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Abstract

This manual presents user documentation for the ATR Interpreting Telephony
Research Laboratories LISP ATMS. The ATMS, or “Assumption-based Truth
Maintenance System?”, is a data-base that is able to represent and store concepts -
(atms-nodes) and constraints between these concepts (implications). Some
concepts are assumed by the user. Depending upon whether these assumptions
are BELIEVED Or NOT BELIEVED, different multiple possible worlds known as
environments are setup. In addition to storing data and implications, the ATMS
performs “truth maintenance”--if any concept or set of concepts becomes
inconsistent, the effects of this change are propagated through implications to
other concepts that might become inconsistent, thus “maintaining the truth” of
the system as a whole. Also, the ATMS offers explanations as to why concepts are
believed in a particular possible world.

The ATMS was developed to enable ATR to have modifiable LISP source code to
an assumption-based TMS. This was required for performing plan recognition
using an ATMS.

The ATMS is a general-purpose system that can work with any application that
requires an assumption-based truth maintenance system; it is not limited to plan-
recognition applications. The current version of the ATMS supports various
assertion, query, explanation, and output functions for the user.
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1 Introduction

This mannal describes the ATR Interpreting Telephony Research Labora-
tories” ATMS (Assumption-based Truth-Aaintenance System), version 1.1.
The ATNMS, or “Assumplion-based Truth Maintenance System”, is a data-
base thatl is able to represent and store concepts (atms-nodes) and constraints
between these concepts (implications) that occur in different possible situ-
ations al the same time, known as multiple simultancous possible worlds.
Worlds are set up by “assuming” a concept—if the assumed concept is be-
lieved, this contributes to forming one possible world, whereas i the as-
sumption is disregarded (not believed), this forms a dilferent possible world.

In addition to storing data and implications, the ATMS performs “truth
maintenance”—if any conceptl or set of concepts hecomes inconsistent, the
eflects of this change are propagated through implications to other concepts
that might become inconsistent, thus “maintaining the truth” of the system
as a whole. Although a valid possible world can only contain consistent
concepts within itself, there is nothing preventing the set of concepts in one
possible world from being inconsistent with the concepts in another world.

This manual starts out with a glossary, which defines the technical terms
that are used. Next is a commaund explanation section that gives a breakdown
of all the commands used in the system, grouped by function. After this,
the manual starts with an introduction to what an ATMS does, a briefl non-
technical look at truth values, and a discussion of the types of data structure
objects that the system works with to represent problems. These objects
can he put together to form relationships and logical operations; the method
of representing the basic logic operations is discussed next. Following this,
the slightly more complex data structures required for interpretation are
discussed.

The next section gives a technical discussion of the meaning ol various
truth values used by the system. Following this, there is a theoretical discus-
sion about different types of knowledge, and how the ATMS can represent
these various types.

This is required to understand the next section, which is a discussion of
the actual, practical use of the ATMS system, referring to specific commands.
The methods of setting up the system, setting up the problem, exploring the
problem, and interpreting the results are discussed. After this, concrete
examiples that demoustrate different aspects of the use of the system are




discussed in detail.

The manual concludes with the appendicies. Included here is a discus-
sion of the implementation of thie system, and an alphabetical index of the
commands used by the system.

The first-time reader should probably briefly glance at the glossary and
the command explanalion section, before going immediately to the introduc-
tory explanations and reading them in order. After reading the technical
discussion of the different types of truth values, the reader can go back to
the command explanation section and read it again in depth, to get a good
understanding of the system. The types of knowledge section should be read
beflore the sections on working with the ATMS and the examples. The im-
plementation appendix, although useful, is not required to understand how
to run the system. The manual contains an alphabetical glossary and the
command explanation system at the {front, aud the conunand dictionary at
the back, for easy reference.

This manual 1s intended for the naive user who has never worked with an
ATMS belore. The user should be able to read the manual, run the examples,
and afterwards understand how to use the ATMS. However, some familiarity
with basic computer science concepts would be helpful. Also, it is assumed
that the reader is faniliar with the LISP computer language’s syntax. The
manual is designed to be sell-contained; no other reference source is needed
to run the system.



2 Glossary

In the deflinitions in this section, italics represent terms that are defined else-

where under other definitions; bold face represents the term itsell. Underlining

is occasionally used for emphasis.

Antecedent The II' part of an 1F-TIHEN concept. Each implication can
Liave one or more antecedents.

Assertion A concept. A “fact”, that will either be helieved or not believed.
Assertions are represented by ATMS-nodes. Assertions can be sentences
or data-structures in the user system, but they are treated as atomic

by the ATMS.

Assume The action of augmenting an ATMS-node by turning it into an
assumption.

Assumption A concept that the user system thinks is basic or influential.
Assumptions are concepts on which other concepts depend. Also, the
dala-structure that represents this concept. Assumptions are ATMS-
nodes that have been specially marked, by assuming them. Typically,
assumptions will justify a network of ATMS-nodes. A single assumption
can be BELIEVED or NOT BELIEVED. In fact, it takes on both of these
values simultaneously; this serves to split the knowledge base into two
different [sets of] possible worlds.

ATMS-node The basic atomic data structure for the ATMS system. An
ATMS-node stores a single concept (or assertion).

Believed A truth value for a concept (ATMS-node) in a particular pos-
sible world (context). BELIEVED corresponds to TRUE in a trinary
TRUE/FALSE/UNKNOWN logic. See not believed.

Characterizing Environment A characterizing environment is a con-
sistent, complete, minimal enviroument that characterizes (uniquely
represents) a context. Since all valid environments that are not created
by the user are always characterizing environmeunts, this concept may
be ignored. See environment instead. '
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Concept An idea about something, represented by an ATMS-node or an
implication.

Conjunction A logical AND. If all of the items in a conjunction are be-
lieved, then the conjunction as a whole is believed.

Consequent The TIIEN part of an IF-TIIEN concept. Each émplication
has one consequent.

Consistent A context is consistent if it is not inconsistent. Conceptually,
a possible world is consistent if all the things that are believed in that
possible world can all be believed at tlie same time.

Context The set of all BELIEVED nodes that are implied by an environ-
ment’s assumptions. An environment is only a set of assumptions,
whereas a context consists of those assumptions plus all ATMS-nodes
that are dirvectly or indirectly implied by those assumptions {includ-
ing all premises), following all active implication chaius {forward as {ar
as possible. A context is an entire possible world, including all the
concepts implied by it.

If a context includes the *nogood-node*, that context is inconsistent.

Constraint A concept that rules out the possibility of something happen-
ing, i.e. several specific concepts occurring at the same time. That
is, it states that these concepts taken together are inconsistent. Con-
straints are implemented in the ATMS system by implications.

Contradiction A contradiction is a set ol concepts that cannot all be BE-
LIEVED at the same time. See inconsistent.

Deletion Physically removing an item from the knowledge base. The curent
system cannot individually delete items; 1t can only retract them. See
retraction.

Disjunction A logical OR. If any one or more of the items in a disjunction
is believed, then the disjunction as a whole is believed.

Disregarded This means, Not used by the system. Another name for Nof

Believed.

o0



Environment A data structure that stores a list of believed assumptions.
An environment represents and is the symbol for a possible world. An
environment implicitly implies a context. An environment can he con-
sisient or inconsistent.

Implication A logical form, cousisting of the conjunction ol a number of
antecedents, and a single consequent. 1f, in any one possible world, all
ol the antecedents are BELIEVED, then this implies that the consequent
must be BELIEVED as well. The antecedeuts imply the consequent. An
“implication” is both this concept, and the name of a data structure
that represents this concept.

Implications can have associated data attached to them that explain
(to the user system) why this inplication is valid. This can simply be
the name of the implication, or a user system representation of Lhe rule
that this implication represents, etc.

In A truth value for a concept (ATMS-node) taken over the set of all known
possible worlds (conlexts). 1 1he ATMS-node is BELIEVED in at least one
known, consistent context, then it is IN. See oUT

Inconsistent A context is inconsistent if it includes the *nogood-node*.
Conceptually, a possible world is inconsistent if il has a thing that
cannot be believed, or if there are things in that possible world that
cannot be believed together. liconsistencies (conlradiclions) are as-
serted into the ATMS by the user system by using the (nogood) or the
(nogood-set) commands.

The system only uses the inconsistencies that it is told about; there
are no implicit inconsistencies. In particular, all negatives have to he
expressed explicitly.

Invalid Inconsistent.

Item An instantiation of any data structure, including an environment, an
ATMS-node, an implication, etc.

Justification A justification is actually the same as an mmplication, bhut the
conceplualization is different. A believed ATMS-node that is not an
assumption must have at least one implication that justifies why this




node is believed. The node is the consequent of the justification, and
thie node is justified by the antecedent nodes. All of the antecedent
nodes niust be believed in order for the nodes to “actually justify”
the consequent; otherwise, they simply “potentially justify” the conse-
quent. The justification is the link between the antecedents and the
consequents. A justification is both this conceptl, and an alternative
naine for the implication data structure thal represents this concept.

A justification can have associated data attached to it that explains
thie reason beliind that justification. This could be a naine, or somne
other concepl relevant to the user system.

Knowledge Base The sum total of assertions that have been made to the
system. The contents of the ATMS system, looked upon as a data-base
that represents kuowledge.

Label A set of environments attalched to a node. Each environment is
consistent, aud the node is BELIEVED in each environment. The set is
complete but minimal; thus, larger (subsumed) envirommnents having
no new information will not be listed. '

Minimal A label is minimal if it contains the smallest possible significant
environments. Teclinically, a set of environments is minimal when no
-environment in the set is subsumed by aunother enviroumeut in the
set. DBecause label environments consist of sets of assumptions that
justify a node’s coucept, maintaining a minimal label stores only the
assumptions that are truly relevant.

Node An ATMS-node, Assumption, or Premise.

Nogood A loose term that technically means inconsistent when applied to
an environment, but can also mean QUT (or even sometimes, incor-
rectly, not believed) when applied to a node. When an environment
becomes nogood, there is no way to reverse this change.

Nogood-Node A special node used by the system to embody and represent
the concept of nogood or inconsistency.

Not Believed A truth value for a concept (ATMS-node) in a particular pos-
sible world (context). NOT BELIEVED corresponds to UNKNOWN in
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a lrinary TRUL/FALSE/UNKNOWN logic. See believed. Other ways of
thinking about NOT BELIEVED include DISREGARDED, or NO OPINION.
Note that NOT BELIEVED is not the same as FALSE; there is no way to
explicitly represent FALSE using an ATMS.

No Opinion NOT BELIEVED.

Out A truth value for a concept {ATMS-node) taken over the set of all known
possible worlds (contexts). If the ATMS-node is NOT BELIEVED in all
known, consistent contexts, then it 1s OUT. See IN.

Possible World Something that could be happening. An intuitive concep-
tualization of an environment and its confext. A self-consistent set of
assertions that are all belicved.

Premise A concept that is considered o be always {rue, no matier what,
Technically, a premise is BELIEVED in all possible worlds. A premise
cannot be retracted. '

Retraction Taking an assertion back; no longer believing it. Retraction
essentially consists of making an assertion NOT BELIEVED in all con-
sidered possible worlds. This can be done permanently by setting the
node representing the assertion to directly imply NoGooD; or, il can
be done conditionally by having the node, and an assumption that the
node is really retracted, together imply NOGooD. Alternatively, re--
traction can be accomplished by not considering any possible worlds
in which the node is BELIEVED. Retraction differs from deletion in
that deletion physically removes the node, whereas retraction simply
removes the use of the node by the system. Items cannot be deleted in
the current system.

Subsumed An environment is subsumed by another environment if it is
a larger superset of the beliefs of that environment. For instance, euvi-
ronment 1 contains believed concept A, “The computer has crashed”,
while environment 2 contains believed concept A plus believed concept
B, “There 1s a pen on the table”. Environment 2 is subsumed by
enviromment 1. To obtain a minimal representation, subsuined envi-
ronments are eliminated from labels.
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Truth Maintenance The problemi of maintaining the correct truth value
of assertions that are based on the truth value of other assertions. Since
there can be long chains of trutli dependencies, a particular truth value
typically propagates thirough many nodes.

Truth Maintenance System (TMS) A computer system that performs
{ruth maiutenance. There are several kinds. An Assumption-based
Truth Maintenance System allows the representation of multiple possi-
ble worlds simultaneously, whereas most other kinds can only represent

a single possible world. :

Unknown See NOT BELIEVED.

User System The user system is a computer system outside of the ATMS,
that uses the ATMS to lelp solve its problems. The user system will
have data structures and information that the ATMS knows nothing
~about. The ATMS stores data for the user system, and reports answers
to it.

Valid Not inconsistent.

World See possidle world.



3 Data and Command Explanation

This section presents a description of the system’s commands. These are
arranged by the type of command.

3.1 System Data Types

There are five explicit major kinds of data in the ATMS system. These are:

ATMS-node A node. Otherwise known as a Concept, a Statement, or
(sometimes, depending upon the usage) an Assumption.

premise A node that is always true. It does not have its own kind of data
structure. Premises have the empty environment (#0) as their label.

assumption A fundamental node that is used to justify other concepts.
Assumptions are both BELIEVED and NOT BELIEVED. They are used
for environments.

implication An AND GATE structure between nodes. Takes many an-
tecedents and one consequent. If all the antecedents are IN, then the
consequent is IN. Also known as a Justification, a Constraint, or an
Inference.

environment A set of assuinptions. Each assumption in the environment
is BELIEVED under that environment. Also known as a Possible World,
- Assumption Set, or Cousistency Set.

3.2 Creation Commands

These are the basic commands. They are the ones used most often by the
user systeni.

(reset-atms) Clears tle system oul. Expunges all previously-defined ATMS-
nodes, assumptions, premises, implications, aud environments. Auto-

matically initializes Node# 0 as the NOGOOD-NODE, and Environ-

ment# 0 as the Truth Environment.
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(atms-node data) Constructs and returns an ATMS node representing the
given information. The nodes are numbered serially. Note: Node 0 is

always the NOGOOD-NODE.

(premise data) Constructs and returns a Premise node storing the given
information. ‘

(assumption data) Constructs and returns an Assumption node storing
the given information.

(implication consequent-node data antecedent-nodel A2 ...) Coustructs
and returns an implication.

(justification consequent-node data antecedent-nodel A2 ...) Same
as implication.

(inference consequent-node data antecedents) Same as implication. The
“inference” terminology is supported but not encouraged; use “impli-
cation” or “justification” instead.

(nogood nodel) Builds a justification [rom the node to *nogood-node.
This is the standard method of entering contradictions, or i other
words permanently making the node’s data false. This function can
also be called with a sequence of nodes, in which case each node in the
sequence is set to NOGOOD.

(nogood-set nodel node2 ...) Builds a justification to *nogood-node*
based on the conjunction of the given nodes. Standard method of
entering contradictions. Nole carefully that (nogood-set ) ol a set
of nodes, which contradicts the AND of the set, is not the same as
(nogood ) of each of the members of the set, which contradicts the
OR. of {lie set. h

3.3 Modification Commands

There is no way to modify an umplication once it has been created. There isno
way to retract the action of turning a node into a premise or an assumption.

All user date that the system stores can be modified using the setf
[unction called on the data accessor function.

14



(presume-this-node node) Turns an ATMS-node into a premise. Techni-

cally, overwrites the label with the single, empty environment *truth-envx,

(premise-this-node node) Turns an ATMS-node into a premise. Same as
(presume-this-node).

(assume-this-node node) Turus an ATMS-node into an assumption. (Tech-
nically, justifies the node with a new assumption-tag whose data con-
tains the node.) Returns the node. Typically used only for ellect. Of
course, Lhe user should not call this on nodes that are a.heady assumyp-
{ions or premises.

3.4 Deletion Commands

There are no individual deletion commands for the system. Councepts can be
retracted, but they canunot be deleted without resetting tlie euntire systen.

(reset-atms) Clears the system out. Expunges all previously-defined ATMS-
nodes, assumptions, premises, implications, and environments. Auto-
matically initializes Node# 0 as the NOGOOD-NODE, and Environ-

ment# 0 as the Truth Environment.

3.5 User Query Commands

(explain-nodes) Runs explain-node on all the nodes.
(explain-node node) Prints out environments in which node is IN.
(env-nogood-p env) Tests whether env is nogood.

(IN-p node) Tests whether node is IN. Returns a list of consistent environ-
uients entailing the node (the label) if the node is IN; returns nil if the
node is OUT. This is the recommended function to use when tracing a
node with a user-program.

(OUT-p node) Tests whether node is OUT. Returns T if ouT, NIL other-
wise.

(atms-node-p node) Tests whether object is an ATMS-node or not Note:
assumptions and premises are also ATMS-nodes.



(premise-p node) Tests whether object is a’premise or not.
(assumption-p node) Tests whether object is an assumption or not.

(implication-p imp) Tests whether object is an implication or not.

3.6 User Output Commands

(print-nodes) Prints a list of all the nodes, and their data.

(print-assums) Prints a list of all the assumptions, and the corresponding
nodes.

(print-implics) Prints a list of all the implications, including assumption
justifications.

(print-envs) Prints a list of all the environments.

(print-atms) Dumps everything. Use this to get used to the system.

(print-node node) Individual item printing functions.

(print-assum assum) Prints a single assumption.

(print-implic implic) Prints a single implication.

(print-env env) Prints a single environment.

(print-significant-envs env-list) Prints the significant (non-subset, valid)
environments from a given list. Defaults to all the known enviromments
il given no argunent.

(print-sig-envs env-list) Prints the significant {noun-subset, valid) envi-
ronments {rom a given list. Defaults to all the known environments

if given no argument.
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3.7 User Access Commands
3.7.1 Number Accessor Functions

Each object is given an 1) number to distinguish it. Calling these functions
with the number returns the object.

(Node# n) Accessor {unctions for ATMS-nodes. Given its ID number, these
{unctions return the node.

(ATMS-Node# n) Same as (Node# n).

(Premise# n) Accessor function for premises. Since premises are really
ATMS-nodes, this is the same as Node#.

(Assum# n) Accessor function for assumptions.
(Assumption# n) Accessor {unction for assumptions.
(Implic# n) Accessor function for implications.
(Implication# n) Accessor function for implications.
(Just# n) Accessor function for implications.
(Justiﬁcati‘on# n) Accessor function for implications.
(Env# n) Accessor funclion for environments.

(Environment# n) Accessor function for environments.

3.7.2 ID Accessor Functions

These functions return the ID number for the given object.

(atms-node-ID node) ID number function for nodes.

(preinise—ID node) 1D number function for premises. Same as (atms-node-1ID).

(assumption-ID assump) 1D number function for assumptions. Returns
NIL if not an assumption.

(implication-ID implic) ID number function for implications.
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(justification-ID just) 1D nuwmber function for implications.

(environment-ID env) ID number function for environments.

3.7.3 Data Accessor Functions

These functions return the user data contained in the given object.
All user data that the system stores can be modified by using the setf
function called on the data accessor function.

(atms-node-data node) Returns the data stored in a node.
(premise-data node) Returns the data stored in a premise.
(assumption-data assum) Returns the data stored in an assumption.
(implication-data impl) Returns the data stored in an implication.

(justification-data just) Returns the data stored in an implication.

3.8 Context Commands

(context env) Returns a list of the nodes in an environment’s context, in-
cluding the ATMS-nodes, tlie assumptions, and the prenmises. Works
even il the context is invalid. This 1s an expensive function to call.

(in-context-p node env) II the given node is in the given environment’s
context, returns a (usually smaller) characterizing environment describ-
ing why that node is believed. Otherwise, returns nil.

(in-world-p node env) Same as in-context-p.

3.9 Environment Commands
3.9.1 General Environment Functions

(env-assums env) Returns a list consisting of the assumptions that are BE-
LIEVED in a given envirommnent. Does not check whether environment
15 inconsistent or not. Note that more, derived ATMS-nodes will be
believed under this environment (in the environment's context), than
are returned in this fuuction.
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(nogood-p env) Returns T if given environment is NOGOOD (INCONSIS-
TENT), nil otherwise. An environment is NOGOOD if the *nogood-nodex
15 BELIEVED because of it (i.e., in its context). Same as inconsistent-p.

(inconsistent-p env) Returns T if given environment is NOGOOD (INCON-
SISTENT), nil otherwise. Anenvironiment is NOGOOD il the *nogood-node*
1s BELIEVED because of it (i.e., in its context). Same as nogood-p.

(nogood-env env) Forces the given environment (and all of its supersets)
to become NOGOOD. Calls nogood-set on the (conjunction of the) set
of assumplions composing the environment. In general, this should be
used only because of higher-level knowledge not part of the knowledge
represented in the ATMS.

3.9.2 System Environment Functions

(node-label node) Returns a list-of the minimal environments under whicli
the given node is believed.

(node-envs node) Returns a list of the minimal environments under which
the given node is believed.

(all-node-envs node) Returns a list of all of the known consistent environ-
ments under which a given node is believed. This Tunction is slightly
expensive.

(OR-env envl env2) Returns an environment consisting of the union of
the assumption sets from the two given environments. This may be
inconsistent, even if both of the previous two are not. Such an envi-
ronmment might not be a characterizing enviromment.

(significant-envs env-list) Returns a list of environments where subset,
and inconsistent environments have been eliminated. Defaults to us-
ing *environments*, all of the known environments, as input il no
argument is given.

(sig-envs env-list) Returns a list of environments where subset and incon-
sistent environments have been eliminated. Defaults to using *environments*,
all of the known environments, as input il no argument is given.
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(dont-use assum-list env-list) Relurns a list of environments where cn-
vironments containing any of the given assumptions have been deleted.

(dont-use-nodes nodes envs) Returns a list of environments where en-
vironments whose context contains any of the given nodes have been
deleted. A rather expensive fuuction.

3.9.3 User Environment Functions

(create-env assum-list) Creates a new environment for the system to keep
track of and follow, consisting of the set of all the assumptions in the
given assumption-list. Returns the environment. Returns the old en-
vironment instead of creating it if previously there. Cuwrrently returns
nil il new environment is nogood. If an ATMS-node in the assumption
list was not in fact previously an asswmption, it is assumed by this
function. Note that this side-effect should be used with care.

(find-env assum-list) Finds and returns an existing environment. Returns
nil il it did not exist previously. Does not creale any new environ-
ments. This is a fast {unction.

(add-assums-to-env old-env assumptions ...) Creates (il necessary) and
returns a new envirounent consisting of the assumptions of the old en-
viroument plus the new series of assumptions. Currently returns nil if
new environment is nogood. Does not affect the old environment.

(subsumed-by-p larger-env smaller-env) Tests to see whether larger-
env is subsumed by {is a superset of) smaller-env. Returns T if sub-
sumed, nil otherwise. Extremely fast.

(characterizing-env env) Returns the characterizing environment ol the

given environment (possibly itsell). Returns nil if inconsistent.

3.10 Explanation Commands

(why-envs node) Returns a list of the copsistent environments under which
(in whose context) this node is BELIEVED. ‘
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(why-env-assums node) Explains the different assumption sets that this
node is BELIEVED in. Instead of returning a list of environments justi-
fying this node, like why-envs, this function returns the environments’
assiwmplion sets, in the form of a list of lists of asswmptions.

(why-nodes node env) Explains the contributing immediately preceding
nodes that make the given node believed under the given enviromment.
Returns a list of all the believed nodes that dircetly justify the given
node in the given environment’s context.

(why-implications node env) Explains the contributing immediate im-
plications that make the given node believed under the given environ-
ment. Relurns a list of all the active implications that directly actually
justify the given node in the given environment’s context. Does not re-
turn implications that indirectly justify the node, or potentially justily
the node but are inactive. Returns the system-generated justification
for an assumnption.

(why-assumptions node env) Explains the assumptions that directly or
indivectly contribule to the given node under the given environment.
Returns a list of all the BELIEVED assumptlonq that justify the node in
{he environment’s context.

(why-nogood-nodes env) Explains the immediately preceding nodes that
contribute to making tlie *nogood-node* believed under the given en-
vironment. The environment should be inconsistent.

(why-nogood-implications env) Explains the implications that immedi-
alely coutribute to the *nogood-node* under the given environment.
The environment should be inconsistent. Returns a list of the active
implications that actually justify the *nogood-node* in thie envirou-
ment’s coutext.

(why-nogood-assumptions env) [xplains the assumptions that divectly
or indirectly contribute to NOGOOD under the given environment.
The environment should be inconsistent. This is a very useful function,
as 1l returns only the mutually conflicting assumptions that are causing
the problem with an inconsistent environment.




3.11 System Activity Commands

(install-action node action) Installs the command (action) into the given
node. If the given node becomes IN, (i.e., believed in any valid context),
the given action command is executed.

3.12 Significant Variables

OS This variable holds the Output Stream for the print functions. Default
is T, meaning standard screen output stream.

use-uniquification This flag tells whether ATMS data is treated as be-
ing unique (under equal) or whether it can be duplicated. If unique,
(atms-node data) and similar functions will return a previously cre-
ated node instead of creating a new one. Default is T.

*environments® This variable stores a list of all (both valid and inconsis-
tent) ol the environinents known to the system.

*nogood-node* This variable stores the special NOGOOD node. This node
18 allocated on reset. Nole thal (Node# 0) also returns this node.

*truth-env* This variable stores the empty environment. This environ-
ment’s context contains all the premise nodes; it is always true.

*atms-nodes* This variable stores a list of all the ATMS-nodes known to
the system. This includes the assumptions and the premises.

*assumptions* This variable stores a list of all the assumptions known to

the system.

*premises® Tlis variable stores a list of all the premises known to the
syslem.

*implications* This variable stores a list of all thie implications known to
the system. Each assumption internally generates an implication; these
are included as well.

*atms-node-count* The number of ATMS-nodes, including those tliat have
been turned into assumptions or premises, known to thie system.

o
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*assumption-count™® The number of assumptions known to the system.
*environment-count* The number of environments known to the system.
*premise-count® The number of premises known to the systen.
*Implication-count™® The number of implications known to the system.

*Initial-assumption-limit* This number gives a soft limit ou the number
of assumptions that the system can store. It is used to determine the
initial size of the assumption-bit-vector assigned to each environment.
It must be sel before calling (reset-atms). Set this {o the reasonable
maximum number of assumptions expected to be handled by the sys-
tem. This number affects memory allocation, paging, and performance.
Default 1s 200.

*incremental-assumption-size* This number tells how much the sys-
tem’s bit-vector size is increased during the next growth cycle. See
*initial-assumption-limit*. This number indirectly aflects mem-
ory allocation, paging, and performance. Default is 50.

geometric-limit-increase This flag tells whether *incremental-assumption-
limit* doubles after every expansion (geometric increase) or stays con-
stant (arithmetic increase). This number indirectly aflects memory
allocation, paging, and performaunce. Default is T.

3.13 System Flag Variables

*watch-atms* This flag makes the system print out a notification each
time au itent is created. Defaull is T.

*debug-atms™ Tlis flag makes the system print out debuggiug informa-
tion. Default is nil.

*watch-enlarge* Tlis {lag makes the system print out a message when
the system enlarges the bit-vector arrays for assumptions. Delault is

T.




*print-data®™ When this flag is T, the print functions print out the data
inside nodes and assumptions. When it is nil, the print functions only
print out a numbered node. Set this to nil when very long data is stored
in nodes. Default is T'.



4 What does an ATMS do?

An Assumption-based Truth-Aaintenance System, or ATMS, is hasically
a special kind of data-base that stores pieces of data. This data is special
in that each piece has a truth-value, bclicved, or not belicved. The ATMS
remembers whether each piece of data, or ATMS-node, is believed or not.,
IHowever, the truth-value of some ATMS-nodes may depend upon whether
other ATMS-nodes are believed or not. So, in this case, if one node becomes
helieved, it could affect other nodes in the data-hase. Similarly, if one node
becomes disbelieved, perhaps other nodes will become dishelieved also. Nat-
urally, in a network of intervelated data, such changes will propagate on
to still other nodes and could be far-reaching. Remembering which nodes
are believed and which are disbelieved at the current time is the job of a
Truth-Aaintenance System (TMS).

An Assumiption-based TMS is a special kind of TMS that does not deal
with only one possibility, but represents several possibilities at the same time.
That is, in one possibility, some nodes could be believed, while in another
possibility, they might not be believed. These different possibilities are called
possible worlds.

A possible world is set up by “assuming” a concept. Asswming a concept
states that the user is willing to possibly believe the concept by itself, without
regard to any further justifications of the concept. Thus, assumptions are
basic, and ave normally not justified by other concepts. Rather, assumptions
are used. to justify other concepts, and to imply conclusions.

However, an assumption is not an absolute declaration of truth. The
system maintains the possibility that the assumption could be true, or it
could be disregarded and not believed. lun fact, the system represents hoth
possibilities simultaneously. Thus, assuming a node creates two different
possible worlds—one in whicli the node’s concept is believed, and one in which
il is notl believed. ‘

I fact, since there are usually many assumptions, at the time a new node
is assumed there are already many difflerent possible worlds in existence. So,
actually, a new assumption acts to create two different sets of possible worlds—
one set consisting of all of the current possible worlds as they stand (NoT
BELIEVING the new assumptlions), and one set consisting of all the current
possible worlds plus the new assumption (BELIEVING the new assumption).

The set of possible worlds can therefore theoretically he the power set
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of the set of assumptions. However, in practice, the ATMS only represents
those possible worlds that are significant, i.e. different from each other (not
subswmed). This typically tends to be a much smaller number.

A single possible world has many concepts, represented by nodes. The
entire set of nodes that are believed in a given possible world is called a
context. However, since this is very large, a possible world is represented by
a “characterizing environment” (or environment for short), consisting of a set
of all the believed assumptions in that environment. Since the assumptions
are basic, the assumptions determine all of the nodes that are believed in
that possible world. Thus, the context can be uniquely derived from the
characterizing environment.

All the assumptions listed in an environment are believed by that envi-
ronment. All the assumptions not listed in an environment are disregarded.
As will be discussed later, disregarding (not believing) an assumption- is not
the same as believing it to be false; this is important to remember,

The ATMS can be run directly from a terminal. However, typically an-
other computer program, i.e. a user system, will interact with the ATMS
by setting up the problem and interpreting the results. A general-purpose
inference-engine user system, known as FLAIL, has been inmiplemented at
ATR and can be used for this.

The desiguer of the user system must determine the type of data that
the ATMS is going to represent, and the relationships between different con-
cepts. The user system sets up the problem by entering concepts into the
ATMS, iu the form ol ATMS-nodes, premises, and assumiptions. In addi-
tion, relationships hetween concepts are entered in the form of networks of
implications, and problem constraints are entered by specilying nuitual in-
consistencies (“nogood” sets). 1t is the respousibility of the user system to
determine these concepts, relationships, and constraints. Once a problem
has been set up, the user system can query the ATMS system and interpret
the results, using the explanation facilities. Typically, the user system will
use the ATMS in an interactive manner, incrementally adding new nodes and
implications and then querying the results.

The ATMS thus acts as a large truth-maintaining data-base that permits
representation and exploration ol multiple possible worlds at the same time.
The system reports whal concepts are currently believed or not believed in
any particular world. However, the ATMS must work with a finite space of
alternatives. Also, the data given to the ATMS by the user system should be



definite concepts—that is, constants and instantiated variables. The system
can then perforni implicit searches among the given alternatives, representing
which sets of alternatives are possible and which are inconsistent under the
given constraints.

5 An Introduction to Truth Values

Some truth maintenance systems use the truth values TRUE and FALSE. Be-
cause an ATMS is based on assumptions, an ATMS uses the truth values
BELIEVED and NOT BELIEVED (or, “NO OPINION").! The user assumes that
something could be believed, but this is just an assuniption—the possibility
that it is not believed is explored as well. '

Besides these truth values, another important set is the pair IN and ouT,
which are basically slightly stronger versions of (sometimes) BELIEVED and
(always) NOT BELIEVED, respectively.?

This briefl introduction provides a working definition only; truth values
will be examined in more depth later on in this manual.

6 What’s Inside an ATMS?

In an ATNMS, there are two main kinds of objects—nodes, and implications.
A node is a basic wnit of data, representing one item to be remembered.
Implications are the connections belween nodes. There are a few different
kinds of nodes that have slightly different meanings, but there is only one
kind of implication. Together, the nodes and the implications are used to
build the data structure that represents the problem.

In addition to these objects, there is also environments, which is a way of

thinking about nodes and grouping them together. Nodes and implications.

are discussed in the following subsections; environments will be discussed
later.

In general, because ATMSs were originally developed at many different
institutions, there are a number of different names for the same concept.
Therefore, all of the different names for the same type ol object will be

In any one possible world.
“For all currently known possible worlds taken together.

Q]
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Iligure 1: Graphical Conventions for depicting the ATMS.
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presetited here, so that the reader can understand this system in relation to
other systems in the literature.

6.1 ATMS Nodes O

An ATMS node is the basic unit of data of the system. It stores a partic-
ular statenient that the system will either believe as true, or disregard as
unknown. The system never actually uses this data; the system only uses
what it is told are the constraints between this node and other nodes. The
data is treated as atomic. The system ouly reports this data to the user
when asked, making no other use. Thus, the user is free to store absolutely
anything that he or she desires into the data.in a node. In typical usages,
this will actually be a list, an entire tree, or a sentential fact.

Aun ATMS node is created by using the function (atms-node dafa). The
'ATMS system ensures that the data stored in a node is unique; thus if this
function is called a second time with the same data, the same node is conve-
niently returned, instead of crealing a new node.?

A node can be made special by either turning it into a premise, or turning
it into an assumption, as will be explained next.

A node will take on one of the truth values BELIEVED or UNKNOWN (NOT
BELIEVED) inside any one possible world. A node by itself, one that isn’t an
assumption, orisn’t justified by other nodes, has the default value UNKNOWN.
Thus, it 15 necessary to introduce assumptions or premises into a network in
orcder to have nodes that are helieved.

Once a node is created, it can never he deleted, without resetting the en-
tire ATMS. (However, it can be “effectively deleted” or retracted, by creating
an implication from it to the NOGOOD node. Note that a direct implica-
tion with no other antecedents constitutes a permanent retraction, whercas
il other nodes are used for antecedents, this constitutes a conditional retrac-
tion. Also, if the node is used as au assumplion it can be disregarded by the
user, by not using any environmeuts containing that node.)

Nodes are sometimes called concepts, statements, or facts. De Kleer also
sontetimes calls these derived nodes.

3This feature can be turned off by (setq use~uniquification NIL).
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6.2 Premises D

A preinise is a special kind of node that is always true. That is, the user knows
(from higher knowledge) that this particular node will always be BELIEVED
in all valid possible worlds. The system uses this knowledge to propagate
beliel and inconsistency to other nodes that are not premises.

Premises are usually specified beforehand, at the time of their creation,
using the command premise. Ilowever, il is possible to take an existing
ATMS node and turn it into a premise, using the command premise-this-node.
It is not possible to retract a premise once it has been made, or to Lurn it
back into an ordinary node. ,

It is a system error to set up a network where a premise is forced to
derive the NOGOOD node. Siuce a premise norinally is used in conjuuction
with other nodes or asswmptions as the antecedents to an implication, this
does not present a problem; those nodes cau become inconsisteut, while the
premise remains true.

It is a couceptual error to have a premise that is justified by other nodes,
that is, to have a premise that is the consequent of an implication. Premises
by delinition need no justification.

As a side note, an ATMS node that is justified by the conjunction of
nodes that are all premises effectively beconies a premise itself.

Premises have no other known name.

6.3 Assumptiohs [ ]

An assumption is a special kind ol node which has data that is conceptually
basic to other nodes in the systenm. Assumptions are significant; they are
typically used to justify other nodes. The system uses the assumptions to
compose its enviromnents.

Assumptions are usually specified belorehand, at the time ol their cre-
alion, using the command assumption. IHowever, it is possible to take an
existing ATMS node and turn it into an assumption, using the command
assume-this-node. It is not possible to delete an assumption once it has
been made, or to turn it back into an ordinary node. However, assumptions
can he permanently retracted by using theni to directly imply the NOGOOD
node; they can be conditionally retracted, by using them to imply the NO-
GOOD node in conjunction with other nodes. By ignoring all environments
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that contain them, they can also be ignored by the user.

An assumption automatically takes on both the values BELIEVED (as-
suined) and UNKNOWN (not assumed) at the same time. This in effect creates
two possible worlds, one in which the assumption is present, and one in which
the assumption does not exist (which is the same as the current world). In
fact, if there are currently multiple possible worlds (environments), creating
a new assumption has the potential of doubling the number of environments.
However, the system only creates new environmments that are significant, aund
some of the new envirommnents may be invalid (incousistent). Thus, in prac-
tice a new assumption usually adds only a few extra environments (possible
worlds).

It is usually a weak conceptual error to have an assumption justified by
other nodes. Asswmptions are basic, and other nodes depend on theni, not
vice versa.

Assumptions are also known elsewhere as assumed nodes. *

6.4 Implications

The implication is the second main entity of the system. Implications tie
nodes together. An implication has one or morve antecedents and a single
consequent, all of which are some type of node. Like nodes, implications can
store data; this is usually the name of a reason or rule thiat this implication
represents, altliough it could be a list of variable bindings, a pointer to a rule
in an inference engiue, or some other uselul data, etc. Also like nodes, the
dala is purely for the use of the user system, and is not referenced by the
ATMS.

Implications are created using the implication command. Ounce the im-
plication is created, it is fixed in place; antecedents and the cousequent cannot
be added, deleted, or changed, and the implication itsell cannot he destroyed.
Iniplications can be retracted by adding in an additional assumption node

4(There is a technical difference between an assumption and an assumed node that does
not matter to the user. An assumption is imiplemented as the conjunction of an ATMS
node {the assumed node) and a system-only special kind of node (the assumption-tag),
along with a justification {rom the assumption-tag to the assumed node. De ICleer, the
original ATMS author, basically uses “assumplion” to refer to only the assumption-tag
itself in his papers, while using “assumed node™ to refer to the atms-node. To make
matters conceptually simpler, this implementation detail has been hidden from the user.
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Figure 2: Creating a Retractable Implication.

to the antecedents, on creation, that lhas the value “This implication is not
retracted”. If this assumption is BELIEVED, then the implication is active;

if the assumption is UNKNOWN, then the implication is effectively retracted.
See IFigure 2.

An implication acts like a high-impedance “AND” gate. If, in a particular
possible world, all the nodes on the antecedent side of the implication are
BELIEVED, then the cousequent node must be BELIEVED also. However,
unlike TRUE/FALSE logic, il any of the antecedent unodes of an implication
arte UNKNOWN, then the consequent’s value is undefined-it is UNKNOWN by
default, but it is also possible for it to be BELIEVED if some olher implication
also has that node for a consequent (or il the cousequent happens to be
an assumption). Many uuplications connecting to a node thus act like a
“wired OR” in electronics. See Figure 3. If the implied (consequent) node
is the NOGOOQOD node, the implication has a slightly different eflect, as the
NOGOOD node cannot be believed; see the next subsection.

An implication is a.simple construction. It is not possible to have one
ol the antecedents to an implication be the negation of a node, or a func-
tion of a node-implications only take nodes themselves as antecedents and



Node N is implied by nodes A and B
OR by nodes C and D.

IMigure 3: Many Implicatious Justifying a Single Node.

consequents.® A simple implication can only represent a single conjunction;
it takes multiple implicatious to represent a disjunction.

It is a system error o use an implicalion as another implication’s an-
tecedent or consequent. An intermediate node should be introduced instead.

Implications have many conceptual interpretations. One is that belief in
the set ol the antecedents, when taken together, tmplies belief in the conse-
quent as well. A second interpretation is that the belief in the consequent,
il it exists, is justified by belief in the set of antecedents. A third interpre-
tation is that belief in the consequent, when taken together with beliel in
the antecedents, offers a constraint ou the allowable states of the problem.
Indeed, it is usually possible to directly translate constraint-hased reasoning
problems into an ATMS representation. Implications can also be thought of
as representing productions, or representing instantiations of inferences from
an “expert system”.

IFor these reasons, implications are also known as justifications, con-
straints, or, occasionally, inferences. The “justification” terminology is quite

5The way around this is lo create another node that is defined by the user system o
represent the negation, or the function, of the desired node or expression.
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common in the literalure, and will be used occasionally Lere. The implica-
tion itself is called a justification; one says that the antecedents justify the
consequent node, and the consequent is justified by the antecedents.

6.5 The Nogood Node ®

The NOGOOD Node is a special node that is always automatically supplied
by the system when the system resets. It can be found using the expression
(Node# 0), or the variable *nogood-node*. lt embodies the concept of in-
consistency. If any set of one or more nodes implies the NOGOOD node,
the conjunction of that set is inconsistent-it does not make sense to have
all of them believed true at the same time. It is easy to specify this using
the nogood-set command, which creates such an immplication for the user.
If the user wants a particular node set to NOGOOD so that it will never
be BELIEVED again in any possible world, it is possible {o use the nogood
command. This commaud will also work on a series of nodes, which sets each
node to NOGOOD-note that this disjunclion is a much stronger coudition
than the cortesponding nogood-set command, which still allows the nodes
to be believed in other possible worlds that don’t contain that particular set.
See Figure 4.

The NOGOOD node is sometimes also called False or Falsity, Inconsis-
tent, or The Contradiction.

7 Logical Operations with an ATMS

[t is possible to represent logical operations on nodes using the ATMS’s
implications. The basic operations ave presented here; naturally, since all of
the basic operations can be represeuted, any logical expression composed of
these operations can be represented as well. See Figure 5.

7.1 The AND operation

The AND operation (conjunction) on one or more nodes is represented by
using all of the nodes in the set as antecedents to a single implication. The
single consequent is the result. If the antecendents are all BELIEVED, then the
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Figure 5: Logical Operations Using an ATMS.



consequent must be BELIEVED as well; otherwise, it 1s undeliued, defaulting
to UNKNOWN,

7.2 The OR operation

The OR operation (disjunction) on one or more nodes is represented by using
eacl of the nodes in the set an an. antecedent to multiple single-antecedeut
implications, each of which have the same consequent, whiclh is the result
of the disjunction. If any of the nodes is BELIEVED, the result must be
BELIEVED as well; otherwise, it is undefined, defaulting to UNKNOWN.

7.3 The NOT operation

The NOT operation is a little liarder to represent in an ATMS, as there is no
inherent way to represent the negation of a node. Thus, another node must
he explicitly asserted by the user system, with the countents labeled “NOT
(the first node)”. Tle occurence of hoth of these nodes at the same time is

inconsistent; this is represented by implying the NOGOOD-NODE with their

coujunction. Thus, il the main node is BELIEVED, then the NOT node must
be NOT BELIEVED; if the NOT node is BELIEVED, then the main node must
bhe NOT BELIEVED. If either node is UNKNOWN (NOT BELIEVED), then the
other node is undefined, defaulting to UNKNOWN.

7.4 The XOR operation

The XOR. operation (exclusive disjunction) on two nodes is represented by
commbining the representations for OR and NOT. If eitlier one or the other
g .

nodes is BELIEVED, then the result is BELIEVED. Iowever, il bolli of the

nodes are BELIEVED, then this is inconsistent, and will not occur in any
valid world.

8 More Data Types

Besides ATMS-nodes, premises, assumptions, implications, and tlie nogood-
node, the system also works with envirouments, labels, and the truth eunvi-
rontnent.
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8.1 Environments

Iluvironments represent possible worlds. An environment is a set consisting
of all the assumptions that are BELIEVED in this possible world. IHowever,
since premises and the regular ATMS-nodes that are not assumptions can be
derived from the assumptiouns, they are not mentioned. Environments are as
small as possible while still being significant. For this reason, they are known
technically as characterizing environments. The name of the possible world
consisting of the environment plus all of the nodes that can be derived as
BELIEVED [rom that environmnent, is called the conteat.

The system automatically creates all significant environments, given the
sel of assuniptions. There are various functions (e.g., (Env# n)) Lo refer-
ence these environments. The function (env-assums env) returns the as-
sumplions of an environment. As a new feature, the user system can create
environments itself for its own convenience; note however that these will in
general not be minimal, and therefore will not be characterizing environ-
ents.

8.2 Labels

Whereas environments store a set of ATMS-nodes (assumptions) that are
helieved i any giveu possible world, labels store a set of possible worlds
(environments) that entail the belief of any given ATMS-node. lach ATMS-
node has a label that stores a list of characterizing environments. Iach
environnent in the node’s label is consistent, and has that node in its context.

Note that labels are minimal. Thus, bothh the environments and the list
of environments are as small as possible. If an euvironment is a superset of
another envirommnent, the larger environment is subsumed and not represented
in the label.

As a special convenience, all inconsistent environments are stored in the
label of the *nogood-nodex.

8.3 The Truth Environment

There is a special environment that has no assumptions at all. If any node
is BELIEVED in this environment, it is BELIEVED in cvery environment, be-
cause nothing has to be assumed in order for the node to be true. Such
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nodes are called premises. The environment is therefore called the Truth in-
vironment; it is initialized by the system on reset, and stored in the variable
*truth~env*, Note that if a node is BELIEVED in the Truth Environment,
it does not matter if it has any other explicil justifications; the Truth Envi-
ronment subsumes all other environnients.

9 Truth Values Revisited

The precise definitions of the truth values used in the system can now be
discussed. The ATMS operates using a rather unusual truth system. It is
important to understand this properly, in order to be able to uuderstand the
operation of the ATMS and obtain predictable results.

Most common logic-hased systenis use a binary logic with the values TRUE
and FALSE. Some systems use a trinary logic with the values TRUE, FALSE,
aud UNKNOWN.

The ATMS, however, is based on assumptions. Therefore, each node takes
on one of the binary values BELIEVED (hasically, True), or NOT BELIEVED
(hasically, Unknown, or No Opinion). (It is important to note that Not
Believed is quite dillerent from False.)® These values hold for any node in
any single possible world. In addition, these values are ouly valid for the
possible world as it currently stands; it is possible that they may change if
thie possible world is expanded. Remember that nodes represent ATMS-nodes,
assumptious, and premises.

I'here are other truth values that are derived from these. Since there are
multiple possible worlds, it is convenient to define concepts that describe the
overall behavior of the node in all of the possible worlds currently known to
the system.

The first distinction is the value set IN and outT. It a node is currently
NOT BELIEVED in all currently known possible worlds, then it is designated
OUT. Il a node is currently BELIEVED in at least one possible world, then it
is designated IN. A single node can change from IN to OUT and vice versa as
the system’s set of possible worlds progresses.”

5The difference is thal under a binary logic, ([either] X OR NOT X) is always true.
Under the Jogic used by the ATMS, this can be NoT BELIEVED. This difference has many
consequences.

"I’his definition ouly holds for consistent possible worlds, as inconsistent worlds are
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Note that therefore it does not make sense to talk about the truth value of
a uode, whether it is BELIEVED or NOT BELIEVED. Unlike other kinds of truth
maintenance systems such as a JTMS (that ouly represent one possible world
at a time), in an ATMS a node can be both BELIEVED AND NOT BELIEVED-
because it occurs in many dilferent possible worlds stinultanecously. One can
only talk about the belief value relative to a particular possible world, or
about the glohal truth values of IN and ouT. '

The second distinction is hetween PREMISED TRUE and NOGOOD. Nodes
that are PREMISED TRUE are automatically always BELIEVED in all possible
worlds. Nodes that are NOGOOD are always NOT BELIEVED in all possible
worlds. Once a node is designated PREMISED TRUE or NOGOOD, it does
not change out of this category. A node becomes PREMISED TRUE il it is a
premise uode, or divectly justified by only premise nodes. A node becomes
NoGooD if it directly solely justifies a NOGOOD node.

As was discussed before, there is a special node, called The NoGood
Node, that is always included in the system. Like other nodes, this node can
theoretically take the value BELIEVED or NOT BELIEVED. However, since The
Nogood Node is NOGOOD, it must always be NOT BELIEVED in all (valid)
possible worlds (which, of course, imiplies that it is always ouT).

These truth values apply to nodes. There are also truth values that apply
to possible worlds. These are the values CONSISTENT and INCONSISTEN'T. If
a possible world does contain a NOGOOD node with a BELIEVED value, then
this world is called INCONSISTENT. If a possible world does not contain a
NOGOOD node that is BELIEVED, then the world is CONSISTENT (or VALLD).
Inconsistency is stronger than implication and thus propagated beliel; it
does not make much sense to talk about which nodes are helieved in an
inconsistent world (unless perhaps the user system is performing debugging),
because the beliefs are inconsistent.

The classification NOGOOD also applies to worlds, and means the same
thing as an INCONSISTENT world. The usage can be determined [rom the
conlext.

considered o be not possible.
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10 Theory—Types of Knowledge

10.1 Theory

This section of the manual briefly digresses into an overview of different
theoretical types of knowledge. This is imiportaut in understanding the ap-
plication of the ATMS to actual problems.

When talking about a state, an action or some other kind of coucept,
there are at least three important attitudes thal can be taken towards that
coucept, or conversely, three ways of knowing that concept. The first is
theoretical or hypothetical knowledge. This is used to talk about concepts in
the abstract, without any commitment as to whiether the concepts actually
exist or not. An example is, “People who are asking questions” (or, more
formally, “Hypothetically, there might exist such a thing as a person who is
asking a question”). Anotherexample is, “People who are expecting answers”
(or, more formally, “In theory, there might exist such a thing as a person who
is expecting an answer.”) ,

Hypothetical concepls can be linked with hypothetical rules. An example
of a liypothetical rule is: “People that ask questions expect answers”, or,
more formally, “In theory, if a question is being asked, then always an answer
is expected.”

The second kind of knowledge is uncertain, potential, or possible knowl-
edge. This is used to talk aboutl a concept that is suspected of existing, but
the question of its actual existence is unclear or could be challenged later.
An example is, “T'his person might he asking a question™, or, more lormadlly,
“It is possible that vight now a question is heing asked”.

Note that possible concepts, when combined with hypothetical rules about
hypothetical concepts, produce further possible concepts. Thus, using the
previous hypothetical example, the new possible knowledge “It is possible
that right now an answer is expected” is now known.

Note that if a coucept is possible knowledge, it usually implies thie con-
sideration that it is also possible that that knowledge could be not true.

The third attitude that can be taken towards a concept is taking it as
actual knowledge. This is used to talk about a councept when it is clear that
the coucept actually exists, and when there is no possibility that that coucept
could be challenged later. An example is, “This person is asking a cuestion”,
or, more formally, “It is actually true that right now a person is asking a
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question™.

Actual concepls can also combine with liypothetical rules to produce fur-
ther actual concepts. Again, using the previous hypothetical example, the
actual concept “An answer is expected” is produced (more formally, “It is
actually true that right now an answer is expected”). ®

10.2 The ATMS Representation

The ATMS represents the different kinds of knowledge in different ways.
Hypothetical knowledge is represented by the ATMS-nodes. But, unless there
is a reason to BELIEVE the knowledge, it remains hypothetical, and is not
used by the system. Possible knowledge is represented by the BELIEVED/NOT
BELIEVED paradigm. Il a node is an assumption, then it represents possible
kunowledge; ATMS-nodes that are implied by assumptions and therefore also
come to be BELIEVED in some contexts also represent possible knowledge.
Actual knowledge is represented by premises, which are always believed in
all possible worlds. ‘ '

10.3 What’s Been Left Out?

One thing that has not been addressed in this section is the cuestion of mul-
tiple possible or actual instantiations of a single theoretical concept. The
representation of this is more dillicult, and is beyond the scope of this dis-
cussioln.

Another thing that has specifically not been addressed is the question of
time. All of the theoretical and possible knowledge that has been discussed
in this section is believed in a timeless sense. That is, all of the hypothetical
rules ave {rue for all time. This does not allow for the representation of
actions, where something can be changed or removed. All of the possible
worlds that are generated ave different possibilities that may be true “right
~now”, there is no way to represent the changes required to reason about
possible progressions in the [uture. The representation of this is also more
difficult, and beyoud the scope of this discussion.

5 addition, actual concepts can combine with other possible concepts when hypothet-
ical rutes have multiple antecedents. However, in this case another possibility is produced,
not another actuality.
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11 Working with the ATMS

This section will discuss the theory and practice of using the ATMS. Various
aspects of storing data, remembering concepts, and represent the implica-
tions of those concepts will be discussed. The method ol representing the
justification of a concept, along with constraiuts, conflicts, and inconsisten-
cles, will be examined.

11.1 Setting Up the System

The current official version of the system is stored in the Lisp machine
{ile server wider LMO1:>myers>golden-atms. To load tlie system, the user
should type

(load "LMO1:>myers>golden-atms')

The system resets itself upon loading, and will come back with the value
"ATMS cleared out".

In order to resel the system, type the command (reset-atms). This
erases all the previously entered ATMS-nodes, assumptious, prewises, and
implications; it resets all the counts to zero, and initializes the systemn vari-
ables *nogood-node* and *truth-envk.

11.2 Setting Up the Problem

The problem must first be examined to determine what the relevant con-
cepts are, and to understand whether they are hypothetical, possible, or
actual knowledge. Tor eacli individual concept, a node must be created.
~This should be an ATMS-node for hypothetical coucepts, an assumption for
possible concepts, or a premise for actual concepts. An implication should be
created for each rule, or justification. See section 7 for explanations on how
to represent logical operatious sucl as AND, OR, aud NO'T using the ATMS’s
implications.

Since in most cases at the start of a problem only hypothetical knowledge
exists, and there is no actual knowledge, usually the user system will start
out by building a network consisting almost entirely of ATMS-nodes. The few
ground truths that the problem has will be represented by premises.
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An ATMS ouly works with constant data. Thus, if there are any variables
in the concepts, these variables should be instantiated; a distinct node should
be created lor cach possible instantiation. If it is the case that a variable can
take on only one instantiation at a time, the additional pairwise constraint
that simultaneous beliel in value-1 and value-2 is inconsistent should be
added, using the function (nogood-set v-1-node v-2~node). This should
he called pairwise on all possible pairs of value instantiations for this partic-
ular variable. ‘

The actual mechanics of network creation are discussed iu the following
subsections.

11.2.1 Creating an ATMS-node

Suppose we want to creale an ATMS-node to represent the data A, This is
done with the command (atms-node ’4), which returus the crealed node.
Naturally, we will probably want to use this node again, so it is a good idea
to store it in a user variable: (setq node-A (atms-node ’A)). There are
two other ways to reference this node, once it has been created. Since this
is Lhe first node, (atms-node# 1) will return the node. Also, the next time
(atms-node ’A) is called, the old node will be returned instead ol crealing
a new node with the same data.? Note that this conveniently solves the
forward-reference problem when creating large networks—the user does not
have to determine whether a node has been previously created or not.

Simply creating a node informs the system that the given concept exists,
but does not say anything about whether it is believed or not. Thus, without
any further justification, the node must be asswined by default to be NOT
BELIEVED. Indeed, since it is NOT BELIEVED in all possible worlds, it is ou'r.
We can check this with (explain-node node-A) or (OUT-p (atms-node

"A)).

“This is assuming the use-uniquification system flag is set to T, which is the current
default. “The same data” is tested by using the equal function; thus strings work properly.
This fag must be set to nil if multiple copies of the same data are required to have distinet
identities. lu this case, the user is responsible {or keeping track of the different nodes.
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11.2.2 Creating a Premise

There are two ways (o create a premise. Lither we can create a new premise
node directly, e.g. witli (setq node-B (premise ’B)), or we can turn an
old node that is not already a premise or an assumption into a preniise, using
the function (premise~this-node node-A).

Since premises are by definition BELIEVED in all possible worlds, they are
always IN, and they do not contribute towards any information distinguish-
ing the possible worlds. Thus, they are not included in the environments.
The iNness can be checked using (explain-node (atms-node ’B)) or (IN-p
(atms-node ’B)).

11.2.3 Creating an Assumption

There are also two ways to create an agsumption-directly, using (setq node-C
(assumption °C)), or by using an old node that is not already an assuinp-
tion or a premise, (setq node-D (atms-node ’D)) and then (assume-this-node
node-D).
An assumption splits the universe into two sets of possible worlds—those
in which the assumption is BELIEVED, and those in which the asswnption is
NOT BELIEVED. Possible worlds are represented by environments, which can
be listed using (print-envs).

11.2.4 Creating an Implication

Iinplications have one consequent, some user data, and at least one an-
tecedent. The consequent and the antecedents must be nodes, they cannot
be other implications. It is convenient to create ATMS-tiodes and assuniptions
al the same tine that an implication is being created. Thus, if it is desired
to imply ATMs-uode C [rom the coujunction of premise A and assumption
B3, it 1s convenient to use the command:

(implication (atms-node ’C) "Because A and B -> C"
(premise ’A) (assumption ’B))-

This creates the desired implication. It also does the right thing with respect
to the nodes: if nodes A, B, or C don't exist, they are created; il they do
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exist, the system does not create another copy, but references the previously
created version.!?

In general, there is no reason to save pointers to implications, as there
are basically no significant operations that can be performed on them. lm-

plications, once crealed, cannot be modified or deleted.

11.2.5 Referencing Data

In general, as was discussed, there are at least three different ways of referenc-
ing data. The easiest is for the user system to store pointers to the nodes and
implications themselves. Since each creation funclion returns the object cre-
aled, that object can be stored inside a couvenient user variable al the time of
creation. For example, (setq my-assumption-A (assumption "Data for
Assumption A")). The second method is to reference the object using its 1D
number. Each object has an 1D number that distinguishes it; these may be
found by the ID accessor [unctions (section 3.7.2-e.g. (premise-ID node))
or by priuting the object (section 3.6). The number accessor functions (sec-
tion 3.7.1) (e.g., (Assum#t n)), given the ID number, will return the object.
This is perliaps more convenient for the interactive user. The third, and
easiest method, uses the user system data as an access key. As long as all
data is unique, siiiply calling (atms-node data) will return the previously
cerated node (or creale a new one, if it wasn’t there.) Note that this works
for premises and assumptions as well.

Finally, once an ATMS object itsell is located, the user system data that
is stored inside the object can be returned by the data accessor functions
(section 3.7.3).

11.3 Exploring the Problem

The ATMS is designed to he a system that is used by the user system in-
leractively. As the user system learns more about the problem, new nodes
and justifications should be entered. If a concept is recognized as heing no
longer hiypothetical hut possible, the node representing that concept should
be assumed, using (assume-this-node node). lf a concept is recognized as
being no longer hypothetical but actual. the node representing that concept

1 Again, this behaviour is dependent upon the system variable use-uniquification

not. having been changed from its default value of T.
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should be premised, using (premise-this-node node). If a possible concept
is recognized as actual, it can be justified with a premise.

If reasons are recognized as to why a hypothetical node could be true, that
node should be justified with (possibly new) nodes representing those rea-
sons. Il new relationships between concepts or new implications are realized,
appropriate itplications should be created.

11.8.1 Constraints

If a constraint on the problem is recognized, that constraint must he entered
into the system using a nogood commaud. If it is realized that a concept
(say, node-A) will never be believed, no matter what, the system can be
notified of this fact by using the command (nogood node-A). This is known
as retracting the node. Note that this is a permauent action. It is an error
to call nogood on a premise; this leads to all premises being NOT BELIEVED.

The second kind of nogood command deals with sets. If it is realized
that all of the nodes in a set can not together be true at the saine time, then
the command (nogood-set node-A node-B ...) should he called. Note
that this does not say that any particular node is nogood, only that the
stmultaneous belief of all the nodes is nogood. Nogood-set thus makes the
AND of a set of nodes inconsistent; nogood called on each member of a set of
nodes makes the OR of the set incousistent and is therelore a nwich stronger
condition.

It is possible to nonmonotonically retract a single node by crealing a
new assumplion (containing the data, “IThis other node is really nogood” in
a manner similar to counditional retraction of implications (I'igure 2)) and
then calling nogood-set with both the node and the assumption. When
the assumption is believed, the node is retracted; when the assumption is
not helieved, the node is not retracted. Note that the capacity to revoke
the retraction must be specified at the time of retraction; if the user system
simply calls nogood on the node itself, the system cannot later change its
mind.

11.4 Interpreting the Results

Once the problem has been set up, the user system needs to obtain the
required results from the ATMS, and be able to interpret then.
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There are two basic operalions that can be performed on the system once
the problem has been set up. The first one is asking what concepts are (or
whether a particular concept is) BELIEVED in a particular possible world.
The second operation is the dual to this: asking in what possible worlds a
particular concept is believed.

Several functions, including the explanation facilities, are built up around
these operations. How the user actually uses these functions depends upon
details of the problem and the approach.

11.4.1 System Environments vs. User Environments

There are two main approaches that can be taken towards data interpre-
tation. One is to let the ATMS system handle the environments (possible
worlds). The system only creates and reports environments that are signifi-
cant, i.e. necessary and minimal. The user system can then work with these
envirouments, in a data-driven fashion. The system performs this function
in any case; thus this approach is {aster than the second approach. llowever,
these environments can be smaller that what the user system has in mind.

The other approach is for the user to handle the environments. The user
system specifies the environments it is iuterested in, and has the system
follow the course of those environments. The user system has more control
in this case, but in general the particular environments specified by the user
will probably not he used by the system-only various subsets of them. The
results thus require more interpretation.

In the following section, general [wuclions that are used under either
approach are discussed. Then, the systein environment approach is described.
Finally, functions supporting the user environment approach are diseussed.

11.4.2 General Functions

Remember that a “possible world”™ can be thought of either as the environ-
ment (a set of BELIEVED assumptions that specify the set of concepts or
nodes that are believed), or the context (Lhe set of all nodes that are be-
lieved, given a particular envirowment). Fach context has a characterizing
environment that represents it. Although the ATMS system itself only deals
with characterizing environments, in general when the user system specifies
an environment to the ATMS this will not be a characterizing environnent.
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Whether the user system depends on the ATMS system or specifies its own
environments, il is nunportant to realize when an environment has become
nogood (inconsistent). This is tested for by the function (nogood-p env),
or equivalently, (inconsistent~p env). lHaving an cuvironment become
nogood is a monotonic process; once it is inconsistent, it stays inconsistent.
The inconsistency of an environment is a global property, unlike the NOT
BELIEVED value of a node, which is local relative to a particular environment
(e.g., see nogood-set).

A list of the assuiuplions that make up an environment can always be
returned using the command (env-assums env). A list of all of the con-
cepts that are BELIEVED under a particular environment, including believed
ATMS-nodes, assumptions, and premises, can be returned by using the com-
mand (context env); however, this is an expensive function. If a simple
test for a particular node is desired, it is much faster to use the function
(in-context-p node env), or equivalently, (in-world-p node env). If it

is known that the node is an assumption, it is even faster to use the function
(in-env-p assum env); this is the function that should be used most of the
time.

Occasionally it may be the case that the user knows that an entire environ-
ment (and all of its supersets thereafter) is nogood, even though the system
nay not believe this yet. To inform the system of this decision, the command
(nogood-env env) should be used. This essentially calls nogood-set on (the
conjunction of) all of the assumptions in the environment, so that that par-
ticular combination of assumptions can never be valid again. In geneval,
however, this should be used only because of some higher-level kuowledge or
decision that is uot part of the knowledge represented in the A'TMS; other-
“wise, the correct method is to nogood the particular node, nodes, or set of
nodes in the environmeunt that were responsible for this decision.

11.4.3 System Environments

Under the system environment method, the user system makes use of the re-
sult environments returned by the system. These will be as small as 1)()5‘:1')]@
The user systewr must then interpret the results.

The [unction (env-assums env) was already discussed to deterniine the
assumptions that an unfamiliar environment posesses. In order to get a list of
the (consistent) minimal environments in which a particular node is believed,
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use (node-label node), or equivalently, (node-envs node) or (why-envs
node).!! If a list of all of the known (consistent) environments under which a
given node is believed is desired, the function (all-node-envs node) should
be called; however, this [unction is slightly expensive, as the ATMS is designed
to work with minimal environments.

Suppose that two particular environments are interesting (say, [rom two
different nodes). It is possible to create the concatenation of these two en-
vironments by using the [uuction (OR-env envl env2). This returns an
environment cotrposed of the union of the two environment’s assumption
sels. The user system can then keep track of this single environment; the
system will mark it as NOGOOD if it ever beconies inconsistent.

One of the problems with using the environments given by the system
is that they are always minimal. In addition, the system tends to create
small pieces of power sets of the assumptions. Although the environments
from a single node are guaranteed to be minimal, that is, they are as small
as possible and any oue environment is not a subset of any other environ-
mett, when the environments from several nodes are combined, some of the
enviromments in the set will be non-interesting, “insignificant” subsets of
othier environments. To eliminate these insignificant environments, the fune-
tion (significant-envs env-list) (or, (sig-envs env-list)) should he
called. This returns a list of the remaining enviromnents, after the insignifi-
cant environments have been dropped [rom the given list. The environments
are checked for validity at the same time, so only the consistent environments
are returned, If this function is called with no argument, it defaults to ex-
amining *environments#*, a list of all the (valid and invalid) environments
known to the systeny. Thus, (sig-envs) returns the largest siguificant envi-
ronments known to the system. For the interactive user, these two functions
also have a printing output version, (print-significant-envs env-list)
or (print-sig-envs env-1list), which again delaults to the entire system’s
known environments without an argument. '

There are two ways to retract a concept. One way is done inside the
ATMS by setting the node representing tlie concept to NOGOOD, as has been
previously discussed. The second miethod is for the user system to disregard
all environments containing that concept. The secoud method costs more
in terms of ATMS computation, but it has the advantage thal concepts can

YThis is actually the same as IN-p.
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e temporarily vetracted or can be easily un-retracted without specification
aliead of time. The best function to use to lollow this method is (dont-use
assum-list env-list), which returns a list of enviromneuts consisting of
the given environment list, from whicli all environments containing any of
tlie assumptious in the given assumption list have been deleted. Disregarding
all environments in which a particular assumption is used has the result
of elfectively setting that concept to NOT BELIEVED in all used possible
worlds. There is an analogous {unction that takes any kind of ATMS node
as its input, instead of just assumptions, (dont-use-nodes nodes envs);
this function disregards an enviroument if one of the given nodes is in that
enviromment’s context. Thus, this is a more general function, but it is slightly
computatlionally expensive.

11.4.4 User Environments

Under the user environment method, the user system creates environments
consisting of sets of assumptions that the user system is specifically interested
in. The system then follows this new euvironment as well, noticing what
nodes are it its context and when it becomes nogood.

This is a relatively easy approach; it is also computationally inexpensive.
However, there is a danger thal, for any particular concept or small set of
concepts, the set of relevant assumptions picked by the user could be larger
than necessary, and therelore could even include some irrelevant assuniptions
that unnecessarily force the node to be NOT BELIEVED in that environiment.
(The previously discussed (node-envs node) function returns the system’s
record of the minimal environments for that node, in which that node is
believed, in case the systein’s opinion is desired.)

The advantage ol this method is that the user system can specify exactly
whicli environments it thinks are significant; there is then no trouble inter-
preting the results when the system returns a smaller subset environment
using the previous approach. Specifying a new environment is done using
the command (create-env assum-list), which creates and returns a new
environment if necessary, or returns the old one if the system had created
it already. 1[ an ATMS-node in the assumption list was not previously an
assumption, it is assumed by this function; however, this side-effect should
be used with care. 1f the resulting enviromment is NOGOOD, this function
currently returns nil instead of an environment.



If the user system simply wants to find out whether a particular environ-
ment exists or not, but does not want to create it if it does not exist, the
function (find-env assum-list) can be used. This function returns nil if
the environment is not already there. Find-env is a {ast function.

If there is an existing interesting environment and the user system wants
to enlarge it with one or more extra assumptions, the function (add-assums-to-env
old-env assumptions ...) will create (il necessary) and return the new
environment (or, currently, nil if the environment is NOGOOD). The old
environtnent is untouched. '

As was previously discussed, il there are two interesting environments,
and the user systenr wants to combine {hem to form an environrment consist-
ing of their union, the function (OR-env el e2) is used.

The function (subsumed-by-p larger-env smaller-env) can he used
to test whether a user system environment is subsumed by (is a superset
ol) a particular system enviromment. In this case, if the smaller system
euvironment becomes NOGOOD, the larger user environment will, too. This
[unction is extremely [ast.

When the user system specifies a particular environment, it is useful
to know whether any of the assumptions in the environment are redun-
dant (implied by some of the other assumptions) or not. The function
(characterizing~-env env) will return an environment having a set of as-
sumplions as small as possible. This function returns the given environment
il it is a characterizing env, or nil if the given enviromment is inconsistent.

11.5 Examples: Demonstration of Capabilities

11.5.1 Truth Maintenance: Consistency Management

One of the main tasks of any truth maintenance system is to manage the
consistency of the data-base it stores. If a node or sel of nodes becomes
inconsistent, the implications of this fact should automatically propagate
throughout the network.

To demonstrate this capability, a test network, shown in Figure 6, is
created using the following comunands:

(implication (atms-node ’D) ’1 (assumption ’A))
(implication (atms-node ’G) ’2 (atms-node ’D))



Figure 6: Network for Truth Maintenance Example.

(implication (atms-node ’'E) ’3 (assumption ’A) (assumption ’B))

(implication (atms-node ’F) ’4 (assumption ’A))
(implication (atms-node ’F) ’5 (assumption ’C))

As can be seen, node C is based on node D, which in turn is based on the
assumption that A is believed true. Node A is also used to justify node E
with an AND counection, that is, node A and node B3 imply node 5. In
addition, node A is used to justify node I' with an OR connection, i.e. node
A or node C implies node I'. The basic assumptions iu this case are nodes
A, B, and C.

In the network as it stands, all the nodes are IN for one recason or an-
other. Both nodes D and G have the sole environment {A}; node I¥ has the
enviromuent {A,B}, and node F has two environments in its label, {A} and
{C}. Remember that each environment corresponds to a possible world in
which this node is believed. Of course, all the assumptions have one envi-
ronment apiece, i.e. {A}, {B}, and {C}, vespectively. This information can
be summarized by using the conunand (explain-nodes).

NOGOOD-NODE is out.
A is in, under #<Env 1>: {A}.



is in, under  #<Env 2>: {B}.

is in, under #<Env 4>: {C}.

is in, under #<Env 1>: {A}.

is in, under #<Env 3>: {A, B}.

is in, under #<Env 1>: {A} #<Env 4>: {C}.
is in, under #<Env 1>: {A}.

@ T O QW

We now decide to permanently disregard/retract node A by making it NO-
GooD, using the (nogood (atms-node ’A)) command. The nogood com-
mand sets up a direct implication to the *nogood-node*. Thus, node A will
be NOT BELIEVED in all possible worlds.

By this command alone, the results of making node A incousistent are au-
tomatically propagated throughout the network. Node D and therefore node
G botlt become ouT, because they had no other justificalion. Node I also
becomes OUT, because it depends on both A and B being believed. However,
node F is still 1N, because it 1s still believed in at leasl one environment. It
now has a label with only one environment, {C}. Naturally, assumplions B
and C are unaffected by A hecoming NOGOOD, and are still IN. Again, using
(explain-nodes) gives a sumary of this information:

NOGOOD-NODE is in, under XX#<Env 1>: {A}.
is out.

is in, under #<Env 2>: {B}.

is in, under #<Env 4>: {C}.

is out.

is out.

is in, under  #<Env 4>: {C}.

is out.

Q@ Mmoo QW >s

Note that a computer program can get the same information for a partic-
ular node (rather than simply a printed explanation) by calling (why-envs
(atms-node ’A)).

11.5.2 Multiple Contexts: Parallel Contradictory Representations

An ATMS is capable of representing multiple worlds at the same time. In
addition, these multiple worlds can be mutually contradictory-things can he
BELIEVED in one world that contradict things that are BELIEVED in another
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Figure T: Network for Parallel Representations Example.

world. Both halves of a contradiction can be explored at the same time; there
is no need to switch back and forth between contexts, as the systen maintains
what is true in any one possible world. The ATMS sets up the worlds for
the user, and derives them automatically, based on the assumptions and the
nogood contradictions that are asserted.

This example starts out with a consistent single world, in which nodes
A aud B together imply node D, and nodes A and C together imply node
E. Nodes D aund I imply node 1°. The world can be found by the {unction
(print-significant-envs), which prints out #<Env 6>: {A, B, C}. In
addition, this is returned by the [unction (significant-envs) or equiva-
leutly (sig=envs). This environmeut implies all of the nodes (i.e., A througl
1.

Next, it is learned that C is actually the same as NOT B. Thus; to
have B and C be in the same world together is inconsistent. To repre-
sent this inconsistency in a permancnt fashion, the function (nogood-set
(atms-node ’B)(atms-node ’C)) is called. (This is implemented by im-
plying the *nogood-node* with the conjunction of B and C.)

This has the effect of splitting the previous single world into two (mutually
inconsistent) parallel worlds. In one world, A and B are believed, with the



result that D is believed. However, C is not believed, and tlus bhoth I and
I' are not believed either. The second world is a mirror of the first—in this
possibility, A and C are believed, and thus 5 as well, while B, D, and I' are
not believed. Notice thal node [' is no longer believed in either world. These
possibilities are again returned as a list by (sig-envs), and printed out by
(print-sig-envs):

#<Env 3>: {A,B}
#<Env 5>: {A,C}

It is worthwhile to note that under most logics, when hoth B and not
B are represented, the logic collapses and any assumption can be proved or
disproved. However, under the BELIEVED/UNKNOWN(NOT BELIEVED) logic
used hy the ATMS, when the knowledge base represents something that is
inconsistent, anything that depends exclusively on that inconsistency (e.g.,
node F) simply becomes NOT BELIEVED. All other derivations (e.g., D from
B, or £ from C) are left intact—they do not collapse simply because another
part of the knowledge base is inconsistent. Iiually, an inconsistency splits
the knowledge base into two [sets of] possible worlds—one in which only one
half of the inconsistency is believed, and one in which only the other half of
the inconsistency is believed.

Oue of the powerful features of an ATMS is that now hoth possible worlds
can bhe explored and expanded simply by performing actions on the one
ATMS data-base; there is no need to switch back and forth hetween parallel
representations in multiple worlds. Tor instance, say that it is now learned
that B implies G. Il this justificalion is entered, G becomes believed iu the
{A, B} world, but it is not believed in the {A, C} world. It was only nec-
essary to enter the one implication into the dala-hase, and the appropriate
possible world was expanded. Now, say that it is learned thal A implies .
When this implication gets added, both possible worlds are updated. Node
H is BELIEVED in both worlds {A,B} and {A, C}. Note that under nor-
mal parallel representations of multiple worlds ot using an ATMS, node H
would have had to have been added twice, once for world {A,13}, and once for
{A, C}. The ATMS allows exploration and appropriate update of multiple
contradictory worlds at the same time, using single operations.

11.5.3 Explanation: Justifying Results

(e}
ot
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Figure 8: Network for Ixplanation Example.

In this example, we have a complex network with some basic justifying con-
cepts on the left (nodes A through F), aud some possible derivatious on the
right (nodes M through O). We are willing to assume that nodes A, B, D),
and I' could be believed. Through monitoring, we have discovered that N
is an answer.!? Now, we want the ATMS system Lo explain why node N is
believed.

The first step is to find out in what possible worlds (environments) node N
is believed. This is done using the function (why-envs (atms-node ’N)),
whieh returns all the environments in which N is BELIEVED: #<Env 5>:
{A, B}. (Note that this is actually the same function as IN-p). ldeally,
there will be only one solution, but it is possible that there can he more than
one—the ATMS is powerful enough to represent this. These will be minimal
(as small as possible) and non-redundant. Solutions must he explored one

12 Actually, the monitoring process is just one more level of explanation, reached by
calling (why-envs (atms-node ’ANSWER)) and then (why-nodes (atms-node ’ANSWER)
env) to get node N, as shown in the illustration. Algo, if an interrupt-driven instead
of a polled system is desired, it is possible to install a user processing routine into the
" ANSWER node that gets triggered when the node becomes 1N, e.g. Lo report the answer.
This is done with the command (install-action ’ANSWER ‘user-rouline).
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al a time when using the followiug functions, as it only makes sense to talk
about whether a node is believed or not in a particular environment.

The euvironment itsell returns a list of exactly all the assumptions that
are used to originally justily that node~that is, i the used justilications
are recursively [ollowed all the way back, what are the assumptions at the
beginning of the justification network. However, say that we waut to get an
explanation of the immediate justifications of the node.

There are two types of answers for immediate back-chaining explana-
tions. The first is concerned with the justilication (or implication) itself.
For instance, in our example there are three justifications leading to node N:
numbers 7, 8, and 9. To obtain which justification is the significant one under
environment #5, the command (why-implics (atms-node ’N) (env# 5))
is used, which returus the list (#<Implic 11>); next, (implication-data
(implic# 11)) will then return the informatiou desired (7).

The secoud type of answer is concerned with the nodes immediately jus-
tifying the node in question. ln this example, there are six nodes potentially
justifying node N (i.e., nodes G through L). However, in the solution, un-
der environment #5 ({A,B}), only nodes G and H actually justify node N
and cause it to be BELIEVED. To obtain this immediate explanation, use
the command (why-nodes (atms-node ’N) (env# 5)), which returns the
answer (#<Atms-Node 3> #<Atms-Node 1>). Again, il is necessary to call
a data access function, in this case (atms-node-data (atms-node# 1)), to
gel the desired information G.

Of course, il the network were deeper than two levels, these lunctions
could be used recursively in a backwards-chaining mode on the previously
given answers, to offer further immediate explanations of why those nodes
were believed.

12 Conclusion

This manual has presented the theory and practice of the use of the ATR
Assumption-hased Truth Maintenance Systemn written in Lisp. Using the
functions and examples described here, the user can set up a problem, ex-
pand and explore the problem interactively, and interpret the results to the
problem as represeuted by the ATMS. The ATNS can propagate implications
to maintain truth values; it can explore multiple possible contexts simulta-




neously, even if they are contradictory; and, it can explain and justify its
results. The resulting system can be used as a tool to explore constraint,
search, logic, and multiple-world problems.
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A Implementation

As a brief review, from the user’s viewpoint, there are three kinds of nodes:
ATMS-nodes, premises, and assumptions. There is also one kind of connection
between nodes, the implication (or, “justification™). Fiunally, there are the
environments, which consist of sets of assunmiptions. Use ol the systemn con-
sists of creating nodes, and then creating implications to link them together.
The user can also indicale incousistent nodes or sets ol nodes. Environments
can then be referenced, to see what assumptions are required in a particular
possible world, and whicli possible worlds are inconsistent.

A.1 Implementation Data Structures

The actual data-structures that are used to accomplish this are somewhat
different from the user conceptualization. There are four types ol structures
in the implementation: the ATMS-node, the assumptiou-tag, the implica-
tion, and the environment. Premises are implemented as a special case of
the ATMS-node. An assumption is implemented as an ATMS-node together
with an assumption-tag, with a single-antecedent implication pointing to the
ATMS-node Irom the assumption-tag. All ol these objects are implemented
as structures lor speed. '

A.1.1 ArMms-node structure

An ATMS-node has the fields data, implies, implied-by, label, my-assum, 1D,
and rule. In addition, 1l has an associated print-function. The data field
stores the user’s data, and is not referenced by the ATMS system. The implies
field contains a list of implications that have this node as an antecedent,
i.e. tlie node implies something. The implied-by field contains a list of
implicatious that have this node as a consequent, i.e. this node is implied-
by those justifications. The label field coutains a sorted list of consistent
characterizing environments which this node is in the context of, i.e. directly
or indirectly implied by. If this node is a premise, the label cousists of a
single envirountent, the null environmeut *truth-env*. The environments
in a label are sorted by size; the size ol an environment is the number of
agsumptions it comprises. The my-asswmn field contains the assumption-tag
for this node if the node is an assumption. or nil otherwise. The ID field
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contains a unique non-negative integer identifying this node. Aund, the rule
field is usually nil, but can contain a short program that gets executed when
the node becomes IN.

A.1.2 The Assumption-Tag Structure

An assumption-tag has the fields my-node, environments, and ID. In addi-
tion, it has an associated print-function. The assminption-tag’s my-node field
contains the corresponding ATMS-node that gets assumed, thal this tag jus-
tifies. Assumption-tags can ounly justify one ArTMS-node. The environments
field contains a list of all the explicitly-identified environments this assump-
tion is in. And, the 1D field contains a non-negative integer to identify this
assumption-tag, that is unique among the assumption-tags.

A.1.3 The Implication Structure

An implication has the fields data, antecedents, consequent, and ID. In ad-
dition, it has an associated print-function. The data field contains the user
data for this implication, which is not used by the ATMS. The autecedents
field contains a list of an assumptlion-tag, or a list of one or more nodes,
that are antecedents to the implication. The consequent field contains an
ATMS-node that is the consequent of the implication. The I1) field contains
a non-negative integer to identify the implication, that is unique among the
implicatious.

A.1.4 The Environment Structure

An environment has the fields nodes, nogood-p, size, ID, and assum-bits. In
addition, it has an associated print-lunction, The nodes field contains the
context ol the environment, i.e. a list of all of the nodes that have this
euvironment in their label. The nogood-p field is nil unless the enviroument
is nogood; this provides a quick check, although it is not strictly necessary.
The size lield provides a count as to the number of assumptions in {his
environment; it 1s used to order the environment in lists. The ID field contains
a non-negative mteger to identily the enviromment, that is unique among the
environments. And, the assuni-bits field coutains a special bit-array that has
a bit set for the number of each assumption that composes the environment.
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A.2 Important Variables

Besides the data structures, there are a few special important variables that
are used by the system to represent the ATMS.

A.2.1 *nogood-node*

Upon reset, the system creates a single ATMS-node and stores it in the vari-
able *nogood-node*. This node then is used in a special manner by the
systemy it is the consequent of implications that represent contradictions,
and it is tested for to determine when to handle nogood enviromments.

A.2.2 *truth-env*

Upon reset, the system creates a single special environment and stores it in
the variable *truth-envx. This euviromwment is the empty environment; it
uniquely has no assumptions. Thus, it subsumes all other environments, and
is therefore a subset of all environmerits. Since premises have (¥truth-env*)
as their label, all premises are automatically included in all environments.

A.2.3 *reprocess-implication-queue*

This variable contains a queue of all implications that will e reprocessed.
As reprocessing propagates, implications are pushed outo this queue. Repro-
cessing continues until the queue is empty. Using a queue allows iteration
instead ol recursion.

A.2.4 ‘*environments*

Clontains a list of all environments in the reverse order created. Includes all
environments, even il they are inconsistent.

A.3 Creation and Propagation
A.3.1 Creation of ATMS-nodes, premises, and assumptions

Creating an ATMS-node per se has no extra eflect, as it is not attached to
anything when it is created. It has the delault truth value of our.
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Creating a premise involves creating an ATMS-node and then resetting its
label to the empty environment, environuent #0 (which, of course, is always
true). Premises are thius always automatically IN.

(‘reating an assumption involves creating an ATMS-node, creating a sep-
arate assumption-tag, and justilving the ATMS-node with the assumption
node. Assumption-tags are a dilferent kind of structure, coutaining less in-
formation; they are designed to augment the corresponding ATMS-node’s in-
formadtion, not duplicate it; thus, normally one thinks of the assumption-tag
and its corresponding ATMS-node as a unit. Crealing a new assuinption has
no significant extra effect.

A.3.2 Assuming or premising an existing node

ITowever, performing an assume-this-node on an existing node that is the an-
tecedent of an implication requires a possible propagation of the assumption,
whicli is done in the same way as installing a new implication. (discussed in
the next paragraph). A node is assumed by justifying it with its assumption-
tag. This inherently installs an implication (from the assumption-tag to
the assumed ATMS-node), which then causes the assumed node to propagate
{orward, reprocessing all the implications that that node is an antecedent
of. Note that there is no need to propagate backwards or to recompute
the label of the assumed node from its other, previous implications, because
assumption-tags are unique, atomic, and assigned to justify ouly the one
assumed node.

Premising an existing node involves resetting the node’s label to the
empty, Truth environment, and then propagating that node’s chiange by re-
processing all the implications that use that node as an antecedent.

A.3.3 Creating and propagating implications

Creating an implication is more complex. When a new implication is in-
stalled (or an old ATMS-node is assunied), it is necessary to propagate the
new contribution to the truth maintenauce network, by reprocessing the im-
plication. There are three cases: either the node implied by the implication
(the consequent) is a premise, the no-good node, or a regular node. If it
is a premise, propagation slops, as a premise’s label is by definition auto-
matically cousistent, sound, complete, and minimal. In particular, premises



cannot be nogood or directly imply the nogood node without another node
as an antecedent. Given that the node is not a premise, the other two cases
are discussed separately below.

A.3.4 Processing an implication with the nogood node as a con-
sequent

When an implication implies the nogood node, it means that all the char-
acterizing environments in what would be the label of the implied node (the
nogood node) are inconsistent. Thus, the first thing to do is to calculate the
label of the implied node, by forming the cross-product of the environments
(labels) of the antecedents, as discussed below. Next, all of these environ-
ments are added into a special nogood bin. This bin keeps the nogoods sorted
by size, which makes subswmnption testing laster. Naturally, the nogood bhin
is kept minimal, which means that the new nogood environments as they are
added are tested for subsuming previous entries in the bin (in which case
the previous entry is deleted). There is no need to test lor the new nogood
itsell being subsumed by a previous entry, as il has already been guarantecd
to be minimal. In addition to being entered in storage, the new nogoods
are tested agaiust all the previous environments, to see whether any of the
previous envirouments are now newly subsumed and are nogood. These en-
vironments, however, do not need to be tested for further subsumption, as
subsumption is transitive. Finally, all of the newly inconsistent environments
are removed {rom all nodes’ labels that contained those environments. These
modified nodes will then propagate their changes forward. In addition, the
environments are added into the nogood node’s label, for relerence.

A.3.5 Processing an implication with a regular node as a conse-
quent

When an implication to be reprocessed implies a node that is not the nogood,
the cross-product of its antecedents’ labels is calculated, and then ORed iuto
the current label ol the consequent. U this action changes the cousequent’s
label, the node’s change must be propagated lorward.
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A.3.6 Cross-product

Calculating a cross-product for an implication involves the permutations of
choosing one environment from each ATMS-node antecedent’s label, and com-
bining the resulting assumptions togetlher into a new environment (using OR.
on the bit vectors). These new environments then form a new label (which
will be combined into the consequent node’s current label). As these new en-
vironments are being created, they are tested for minimality aud consistency,
using the subsumption test on environments and nogood environments. If
an environment is subswned by a regular envirommnent, then it is redundant
(non-minimal) and does not need to be considered further. If an environment
is subsumed by a nogood environment, then it is nogood (inconsistent) and
again does not need to be considered further.

A.3.7 Subsumption

Subsumption is conceptually performed by testing to see whether one envi-
ronmient is a subset of another environment. The subset environment then
subsumes the superset environment. Subswumnption is actually performed by
comparing the environments’ assmn-bit vectors, for speed. 1f the OR of the
assum-bit vectors is equal to the assum-bit vector of the larger environment,
then that larger environment is subsumed by the other.

Comparing subsumption between an environment and a label is made
faster by having thie contents of the labels sorted as to the number of assump-
tions in each environment. That way, wlen testing for being subsumed, only
the environments in the label smaller or equal to the testing environment’s
size need to be processed; when testing for subsuming, only the environments
of equal or larger size need to be tested.

Subsumption tests occur when new environments are created, and when
new nogood sets are noticed or explicitly implied. In this case, il the new
nogood is subsumed by previous, smaller nogoods, it is redundant and not
noticed. Otherwise, it is a new, valid nogood, and must be tested against
environments and nogoods larger than itsell, to see whether it subsumes
them.

64



A.3.8 Propagating a node’s changes

Propagating the changes to a node (forward) in the current implication con-
sists sinply ol (re)processing all of the implications that use that node as
an antecedent, in the manner explained above. Reprocessing the implication
handles the required details.

Propagation is currently done depth-first, through iteration at the propagating-
node level and FIFFO-queue recursion at the reprocess-implication level.

A.4 TForming Answers to Queries

There are a few basic queries that the user can ask the system. The system
answers according to the following algorithims. '

Is an environment consistent? An environment is consistent il it is
not a superset of one of the environments that are known to be nogood. This
is tested by using the extremely fast subsumption operation.

Is a node IN? In other words, is there some consistent environment that
supports the node? Yes, ill the node’s label is non-null.

Is a node N in the context of an environment E?  Yes, il Il is a
supersef. ol at least one environment in N’s label. (Again, this is tested
using the subsumption operation.) No, if otherwise. llowever, il the envi-
ronment is inconsistent, the question is probably meaningless; in any case,
since only consistent environments are maintained in labels (except for the
*nogood-nodex) the query will not find a match.

A.5 Efficiency Considerations

Data structures are implemented with Lisp structures, instead of flavor ob-
jects. This results in {aster access time. Some previous ATMSs have based
their propagation on nodes, requiring a node to recompute its label from its
justifications and their antecedent nodes when a change is propagated. This
involves unnecessary computation. The ATR ATMS bases propagation on
implications, which is faster. As explained above, the propagated change
contributed by an implication is uuioned iunto the label of the implication’s




consequent; there is no need to examine the sister implications contributing
to the consequent. Some previous ATMSs have represented their labels using
lists, which require list computations. This ATMS uses bit vectors to repre-
seutl labels; as a resull, label computations are extremely fast. In particular,
the important subsumption test is represented as two accesses and a single
bit-vector operation, resulting in extremely efficient operation.
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B Discussion of Use of the ATMS

B.1 The ATMS’s capabilities
B.1.1 Atomic Data

The ATMS stores, in each node, data that is uselul to the user system.
However, the ATMS never evamines this data. The ATMS treals the data
as an atomic assertion, and only works with whether the node containing the
data is believed or not. This meaus that the user system can store auything
inside the node, including facts, lists, Lhash tables, functions, or other kinds
ol complex data structures. The data is treated as an atomic assertion, and
assigned a belief value. Later on the user system can access this data, perhaps
expanding it or modifying it inside the user system, creating a new ATMS
node to store the results of the modification.

Most {ypically, the data stored inside a node is a sentence, representing
a segment of a semantic network.

B.1.2 Positive Data

The ATMS only stores positive data. The data inside a node is either “he-
lieved true” or “not believed true”(“no opinion™), bul the ATMS cannot
represent “believed not true”.

Iun order to represent the negation of data “X”, the user system must
explicitly create a separate node with the data “(not X)” inside it (remember
that we can put anything in the data of a node that we want). Then, when
this node is believed by the systen, the ATMS is representing “believed (not
X)". (Of course, when this node is not believed by the system, it represents
“not believed (not X)”, which is still “no opinion”-it does not mean “believed

X))

B.1.3 Constant Data

The data stored in the ATMS is treated as constant, since it is not used
by the ATMS. The ATMS cannot represent variables, and there is no way
to have the ATMS instautiate different values, match patterns, or perform
other manipulations requiring variables. Thatl is the job ol the user system.
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B.1.4 Finite Problem

Since an ATMS explicitly represents all important instantiations of the user
system’s variables, the problemn must be finite.

B.2 What are the Strengths and Weaknesses of an
ATMS?

An ATMS is useful in deterministic problems. ATMSs are also useful when
there is just one solution that must be found, or several solutions that must
all be found. One ol the strengtlis of an ATMS is its ability to represent
aud reason ahout many different possible worlds simultaneously, where these
worlds can be conflicting or contradictory. Naturally, an A'T'MS is useful
when truth maintenance must be done, i.e. when the belief or disbelief of a
particular concept has consequences that propagate o other concepts; thus,
an ATMS can be employed in problems when there is bhinary evidence. It is
particularly uselul when a concept’s beliel value will be changed hack and
forth many times. ATMSs can also be employed with advantage in problems
where concepts have justifications, and where explanations for the belief in
a particular concept are desived.

However, since an ATMS represents discrete concepts that propagate
truth values in au all-or-nothing manner, the ATMS itself is not good at
stochastic problems, or those dealing with continuous variables that take
on ranges of important values. Also, [or the sante reason the ATMS itsell
is nol good al weighted evidential reasoning, wliere some possibilities must
e chosen over other possibilities because of slightly larger evidence scores.
In addition, the A'T'MS automatically finds all significant possible solutions;
thus, it is wastelul when there is a large class of solutions, only one of which
needs to be found.

Besides these, an ATMS by itself cannot represeut possible worlds that
have the same state but diflerent histories. It can represent definite nonmono-
tonic actions, simultaneous possible states, or possible mouotonic temporal
actions, but it cannot represent possible nonmonotonic actions. For this rea-
son, ait ATMS must be augmented il it is to reason aboul actions over time.
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B.3 Summary of Conceptual User Operation of the
ATMS

o The ATMS is given a set of assumptions.
e The ATMS given a set of implications.
e These are supplied one at a time.

o The ATMS incrementally updates itself as assumptions and implica-
tions come 1n:

o The ATMS determines the contexts.

o It answers: When has a context become inconsistent?
o It answers: Does a node hold in this context?

o It answers: What is in this context?

o It remembers all partial results of the user systemy; these do not have
Lo be rederived, e.g. when switching search-spaces.

o The user system can switch states back and forth easily by temporarily
changing assumptions.

As was mentioned before, it is important to note that although assump-
tions are structures in the problem solver, they are atomic in the ATMS.
Problem solving is the process of accumulating implications and changing
beliefs until some goal is met. The ATMS only kunows what the user tells it.
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Figure 9: Network for Example 1.
C Further Examples

C.1 Example 1: Two Implications
The network for this example is shown in Figure 9.

This demo demonstrates the capabilities of the ATMS system.
The variable *watch-atms#* is T, so whenever a new item

is added to the ATMS, the ATMS prints it out.

Naturally, the first thing to do is to reset the ATMS.

(reset-atms)

Atms-node NOGOOD-NODE.

(setq A1  (assumption A1) )
Assumption Atms-—node Al.

Assuming node #<Atms-Node 1> : A1l.
Implication ASSUMED: Al <= #<Assum 1>

(setq P1 (premise ’P1) )
Premise Atms—-node P1.

(setq N1 (atms-node ’N1) )
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Atms-node N1.

(setq I1 (implication N1 (1ist P1 A1) ’I1) )
Implication I1l: N1 <= #<Atms-Node 2> #<Atms—Node 1>

(setq A2 (assumption ’A2) )]
Assumption Atms-node A2.

Assuming node #<Atms-—Node 4> : A2.
Implication ASSUMED: A2 <= #<Assum 2>

(setq A3  (assumption ’'A3) )
Assumption Atms-node A3.

Assuming node #<Atms-Node 5> : A3.
Implication ASSUMED: A3 <= #<Assum 3>

(setq N2  (atms-node ’N2) )
Atms-node N2.

(setq I2 (implication N2 (list A2 A3) ’I2) )
Implication I2: N2 <= #<Atms-Node 4> #<Atms-Node 5>

(print-atms)
Nodes:

#<Implic 1>:
#<Implic 2>:
#<Implic 3>:
#<Implic 4>:
#<Implic b>:

Environments:

#<Env 0>: {}

#<Atms—-Node

#<Atms-Node
#<Atms-Node
#<Atms-Node
#<Atms-Node

#<Atms-Node 0>: NOGOOD-NODE
#<Atms-Node 1>: Al
#<Atms~Node 2>: P1
#<Atms-Node 3>: N1
#<Atms-Node 4>: A2
#<Atms-Node 5>: A3
#<Atms-Node 6>: N2
Assumptions:
#<Assum 1>: #<Atms-Node 1>
#<Assum 2>: #<Atms-Node 4>
#<Assum 3>: #<Atms-Node 5>
Implications:

1> <= #<Assum 1>
3> <= #<Atms-Node 2> #<Atms-Node 1>
4> <= #<Assum 2>
B> <= #<Assum 3>
6> <= #<Atms-Node 4> #<Atms-Node 5>

#<Env 1>: {#<Atms-Node 1>}
#<Env 2>: {#<Atms-Node 4>}
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#<Env 3>: {#<Atms-Node 5>}
#<Env 4>: {#<Atms-Node 4>, #<Atms-Node 5>}

(explain-nodes)
NOGOOD-NODE is out.

Al
P1
N1
A2
A3
N2

is
is
is
is
is
is

in,
in,
in,
in,

(nogood

in, under
in, under (#<Env
under
under
under
under

N1)

(#<Env 1>)
0>)
1>)
2>)
3>)

4>)

(#<Env
(#<Env
(#<Env
(#<Env

Implication NOGOOD: NOGOOD-NODE <= #<Atms-Node 3>

(nogood

N2)

Implication NOGOOD: NOGOOD-NODE <= #<Atms-Node 6>

(print-atms)

Nodes:

#<Atms-Node
#<Atms-Node
#<Atms-Node
#<Atms-Node
#<Atms-Node
#<Atms~Node
#<Atms—Node

Assumptions:

0>: NOGOOD-NODE
1>: A1
2>: P1
3>: N1
4>: A2
5>: A3
6>: N2

- XX#<Env

#<Assum
#<Assum
#<Assum
Implicatio
#<Implic
#<Implic
#<Implic
#<Implic
#<Implic
#<Implic
#<Implic
Environmen
#<Env 0>

#<Env

#<Env 3>

1>:
2>

1>:
2>
3>:
ns:
1>:
2>
3>:
4>
5>:
6>:
7>
ts:
: {F

#<Atms—-Node 1>
#<Atms—-Node 4>
#<Atms-Node 5>

#<Atms—-Node
#t<Atms-Node
#<Atms-Node
#<Atms—-Node
#<Atms—-Node
#<Atms-Node
#<Atms-Node

1>
3>
4>
5>
6>
0>
0>

{#<Atms—-Node 1>}
{#<Atms-Node 4>}

. {#<Atms-Node B>}

#<Assum 1>

#i<Atms-Node 2> #<Atms~Node 1>
#<Assum 2>

#<Assum 3>

#<Atms-Node 4> #<Atms-Node 5>
#<Atms-Node 3>

#t<Atms~Node 6>



XX#<Env 4>: {#<Atms-Node 4>, #<Atms—Node 5>}

(explain-nodes)
NOGOOD-NODE is out.

A1 is out.

P1 is in, under (#<Env 0>)
N1 is out.

A2 is in, under (#<Env 2>)
A3 is in, under (#<Env 3>)
N2 is out.

C.2 Example 2: AND and OR Networks

The network for this example is shown in Figure 10. This example is more
complex, but it amply demonstrates the capabilities ol the system. The
example experiments with hotl a network of AND connections and a network
ol OR counections. As the output from this program is too long to reasonably
put in a manual, this example is left as an exercise for the user.

(reset-atms)

(setq a (atms-node "A"))
(setq b (atms-node "B"))
(setq ¢ (atms~node "C"))
(setq d (atms-node "D"))
(setq e (atms-node "E"))
(setq £ (atms-node "F"))
(setq g (atims-node "G"))
(setq h (atms-node "H"))
(setq i (atms-node "I"))
(setq j (atms-node "J'))
(setq k (atms-node "K"))
(setq 1 (atms-node "L"))

(setq ABC (atms-node "ABC"))
(setq DEF (atms-node "DEF"))
(setq GHI (atms-node "GHI"))
(setq JKL (atms-node "JKL"))

(setq ABCDEF (atms-node '"ABCDEF"))
(setq GHIJKL (atms-node "GHIJKL"))



answer

ansuer

. d
(5) Setting one node apiece to nogood (¢) Setting sets of nodes to nogao

Figure 7. Network for Example 2.



(setq answer
(Implication
(Implication
(Implication
(Implication
(Implication
(Implication
(Implication

(Implication

(Implication
(Implication

(Implication

(Implication
(Implication

(print-atms)

ABC ’Impi A)
ABC ’'Imp2 B)
ABC 'Imp3 C)

DEF ’'Imp4 D)
DEF ’Imp5 E)

'DEF ’Imp6 F)

GHI ’Imp7 G
JKL *Imp8 J

ABCDEF 'Imp9

ABCDEF ’Impi0
GHIJKL ’Impii

answer ’Impil2
answer ’'Impi3

(explain-nodes)

(assume~this-node A)
(explain-nodes)

(assume-this-node G)
(explain-node G)
(explain-node GHI)

(assume-this-node B)
(assume-this-node C)
(explain-nodes)

(assume-this-node H)
(assume-this-node I)
(explain-node GHIJKL)
(explain-node GHI)

(assume-this—-node D)

H

K

(atms-node "answer'"))

Y
L)

ABC)
DEF)

GHI JKL)

ABCDEF)
GHIJKL)

-1

ot



(assume-this~node E)
(assume~this—node F)

(assume-this-node J)
(assume-this-node K)
(assume-this-node L) .

(print-atms)
(explain-nodes)
(nogood A)

(nogood G)
(print-atms)
(explain-nodes)
(nogood-set D E F)

(explain-nodes)

(nogood-set J K L)
(explain-nodes)

(print-atms)

I~
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D Command Dictionary

(add-assums-to-env old-env assumptions ...) Creates (il necessary)and
returns a new enviromment consisting of the assumptions of the old en-
viroument plus the new series of assumptions. Currently returns nil if

new environment is nogood. Does not affect tle old environmeunt.

(all-node-envs node) Returns a list of all of the known consistent environ-
ments under which a given node is believed. This function is slightly
expensive.

(assume-this-node node) Turns an ATMS-node into an assumption. (Tech-
nically, justifies the node with a new assumption-tag whose data con-
tains the node.) Returns the node. Typically used only for eflect. Of
course, the user should not call this ou nodes that are already assump-
tions or premises. '

(assumption data) Constructs and returns an Assumption node storing
the given information.

(Assumption# n) Accessor [unctions for assumptions.
*assumption-count® The number of assumptions known to the system.
(assumption-data assum) Returns the data stored in an assumption.

(assumption-ID assump) ID nwmber function for assumptions. Returns
NIL if not an assumption. ’ '
(assumption-p node) Tests whether object is an assumption (i.e., an as-

sumed node) or not.

*assumptions® This variable stores a list of all the assumptions known to
the system.

(Assum# n) Accessor funclions for assumptions.

(atms-node data) Constructs and returns an ATMS node representing the
given information. The nodes are numbered serially. Note: Node 0 is

always the NOGOOD-NODE.

(ATMS-Node# n) Accessor functions for ATMS-nodes. These functions
return the node, giveu the ID number for it. Same as (node# n).

|
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*atms-node-count® The number of ATMS-nodes, including those that have
been turned into assumptions or premises, known to the system.

(atms-node-data node) Returns the data stored in a node.
(atms-node-ID node) 1D number function for nodes.

(atms-node-p node) Tests whether object is an ATMS-node or not. NOTL:
“agsswimptious” (assuined nodes) and premises are also ATMS-110des.

*atms-nodes* This variable stores a list of all the ATMS-nodes known to
the system. This includes the assumptions and the premises.

(characterizing-env env) Returus the characterizing environment of the
given environuient (possibly itself). Returns nil if inconsistent.

(context env) Returns a list of the nodes in an environment’s context, in-
cluding the ATMS-nodes, the assumptions, and the premises. Works
even if the context is invalid. This is an expensive fuuction to call.

(create-env assum-list) Creates a new environment for the system to keep
track ol and follow, consisting of the set of all the assumptions in the
given assumplion-list. Returns the environment. Returns the old en-
vironment instead of creating it if previously there. Currently returns
nil if new environment is nogood. 1 an ATMS-node in the assumption
list was not in fact previously an assumption, it is assumed by this
function. Note that this side-eflect should be used with care.

*debug-atms* This flag makes the system print out debugging informa-
tion. Default is nil.

(dont-use assum-list env-list) Returns a list of environmeuts where en-
vironments containing any of the given assuniptions have been deleted.

(dont-use-nodes nodes envs) Returns a list of environments where en-
vironments whose context contains any of the giveu nodes have been
deleted. A rather expensive [unction.

(env-assuins env) Returns a list consisting of the assumptions that are
BELIEVED in a given enviromment. Does not check whether environ-
ment 1s inconsistent or not. Note that more, derived ATMS-nodes will
be believed under this environment, in the environment’s context.

(Environment# n) Accessor functiou for environments.

-J
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*environment-count* The number of environments known to the system.
(environment-ID env) 1D number function for environments.

*environments* This variable stores a list of all (both valid and inconsis-
tent) ol the environments known to the system.

(Env# n) Accessor function for environments.
(env-nogood-p env) Tests whether env is nogood.
(explain-node node) Gives environments in which node is IN.
(explain-nodes) Ruus explain-node on all the nodes.

(find-env assum-list) Finds and returns an existing environment. Returns
nil il it did not exist previously. Does not create any new environ-
ments. This is a {ast {unction.

geometric-limit-increase This (lag tells whether *incremental-assumption-
limit* doubles after every expansion (geometric increase) or stays con-
stant (arithmetic increase). This number indirectly affects memory
allocation, paging, and performance. Default is T.

(Implic# 1) Accessor functions for implications.

(implication consequent data antecedents) Constructs and returns an
implication. Same as (justification ...).

(Implication# n) Accessor function for implications.
*implication-count® The number of implications known to the system.
(implication-data impl) Returns the data stored in au implication.
(implication-ID implic) 1D number function for implications.
(implication-p imp) Tests whether object is au implication or not.

*Implications* This variable stores a list of all the implications known Lo
the system. Fach assumption internally generates an implication; these
are included as well.

(inconsistent-p env) Returns T if given environment is NOGOOD (INCON-

SISTEN'T), nil otherwise. An environment is NOGOOD if the *nogood-node*

is BELIEVED because of it (l.e., in its context). Same as nogood-p.
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(in-context-p node env) I the given node is in the given environment’s
context, returnus a (usually smaller) characterizing envivonment describ-
ing why thai node is believed. Otherwise, returus uil.

*Incremental-assumption-size* This number tells how much the sys-
tent’s bit-vector size is increased during the next growth cycle. See
*initial~assumption-limit*. This number indirectly affects memn-
ory allocation, paging, aud performance. Default is 50.

(inference consequent data antecedents) Constructs and returns an in-
plication (inference). Same as implication. ‘
*Initial-assumption-limit* This number gives a soft limit on the number
ol assumptions that the system can store. 1t is used to determine the
initial size of the assumption-bit-vector assighed to each environiment.
It must be set before calling (reset-atms). Set this to the reasonable
maximum number of assumptions expected to be handled by the sys-
tem. This number alfects memory allocation, paging, and perlorimarnce.

Default is 200.

(IN-p node) Tests whether node is IN. Returns a list of consistent environ-
ments entailing the node (the label) il the node is IN; returns nil il the
node is our. This is the recommeuded {unction to use when tracing a
node with a user-prograni.

(install-action node action) Installs the commmand (action) into the given
node. If the given node becomes IN, (i.c., believed in any valid context),
the given action comumand is executed.

(in-world-p node env) Same as in-context-p.

(justification consequent data antecedents) Constructs and returns an
implication (justification). Sawe as implication.

(Justification# n) Accessor function for implications.
(justification-data just) Returns the data stored in an implication.
(justification-ID just) ID number {unction [or implications.
(Just# n) Accessor [unction for implications.

(Node# n) Accessor functions for ATMS-nodes. These [unctions return the
node, given the 1D number for it. Same as (atins-node# n). Note that
(Node#t 0) returns the NOGOOD node.

0
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(node-envs node) Returns a list of the minimal environments under which
the given node is helieved.

(node-label node) Returns a list of the minimal environments under which
the given node is believed.

(nogood nodel) Builds a justification [rom the node to *nogood-node™*.
Standard method of entering contradictions, which is the same as per-
manently making the node’s data false. Tluis {function cau also be called
with a sequence of nodes, in which case each node in the sequence is

sel to NOGOOD.

(nogood-env env) Torces the given environment (and all of its supersets)
to become NOGooOD. Calls nogood-set on the (conjunction of the) set
ol assmmplions composing the environment. In general, this should be
used only because ol higher-level knowledge not part of the knowledge
represented i the ATMS.

*nogood-node* This variable stores the NOGOOD node. This node is
allocated on reset. Note that (Node# 0) also returns this node.

(nogood-p env) Returns T if given environment is NOGOOD (INCONSIS-
TENT). nil otherwise. An environment is NOGOOD if the *nogood-nodex
is BELIEVED because of it (i.e., in its context). Same as inconsistent-p.

(nogood-set nodel node2 etc) Builds a justification to *nogood-node*
based on the conjunction of the given nodes. Standard method of
entering contradictions. Note carefully that (nogood-set) of a set
of nodes, which contradicts the AND of the set, is not the same as
(nogood) ol each of the members of the set, which contradicts the on
ol the set.

(OR-env envl env2) Returns an environment consisting of the union of
the assumption sets from the two given environments. This may be
inconsistent, even if both of the previous two are not. Such an envi-
romment might not be a characterizing environment.

OS This variable Liolds the Output Stream for the print functions. Default
is T, meaning standard screen output stream.

(OUT-p node) Tests whether node is ouT. Returns T il ouT, NIL other-
wise.
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(premise data) Counstructs and returns a Premise node storing the given
information.

(Premise# n) Accessor [unction for premises. This funclion returns a
premise. Since premises are really ATMS-nodes, this is the same as

Node#.
*premise-count™® The number of premises known to the system.
(premise-data node) Returns the data stored in a premise.

(premise-ID node) 1D number function for premises. Same as (atms-

node-1D).
(premise-p node) Tests whether object is a premise or not.

*premises* This variable stores a list of all the premises known to the
system.

(premise-this-node node) Turns an ATMS-node into a premise. Techui-
cally, overwrites the label with the single, empty environment *TRUT -
ENV*, Same as (presume-this-node).

(presume-this-node node) Turns an ATMS-node into a premise. Techni-
cally, overwrites the label with the single, empty environment *TRUTH-
ENV*, Same as (premise-this-node).

(print-assum assum) Prints an assumption.

(print-assums) Prints a list of all the assumnptions, and the corresponding
nocles.

(print-atms) Dumps everything. Use this to get used to the system.

*print-data* When this flag is T, the print functions print out the data
‘inside nodes and assumptions. When it is nil, the print functions only
print out a numbered node. Set this to nil when very long data is stored
in nodes. Default is T.

(print-implic implic) Prints a given implication.

(print-implics) Priuts a list of all the lnplications, including assumption
justifications.

(print-env env) Prints an environment.



(print-envs) Prints a list of all the environments.
(print-node node) Individual item printing functions.
(print-nodes) Prints a list of all the nodes, and their data.
(reset-atms) Clears the system out.

(sig-envs env-list) Returns a list of environments where subset and incon-

sistent enviromments have been eliminated. Defaults to using *environment s,

all of the known environments, as input if no argument is given.

(significant-envs env-list) Returns a list of environments where subset
and inconsistent environments have been eliminated. Defaults to us-
ing *environments*, all of the known environments, as input if no
argument is given.

(subsumed-by-p larger-env smaller-env) Tests to see whether larger-
env is subsuned by (is a superset of) smaller-env. Returns T if sub-
sumed, nil otherwise. Iixtremely fast.

*truth-env* This variable stores the empty environment. This environ-
ment’s context contaius all the premise nodes; it is always true.

use-uniquification This flag tells whether ATMS data is treated as be-
ing unique (under equal) or whether it can be duplicated. If unique,
(atms-node data) and similar {unctions will return a previously cre-
aled node instead of creating a new one. Default is T.

*watch-atms* This {lag makes the system print out a notification each
time an item is created. Default is T.

*watch-enlarge® This llag makes the system print out a message when
3 | g

the system enlarges the bit-vector arrays for assumptions. Default is
T

(why-assumptions node env) Explains the assumptions that directly or
indirectly contribute to the given node under the given enviromment.
Returns a list of all the BELIEVED assumptions that justify the node in
the environmeut’s context.

(why-env-assums node) Explains the different assumption sets that this
node is BELIEVED in. Instead of returning a list of environments justi-
fying this node, like why-envs, this function returns the environments’
assumption sets, in the form of a list of lists of assumptions.
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(why-envs node) Returns alist of the consistent environments under which
(in whose context) this node is BELIEVED.

(why-implications node env) Explains the coutributing immediate im-
plications that make the given node believed under the given environ-
ment. Returns a list of all the active implications that directly actually
justify the given node in the given environment’s context. Does not re-
turn implications that indirectly justify the node, or potentially justily
the node but are inactive. Returns the system-generated justification
for an assumption.

(why-nodes node env) Iixplains the contributing immediately preceding
nodes that make the given node helieved under the given environment.
Returns a list of all the believed nodes that directly justify the given
node in the given environinent’s context.

(why-nogood-assumptions env) Explains the assumptions that directly
or indirectly coutribute to NOGOOD under the given environment.
The enviroument should be inconsistent. This is a very uselul function,
as it returns only the mutually conllicting assumptious thatl are causing
the problem with an inconsistent environment.

(why-nogood-implications env) Explains the implications that immedi-
ately countribute to the *nogood-node* under the given envirounent.
The environment should be inconsistent. Returns a list of the active
implicatious that actually justify the *NOGoOOD-NODE* in the environ-
ment’s context.

(why-nogood-nodes env) [xplains the immediately preceding nodes that

contribute to making the *nogood-node* believed under the given en-
vironment. The environmeut should be inconsistent.
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