: TREE [head-dtr: E-VP-DITRANS [relation: #Pred,

recipient: #Obj2,

object: #Obj] ,
comp-dtrs: <#Subj>]].

E-VP-DITRANS = % partial tree for ditransitive vp with relation, recipient, and

object%

MAJOR
[relation: #Pred,
recipient: #Obj2,
object: #Obj,
dtrs: TREE [head-dtr: #Pred,

comp-dtrs: <春Obj2 #Obj>]].

E-VP-TRANS = も partialtree for transitive vp with relation and object%

MAJOR
[relation:

object:
dtrs:

#Pred,
#Obj,
TREE[head-dtr: #Pred,

comp-dtrs: <#Obj>]].

38

E-TRANS

multiple inheritance in relif

= % partial tree for transitive clause%
MAJOR

fPred,
#Subj,
#Obj,

[relation:
agent:

object:

dtrs: TREE[head-dtr: E-VP-TRANS[relation: #Pred,

object: #Obj] ,
comp-dtrs: <#Subj>]].

E-VP-INTRANS = % partial tree for intransitive vp with relation%
MAJOR

[relation: #Pred,
dtrs: TREE [head-dtr: #Pred,

comp-dtrs: <>]].

E-INTRANS =令 partialtree for intransitive clauses%

MAJOR
[relation:

agent:

dtrs:

iPred,
#Subj,
TREE[head-dtr: E-VP-INTRANS[relation: #Pred],

comp-dtrs: <#Subj>]].

CLAUSE= MAJOR
[relation: #Pred,

agent : #Subj,

recipient: #Obj2,

object: #Obj,

dtrs: TREE
[head-dtr: % VP (Head) %

VP-DITRANS

[relation: tPred,

recipient: tObj2,

object: #Obj] ,
comp-dtrs: <#Subj>]].

E-ASK-MODALITY = MAJOR

[relation: #Pred,
agent: #Subj,

object: #Obj,
dtrs: TREE

[head-dtr: :#Pred,

comp-dtrs: <#Subj #Obj>]].

39

＾

＾

＾

~

mulliple i心 ritancein reli/

:KB E-GEN

:LABEL-ORDER phon, relation, agent, recipient, object, source, manner, syn, head,
subcat, dtrs, head-dtr, comp-dtrs,
front, back, whole, first, rest, patch, patch_phon, patch_comp_phon,
patch_subcatfp, patch_map.

: SUPPRESSED-LABELS patch, patch_phon, patch_comp_phon, patch subcatfp, patch_map.

APPEND=% Append relation%

[front:<>,
back: #x,
whole: #x]

[front: <#first. #rest>,
back: #list,
whole: <#first . #whole>,
patch: APPEND

[front: #rest,
back: #list,
whole: #whole]] .

LIST=% List encodings告

<> I
<T. LIST>.

SIGN= PHRASAL-SIGN I LEXICAL-SIGN.

MINOR=% Lexical head: relates lexem with the phonological string%
LEXICAL-SIGN
[phon: <#string>,
syn: [head: [lexem: #string]]] •

MAJOR=告 GrammarRules%
PHRASAL-SIGN & HEAD FP & SUBCAT FP &

(% Subject Predicate Rule%
CH CO FP I % Head Complements Rule号

HC* CO FP) •

HEAD FP = 告 HeadFeature Principleき

[syn: [head: #head],
dtrs: [head-dtr: [syn: [head: #head]]]] .

40

multiple inheritance in retif

SUBCAT FP = % Subcat Feature Principle%
[syn: [subcat: #rest-subcat],
dtrs: [head-dtr: [syn: [subcat: #subcat]],

comp-dtrs : ・#comps] ,
patch_subcatfp: APPEND

[front: #comps,
back: #rest-subcat,
whole: #subcat]] .

CH CO FP =%Complement Head Constituent Order Feature Principle%
[phon: #phon,
dtrs: [head-dtr: PHRASAL-SIGN

[phon: #head-phon],
comp-dtrs: <[phon: #comp-phon]>],

patch_Jっhon:APPEND
[front: #comp-phon,
back: ihead-phon,
whole: #phon]] .

HC* CO FP =%Head Complements Constituent Order Feature Principle%
[phon: #phon,
dtrs: MAP

[head-dtr: LEXICAL-SIGN
[phon: #head-phon] ,

comp_phon: icomp-phon],
patch_phon: APPEND

[front: #head-phon,
back: #comp-phon,
whole: #phon]] .

MAP=% Empty comp-dtrs list令

TREE
[comp-dtrs: <>,
comp_phon: <>] I

令 Nonemptycomp-dtrs list%
TREE
[comp-dtrs: < [phon: #f irst-comp-phon] .

#rest-comp>,
patch_comp_phon: APPEND

comp_phon:
map_patch:

[front: #first-comp-phon,
back: #rest-comp-phon,
whole: :ftcomp-phon],

#comp-phon,
MAP
[comp-dtrs: #rest-comp,
comp_phon: #rest-comp-phon]] .

41

＾

~

＾

~

mulliple inheritance in retif

Appendix 3: Sample session

>(print-type e-speaker-1 e-gen-lex)

E-SPEAKER-1 = PRONOUN[relation: E-SPEAKER] •

>(eval-type e-speaker-1 t e-gen-lex e-gen-templ e-gen)

<E-SPEAKER-1> E-GEN-LEX(l):

PRONOUN[relation: MINOR[syn: CATEGORY

[head: [lexem: "エ"],
subcat: <>]]]

Next, Proceed, Exit? n

<E-SPEAKER-1> E-GEN-LEX(l) .E-GEN-TEMPL(l):

MAJOR

[relation: il=MINOR[syn: CATEGORY
[head: [lexem: "I"],
subcat: <>]],

dtrs: TREE[head-dtr: ill]

Next, Proceed, Exit? n

<E-SPEAKER-1> E-GEN-LEX(l) .E-GEN-TEMPL(l) .E-GEN(l):

PHRASAL-SIGN

.[phon: <#l="I" . #4=<>>,

relation: #S=LEXICAL-SIGN
[phon: <#1>,

syn : CATEGORY
[head: #3= [lexem: #1],

syn:

dtrs:

subcat: #2=<>]],

[head: #3,

subcat: #2],

TREE

[head-dtr: #5,

comp-dtrs: <>,

compyhon: #4]]

>(print-type e-registration-form-1 e-gen-lex)

E-REGISTRATION-FORM-1 = NP

[relation: E-REGISTRATION-FORM,
・spec: DETP] •

> (eval-type e-registration-form-1 t e-gen-lex e-gen-templ e-gen)

<E-REGISTRATION-FORM-1> E-GEN-LEX(l):

NP
[relation: MINOR[syn: CATEGORY

[head: [lexem: "registration-form"],
subcat: <LEXICAL-SIGN>]],

spec: MエNOR[syn: CATEGORY[head: [lexem: "a"]]]]

Next, Proceed, Exit? n

42

multiple inheritance in retif

<E-REGISTRATION-FORM-1> E-GEN-LEX(l) .E-GEN-TEMPL(l):

MAJOR

[relation: #2=MINOR[syn: CATEGORY

[head: [lexem: "registration-form"],

subcat: ~LEXICAL-SIGN>]],
dtrs: TREE

[head-dtr: MAJOR[dtrs: TREE[head-dtr: #2]],

comp-dtrs: <il=MINOR[syn: CATEGORY[head: [lexem: "a"]]]>],

spec: ill

Next, Proceed, Exit? n

<E-REGISTRATION-FORM-1> E-GEN-LEX(l) .E-GEN-TEMPL(l) .E-GEN(l):

PHRASAL-SIGN

[phon: <#2="a" . #9=<#1="registration-form" . #7=<>>>,

relation: i4=LEXICAL-SIGN

[phon: <#1>,

syn: CATEGORY

[head: #5= [lexem: ill,

subcat: #6=<#3=LEXICAL-SIGN

[phon: <#2>,

syn: CATEGORY[head: [lexem: #2]]] .

#8=<>>]],

syn: [head: iS,

subcat: #8],

dtrs: TREE

spec:

[head-dtr: PHRASAL-SIGN

[phon: i9,

syn: [head: #5,

subcat: #6],

dtrs: TREE

comp-dtrs: <#3>],

#3]

[head-dtr: i4,

comp-dtrs: <>,

compyhon: i7]],

Next, Proceed, Exit? n

<E-REGISTRATION-FORM-1> E-GEN-LEX(2):

NP

[relation: MINOR[syn: CATEGORY

[head: [lexem: "registration-form"],

subcat: <LEXICAL-SIGN>]],

spec: MINOR[syn: CATEGORY [head: [lexem: "the"]]]]

>(print-type e-sleep-1 e-gen-lex)

E-SLEEP-1 = EーエNTRANS

[relation: E-SLEEP,
agent: ・ ・E-SPEAKER-1] .•

>(eval-type e-sleep-1 t e-gen-lex e-gen-templ e-gen)

<E-SLEEP-1> E-GEN-LEX(l):

43

＾

~

~

~

multiple inheritance in retif

E-INTRANS

[relation: MINOR[syn: CATEGORY
[head: [lexem: "sleep"],

subcat: <PHRASAL-SIGN>]],
agent: PRONOUN [relation: MINOR [syn: CATEGORY

[head: [lexem: "I"],

subcat: <>]]]]

Next, Proceed, Exit? n

<E-SLEEP-1> E-GEN-LEX(l) .E-GEN-TEMPL(l):

MAJOR

[relation: #2=MINOR[syn: CATEGORY

[head: [lexem: "sleep"],

subcat: <PHRASAL-SIGN>]],
agent: #3=MAJOR

[relation: #l=MINOR[syn: CATEGORY
[head: [lexem: "I"],
subcat: <>]],

dtrs: TREE[head-dtr: #1]],

dtrs: TREE
[head-dtr: MAJOR

[relation: #2,

dtrs: TREE
[head-dtr: #2,
comp-dtrs: <>]],

comp-dtrs: <#3>]]

Next, Proceed, Exit'? n

<E-SLEEP-1> E-GEN-LEX(l) .E-GEN-TEMPL(l) .E-GEN(l):

PHRASAL-SIGN

[phon: <fl="I" • #13=<#7="sleep" . #11=<>>>,
relation: #8=LEXICAL-SIGN

agent:

syn:

dtrs:

[phon: <#7>,

syn: CATEGORY

[head: 19= [lexem: #7],

subcat: #10=<春6=PHRASAL-SIGN

#6,
[head: #9,

subcat: #12],

TREE

[phon: <#1 • #5=<>>,
relation: #4=LEXICAL-SIGN

[phon: <fl>,
syn: CATEGORY

[head: #3= [lexem: #1],
subcat: #2=<>]],

syn: [head: 春3,

subcat: 12],
dtrs: TREE

[head-dtr: #4,
comp-dtrs: <>,

compJ>hon: #5]] •
#12=<>>]],

[head-dtr: PHRASAL-SIGN

[phon: #13,

44

mulliple-inheritance in retif

relation: #8,

syn: [head: #9,

subcat: #10],
dtrs: TREE

comp-dtrs: <#6>]]

[head-dtr: #8,

comp-dtrs: <>,
compyhon: #11]],

>(print-type e-love-1 e-gen-lex)
E-LOVE-1 = E-TRANS

[relation: E-LOVE,
agent: E-SPEAKER~l-,
object: E-HEARER..:.1] •

>(eval-type e-love-1 t_e-gen-lex e-gen-templ e-gen)

<E-LOVE-1> E-GEN-LEX(l):

E-TRANS

[relation: MINOR[syn: CATEGORY

[head: [lexem: "love"],
subcat: <PHRASAL-SIGN PHRASAL-SIGN>]],

agent: PRONOUN [relation: MエNOR[syn: CATEGORY

[head: [lexem: "I"],
subcat: <>]]],

object: PRONOUN[relation: MINOR[syn: CATEGORY

[head: [lexem: "you"],
subcat: <>]]]]

Next, Proceed, Exit? n

<E-LOVE-1> E-GEN-LEX(l) .E-GEN-TEMPL(l):

MAJOR

[relation: #4=MINOR[syn: CATEGORY

[head: [lexem: "love"],
subcat:. <PHRASAL-SIGN PHRASAL-SIGN>]],

agent: #S=MAJOR
[relation:: #l=MINOR[syn: CATEGORY

[head: [lexem: "I"],
subcat: <>]],

dtrs: ・. TREE [head-dtr: #1]],

object: #3=MAJOR'

[relation: #2=MINOR[syn: CATEGORY

[head: [lexem: "you"] ,
subcat: <>]],

dtrs: TREE[head-dtr: #2]],

dtrs: TREE
[head-dtr: MAJOR

[relation: #4,

object: #3,

dtrs: TREE
[head-dtr: #4,
comp-dtrs: <#3>]],

comp-dtrs: <#5>]]

45

~

＾

~

~

multiple inher.iヽ血ceinretif

Next, Proceed, Exit? n

<E-LOVE-1> E-GEN-LEX(l) .E-GEN-TEMPL(l) .E-GEN(l):

PHRASAL-SIGN
[phon: <#2="エ". #7=<tl="love" . #20=<#13="you" • ill=<>>>>,
relation: #21=LEXICAL-SエGN

agent:
object:
syn:

dtrs:

[phon: <#1>,
syn: CATEGORY

[head: #10= [lexem: #1],
subcat: <#18=PHRASAL-SIGN

#8,
#18,
[head: #10,
subcat: #9],

TREE

[phon: <#13 . #17=<>>,
relation: #16=LEXエCAL-SIGN

[phon: <#13>,
syn: CATEGORY

[head: #14= [lexem: #13],
subcat: #15=<>]],

syn: [head: #14,
subcat: #15],

dtrs: TREE
[head-dtr: #16,
comp-dtrs: <>,
comp_phon: #17]] .

i19=<#8=PHRASAL-SIGN
[phon: <#2 . #3=<>>,
relation: #4=LEXICAL-SIGN

[phon: <#2>,
syn : CATEGORY

[head: #5= [lexem: i2],
subcat: #6=<>]],

syn: [head: ts,
subcat: #6],

dtrs: TREE
[head-dtr: i4,
comp-dtrs: <>,
comp_phon: #3]] .

#9=<>>>]],

[head-dtr: PHRASAL-SIGN
[phon: #7,
relation: #21,
object: #18,
syn: [head: #10,

subcat: #19],
dtrs: TREE

[head-dtr: #21,
comp-dtrs: <#18 .

#12=<>>,
map_J>atch: TREE

[comp-dtrs: #12,
comp_phon: ill],

comp_phon: #20]],
comp-dtrs: <#8>]]

46

皿 llipleinheritance in retif

>(print-type e-send-1 e-gen-lex)

E-SEND-1 = E-DITRANS
[relation: E-SEND,

agent: E-SPEAKER-1,

recipient: E-HEARER-1,

object: E-REGISTRATION-FORM-1] •

>(eval-type e-send-1 t e-gen-lex e-gen-templ e-gen)

<E-SEND-1> E-GEN-LEX(l):

E-DITRANS

[relation: MINOR[syn: CATEGORY

[head: [lexem: "send"],

subcat: <PHRASAL-SIGN PHRASAL-SIGN PHRASAL-S.IGN>]],

agent: PRONOUN[relation: MエNOR[syn: CATEGORY

[head: [lexem: "I"],

subcat: <>]]],

recipient: PRONOUN[relation: MINOR[syn: CATEGORY

[head: [lexem: "you"],

subcat: <>]]],

object: NP

[relation: MINOR[syn: CATEGORY

[head: [lexem: "registration-form"],

subcat: <LEXICAL-SIGN>]],

spec : MINOR [syn: CATEGORY [head: [lexem: "a"]]]]]

Next,. Proceed, Exit? n

47

~

＾

．

multiple inheritance in retif

<E-SEND-1> E-GEN-LEX(l) .E-GEN-TEMPL(l):

MAJOR

[relation: #7=MINOR[syn: CATEGORY

agent: #8=MAJOR

[relation:

dtrs:

[head: [lexem: "send"],

subcat: <PHRASAL-SIGN PHRASAL-SIGN PHRASAL-SIGN>]],

#l=MエNOR[syn: CATEGORY

[head: [lexem: "I"],

subcat: <>]],

TREE[head-dtr: #1]],

recipient: #6=MAJOR

object:

"a"]]]>],

dtrs:

[relation:

dtrs:
#S=MAJOR
[relation:

dtrs:

spec:
TREE

#4=MINOR[syn: CATEGORY

[head: [lexem: "you"],
subcat: <>]],

TREE[head-dtr: #4]],

#3=MINOR[syn: CATEGORY

[head: [lexem: "registration-form"],
subcat: <LEXICAL-SIGN>]],

TREE
[head-dtr: MAJOR[dtrs: TREE[head-dtr: t3]],

comp-dtrs: <春2=MINOR[syn: CATEGORY [head: [lexem:

#2],

[head-dtr: MAJOR
[relation: #7,

recipient: #6,

object: #5,

dtrs: TREE
[head-dtr: #7,

comp-dtrs: <#6
春5>]],

comp-dtrs: <#8>]]

Next, Proceed, Exit? n

● <E-SEND-1> E-GEN-LEX(l) .E-GEN-TEMPL(l) .E-GEN(l):

PHRASAL-SIGN
[phon: <"I" "send" "you" "a" "registration-form">]

-o-o-o-o-o-o-0-0-0-

48

	pt1
	pt2
	pt3
	cover

