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Abstract 

This report proposes an approach for normalizing coarticulatory variations 
in connected speech. The proposed scheme expands acoustic realization of 
speech into distinctive features and on the basis of dynamic property of 
each feature1 normalizes them independently. In this report, the 
effectiveness of the scheme is discussed focusing on an phonetic feature 
11voiced11. First1 for the extraction of the 11voiced II feature from the speech, 
a static measurement is designed by optimizing the parameters of 
preliminary measurements based on acoustic-phonetic knowledges. 
Second, the extracted feature's dynamics are analyzed based on the 
discrimination performance of the static measurement. The experiment 
suggests that the dynamics of the measurement can be a good cue for 
detecting voice-onset and offset timing. Finally, a measurement which 
combines static and dynamic measurements shows 12% better accuracy 
than the static measurement. Through these experiments, the effectiveness 
of the proposed scheme in normalizing the coarticulatory variation is 
confirmed. 
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1. Introduction 

The existence of coarticulatory variations of the acoustic realization of speech, 
especially fluently spoken speech, has been one of the serious problems of au-
tomatic recognition of the spoken languages. Various research works have been 
reported for the normalization of these variations. 

Kuwabara reported an experiment, in which he tried to calculate the target 
formant frequencies of vowels which are affected by the formant locations of the 
adjacent vowels [l]. His work was motivated by the characteristic of human 
perception of vowels in connected speech, which highly depends on the context. 
In that experiment, he averaged the frequencies of the lowest two formants using 
a weighting function in the time domain, and succeeded in increasing separation 
of vowels in the f 1 - h space. 

Akagi et al. proposed a spectral target prediction method based on the 2nd-
order critical damping model in [2]. They evaluated the prediction model as a 
preprocessor for a speech recognition system, and concluded its effectiveness. 

Mainly, these approaches are based on the standpoint of simulating the com-
pensation mechanism which presumably exists in speech perception mechanism 
of human a¥J.ditory system [3]. On the other hand, from the standpoint of speech 
production, coarticulation can be regarded as a result of_dynamic characteristics 
of articulators. Thus, if the speech signal can be expanded into some phonetic 
features associated with articulation (e.g. "voiced" with glottal vibration), then 
coarticulatory variations may be described by dynamic characteristics of these 
features. In this report, with the aim of evaluating the above scheme of nor-
malizing coarticulatory variations, some preliminary experiments are described 
using a phonetic feature "voiced" as an example. 

In section 2, acoustic measurements which extract the phonetic feature 
"voiced" from a static representation of speech are discussed. In this section, 
a measurement optimizing method (SAILS) is introduced. The measurements 
obtained using this method were compared for performance of "voiced" feature 
discrimination. 

The results of a "voiced" feature discrimination experiment using these mea-
surernents were analyzed in section 3. Through error analysis of the experiment, 
it is found that with only static information, discrimination accuracy is not sat-
isfactory. 

The dynamic characteristics of the feature "voiced" is analyzed in section 4. 
Through the analysis, it is found that the cha_nge of the feature in time at voice-
onset and voice-offset points is statistically stable. Finally, a "voiced/unvoiced" 
discrimination experiment showed that combining this dynamic property and 
the static information, produced a 12% higher accuracy than the static mea-
surernent above. 
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2. Design of spectral measurements for feature extraction 

To analyze the dynamic characteristics of a phonetic feature, it is necessary 
to extract its movement from the speech signal. The movement can be repre-
sented as a time sequence of valuesvヽhichexpress how much each speech frame 
is under the influence of a feature. Given this requirement, the first step of 
this study was to design measurements for static spectral representations which 
measure how likely each frame has the acoustic property of the phonetic feature. 

2.1 SAILS 

There have been many attempts to design such feature extractors that can 
classify segments into phonetic categories. In this study, to obtain mec1surements 
which extract phonetic features, the newly developed SAILS system was used 
[4]. SAILS is a system in which the determination of an acoustic measurement 
for phonetic classification is formulated as a constrained search problem using 
knowledge of acoustic-phonetics. The measurement determination procedure of 
SAILS can be summarized as follows. 

Using acoustic-phonetic knowledge1 a primitive measurement or their com-
bination can be selected as a phonetic classifier. For example, conventional 
investigation implies that energy of a low frequency band may be a reasonable 
cue for discrimination of voiced and unvoiced segments. Since measurements 
may have some free parameters, (e.g. to calculate the energy in a frequency 
band, lower and higher bounds of the band need to be specified) designing a 
specific measurement becomes a problem of optimizing these parameters. The 
optimization can be accomplished using classification performance on the train-
ing data for a particular task. 

2.2 Experinient to optin1ize measurements 

The experiment of designing measu.rements was carried out by using seven sen-
tences uttered by a female speaker in the TIMIT database [5]. The phonetic 
class for each segment was obtained from the hand tra.nscription of the database. 
In the experiment, three primitive measures; "Spectral Moment", " Low Fre-
quency Energy" and "Low Frequency Energy Ratio" were compared in their 
classifica.tiori performance. Definitions for each measurement are as follows. 

／ 

（＼ 

Spectral Moment= jh f E(f)df 
Ji 

Low Frequency Ener邸=Jh E(f)df 
h 

(1) 

(2) 
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It E(f)df 
Low Frequency Energy Ratio = I 

F 

炉 E(f)df
(3) 

Two different spectral representation were used, a. spectrum obtained by aver-
aging frames over the segment and a spectrum at the center of the segment. 

The result of the experiment on feature "voiced" is illustrated in Figure 1. In 
this figure, normalized distance between the mean values of the categories (eqn. 
4) was used as the index of classification performance. 

l c assification mdex = （肛ー邸）2

弓＋咋
(4) 

The combinations of the free parameters'values which maximize the perfor-
mance of each measurement are shown in Table 1,2. This experiment showed 
that the most powerful classifier was "Spectral Moment" calculated from O to 
2.5 (kHz] at the center of segment. There was not much difference in the perfor-

mance of classification between the two spectral representations of input, how-
ever, optimized parameter's values are slightly depend on the representation of 

mput. 
From this result, it is seen that "Spectral Moment" below approximately 

2,500 Hz is a good measurement for discriminating voiced from unvoiced seg-
ments. The ratio of energy in low frequency bound to overall energy is obtained 

approximately the same classification performance as the "Spectral Moment." 
However, the frequency bound is considerably different. 

Table 1: Optimized parameters for each measurement [Hz] 
input is the spectrum at the center of the segment. 

Measurement 

Spectral Moment 

Low Frequency Energy 

Lo口 FrequencyEnergy Ratio 

Lower bound 

0.00 

0.00 

0.00 

Higher bound 

2500.00 

468.25 

781.25 

Table 2: Optimized parameters for each measurement [Hz) 
input spectrum is the averaged spectrum over the segment. 

Measurement 

Spectral Moment 

Lo口 FrequencyEnergy 

Lo~Frequency Energy Ratio 

Lower bound 

0.00 

156.00 

0.00 

Higher bound 

2656.00 

468.25 

1562.50 
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2.3 Frame base classification experiment 

In the previous section, parameters of three measurements were optimized from 
the standpoint of separating the distributions of each class. Since the final 
goal of this study is to formulate the feature dynamics, the measurement is 
needed to extract the phonetic feature of the frames as well as the segments. 
Thus, frame based classification performance is another important performance 
index of measurements. To examine the frame classification performance of the 
measurements, an experimental discrimination of "voiced" feature of each frame 
was carried out. In the experiment, the following discrimination criterion was 
used for each frame. 

The frame is { 
"voiced" output of measurement > discrimination threshold 
"unvoiced" otherwise 

(5) 
In the above discrimination, phonetic class of the frame is identified based only 
on the static characteristics extracted by each measurement. As an example of 
the search for the optimal threshold value, the relationship between the classifi-
cation performance and the threshold value is illustrated for the "Low Frequency 
Energy" measurement in Figure 2. After optimizing the threshold value, frame 
classification performance is illustrated for each measurement in Figure 3. It 
can be seen that the highest performance was obtained using the "Low Fre-
quency Energy" measurement and that the performance of it is a.bout 90%. 

On the basis of these results, the "Low Frequency Energy" measurement will 
be used as the extractor of the phonetic feature "voiced", in further sections. 

3. Feature identification error analysis 

In the previous section, through the designing of measurements for extracting 
the feature "voiced", the classification performance based on the measurement 
is obtained to be about 90%. In this section, the dynamic characteristic of the 
feature "voiced" will be discussed by analyzing the discrimination error of the 
experiment in which each frame's phonetic feature is discrimina.tedvヽithonly 
static property extracted by the "Low Frequency Energy" measurement. Since 
the dynamic characteristics of the measurement is not taken account in the 
experiment, some systematic errors are expected to clarify the dynamic chara.c-
teristics of the feature. 
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3.1 Error analysis according to the segment type 

The segments appearing in the experiment include examples of 60 out of 64 
labels in Tr:tvfIT phonetic transcription, and discrimination errors were observed 
for 52 labels. In Figure 4, the segments in which frame discrimination error 
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exceeds 10% were illustrated. In this figure 84% of mis-identified frames a.re 
included. From the figure, it can be seen that most of errors, actually 64% of 
all, are observed in voiced fricatives and stops. This result implies that even by 
using the optimized parameters, it is difficult to identify the phonetic feature 
"voiced" of the frame in voiced fricatives and stops, and is also in agreement 
with the difficulty in discriminating voiced from unvoiced fricatives in phoneme 
recognition. 

In the other labels, the frame identification rate is quite good except for 
the burst portion of "k" in which the "compact burst" was often mistaken for 
v01cmg. 

3.2 Error analysis according to context 

Generally, contextual effects are closely related to coarticulatory phenomena .. 
Thus, the relationship between discrimination performa.nce and context is ex-
pected to suggest important characteristics of the feature "voiced". To examine 
the contextual effect on these mis-identifications, the errors in the voiced seg-
ments, are plotted with the context in Figure 5. Comparing left and right 
contexts, the effect of the left context seems to have the greater e仔ecton perfor-
mance. The figure reveals that "voiced" frames can be identified more accurately 
if its segment is preceded by an unvoiced segment than by a voiced segment, and 
that the identification is more accurate when it is followed by a voiced segment 
than by an unvoiced segment. 

From the result of the previous section, that most of mis-identifications of 
"voiced" frames are found in voiced fricatives and stops, these contextual e『ect
can be interpreted as follows, 1) Since the main cue of such segments is pre-
voicing, if the segments are preceded by a unvoiced segment, "voiced" feature is 
emphasized in the segment, on the other hand 2) if preceded by voiced segment, 
"voiced" feature is not emphasized in the segment. 

3.3 Error analysis according to segmental duration 

The typical coarticulatory variations are observed when the speech portion is 
under an articulatory influence, such as nasalization of vowels in nasal context. 
Mis-identifications in voiceless segments are mainly interpreted to be due to this 
phenomena. The feature "voiced" sometime does not change suddenly a.t voice-
onset and offset position, or the "Low Frequency Energy" measurement can not 
locate these changes accurately. Unlike the errors in the voiced segments which 
can be interpreted as due to the phonetic characteristics of the segment, the 
errors in voiceless segments were mainly due to this nus-location of the pho-
netic boundary. The relationship between identification performance and the 
segment's duration, illustrated in Figure 6, reveals the above characteristics. 
In the figure, the ratio of mis-identified frames in the segment is plotted as a 
function of the segmental duration for all voiceless segments which are between 

6
 



two voiced segments. As shown in the figure, the duration of the segments and 
resulted error rates are inverse proportional with a regression coefficient of -0 .48. 
Especially, in the two samples whose duration are less than 50 milliseconds, very 
high error rates were observed. 

1
'↓ー[

4. Dynamic characteristics of the feature "voiced" 

The results of the error analysis implied that with only the static measurement, 
the "voiced" feature can not be identified sufficiently in voiced frica Lives and 
stops, or in short voiceless segments. In Figure 7, the output of the "Low 
Frequency Energy" measurement and "voiced/unvoiced" discrimination result 
based on the output of the measurement are illustrated, in the third and bottom 
window, for the utterance "The angry boy answered but didn't look up." In 
tha.t figure, the errors described in the・previous section can be seen as follows. 

• The voiced stops are not identified as a "voiced" segment (/d/ and /b/ 
sounds in "answered but"). 

• The voice onset and offset positions are not loca.ted accurately in voiceless 
segment sandwiched by voiced segments (/t/ sound in "didn't"). 

However, dynamic characteristics of the output of the measurement, such 
as inclination at the voice-onset and offset positions in the figure, look stable 
and seem to be a better cue for locating voice-onset and offset positions. In 
this section, the use of such dynamic characteristics of the feature "voiced" is 
examined for normalization of coarticulatory variations in connected speech. 

4.1 Analysis on differential values of low frequency energy 

Figure 7 suggested that the differential values are good cues for detecting 
voice-onset and offset positions. To examine the stability of the value at that 
positions, distributions of di仔erentialvalues were analyzed. In Figure 8, the 
distributions of "Low Frequency Energy" values and its differential ¥'alues using 
a 15 millisecond window are illustrated. In the figure, the white circle and 
associated line represent the mean "'.alue and standard deviation, and the black 
circle and associated line represent the distribution of the values a.t the voice-
onset position. 

From the distribution of the "Low Frequency Energy" values, it.can be seen 
that the distance between mean value and optimal discrimination boundary 
(-92.0dB) is only 5% of the standard deviation of all data. However, in the 
distribution of differential values, the distance between the mean values of all 
data and the data at voice-onset position is more than 300% of the standard 
deviation of all data. These results show that the di仔erentialvalues of the "Low 
Frequency Energy" are better cues than the static values, for the location of 
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"voiced/unvoiced" boundary. 

4.2 Feature identification using dynamic characteristics 

The results of the previous section suggests that by using the differential values 
of the "Low Frequency Energy" as dynamic characteristics of the feature, voice-
onset and offset positions can be located more accurately. In this section, a 
"voiced" frame discriminating experiment is carried out based on an algorithm 

using this result. The algorithm decides onset and offset of the "voiced" portions 
using not only output value of the "Low Frequency Energy" measurement but 
also its differential values. The detection algorithm is as follows. 

1. Based on the "Low Frequency Energy" and its differential value, detect 
stable portion of the "voiced" segments. 

2. Search backward for the voice-onset position of the "voiced" segment from 
the detected stable portion using the differential values. In this experi-
ment, 15 [dB/15ms] was used for the threshold value for the detection. 

3. Search forward for the voice-offset position of the segment from the stable 
position using the differential values. In this experiment, -10 [dB/15ms] 
was used for the threshold value for the detection. 

An example of the experimental result is illustrated in Figure 9. In the 
figure, some of the voiced stops which were mis-identified in the previous ex-
periment are correctly identified, and compact burst of "k" is discriminated as 
not "voiced". However, the mis-identifications in the voiceless stops are still not 

recovered. 
Based on this procedure, mis-identified frames in "voiced" feature discrimi-

nation was reduced 12% from the discrimination based only static measurement. 
Mainly, the improvement of the performance was observed in voiced fricatives, 
which static measurement was not able to identify as voiced segments. As an 
example, performance of the two measurements are described in the Table 3 for 
the segment "z." The ratio of the correctly identified frames is increased to 78% 

by the algorithm described above from the 22% using the static measurement. 

As shown in the table the improvement of the frame discrimination accuracy 
resulted in improvement also in the accuracy of the feature identification of the 

segment, especially in tasks such as the discriminating of "z" from "s" in which 

identification of the "voiced" feature is distinctive. 

Table 3: Feature identification ratio 

The segment feature w邸 identifiedusing the center frame of the segment. 

Frame 

Segment 

Static Measurement 

221/. 
， 
0/. 

Dynamic & Static Measurement 

塁
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From this experiment, it can be concluded that by introducing knowledge 
on dynamic characteristics, identification accuracy of the feature "voiced" was 
improved about 12%. However, further study is needed to improve the mis-
identification of the "voiced" feature in short voiceless segments. 

"-—— 

5. Conclusions 

In this report, an approach to the normalization of coarticulatory variations 
in the acoustic realization of connected speech was discussed. The approach is 
based on the scheme that expands acoustic properties into phonetic features, and 
formulates dynamic characteristic of each feature independently. The effective-
ness of the scheme was confirmed through a set of experiments and discussions. 
First, the extraction of a phonetic feature "voiced" was carried out using a static 
measurement which obtained by optimizing parameters of preliminary measure-
ments based on acoustic-phonetic knowledge. Second, an experiment of feature 
identification based only on the static measurement was revealed that wit.h only 
static information, phonetic feature "voiced" could not be identified accurately. 
The result of error analysis on the experimental identification suggest.ed that 
most of the res~_lting errors are due to articulatory effects of their cont.ext, and 
by using dynarrnc characteristics of the feature, discrimination error can be de-
creased. Finally, a feature identification experiment using both information of 
the static and dynamic properties of the feature, resulted in a 12% decrease of 
error rate. 
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