
TR-1-0074

TheATMSMan叫
Version 1.1

ATMS説明書

Li

John K. Myers

真龍主・星音

February 23, 1989

Abstract

Internal Use Only

旺 ismanual presents user documentation for the ATR Interpreting Telephony
Research Laboratories LISP ATMS. The ATMS, or "Assumption-based Truth

Maintenance System", is a data-base that is able to represent and store concepts
(atms-nodes) and constraints between these concepts (implications). Some

concepts are assumed by the user. Depending upon whether these assumptions
are BELIEVED or NOT BELIEVED, different multiple possible worlds known as

environments are set up. In addition to storing data and implications, the ATMS
performs "truth maintenance"--if any concept or set of concepts becomes

inconsistent, the effects of this change are propagated through implications to
other concepts that might become inconsistent, thus "maintaining the truth" of
the system as a whole. Also, the ATMS offers explanations as to why concepts are
believed in a particular possible world.

The ATMS was developed to enable ATR to have modifiable LISP source code to
an assumption-based TMS. This was required for performing plan recognition

using an ATMS.
The ATMS is a general-purpose system that can work with any application that

requires an assumption-based truth maintenance system; it is not limited to plan-
recognition applications. The current version of the ATMS supports various

assertion, query, explanation, and output functions for the user.

◎ ATR Interpreting Telephony Research Laboratories
◎ ATR自動翻訳電話研究所

Ack11owledgn1e11t

This research was supported by ATR Interpreting Tclcphony Research

Laboratories. I would like to express my gratitude to Dr. Akini. Kurema.tsu,

President of Lhe Interpreting Telephony Research La.bornt.ories, 「ortlw iuvi-

t.a.tion to cornc to ATH, for providing the support t.lrnt eua.bled this res(•arch
to be clone, and for 1lie intnesL sl1ow11 i11 this work. I am also grnt.eful t.o

l¥Ir. Terua.ki Aiza.wa., Ilea.cl oft.he Natural Laugua.geじmlernt.amli11gDepart.-

lllf'lli.、foreIIicient 111a.nageme11t arnl e11coura.geme1Jt、a.ndfor providing the

time uecessary to explore some of the importa.ut, more basic research area::;.

In addition, I am grateful to Mr. Kiyoshi Kogure, who helped siguifirnntly in

rna.ny of the small details in bringing me to ATR a.ncl getting me c1cclimat.ed

to a new culture, lwsides providing useful research discussions. Thanks are

also due to Mr. llitoshi Iida, who provided helpful suggestions a.s to the tech-

nirnl direction of t.his work. I would also like to acknowledge the t.eclrnical

contributions of Mr. Hemi Zajac, l¥1r. Mart.in Em<→ le, aml Dr. Cayl<'Sa、t.o,

wl10 proviclf,d useful discussions and heヽ!pi、ulidcうと1.sfor i111provernc11t. Finally,

I would like t.o a.ck11owledge the friendliuess aml t.he helpfulness of t.he rest

of the people in the Natural Language Understanding Department..

Contents

1 Introduction

2 Glossary

5

7

3 Dat cl C cl
.

a an onunan Explanat1011 13

:3.1 System Da.t.a、Types... ．． 1:3
:3.2 Creation Commands 1:3

:3,:3 l¥lodifica.tion Commands . l•l
:3.-1 Deletion Conunands . 15

:3,5 User Query Commands ． 15

:3.6 User Output Commands 16

:3.7 じserAccess Comnrnncls . 17

:3.7.l Number Accessor Fund.ions 17

:3.7.2 ID Accessor Fu11d.io1ts 17

: 3.7.:3 Data Accessor Functions 18

:3.8 . Cont.ext Commands ... 18

:3.9 Environment Commands 18
3り1 C'・. l E ・. 1enera. nv1ronment Funct1011s 18

:3.9.2 S , ystem Env1ronme11t Functions HJ

3.~J.:3 しTser E11v1romnent Functions 20
:1.10 Explanation Comma11c―ls ．． ．． 20
:3.11 System Activity Commands 22

3.12 Significant Variables . 22

:3.1:3 System Flag Variables 2:3

4 What does an ATMS do?

5 An Introduction to Truth Values

25

27

6 What's Inside an ATMS? 27

G.l ATMS Nodes ． ．． :w
6.2 Premises :30

6.3 Assumptions . 30

6.」 Implications. 31

6.5 The Nogoocl Node :3-1

1

7 Logical Operations with an ATMS

7.1 The AND operation.

7.2 The OR operation .

7.:3 The NOT operation .

7.」 TheXOR opera.Liou.

8 More Data Types

8.1 Environments .

8.2 Labels

8.3 The Truth Environment

9 Truth Values Revisited

10 Theory-Types of Knowledge

HU Theory ...

10.2 The ATI¥iS Representation .

10.:3 What's Been Left Out? .

11 Working with the ATMS

11. l Setting l「pthe System .

11.2 Setting ll p the Problem

11.2.l Creating an ATMS-uode.

11. 2.2 Crea.ting a. Preinise . . .

11.2.:3 Creati1Jg a.11 Assumption

l J.2.4 Crea.ting an]rnplication

11.2.5 Referencing Data

11.:3 Exploring the Problem .

11.:3亀 1C ,onstramts .

ll A Interpreting the Results

11.4.1 System Environments vs. User Environments

11.4.2 Gellera1 Functions .. .

11.4.:3 System Environments

11.-J.4 User Environmeuts

11.5 Examples: Dernoustratio11 of Capabilities .

lJ.5.1 r「rutl1I¥la,intenance: Consistency I¥fanagemcut

11.5.2 I¥lultiple Contexk Parallel Contradictory Representa-
tions

34

0+
:JG

:3G
:JG

36
:n
37
:37

38

40 i
ヽヽ

,10

41
Lu

42

42
,12

4:3

H
44
4,1

45

45

4G

4G

47

47
,rn
50

51

51

5:3

ぅl

11.5.:3 Explanation: .Justifying Hesults 5,5

12 Conclusion 57

A Implementation 59

A.1 lmplementat1011 Data Structures Ml
A.1.1 ATMS-noc―le structure .. ．． 5!)

A 1・> Tl .. ~1e Assnmp1.1011-Ta.g Structure GO

A.1.:3 The Irnplica.tiou Strud-ure GO

A.l .4 The E11Yfromue11t Structure GO

A.2 Important Variables ．． ．． Gl

A.2.1 *11ogood-11ode* Gl

A.2.2 *truth-euv* Gl

A.2.:3 *reprocess-implica.tio11-queue*。. • • • • • • • Gl

A.2.4 *environments* Cil

A.:3 Crea.tion and P ropagat1011 Gl

A.:3.1 Creation of ATl¥lS-nocles, premises, and assumptions . . Gl

A.:3.2 Assuming or premising an existing node G2
A'3・3 C ・ 1.. .. ,real.mg am propaga.tmg 1mpbcat1ons 62

A.:3.4 Processing a.11 implication with the uogoocl node as a.

co11seqnent . (;:J

A.:3.5 Processing au implication with a regular uode a.s a con-

sequent c;:1
A.:3.6 Cross-product CH

A.:3.7 Subsumption . (i.J

A'3 ... 8 Propaga.t.i11g a. Holle s changes G5

AA Forming Answers to Queries 65

A.5 EiTicieucy Considerations . G5

B Discussion of Use of the ATMS 67

13.1 The ATJ¥1S's capabilities ... ．． 67

B.1.1 Atomic Da.t.a. 67

B.1.2 Positive Da.ta G7

D.1.:3 Coustaut Data G7

B.1.4 Finite Problem 68

D.2 What are the Strengths and Weaknesses of an ATMS? GS

13.:3 Summary of Conceptual User Operation of the ATl¥iS (i~

3

C Further Examples 70

C.1 ExarnplP 1: Two lmplicat.ions 70

C.2 Example 2: AND and OR Networks . 7:3

D Command Dictionary 77

List of Figures

1 Gra.phica.l Conventions for depictiug the ATIVIS. 28

2 Crea.ting a Retra.ctable lmplica.t.ion. :32
:3 l¥fa11y lmplica.tions Justifyiug a. Si11gle Node, ~rl
'± The nogood a.ud nogood-set commands .. :35

5 Logical Operations Using a.n ATMS. :3s

6 Network for Truth l¥faintena.uce Example. 52

7 Network for Parallel H.eprese11ta.tions Example .. 5,J

8 Nf'twork for Explanation Example. 5G ， Network for Example 1. 70

10 Network for Example 2 7,L

4

1 Introduction

This ma.n11a..l describes the ATR Interpreting Telephony Research La.born-

tories'ATl¥lS (Assu111pt.io11-ba.sed Trutl1-Ma.inte11auce System), version 1.1.

The ATl¥lS, or "Assumption-based Truth l¥faint.enance System", is a data-

base that is able to represeut and st.ore concepts (atm.s-nodes) and constraints

betweeu these concepts (implications) that occur in different possible situ-

at.ions at. the same 1.ime, known as multiple simvlta11eous possible worlds.

¥Vorlcls a.re set up by "assuming" a. concept—if the assumed concept is 1兄

lieved, this contributes to forming one possible world, whereas if the as-

sumption is disregarded (not believed), this forms a. different possible world.

ln addition to storing data and implications, the ATMS performs "truth

m nint en、a-ncで"-ifa.ny concept or set of concepts becomes inconsistent, the

effects of this cha.nge a.re propa..ga.ted through implications to other concepts

that might become inconsistent、thus"maintaining the truth" of the system

a.s a. whole. Although a. valid possible world can only contain co11sist.e11t

concepts within its(ぅ1£1there is nothing preventing the set of concepts in one

possible ,vorld from being iuconsisteut with the concepts in a.not.her world.

This manual starts out with a glossary, wliicb defines the technical terms

t.liat. are used. Next is a connnand expla.na.tion section that. gives a brea.kdown

of a.11 the commands used in the system, grouped by function. A ft.er this,

t.lw ma.ima.l starts witli a.n introduction to ,vha.t, a.n ATMS does, a. brief non-

technical look at truth values, and a discussion of the types of data structure

objects that the system works with to represent problems. These objects

ca.n be put together to form relationships a.nd logical operations; the method

of representing the basic logic operations is discussed next. Following this,

the slightly more complex data structures required for interpretation are

discussed.

The next section gives a teclmical discussion of the meaning of various

truth va.l ues used by the system. Following this, Lhere is a. theoretical clisrns-

sion a!Jout di『erenttypes of knowledge, and how the ATl¥IS can represent

these various types.

r「hisis required Lo understand the next section, which is a discussion of

t.be actual、pradicaluse of tlie ATMS system, referring to specific cornma.ucls.

The methods of setting up the system, setting up the problem, exploring the

problem, and interpreting the results are discussed. After this, concrete

examples that demonstrate different aspects of the use of the system are

r
J

discnssecl in detail.

Tl1P manual concludes wit.Ii the a.ppendiciPs. Included here iR a. cliRcus-

sion of the implemellta.tion of the system, a.ncl a.11 a.lpha.betica.l index of the

commands used by the system.

The first-time reader should probably briefly glance a.t the glossary and

the command explanation section, before going immediately to the introcluc-

tory explanations a.ml reading them iu order. After reading the technica.l

discussion of the <lif「erenttypes of truth values, the reader ca.n go back to

the command explanation sect.ion an<l read it a.gain iu <lepth, to get a. good

u11dersta.nding of the syst.ern. The types of knowledge sectiou should be rea.<l

l叫・orethe sections on working with the AT!v'lS and the examples. Tlie im-

plementatio11 appernlix, although useful, is not. required to underst.aud how

to run t.lte system. The rnanua.l contains an aJphahetical glossary aucl the

con1ma11d explanation system a.t the front, a.ncl the connnau<l clictioua.ry a.t

the ba.ck, for easy reference.

Tliis manual is intended for the naive user who has never worked with an

ATI¥lS before. The user should be a.ble to read the ma.nua.l, rnu the examples,

a.nd a.ft.(、rwa.rdsu11dersta.11d how to use the ATl¥iS. However, some familiarity

with basic computer science concepts would be helpful. Also, it, is assumed

tba.t the reader is familiar with the LISP computer la.ugua.ge's syut.a.x. Tli<: ヽ

manual is clcsigne<l to be self-contained; no other refcreuce source is needed

to nm the system.

／

＼

／

6

2 Glossary

111 the clefiuitions in this sect.ion, dnlics represe11t terms that are cle什neclelse-

where under other definitions; bold face represents the term itself. {「nderlining

is occasionally used for emphasis.

Antecedent The IF pa.rt. of an IF-THEN concept. Ea.ch implication can

have one or more a.11tececlents.

Assert1011 A concept. A "fact'', that will eitl 1 1「 l1er)e)e 1ev奴 ornot bel!E'ved.

Assertions are represented by ATMS-nodes. Assertions can be sentences

or data-structures in the user system, but they are treated as atomic

by the ATrvIS.

Assume The action of augmenting an ATl¥1S-nocle by turning it into an

assumption.

Assumpt1011 A concept t.lrnt t I 1e user svst.em thinks 1s basic or 111 ・flnentia.l.

Assumptions are concepts on which other coucepts clepeucl. Also、the
data-structure that represents this concept. Assumptions a.re AT11S-

nodes that ha.ve been specially marked, by assum.ing them. Typically,

assumptions will jnstzfy a network of AT11S-nodes. A single assumption

can be DELJEVED or NOT BELIEVED. In fact, it takes on both of these

values sinrnlt.a.neously; this serves to split the knowledge base iuto two

different [sets of] po.s.s-iblt worlds.

ATMS-node The basic atomic data structure for tlie ATMS system. An

AT11S-node st.ores a. si11gle concept (or assertion).

Believed A truth va.lue for a. concept (AT:MS-norle) in a. part.icula.r poふ

8ible world (co11te:rt). BELIEVED corresponds to THOE in a trina.ry

THUE/FALSE/UNKNOWN logic. See not believed.

Characterizing Environment A characterizing environment is a con-

sfrdcnt, complete, minimal em・ironmeut that characterizes (u11iquely

!'<"presents) a context. Since all valid environments that are not created

by tlie user are always characterizing euviroumeut.s, this coucept ma.y

be ignored. See rn virnn ment instead.

I
I

Concept An idea. a.bout something, represented by a.n ATMS-11ode or an

implication.

．． . .
ConJtmct1011 A logical AND. If叫 oft.lie items rn a co11Jundio11 a.re be-

lieved, then the conjunct.ion as a. whole is believed.

Consequent The TIIEN pa.rt of a.11 IF-TIIEN concept. Ea.ch implication

ha.s one consequent.

Consistent A confc:rt is consistent if it is not inconsistent. Concept.na.lly,

a possible world is consistent if all the thiugs that a.re believed in that

possible world can a.11 be believed a.t the same time.

Context The set of a.11 BELIEVED no<―!es tha.t a.rP implied by a.n environ-

ment's assumptions. Au environrnent is ouly a. set of assumptions,

whereas a. context consists of those a.ssumptious plus all AT11S-nodes

that are directly or indirectly implied by those a.ssurnpt.ions (includ-

iug a.11 premises), following a.11 a.dive implica.tiou cha.ins forward a.s far
as possible. A context is a.n entire possible world, including a.11 the

concepts implied by it.

If a. context includes the *nogood-node*, that context is inconsistent.

Constraint A concept t.ha.t. rules out tl
．

1e poss枷 lityof something liappPn-

ing, i.e. several specific co11ccpts ocn1rring at the same time. Tliat
is, it states tha.t tbese concepts ta.ken together a.re inconsistent. Con-

straints are implernent.ecl in the ATMS system by implications.

Contradiction A contra.diction is a. set of concepts tha.t can11ot all be BE-

LlEVED a.t the same time. See incon、si8fent.

Deletion Physica.lly removiug a.u itnn from the lwowlr:dgc base. The curent

system cannot individually delete items; it can ouly 1でtmctthem. See
冗 tract、1011、.

Disjunction A logica.l OR. If any one or more of the items in a. disjunction

is believed, then the clisj undiou a.s a. whole is believed.

Disregarded This mea.ns, Not used by the system. Anot.1庄 r1rnme for Not

BdicN.・d.

8

Environment A data. structure that stores a. list of believed assumptions.

Au environment represents a.nd is the symbol for a. possible world. An

environment implicitly implies a. confe;rf. An envirom11e11t ca.u be con-

sisicnt or inconsistent.

．．
Imphcat1011 A logical f . r orm, cousrntrng o[tlie conp1.nctwn o a. mnnber ol

ant cccdcnt.s, aud a siugle con8cqucnt. lf, in any one possible world, all

of tl1e antecedents are BELIEVED, then this impliPs that the conseque11t

must be BELi EVED as well. The antececleuts imply the conseque11t. An

"implication" is both this concept, ancl the name of a data structure

that represents this concept.

Implications can have aRsociatecl clata attached to them that explain

(to the user system) why this implication is valid. ThiR rnll simply be

the name of tbe implication, or a user system representation of the rule

that this implication represents, etc.

In A truth value for a concept (ATJ¥IS-node) ta.ken over the set o[all known

possible worlds (con/e;rts). lf tlte ATMS-uocle is BELlEVED iu叫 leastoue

kuown, consistent context, then it is IN. See OlJT.

. .'..
Inconsistent A conte::d is inconsistent 1f 1t. rncludes t.he *nogood-node*.

Conceptually, a possible world is inconsist.eut if it has a. thing that

cam10t be believed、orif there are things in that possible world that
ca.11110(. lw believed together. l11consiste11cies (cont,・adiclion.s) a.re as-

sert叫 intothe ATl'vIS by the user system by usi11g the (nogood) or the

(nogood-set) comma.uds.

The system only uses the inconsistencies that it is t.old about; there
are no implicit inco11sisteucies. ln pa.rt.icular, all negatives have to be

expressed explicitly.

Invalid In consistent.

Iten1 An instantiation of any data structure, in duding an environment, an

ATI¥IS-uode, an implication, etc.

Justification A justification is a.dually the same as an implication, but the

conceptualization is differeut. A believed AT!¥1S-uode that is not an

assumption must have at least one implication that justifies why this

，

node is believed. The node is the con8eqnent of the justification, a.ncl

the node is justi恥 1by the antecedent nodes. All of the antecedeuL

11ocles must be bcliev叫 inorder for the uocles to "a.ct叫 lyjustify'り

the consequent.; otherwise, they simply "potenLia.lly ,iustify" the co11se-

queut.. The jusLifica.Liou isしhelink between the a.11tecede11t.s aud the

conseque11ts. A justification is both this coucept., and a.n a.lterna.tive

name for the implica.Liou data. structure that represents this coucept..

A justification can have associated data, attached to it that explains

the reaso11 behi11d tl1a.t justification. This could be a. na.me, or some

other concept relevant to the user system.

Knowledge Base The sum total of assertions that lrnve been ma.de t.o tlie

system. The contents of the ATl¥fS system, looked upon a.s a data-base、

that represents knowledge.

Label A set. of envim11mc・11.t.s atta.khed to a, node. Ead1 enviromnent. is

consistent, and the node is BELIEVED in each environmeut. The s叫 is

complete but minimal; thus, larger (subsumed) environments having

110 new information will uot be list.eel.

Minimal A label is minimal if it contains the smallest possible significant

environments. Tedmica.lly, a. set of enviro11rne11ts is minimal 1,,vhe11 110

・e11viro11me11t in the set is subsumed by a.uother euvirou111ent in tbe

set. Because label environments COllsist of sets of a.ssurnpLionR that

justify a. node's concept, ma.inLa.iuing a. minimal label st.ores ouly tlw

assumptions that a.re truly relevant.

Node An ATl¥18-node, Assumption, or Premise.

Nogood A loose term that technica.lly means in、consistentwhen applied t.o

an enYironment, but can also mean OUT (or even sometimes, incor-

rectly, not枷heved)when applied to a node. ¥Vlien a.n environment

becomes nogood, there is 110 way to reverse this change.

Nogood-Node A special node used by the system to embody aud represent

the concepL of nogood or£nconsistcncy.

Not Believed A truth value for a. concept (ATMS-nodf) in a. pa.rticula.r JHJ8-

sible world (conte:rt). NOT BELLEVED corresponds to UNJ{NOWN in

、＼、

10

a t.ri1rnry TROE/FALSE/UNKNOWN logic. See枷lie11ed. Otber ways of

tltinking a.bont NOT BELlEVED include DlSHEGARDED, or NO OPINION.

Note that NOT BEi、TEVEDis not the san1e as FALSE; there is no way to

explicitly represent FALSE using an AT11S.

No Opinion NOT BELIEVED.

Out A truth value for a concept (ATJ¥JS-node) taken over the set. of a.II known

JJ088ible world8 (confe:d8). If the ATMS-nocle is NOT BELIEVED in all

knmvn, consistent contexts, then it is OUT. See lN.

Possible World Something that could he happening. An iutuitive concep-

tualizc1.t.ion of an environment and its conf e:rt. A self-consistent. set of

assertions that a.re all believed.

Premise A concept that is considered to be always true, no nrntter what.

Tecl111irnlly, a, premise is BELIEVED in all possible worlds. A premise

cannot be retracted.

Retract1011 Taking an assertion back; no longer believing it. n etrnction
essent.io.lly consists of making au assertion NOT BELIEVED in all con←

siderecl possible worlds. This can be done 1wnna1wntly by set.t.ing t.he

node rPpresentiug the assertion i.o directly irnply NOGOOD; or, itぐau

be clone couclitioua.Jly by lrnvillg the uocle, and a11 assurnptiou that. Llie

uode is reaJly retract.eel, toget.l1er imply NOGOOD. Alt.Prna.1.ively, re-

traction can be ace叩 1plishedby not considering any possible worlds

in which t.be uocle is BELIEVED. Retraction differs from deletion in

that deletioll physically removes the node, whereas retraction simply

removes the早 ofthe node by the system. Items cannot be deleted in

the current system.

Subsumed An environment is subsumed by another environment if it is

a larger svptrset of the beliefs of that e1Jviron111ent. For inst.ancc, e11vi-

romnent 1 cout.ains belie,・ed c011cept A, "The computer has era.sh叫"'

while environment 2 cont.a.ins believed concept A plus believed c011cept

13, "There is a. pen on the table". Environment 2 is subsu111ed by

environmeut 1. To obtain a: minimal represeutation, subsumed c1wi-

ronrneuts a.re eliminated from labels.

11

Truth Maintenance Tbe prol>lem of maintaining the correct trutli value
of assert.ions i.lrnt are based 011 tlie t.ruth value of other assertions. Si11cで

there can be loug cha.ins of (,rut.h depc11dencies, a. pa.rticula.r truth value

t.ypicaJly propagates through ma.uy nodes.

Truth Maintenance System (TMS) A computer system that performs

t.rut.h ma.iutenance. There are several kinds. An Assum.ption-basul

Tndh 11lai叫cnanceSystem allows the representation of multiple possi-

ble worlds simultaneously, whereas most other kinds can only represent

a single possible world.

Unknown See NOT BELIEVED.

User System The user system is a computer system out.side of the ATl¥IS、
tha.t. uses the AT1-1S to l1elp solve its problems. The us<~r system will
have data. strudures and informa.t.iou that the AT.l'vJS kuows not.bing

, a.bout. The ATMS stores data. for the user system, and reports answers

to it.

Valid Not. inconsistent.

World See possible world.

9
]

ー

3 Data and Command Explanation

This section presents a description of the system's commands. These are

arranged by the type of command.

3.1 System Data Types

There are five explicit major kiuds of data in the ATMS system. These are:

ATMS-node A node. Otherwise k11ow11 a.s a. (―'.onccpt, a Statement, or

(sometimes, depending upoll the usage) an Assumption.

premise A 11ode that is always Lrue. H does 11ot have its own kind of cla.ta.

structure. Premises have the empty environment (#0) a.s their label.

．
assumpt10n A iunclament.a.l node that is used to justify otl1er concepts.

Assumptiolls are both BELIEVED a.ncl NOT BELIEVED. They are us叫

for enYiroumeuts.

implication An AND GATE strndure bet.ween nodes. Takes nrnny an-
tecedents aucl one consequent. If a.11 the a.ntece<lents are IN, then the

consequent is IN. Also known a.s a .Justification, a Constraint, or an

luference.

environ1nent A set of assumptions. Each a.ssurnpt.iou in i.l1e environm叫

is BELIEVED under t.ha.L euvironment. Also known as a. Possible ¥,Vorld,

Assumption Set, or Consist.ency Set.

3.2 Creation Commands

These are the basic commands. They are the ones used most oft.en by the

user system.

(reset-at ms) Clears t.he system out. Expunges all previously-defined ATMS-

11ocles, assumptions, premises、implica.tions,aud environmeut.s. Auto-

matically initializes Nod哨 0as the NOGOOD-NODE, and Environ-

ment# () a.s the Truth Euviro11me11t..

13

(atms-node data) Const.mets a11cl returns an ATMS node representing the

giveu information. The nodes a.re 1rnrnberecl serially. Note: Node O is

a.lwa.ys the NOGOOD-NODE.

(premise data) Constructs and returns a. Premise node storing the given
呵 orma.tion.

(assumption data) Constructs and returns an Assumption node storing

the given information.

(implication consequent-node data antecedent-nodel A2…) Co11st.ruct.s
a.nd returns a.u implication.

(justification consequent-node data antecedent-nodel A2 ...) Same

as implication.

(inference consequent-node data antecedents) Same as implica.Lion. The
"inference" terminology is supported but not encouraged; use "impli-
cation" or "justification" inst.ea.cl.

(nogood nodel) Builds a justifica.tiou from the node to *nogood-node*.
This is the sta.ncla.rd method of entering contradict.ions, or iu otlwr
・words permanent.ly making the node's da.ta. false. This fuuction can
also be ca.Heel with a. seqnence of nodes, iu wbich case ea.ch node in the
sequence is set (.o NOGOOD.

(nogoo<l-set nodel node2 ...) Builds a. justifica.tiou t.o *nogood-node*
based ou the conjunction of the given nodes. Starnla.rd met.hod of
entering cont.radictio11s. Note carefully tha.t (nogood-set) o「a.set
of 11ocles, whid1 rnntrndicts the AND of the set., is not the same as

(nogood) of ea.ch of tl1e members of the set, which coutra.clicts the
OR of the set.

／

3.3 Modification Commands

There is no way to modify an implication 011ce it has been created. There is 110

way to retract the a.ct.ion of turning a. node into a. premise or a.n assumption.

All user data Urnt the system stores ca.n be moc.li:fied usiug the setf
function called on the clとし、ta.accessor function.

↓

,
L

ー

(presume-this-node node) Tnrus a11 ATMS-nodc into a premise. Teclmi-

rnlly, overwrites the label with the single, empty environment *truth-env*.

(premise-this-node node) Turns a11 ATMS-node into a premise. Sa.me as

(presume-this-node).

） (assu1ne-this-node node Turns an ATMS-node rni.o a.n assumption. (Tech-

uica.lly, justifies the node、Yitha. new assumption-tag whose cla.ta. cou-

ta.ins the node.) Returns the node. Typica.lly used only for effect. Of

course, the user should not call this 011 nodes that a.re already a.ssump-

tions or premises.

3.4 Deletion Commands

There are no individual deletion cornrnauds for the system. Concepts ca.n be
retrnct.ecl, but they camwt be deleted without resetting the entire system.

(reset-atms) Clears the system out Expunges all previously-defined ATJ¥IS-
nodes, assumptions, premises, implications、auclenvironments. Auto-

ma.tirnlly initializes Node# 0 a.s the NOGOOD-NODE, aucl Envirou-

ment# 0 a.s the Trutl1 Enviromneut.

3.5 User Query Commands

(explain-nodes) Runs explain-node on a.11 the nodes.

(explain-node node) Prints out enYironments in which node is IN.

(env-nogood-p env) Tests whether env is nogood.

(IN-p node) Tests vvhetlier nocle is IN. Hetmns a list. of consist.e11t. environ-

uwnt.s entailing the node (t.lte label) if the 11ocle is IN; returns nil if the

node is OUT. This is the recommended function to use when tra.dng a

node with a. user-program.

(OUT-p node) Tests vvhdher node is OUT. Returns T if OUT、NILother-

WISE'.

(atms-node-p node) Tests whether object is a.11 AT11S-node or not. Note:
assumptions aucl premises are also ATMS-nocles.

ー5

(premise-p node) Tests whether object is a'premise or uot.

(assumption-p node) Tests whether object is an assumption or not.

(implication-p imp) Tests whether object is an implica.Lion or not.

3.6 User Output Commands

,(print-nodes) Prints a list of aU the nodes, and their data.

(print-assums) Prints a list of all the assumptions, and the corresponding

nodes.

(print-implies) Prints a list of all the implica.tions1 inducliug a.ssumptio11
j usLifica.tious.

(print-envs) Prints a. list of all the environments.

(print-atms) Dumps everything. Use tliis to get used to the system.

(print-node node) Individual item printing functions.

(print-assum assum) I牙iutsa single assumption.

(print-implic implic) Pri11ts a single implication.

(print-env env) P ri11ts a. single environment.

(print-significant-envs env-list) Prints tlie siguiflca.nt (non-subset., valid)

environmeuts from a given list. Defaults to all tl1e k11ow1J enviromuents

if given no argument.

(print-sig-envs env-list) Prints the significant (non-subset, Ya.lid) euYi-
ronments from a given list. Defaults to a.11 the known e1wironme11!.s
if given no argument.

16

3. 7 User Access Commands

3.7.1 Number Accessor Functions

Each object is given an 1D nnmher to distinguish it. Calling these functions
with the nurnber returns the object.

(Node# n) Accessor functions for ATMS-nodes. Given its ID number, these
functions return the node.

(ATMS-Node# n) Sarne a.s (Node# n).

(Premise# n) Accessor function for premises. Since premises a.re really

ATMS-nodes, this is the same as Node#.

(Assm11# n) Accessor function for assumptions.

(Assumption# n) Accessor function for assumptions.

(Implic# n) Accessor function for implications.

(Implication# n) Accessor function for implications.

(Just# n) Accessor function for implications.

(Justification# n) Accessor fuuction for implications.

(Env# n) Accessor fun di on for environme11ts.

(Environment# n) Accessor function for environments.

3.7.2 ID A ccessor Funct1011s

These functions return the ID number for the given object.

(atms-node-ID node) ID number function for nodes.

(premise-ID node) ID munber function for premises. Same as (atms-node-ID).

（ assu111pt1011-ID assun1p) ID number function for assumptions. Heturus
NIL if uot an assumption.

(implication-ID imp lie) ID number function for implications.

17

(justification-ID just) ID 1mmber function for implications.

(enviromnent-ID env) ID mtmbcr function for environmcuLs.

3.7.3 Data Accessor Funct10ns

These functions return the user data contained iu the given obj(→ d..

All user data tha.t the system stores can be modified by using the setf

function called on the data. accessor function.

(atms-node-data node) Hetu ms the data stored iu a node.

(premise-data node) Returns the data stored in a premise.

(assumption-data assum) Returns the data stored iu an a.ssumpt.io11.

(implication-data impl) Returns the data stored iu au implication.

(justification-data just) Returns the data. stored in an implica.t.iou.

3.8 Context Commands

(context env) Returns a list of the nodes in au environment's cont.ext., in-
clucliug the ATlllS-nocles, the assumptions, and the premises. ¥Vorks
even if tl1e context is iuva.licl. This is an expeusive function to call.

(in-context-p node env) If the given node is i11 the give11 environment's
coutext, returns a (usually srnaller) d1a.rncterizi11g enviroumeuL describ-
ing why tl1a.t node is believed. Otherwise, returns nil.

(in-world-p node env) Same as in-context-p.

3.9 Environment Commands

3.9.1 General Environment Functions

(env-assums env) TI.et.urns a list consisting oft.he assumptions that. are BE-
LIEVED in a. given environment. Does uot check wliether euviroumettL

is i11rn11siste11t. or not. Note that. more, derived ATMS-uodes will be

believed under 1.L1is environment (iu the e11viro11meut's context)、t.lrnn
are returned in this function.

18

(nogood-p env) Returns T if given environment is NOGOOD (IN<―:oNSIS-

TENT), nil ot.l1envise. An c11Yiro11ment is NOGOOD if the *nogood-node*
is BELIEVED bemuse of it (i.e., in its contcxt). Same as inconsistent-p.

(inconsistent-p env) Returns T if given environment is NOGOOD (INCON-

SISTENT), nil otherwise. Au environment is NOGOOD if the *nogood-node*

is BELIEVED because of it (i.e., iu its context). Same as nogood-p.

(nogood-env env) Forces the given environment (a.nd a.11 of its supcrsets)

to become NOGOOD. Calls nogood-set 011 the (co11jm1dion of the) set
of assumptions composing the environment. In general, this should be
used only because of higher-level knowledge not part of the kumvledge
represeuted in the ATl'vlS.

s en1 Environment Functions 3.9.2 Sy t

(node-label node) Returns a list of the minimal environments under which

the giveu node is believed.

(node-envs node) Returns a. list of the minimal environments under which
the given node is believed.

(all-node-envs node) Returns a. list of all of tbe known consistent environ-
ments under which a given node is believed. This fuuction is slightly
expensive.

(OR-env envl env2) Returns a.n environmeut consisting of the union of

the assumption sets from the two given environments. This may be
inconsistent, even if both of the previous two are not. Such an envi-

ronment might not be a. characterizing em・ironment.

(significant-envs env-list) Returns a. list of environments where subset

mid inconsistent environments have been eliminated. Defaults to us-
iug *environments*, a.11 of the known environments. as input if uo
argument is given.

(sig-envs env-list) Returns a. list of environments wliere subset and incon-

sistent environments have been elirnina.tcd. Defaults to using *environments*,

a.U of the known environments, as input if no argument is given.

HJ

~'

(dont-use assum-list env-list) Returns a list of enviro11111e11ts where en-
Yiro11111e1Jts cont.a.inillg any of the given assumptions have beeu deleted.

(dont-use-nodes nodes envs) H..eturns a list of em・ironments where en-

viroumcnts whose cont.ext coutaius any of the given uocles have been

deleted. A rather expeusive fund.ion.

3.9.3 U ser Env1ronn1ent Ftmct1011s

(create-env ass um-list) Creates a 1iew environment. for the system to keep

track of aud follow, consisting of the set of all the assumptions in the

given assumptiou-list. Returns the e1wiro11111ent. Returns the old en-

viromneut inst.cad of creating it if previously U1ere. Currently returns

nil if new e11viro11ment is nogoocl. lf an ATMS-node in the assu111ptio1t
list vヽasuot in fact previously an assumption, it is assumed by this

function. Note that this side-effect should be used with ca.re.

(find-env assum-list) Finds and rPtnrns an existing environment. Returns

nil if it did not exist previously. Does uot create any new en viro11-

ments. This is a fast, fuudion.

(add-assums-to-env old-env assumptions ...) Creates (if uecessary) aml

returns a new e11virom11e11t consist.i11g of the a.ssurnptio11s of the old en-

viro11me11f, plus the new series of a.ssurnptiolls. Cuueut.ly returns uil if

new enviroumenL is nogood. Does not affect the old environment.

(subsumed-by-p larger-env smaller-env) Tests to see whether larger-

em・is subsumed by (is a superset of) smallcr-env. Returns T if sub-

SlllllEぅcl,nil otherwise. Extremely fast.

(characterizing-env env) Hehirns 1.be clu,.raderizi11g enviroumeut of the

given em'ironment (possibly itself). Heturns nil if i11consist.e11t.

3.10 Explanation Commands

(why-envs node) Returns a lis1. of the consistent environments nuder wliich

(in whose c01itcxt) this node is BELIEVED.

20

(why-env-assums node) Explains the cliffereut assumption sets tl1at t.ltis

uode is BELIEVED in. instead of ret.nrning a list of e11viron111E'1Jt.s justi-

fying Lhis node, like why-en vs, this fu11ction returns tbe environments,

assurnptiou sets, in the form of a list of lists of assumptions.

(why-nodes node env) Explains the contributing immediately preceding

nodes that. make the given node believed under the given environment.

Returns a list of all the believed nodes that directly justify the given

node in tbe given environment's context..

(why-implicat1011s node env) Expla.ins the cont.rihut.ing immediate im-

plica.tions that. make the given node believed under the given environ-

meut.. Returns a list of all the active implications that directly actnally

justify the given uode in the given euvironment's coutext. Does not re-

turn implications that iuc.lirecOy justify the node, or potentially justify

the node but a.re inactive. Returns the system-genera.tecl jusLifica.tiou

for an assumption.

(why~assumptions node env) Expla.ins the assumptions that dir<吋 lyor

mdirect.ly contribute to the given node unc―kr the given environment.

Returns a. list of all the BELIEVED assumptions that justify the node in

the environment's context.

(why-nogood-nodes env) Explains the immediately preceding nodes that

coutribute to ma.king the *nogood-node* believed under the given en-

viro1―nnent. The environment should be inconsistent.

(why-nogood-implications env) Explains tlw irnplications that, immedi-

akly co11tribute to the *nogood-node* under the given environment.

The environment should he incousiste11t. Heturns a list of the active

implica.t.io11s that a.ctua.lly justify the *nogood-node* in the environ-

mcnf s context.

(why-nogood-assumptions env) Explains the assumptions that clirect.ly

or iudirectly co11tribute to NOGOOD under the given environment.

The environment should be inconsistent. This is a very useful function,

as it returns only the mutua.lly conflicting assumptions that a.re causi11g

the problem with a.n iuconsisteut e11viromne11L.

21

3.11 System A
．．

ctiv1ty Commands

(install-action node action) Installs the command (action) into the given

node. If the given uode becomes IN, (i.e., believed in any valid context.),

the given actiou command is executed.

3.12 Significant Variables

OS This variable holds tbe Oui.pnt. Stream for the print functions. Default
is T, meaning standard screen o叫）ut stream.

use-uniquificat1011 This flag tells ,vhetlwr ATlVIS data. is treated a.s be-

ing unique (m1cler equal) or whether it can he duplicated. If unique,
(atms-node data) and similar functions will return a. previously ere-

atccl node instead of creat.iug a new one. Default is T.

environments This variable stores a list of all (both valid a.ncl inconsis-
tent) of the envirornneut.s known to Lhe system.

nogood-node This variable stores 1.he special NOGOOD node. Tl1is node
is a.lloca.t.ed on reset. Note that (Node# 0) also returns this node.

truth-env Tliis variable stores the empty environment. This environ-

ment's context contains all the premise nodes; it is always true.

atms-nodes This variable s1.ores a list of all t.lie ATMS-nodes known t.o

the system. This includes the assumptions and the premises.

* . assumptions* This variable stores a list of all tl1e assumptions lrnowu t.o
tlie system.

＊ premises* This・I 1 i vana > e s ,ores a list of all the prenuses known to the

sysLern.

implications This variable stores a. list of all t.lie implications known to

the system. Ea.di assumption interna.lly geuerntes a.u implication; these

are included as well.

atms-node-count The number of ATMS-nodes, including those tlia.t. have
been turned into assumptions or premises, known to the system.

り
‘
l

ぅ
‘
l

assmnption-count The number of assumptions kno,1v11 to the system.

environ1nent-count The 11umber of enviro11111<:'11t.s known to the system.

pre1nise-count The nurnber of premises known to Lhe system.

i111plication-count The number of iruplica.tious known to the system.

initial-assumption-limit This number gives a. soft limit on the Dumber

of a.8sumptions that the system ca.n store. lt is used to determine tbe
i11itia.l size of the assurnptiou-bit-vedor assigned to each environment..
It must be set before calling (reset-atrns). Set this to tlie reasonable
maximum numlwr of assumptions expected to be handled by the sys-

tern. r「hisn1trnber affects memory allocation, paging, and perl'orma.nce。

Default is 200.

incremental-assumption-size This number tells how nmch t.he sys-

tern's bit-vector size is increased during the 11ext growth cycle. See
initial-assumption-limit. This number iudirec!.ly affects mem-
ory allocation, paging, and performance. Default is 50.

geometric-limit-increase This flag tells whet.her *increment.a.1-assumpt.ion-

limit* doubles aHer every expansion (geometric iucrea.se) or sta.ys cou-
st.ant (arithm(、tici11crease). Tl1is munher i]l(lircct.ly aJfocts memory
a.llocat.iou, paging, and performa、11ce.Default is T.

3.13 System Flag Variables

watch-atms This flag makes the system print out a notification each

time an item is created. 恥 faultis T.

debug-atms This fia.g makes the system print out clelrnggiug in「orrna.-

tio11. Default is nil.

watch-enlarge This flag makes the system print out a message wl1en
the system enlarges the bit-vector arrays for assumptions. Default is
T.

23

print-data "'hen this flag is T, the print functions print out. the data

inside nodes and assumptions. ¥¥「lienit is nil, the print functious only

print out a numbered node. Set this to nil when very long data is stored
in nodes. Default is T.

2,1

4 What does an ATMS do?

An Assmnpt.ion-ba.sed Truth-11/a.intenance芯stem、orATI¥IS, is basically

a special kind of da.t.a.-base that stores pieces of data.. This data is specia.l

in that ea.ch piect'ha.s a truth-value, bclict孤 ornot bclicvrd. The ATT¥lS

remembers whether each piece of data, or AT11IS-nodc, is believed or not.

However, t.!te truth-va.lue of some ATI¥,1S-nodes ma.y d~pencl upo11 whet.her
other ATl¥lS-nodes are believed or uot. So, in this case, if one 11ocle becomes

believed, it could affect other nodes in the da.ta.-ba.se. Similarly, if oue node

becomes disbelieved, perhaps other nodes will become disbelieved also. Nat-

urally, in a network of interrelated data, such changes will propagate on

to still other nodes and could be far-reaching. Remembering which nodes

are believed and which are disbelieved at the current time is the job of a

Truth-11/a.iutenauce System (TIVIS).

Au Assurnpti011-based Tl¥lS is a special kind of TMS that does not deal

with only one possibility, but represents several possibilities a.t the same time.

Tba.t. is, in oue possibility, some. nodes could be believed, while iu a.not.her

possibil.it.y, they might uot be believed. These different possibilities are called

possibh.: worlds.

A possible world is sd. up by "assuming" aぐoncept.1l.'3suming a concept

states that the user is willing to possibly believe the concept by itself、without
rega.rcl to any further justifications o「theconcept. Thus, assumptions are

basic, and a.re normally not justified hy other concepts. Rat.her, assumptions

a.re used to justify other concepts, and t.o imply conclusions.

Hovvever, a.u a.ssumpt.ion is not a.n absolute decla.ra.Lion of truth. The

sysif'm maintaius tl1e possibility that the assumption could be true, or it

could be disrega.rdecl a.llcl not believed. In fa.ct, the system represents both
possibilities simultaneously. Thus, assuming a node creates two different

possible worlds-one iu which the node's concept is believed, and one in which

it. is not believed.

In fact, since there a.re usua1ly many assumptions, at the time a new node

is assumed t.liere are already many different possible worlds i11 existe11ce. So,

a.dually, a new a.ssumpi..iou ad:, to create two differeut 8el8 of possible worlds-

one set consisting of all of the current possible worlds as t.liey st.and (NOT

BELIEVING the new assumptions), a.11d one set. consisting of all tlie current

possible worlds plus the uew assumption (BELIEVING the new ass um pt.ion).

The set. of possible worlds can therefore theoretically be the power set.

R
J

9
]

of the set. of a.ssurnpt.ions. However, iu practice, the ATIVIS only reprPsent.s

those possible worlds t.hat are significant., i.e. different from each other (not

8absumed). This typically tends to be a. much smaller nunilwr.

A single possible world has mauy concepts, represent.eel by nodes. The

entire set. of nodes that. a.re believed in a. given possible world is called a.

contc;rt. However, since this is very large, a possi1Jle world is represented by

a "characterizing environment" (or environment for short), consisting of a set

of a.11 the believed assu.rnptions in t_lrnt environment. Since the assumptions

are basic, the assumptions cletennrne all of the nodes tha.t a.re])f、lieveclin

tl1a.t. possible world. Thus, the context cau be uniquely derived from the

cha.ra.ct.erizing e11vironment..

All the assumptions listed in a.n environment a.re believed by tha.t. envi-

ronnwnt。 Allthe a.ssumptious Hot listed in a.n environment a.re disregarded.

As will be discussed later, disregarding (not believing) an assumption is not

t.hc same a.s believing it to be fa.lse; this is important to remember.

The ATMS cau be run directly from a. terminal. However, typically an-

ot.lier computer program, i.e. a. user system, will interact with the A~fMS
by setti11g up the problem a.ncl interpreting the results. A general-pmpose

inference-engine user system, known as FLAIL, has beeu implemented at.

ATR a.ad cau be nsPd for this.

The desig11er of t.lie user system must determine the type of data t.lia.t

the ATl¥IS is goiug to represent, and the rda.t.iousl1ips between different mu-

（でpt.s. The user system sets up the problem by entering cone町）ts into the

ATl¥JS、iuLhe form of ATMS-uocles, premises, a.ud assumptions. 111 a.ddi-

tio11, relationships between concepts are entered iu the form of networks of

in11>lications、a.ndp.roblem coustrnints a.re entered by specifying nrntua.l in-

consistencies ("uogooc.l" sets). lt is the responsibility of the user systeni to

determine these concepts, l'f¥la.t.ionships, and co11st.ra.int.s. Once a. problem

has been set up, the user system cau query the ATMS system and interpret

the results, using the expla.na.t.ion facilities. Typica.lly, the user system will

use tlie ATl¥lS in an interactive manner, incrementally adding new nodes and

implications allcl then qnerying the results.

The ATMS tlrns a.cts a.s a. large trutli-rna.inta.ining cla.t.a-ba.se tlia.t. permits

representation a.ncl explora.tiou of multiple possible worlds cし，tthe same time.

The system reports wha.t concepts are currently believed or not believed in

a.ny pa.rticula.r world. However, the ATMS must work with a. fi11ite space of

a.lt.erna.tives. Also, the da.ta giveu t.o the ATl¥IS by the user system should be

2G

definite concept.s-tliat is, constants and instantiated variables. The system

mu then perform implicit searches among tlie given aHerua.tives, represeut.ing

which sets of alternatives are possible and which arc iuconsisteut under the

given constraints.

5 An Introduction to Truth Values

Some truth maintenR.uce systems use the truth values TRUE arnl FALSE. Be-

cause an ATMS is based on assmnpt.ions, au ATMS uses the truth valn<→'R

BELIEVED and NOT BELIEVED (or, "NO OPlNION").1 The user assumes that

something coald be believed, but this is just an assumption-the possibility

t.liat i1, is 11ot believed is explored as well.

Besides these truth values, another important set is the pair IN and OUT,

which a.re basically slightly stronger vPrsions of (sometirnes) BELI8VED and

(always) NOT BELIEVED, respectively.2

This brief i11t.roductio11 provides a working defi1Jition only; truth values

will be examined iu more depth later on in this manual.

6 What's Inside an ATMS?

In an ATJ¥lS、thereare two main kiuds of objects-node.s, and implications.

A node is a basic uuit of data, representing one item to be remembc1でd.

Jrnplica.tions a.re the connections bet.ween nodes. There a.re a. few different

kinds of nodes that have slightly different meanings, but there is only one

kiml of implication. Together、thenodes a.ud the implications a.re used to

build the data structure that represents tlie problem.

In addition to these objects, there is also e・ll'niro11・mrnts, which is a way of

thinkiug about nodes and grouping them together. Nodes a.ncl implica.tio11s

a.re discussed in the following subsections; environments will be discussed

lat.er.

ln general, because ATMSs were originally developed at many different

institutions, t.here a.re a. number of different names for the same concept.

Therefore, all of the different names for the same type of object will be

1 In any 01w possible world.
:i For a.II currently known possible worlds t.aken to get.her.

I
I

う
]

O

D

D

RTMS Node

Preraise

AssuMption

Ir1plication
-―./ r

⑳ The Nogood Node

Figure 1: Graphical Co11vc1Jtions for depicting the ATl¥'18.

28

preseut.ed here, so tlia.t. t.he reader ca.u umlcr:,ta.ud this system iu rela.tiou t.o

other systems in the li ternture.

6.1 ATMS Nodes 0

An ATMS node is t.be basic unit of data. of the system. It stores a. pa.rt.ic-

ula1・sta.temeuL that the system will either believe as true, or disregard a.s

unknown. The system never a.dually uses this data.; the system only uses

wba.L it is told a.re the constraints between this node and other nodes. The

data is treated as a.t.omic. The system only reports this da.ta to tlie user

when asked, ma.king no other use. Tlms, the user is free to store absolutely

anything tha.t he or she desires into the data. .in a. node. In typical usages,

this will a.dually be a list, an entire tree, or a sentential fa.ct.

An ATl¥JS node is created by using the function (atms-node data). The

八Tl\f~system ensures that t.he data. stored in a. 11ode is unique; thus if t.his

lunct.101t is ca.lied a. second time wiLb the sa、rnedata, the same 11ocle is couve-

uiently re(,urned, instead of crea.t.ing a. new node.3

A 11ocle ca.u be ma.de special by either Lurniug it into a JJl'f"lll-ise, 01・tur11i11g

it into a.11 assumption, as will be expla.inccl next.

A node will take on one of tbe truth values BELIEVED or UNKNOWN (NOT

叫 IEVED) inside a.ny one possible world. A uodc by itself, one Lha.t isn't an

assumption, or isn't justifi<>cl by other nodes, has the clefonlt value UN KNOWN.

Tillis, it-. is necessary to introduce assumptions or premises i11to a. network in

order to ha.ve nodes tha.t. are believed.

011ce a node is created, it. ca.n uever be心lctecl,wiLhou(, resetting t.he eJL-

tire ATMS. (However, it can be "effectively deleted" or rdraclcd, by creating

a.n implica.tio11 from it to t.he NOGOOD node. Note that a, direct irnplica.-

Lion with 110 other a.utecedents constitutes a. perrna.ueut ret.ra.ctiou, wherea.s

if other nodes a.re used for antecedents, this constitutes a. coudiLiona.l retra.c-

(.ion. Also, if the node is used as an assumpt.ion it ca.11 be→ disregarded by the

user, by not using any environrneuts co11La.i11ing that node.)

Nodes a.re sometimes called concepts, statements, or facts. De !Geer also

sometimes calls these deriucd nodes.

3This feature ca.n beしurnedoff by (setq use-uniquification NIL).

2~)

6.2 Premises D
A premise is a special kind o「nodethat is always t.rne. That is, the user knows

(from higher knowledge) that this particular 11ocle will always be BELIEVED

in all valid possible worlds. The system uses this knowledge to propagate

悩lie「andinconsistency to other nodes that are not. premises.

Premises a.re usua.Uy specified bcforeha.ucl, at the time of their creation,

using the command premise. However, it is possible to take an existing

ATl¥LS node a.ncl tmn it into a. premise, usiug the command premise-this-node.

It is uol, possible t.o retract a premise once it has beeu ma.de, or to l urn it

back illto an ordinary uocle.

IL is a. system error to set up a. net.¥vork where a premise is forced to

derive the NOGOOD node. Since a premise normally is used iu conjunction

with other nodes or assumptions as the antecedents to an implication, t.liis

does not present a problem; those nodes cau become iuconsisteut, while the

premise remains trne.

It is a. conceptual error to have a premise that is justified by other nodes,

that. is, to have a premise .that is t!te consequent. of an irnplicat.iou. Premises

by clelini tion need no j ustifica.tion.

As a. side note, a.n ATMS 11ocle that is justified by the conjunction of

nodes tlta.t are a,ll premises effectively becomes a premise itself.

Premises ha.ve no other know11 name.

6.3 Assumptions 二
An assumption is a special kiucl of node which ltas data that is conc<''ptually

basic to other nodes in the system. Assumptions are significa.ut; they a.re

t.ypically used to justify other nodes. The system Ui?_es the assurnptions to

compose its e11viro11rnents.

Assumptio11s are usually speciried bel'oreha11cl、atthe time o「thE'irぐre-

at.ion, usiug the com!lrnucl assumption. However、itis possi b I e to take a11

existing A'l'MS node and turn it into an assumption, using the command

assume-this-node. lt is 11ot possible to delete an asi=;umption once it has

beeu ma.de, or to turn it back into an ordinar.'f node. I―Iowever, assumptions
can be pen11a1H'11t.ly retracted by using them to directly imply the NOGOOD

node; they can be conclit.ionally retracted, by trning them to imply the NO-

GOOD node in conjuuction with other nodes. Uy ignoring all euvirouments

30

that contain them, they can also be ignored by the user.

A11 assumption automatically takes on both the values BELIEVED (as-

sunwd) and UNI{NOWN (noL assumed) at the same time. This in effect creates

two possil,le worlds, one in which the assumption is present, and 611e in which

Lh<'、a.ssumpt.io11does uoL exist (which is the same a.s the current world). 111

fad, if there a.re currently mu Hi ple possible worlds (eu viroumeu Ls), crea.tiug

a. new assurnption has Llie poteutia.l of doubling the uumber of enviro11111euts.

However, Lhe system only creates uew e11vironme11Ls tha.t a.re significant., a.ud

so1ue of Lhe uew eJJviro11111<:・11Ls uw.y bfぅinvalid(inconsistent). Tlnts, i11 prac-

Lice a new assumpLiou usually adds only a few extra. environments (possible

worlds).

It is usuaUy a. weak conccpt.ua.l error to have an assmnpt.ion justified by

other nodes. Assumptions are basic, and other nodes depend onしhem,not

nee versa ..

Assumptions a.re a.lso known elsewhere as assumed nodc.s. 4

Implications~ 6.4

Tlw implication is t.he scco11cl main entity of the system. Irnp.licat.ions tie

uodes together. An implication has one or more antecedents and a single

consequent, a.11 of which are some type of node. Like nodes, implications cau

store、data.;t.l1is is usually the uame ol'a. reason or rule that t.his irnplica.tio11

represeHLs, alt.hough it could he a list of variable bindings, a pointer to a rnle

i11 an iufereuce eugin巳 orsome other useful data., etc. Also like nodes, the

data is purely for the use of the user system, aud is not referenced by the

ATMS.

ltuplications arc created using tbe implication co!llmand. Once the im-

plica.tio11 is created, it is fixed in place; autecedeuts and t.he coust—~quent caunot
be a、ddcd,deleted, or changed, a.ncl the iruplicatiou itseH carn1ot be destroyed.

Implications can be retracted by adding in au additional assumption node

'1(1'henぅisa t.ed111ica.l difference bet.ween an assumption and an ass11111ed node I.hat. does
no(, ma.t.(,er t.o t.be user. An assumption is i111plenwnt.ed as t.he conjunction of au ATMS
11odt'(I.he assumed node) and a system-only sp<0cial kind of node (I.he assurnption-t.ag),
along wit.h a j11stificatio11 from the assump(:ion-t.ag to t.he assumed node. De Kl匹 r,t. he
original ATl¥lS a.11!.hor、basicallyuses "assumption''Lo refer to only the assumpLion-tag
it.sdf in his pap(:l'S, while using "assumed nod(:" to refer t.o the at.ms-node. To make
mat.t.ers conct、p(,nallysimpler, this irnple111ent.at.ion detail has been hidden from the user.

3J

*"Iriplication 1 not retracted11

Figure 2: Crea.ting a Hetracta.hle Implication.

to the a.11t,ecede11t.s, on erでat.ion,that ha.s tl1e value "This implica.tiou is uot

retracted". lf t.¥1is a.ssmnptiou is BELl EVED, then the implication is active;

i[the a.ssumptiou is UNKNOWN, then the implication is effectively retracted.

See Figure 2.

Au implication ads like a. high-impeda.nce "AND" gc1.t.e. lf, in a. pa.rt.icula.r
possible world, all the uodes 011 the a.11Lecedellt side of the in1plica.tion a.1

111.~LIEVED, tlien the consequent node must be BELIEVEO a.lso. However,

unlike THUE/FALSE logic, if any of the antecedent nodes of a11 implication

are {1 N I¥NOWN, then tlie conseqnent.'s value is uud叫 11<-'d-it.is UNKNOWN by

default, but it is also possible for it to be BEi、IEVEDil'some other implication

also ha.s that node l'or a consequent (or i[the consequent happens to be

au as8urnption).]¥Jany implica.tious connecting to a node thus act like a.

"wired OR" iu electronics. See Figure 3. H the implied (consequent.) node

is the NOGOOD node, the implication has a slightly diffe1℃ nt effect, as the

NOGOOD node cannot be believed; see Lhe next subsection.

A 11 irnplicat ion is a. simple canst.ruction. It is not possible to lia.vf'one

ol't.lte aut.ecedents to an implication be the 1wgat.io11 of a. node, or a. fu11c-

Lion of a node-irnplications only tとしkenodes tltemsel ¥'es a.s a.nt.ecc、dentsa.ncl

ゥ
]3

R
④

Node N is inplied by nodes A and B
OR by nodes C and D.

Figure :3: I¥Iany Implications .Justifying a. Siugle Node.

consequents:5 A si1nple implication can only repre即 nta single conjunction;

it takes multiple implicatious to 1でpresenta clisj uucLion.

U is a system errnr t.o use an implication as auot.lier i叫）licaJiou's an-

teeでcle11Lor consequent. An inLemiecliat.e node should be int.roducでclinst.ea.cl.

Implications haw many conceptual interpret.at.ions. One is that belief in

the set of the ant(呼 dents,when taken tog叫 her,implif8 belief in the cons<:'-

quC'11t as well A second interpret.at.ion is Lhat the belief in t.lie consequent,

ii'it exists, is ju.st廿iedby belief in the set of antecedents. A t.hird iut.crprEヽ

I.at.ion is that belief in the consequent, when take11 together with belief in

the autecedeuts, offers a constraint ou the a1lowahle states of the problem.

lncleecl, it is usually possible to directly translate co11strni11t-based reasouiug

problerns into au r'\.TM~represeutation. Implications can a.lso he tliongltt, of
as 1でpresent,iugpro(―luctrnns, or representing instantiations of infen・11ccs from

all "expert system''.

For these reasons, implications are also known as ju8tzfzcrdion8, ron-

.5l,•ainf8, or, occasioually, inferences. ~ 「he"justification''terminology is quite

5The ll"ay arnund this is to create anot.lwr 11ock、that,is ddiHE、dby the user sysLem t.o
rq1reseu t t.he uegat.ion, or the fuuction, of t.he desired node or expression.

3:3

common in the literature, arnl will be used occasionally here. The irnplica.-

tion itsel[is ca.lied a just(fication; one says that Lhe a.ntecedc11Ls j11.st1f,; the

consequent node, a.tl(l the consequent i.s ju.stzfird by the a.nt.ecedent.s.

6.5 The Nogood Node Q9
The NOGOOD Node is a speciaJ node that is always automatically supplied

by the system when the system resets. It can be found using the expression
（転。de#・o),or the variable *nogood-node*. It ernbodies the concept of in-

ぐonsistency. If any set of oue or more nodes implies the NOGOOD node,
the conjundiou of that set is incon.si.sicni-it does uot make se11se to ha.Ye

a.11 of them believed true a.t the same time. lt. is ea.sy to specify this using

the nogood-set comma.ud, which creates such a.11 implication for the user.

If the user wa.11ts a. pa.rticula.r node set to NOGOOD so tha.t it will never
be BじLIEVEDa.gain in a.ny possible vwrld, it is possible to use the nogood

command. This com111a.11d will also work 011 a series of nodes, which sets each

uode to NOC:00 D-uote that tliis disjunct.ion is a. much strn11ger condition

than the corresponding nogood-set comma.ud, which still allows the nodes

to be lwlievcll in other possible worlds tha.t don't contと1.iuthat particular set.
See Figure ,1,

The NOC:OOD node is sometimes also called False or Faf..:;ify, !neon.sis-

tent, or The Contradiction.

7 Logical Operations with an ATMS

It. is possible to represent logica.l opera.tions on nodes using the Ar「MS's
implications. The basic opera.tious are prese11ted here; naturally, since a.It of

the basic operations can be represented, any logical expressio11 cornposed of
these opera.tious ca.n be represented as well. See Figure 5.

7.1 The AND operation

The AND operation (conjunction) on one or more nodes is represented hy

using all of the nodes in the set a.s antecedents to a. single implication. The

siugle consequent is Lhc result. H Lhe a.uteceudents are all J3ELIEVED, then the

3 ー

(NOGOOD R 8 C)
each of ABC is NOGOOD
Node Y is OUT.

(NOGOOD-SET DEF)
all of DEF together is NOGOOD
Node 2 is IN.

Figure 4: The nogood a.ud nogood-set comnia.uds.

AND OR

NOT XOR

Figure 5: Logical Operations Using au ATMS.

L
J

3

consequent must be BELIEVED as well; otherwise, it is undefiuecl, defaulting

to UNKNOWN.

7 .2 The OR operation

The OR operation (dis.i unction) on one or more nodes is represented by using

each of the nocles in the set an an. antecedent to multiple si11gle-a11tecedeut

implica、tio11s,e<1ch of which have the same consequeut, whic、11is Ute result,

of the disjunction. lf any of the nodes is BlりLIEVl~O, the result must be
BELIEVED as well; otherwise, it is uudefiuecl, defaulting to UNKNOWN.

7.3 The NOT
．

operation

The NOT operation is a. little harder to represent in a.n ATMS, as there is no

i11lierent way to represent the negation of a node. TlLL1s, a11otlwr uocle must

悩 explicitlyasserted by Llie 11ser system, with tlte coutents labeled "NOT

(Lht、firstuocle)''. The occureuce of hotlt of these nodes at the sa.rn<" t.ime is

iuconsisteut; t.liis is rf'preseuLed by illlplying U1e NOCOOD-NODE with their

coujuncLion. Tln1s, if the ma.in nocle is BELIEVED, tl1en the NOT node must,

be NOT BELIEVIりD;il'the NOT uode is BELIEVED, then tlte urn.in node u1ust.

b<、NOTBELIBVED. u <"ither uocle is UNhNOWN (NOT BELIEVED), then Llie

other node is uudefiued, defaulting to UNl{NOWN.

7.4 The XOR operation

The XOR operation (exclusive disjunction) on two nodes is represented by

combi11i11g the represeuta.t.ious for 01{ aucl NOT. If either one or the other
nodes is BELIE¥、「ED,then the result is BELIIWEO. However, if bot.Ii of the

uodes are BELIEVED, then this is i11consist.e11t, ;: しmlwill not. occur inと¥.ll.)「

valid world.

8 More Data Types

Besides ATMS-nocles, p1でmises,assu1npl.ions, implications, and the nogood-

node, the system also works with euviroumeuts, 1とし，bels,and U1e truth euvi-

ro11rne11 t.

:rn

＼

8.1 Environments

Environments l'(ぷpresentpossible worlds. An environment is a. set consistiug

of all the assumption、sthat are BELIEVED in this possible world. However,

siuce premises ancl the regular ATillS-noclcs that a.re not assumptions can be

derived from tbe assumptions, they are not mentionecl. Environments are as

s.mall as possible wl1ile still being significant. For this reason, they are lrnown

t.cdmically as characfcri.-:i11g r:11vironmcnts. The name of the possible world

consisting of the e11virou111e11t plus all of the uodes that cau be deriv<'d as

BELIEVED from that e11Yironme11t, is called the conic:rt.

The systern a.utoma.tically creates all significant environments, given the

set of assumptions. There a.re various functions (e.g., (Env# n)) to refer-

ence these envirouments. The function (env-assums env) returns the as-

sumpt.ions of a.11 enviroume叫 Asa. new feature, the user system ca.11 crea.t.e

environmeuts itself for its owu convenience; note however that these will in

genera.I not be minimal, and therefore will not be characterizing environ-

ltlC'Jtts.

8.2 Labels

¥Vltereas euviroument.s store a set. of AT.l¥IS-nodes (assumptions) that a.re

believed in any given possible world, labels store a s<、tof possible worlds

(P1wiro11ments) tlrnt entail the belief of any given A'l'l¥IS-nocle. Each ATMS-

uode has a label that stores a list of characterizing environments. Each

environment in the node's label is consistent, and has that uocle i11 its context.

Note that labfぅlsare minimal. Thus, both the euvirnnmeuts and the li::,t

of environments are as small as possible. Han euvirornueut is a superset of

a.not.Lier euviroumcnt, the larger cnviro11me11L is subsumed and uot represent叫

in the label.

As a. special couveniencf', all inconsistent environrnc、ntsare stored iu the

label of the *nogood-node*.

8.3 The'Truth Environment

There is a special environment that has no assumptions at all. If any node
is BELIEVED iu this e11Yiro11me11t, it, is DELJC¥'ED in Cl、,crye11viro11nw11t., be-

ca.use not.hi11g has to be assumed in order for the node to be true. Such

l
i

3

nodes a.re called premises. The environment is therefore called the Truth En-

Yiroument; it is initialized by the system on reset, and stored in the、
truth-env. Note that if a node is lJELlEVIりDin the Truth Envirom11e11t,

it does not 111a.t.ter if it has a.uy other explicit justifications; the Truth Envi-

ro11me11t subsumes all other environments.

9 Truth Values Revisited

The precise defmitions of the trut.h values used in the system ca.n uow be

discussed. The ATl¥-IS operates using a. ra.Llier uuusua.l truth system. lt is

important to u11<.krstaud this properly, in order to be a.ble to understaucl the

operntiou of the A'l、l¥lSand obtain predictable results.

l¥fost common logic-based systems use a bina.ry logic with the values THU E

and FALSE. Some systems use a trina.ry logic with the va.luf's THl「E,F,¥ L、SE,

a.ud l「NKNOWN.

The A'J'MS, however. is basPd on assumptious. Therefore, ea.ch node takes

on one of t.he biua.ry values BELIEヽlED(basically, True), or NOT BELIE¥、'ED

(basica.lly, Unknown, or No Opinion). (It is importaut to note Urnt Not

Believed is quite different from False. j<3 These values hold for a.Hy 11ocle in

any single possible world. In additioi1, these values are only valid !'or t.he

possible world as it curreutly st.ands; it is possible that tliey may clia.nge if

the possible world is expaudecl. Hemernber that nodes represent ATMS-nodes,

assumptions, and premises.

There are other trnt.h values that. are derived from these. Si11,e t.lwre are

mult.iple possible worlds, it is co11ve11ie11L to define concepts that describe tlte

overall bel1avior of the uode in all of the possiblevヽorldscurrently known to

tlte system.

The first distinction is the Yalue set IN and OUT. If a. node is currently

NOT BELJJWED iu all currc11t.ly knmvn possible worlds, tben it is designated

OU1'. If a. node is currently UELlEVED in at least one possible world, t.lH'll it

is designated IN. A single node can change from IN to OUT and vice versa. as

the system's set of possible worlds progresses.7

／
ー
＼

／

1'Th<~differenc<ふ is t:hat. under a binary logic, ([Pit.her] XOR NOT X) is always l.rn<~.
lluder t.!te logic used by I.he ATi¥lS, this cau be NOT BELIEVED. This cliffereuce has 11m11y
COllSl'qll<'llC曹es.

'This ddiuit.io11 ouly holds for consisLeul. possible worlds, as inco11sist.e11l. worlds are

38

Note tlrnt therefore it does not make sense t.o talk about the truth value of

a node, whether it is UELIEVED or NOT BELIEVED. Unlike otlwr kinds ol'truth

niaintenance systems such as a .JTMS (tha.t only 1でpresentone possible world

at a time), in anへTl¥JSa node can be botb BELIEVED AND NOT BEi、IEVED-

bcca.usc it occurs 1u many different possible worlds sinmltaucously. 01w can

only talk a.bout the belief value relative t.o a particular possible world, or

a.bout the global truth values of IN and OUT. ・

The secollCI distinction is between PilEtIISED TilUE and NOGOOD. Nodes

that are PHEJ¥IISED THLJE are automatically always BEi、IEVEDin all possible

worlds. Nodes that a.re NOGOOD a.re a.lwa.ys NOT UELlEVED in all possible

worlds. Once a node is designated PREMISED TlllJE or NOGOOD, it does

1101, change out of this category. A node becomes PHEivllSED TllUE if it is a

plでmisenode, or directly justified by only premise nodes. A node lwcomes

NOGOOD if it directly solely justifies a NOGOOD node.

As wa.s discnssed before, there is a. special node, ca.lied The NoC:ood

Node, t.ha.t, is always iududed in the system. Like ot.lter nodes, this node can

tlieoret.ica.lly take the value BELIEVED or NOT DELJt,;VED. However, since The

Nogood Node is NOGOOD, it, must. always be NOT BELIEVED iu all (valid)

pos:,;ible worlds (which, of conrne, implies that iL is always OUT).

These truth values apply to nodes. There are also truth values that apply

to possible worlds. These are the values CONSISTENT and INCONSISTENT. lf
a possible ,,vorld does cout.a、iua. NOGOOD node ,vith a. BlりLIEVED value, tl1e11

this world is called lNCONSlSTENT. If a possible world does not contain a

NOGOOD node tlwt is BELlEVED, then the world is CONSISTENT (or VALlD).

luconsist.eucy is stronger than implication aud thus propa.ga.te.d belief; it

doc's not ma,ke 111ucl1 sense to talk a.bout which nodes are believed in an

inconsistent world (unless perhaps the user system is performi11g debugging),

b<: → cause the beliefs a.re inconsistent.

The classification NOGOOD also applies to worl.cls, and means the same

t.ltiug a.s a.11 INCONSISTENT world. The usage ca.n he cl<ぅI.erminedfrom tlw

CO Ill.ext.

eouside:~rcう cl to be not. possible.

;3~)

10 Theory-Types of Knowledge

10.1 Theory

This section of the manua.l briefly digresses into an ovcrvievv of different

theoretical types of knowledge. This is important in u1H.lcrsLa.ncliug the ap-

plication of the ATt'lS Lo actual problems.

vVhen talking a.bout a. state, au action or some other kind of concept.,

there a.re at least three important attitudes that can be taken towards that

coucept, or conversely, three ways of knowing that concept. The first is

theoretical or hypoihfiical knowledge. This is used to ta.lk about concepts in

the abstract, without any commitment as to vvheLher the co11cepts actually

exist or not.. An example is, "People who are asking questions" (or, more

formally, "Hypothetically, there might exist such a thing as a person who is

asking a questiou';). A not.I in example is, "People who arf'expecLiug answPrs"

(or, more formally, "111 theory, Lhcre might exist such a thing a.s a persou who

is expccf.iug an answer.")

Hypothetical concepts caa be linked with liypotlidica.l rules. An example

of a. hypothcLicaJ rule is: "People that ask questions expect answers", or,

rnore formally, "In theory, if a. question is being asked, then always a.11 a.us¥ver

is t'xped叫．”

The second kind ol'knowledge is uncertain、po(e11t.ia.l,or poss1"/J/e kuowl-

edge. This is used to talk about a concept. that is suspect.cd of existiug, but

Ll1e question or its actual existence is 11.11dea.r or could he challenged later.

An example is, "This person might be asking a question", or, more formally,

"lt is possible that right. now a qnestiou is being asked".

Note that possible coucept.s, wlieu combined with bypoU1eLica.l rules a.bout

hypotltetica.l concepts, produce further possible concepts. Tlrns, using t.l1e

previous h鸞＼「pothctica.lexa」nplc,the new possible lrnowle、clge"H is possible

that right now a11 answer is expected" is 110w known.

Note tlrnt if a. coucept is possible kuowledge, it. usually implies the con-

siclera.t.ion Lbat it is also possible t.lia.t. tlta.L knowledge could be 1Jot. lrne.

The Lllird attitude that can be ta.ken towards a. concept is ta.kiug it. a.s

actual knowledge. This is used t.o talk a.bout a. concept when it is clear that

Llie concept. actually<'、xists,and when there is uo possibility tl1at t.lia.t. concept

could be chaJknged lat<:・r. An exa.1nple is, "This person is asking a. quest.ion",

or, more formally, "It is actually true that right、 nowa. prrsou is asking a

40

＼

quest.ion".

Act.ual con⑰ pts ca11 also combine with hypot.bct.ical rules to produce fur-

titer actual concepts. Again, using the previous hypothetical example, the

a.dual concept "An answer is expected" is produced (more formally, "It is
a.ct.ua.lly true that right now an answer is expected"). 8

10.2 The ATMS Representation

The ATMS represents the different kiuds of knowledge i11 different ways.

llypothet.irnl knowledge is represented by the ATMS-uocles. But, uuless there

is a rea::;on to llELIIりVEthe knowledge, it remains hypot.hetirnl. aml is noL

US(→ cl by the sy:,telll. Possible kuowleclge is represented by Lite BじLIEVED/NOT

BlりLIEVEDparadigm. If a node is an assumption, t.heu it represents possible

kuowledge; AT!IIS-uodes that are implied by a.ssurnptio11s and therefore also

conw to be BEi、IEVEDin SOllleぐontf'xtsalso reprでsentpossil如 knowkdge.

Act.ual knmvledge is represeuLed by prernises, which are always believed i11

all possible worlds.

10.3 What's Been Left Out?

One thiug that has not been aclclressccl in t.his section is the quest,ion of nml-

tiple possible or a.dual i11stantiatious of a siugle tlieoretica.l concept.. The

1でpresentationof this is more cliHicult, a.11cl is beyond the scope of tl1is dis-

CllSSlOll.

Another thing that has specifically uot been addressed is the question of

time. All of the t.lworetical and possible knowledge that has been discuss叫

in this section is beliewcl in a timeless sense. That is, all of tl1e liypotlietical

rules are t.rue for all time. This does uot a.llow for t.he representation of

act.ions, where something ca.n be changed or removecl. All of the possible

worlds that are generated are differellt possibilities that may be true "right

now", there is no way to represe11t the changes required to rc-asou a.bout

possible progressions in the future. The representation of this is also more

diflicult, and beyond the scope of this discussion.

8111 a小lit.ion,ad-ual concept.scan combine wit.It other possible conc<>pts when hypoth叫

irnl rnles have mult.iple ant.ecedent.s. Howeヽ,er,in this case another possibility is produced,
110! anot.lwr act.ualit.y.

L!l

11 Working with the ATMS

This section will discuss the theory aud practice of usiug t.lie AT11S. Various
aspects of storing data, remembering concepts, and represent the implica.-
tions of those concepts will be discussed. The method ol'representing the
justification of a. concept., along with coustrnints, couflids, and i11cousisten-

cies, will be examined.

11.1 Setting Up the System

Tltt→ current of翫ialversion of the system is stored in the Lisp machine

file server under LM01: >rnyers>golden-atrns. To loa.tl the system, the user

should type

(load "LM01:>rnyers>golden-atrns")

The system resets itself upon loading, and will come back with the value

"ATMS cleared out".

fo order to reset the system, type the conuna.ncl (reset-atrns). This

erases all the previously cuしeredATi¥lS-110des, assumpt.ious, pren1ises, and

implications; it resets all the counts to zero, and iuit.ializes the system vari-

ables *nogood-node* a.ud *truth-env*.

11.2 Setting Up the Problem

The problem must first be examined to determine wliat the relevant. con-

cepts are, and to understand whet.her they are hypothetical, possible, or

actual knowledge. For each individual concept, a. nocle nmst be created.

This should be an ATMS-nocle for hypothetica.1 concepts, a.11 assumption for

possible concepts, or a. premise for actual concepts. Au irnplica.tiou sl10ulcl be

Clでat.eelfor ea.ch rule, or justification. See section 7 for exphwa.t.ions on how

Lo 1でpresentlogical operations such a.s AND. Oll, and NOT using the ATMS's

implica.tions.

Since in most cases at, the st.art of a problem only hypothetica.l knowledge

exists, a.ncl there is no a.ctua.l knowledge, usually the user systPrnvヽiiistart

out by building a. network consisting almost entirely of AT.I¥LS-nodes. The few

ground truths. t.lia.t t.lte problem has will be n、、presentedby premises.

42

Au ATI¥[S ouly works with constant, dat.a. Tints, if there are any varia.bles

iu the concepts, these、lariahlesshould be insta11tiated; a distinct node should

be created l'or ccしchpossible i11sta11t.ia、tion.If it. is Llicぅcasethat a、variablecan

t.akc 011 only one iust.a11t.iation at a time, the addit.ioual pa.in-vise constraint

that. simultaneous belief iu value-1 a11d value-2 is inconsistent should he

added, using the function (nogood-set v-1-node v-2-node). This should

he→ called pain-vise on all possible pairs of value instantiations for this part.ic-

ular variable.

The actual mechanics of net,vork creation are discussed iu the followi11g

subsect.ious.

11.2.1 Creating an ATMS-node

Suppose we want to crea.te an ATl¥IS-nocle to represent tlie cla.ta. A. This is
dolle with the command (atms-node I A), which returns the neat.eel noel<•.
Na.t.urally, we will probably want. to use t.his uode again, so it. is a good id<>a

t.o store it, in a user variable: (setq node-A (atms-node I A)). There arc

two other wa.ys to reference this node, once it has been created. Siuce this

iR the first node, (atms-node# 1) will returu the node. Also, the uext t.ilue

(atms-node I A) is ca.lied, t.he old uode will be returned instead of crea.tiug

a new uocle with the same daJa.n Note that this convf:'JJient.ly solves the

forward-reference problem whenぐrea.tinglarge networks-the user does not

ha、veto determine whether a uocle has been previously created or not.

Simply creating a node informs the system tha.t. the givenぐonceptexi::;ts,

but does not say anything about whether it is believed or not. Tims, ヽvithout

any further j ustificatiou, the node must be assumed by clda、ultto be NOT

BELIEVED. lndcecl, since it is NOT UELIEVED iu all possible worlds, it is OUT.

We can check this with (explain-node node-A) or (OUT-p (atms-node

IA)).

r,This is assuming the use-uniquification system flag is set t.o T, which is the rnnent,
de「a11lt.."The same data." is t.rnt.ed by u;;iug tlie equal funct.io11; t.lrns st,rillg8 work propnly.
This flag rn11;;t. be se(, Lo nil if mult.iple copies oft.be same data are required to have dist.iuct,
identities. 111 t.his case, t.he user is responsible for keeping track of the different nodes.

4:3

11.2.2 Creating a Premise

There are two ways to create a premise. Either we can create a new premise

node directly, e.g. with (setq node-B (premise'B)), or ,ve can turn an

old node that is not a.lready a premise or au assumption into a premise、using
the function (premise-this-node node-A).

Since premises a.re by definition BELi EVED in all possible worlds, t.hey are

always IN, ancl they do not contribute towards any infonna.tion distinguish-

ing the possible worlds. Tims, they are uot. iucluclE・d in the environments.

The INness can be checked usi11g (explain-node (atrns-node'B)) or (IN-p
(atrns-node'B)). ・

11.2.3 Creating an Assumption

There are also two ways to create a.n a.ssurnption-cliredly, using (setq node-C

(assumption'C)), or by using a.n old node that is uot already a.n assump-

tion or a. premise, (setq node-D (atms-node'D)) a.ud thell (assume-this-node

node-D).

An a.ss111nption splits t.lte tllliverse into two sets of possible worlds-tl1ose

in which the a.ssu111ption is UELIEV8D, and those in which Lite assumption is

NOT BELJIりVED.Possible worlds are represented by euvirounH,'nts, which ca.11
1w lisLf、dusing (print-envs).

11.2.4 Creatmg an lmphcat10n

Jmplica.Lions have one consequeut., Ro.me user da.1.a., and a.t. least one a11-

tecC'de11t. The consequent a.nd the a1Jtecede11ts must be 11ocles, 1.hey cannot

be other implica.tious. It i8 convenient to ctでateATMS-nocles and assumptions
a.L 1.he same time tlta.t a.u implication is being created. 1'hus, if it is desired

Lo i叫）ly ATMS-uode C from the coujundion of premise A and assumption

13, it is convenient to use the command:

(implication (atms-node'C) "Because A and B -> C11
(premise'A)(assumption'B))

r「biscreates the desired implication. It also does the right t.hing vvith respect
to Llie nodes: if nodes A, B, or C dou't exist,, they a.re created; if lhey do

H

exist., the syst.crn does not crca.Le a.110Lher copy, but references Lhe previously

created versron. 10

Ju general, there is no rea.so11 to saYe pointers to implications, a.s there

a.re basic a.Uy no sig11ifica.11t operations that ca.11 be performed 011 them. 1111-
plica.Lions, once created, cauuot be modified or deleted.

11.2.5 Referencing Data

Ia general, as was discussed、thereare a.t least three differeut ways of rde1でllC-

ing data .. Tbe easiest is for the user system to store pointers to the nodes and

implicat.ious themselves. Since ea.ch creation fund.ion returns the object, ere-

at.eel, Llrnt object. call be stored inside a. couveuient user variable a.t the time of

creation. For example, (setq my-assumption-A (assumption "Data for

Assumption A")). The second met.bod is to reference the object using its ID
number. Ea.ch object has au ID mtmber that distinguishes it; these may be

found by t.lte 1D a.ccessor funct.ious (sect.ion :3.7.2--e.g. (premise-ID node))

or by printing the object (section :3.G). The 11umber acccssor fu11ctio11s (s<1c-

t.ion :3.T.L) (e.g., (Assum# n)), given the ID nun1ber, ¥¥'ill return the object..
This is perhaps more convenieut for the interactive user. The third, aud

疇 iestmetliocl, uses the user system data as an access key. As long as all

data is uuique, simply calliug (atms-node data) will return the previously

cerated uocle (or create a. uew oue, if it wa.su't there.) Note that this works

for premises and assumptions as well.

Finally, once a.n ATl¥IS object itself is loca.t.ecl, the nser syst.em da.t.a t.ltat

is stored inside tbe object can be returned by the data accessor fuuct.ions

(section :3,, .:3).

11.3 Exploring the Problem

r「heATMS is designed to he a system that is used by the user system in-

f fl'(/ cf i 11clリ・ As the user system learns more about. the problern, new nodes

and justifications should be entered. Ha. concept is recognized as being no

longer hypotl1et.ica.l but possible, the node representing that concept sl1ould

be assumed, using (assume-this-node norle). lf a. concept is recognized as

being no longer hypotlietica.l but actual. the node representing that concept

10Agnin, t.his behaviour is dcpeudf'nt upon the system variable use-uniquification
not. having been changed from its default value of T.

4-5

should be premised, using (premise-this-node norlf). If a.possible concept

is recognized i:lS actual, it ca、11be justified with a premise.

lf reasons a.re recoguized a.s to why a. hypothetica.l node could be true, that

node should be justified with (possibly uew) nodes represeutiug those rea-

sous. lf new relationships between co11cepts or 11ew implica.Lions a.re realized,

appropriate implications should be created.

11.3.1 Constraints

If a constraint on tl1c problem is recognized, that constraint. must. be entered

into the sysLern using a nogoocl cornmaml. Ir it is realized that a concept

(sa.y, node-A) will never be believed, no matter what, the system ca.n be

notified of this fact by using the command (no good node-A). This is known

a.s retrnctiug the node. Note that. tliis is a. permanent a.ct.ion. It. is au error

to call nogood Oil a premise; this lea.els to all premises being NOT BELIEVED.

The second kind of nogoocl connnancl deals wit.h sets. H it is realized

that all of the nodes in a. set can not togefhfl'be true at the sa.mf'time, t.lwn

the command (nogood-set node-A node-B ...) should be ca.lied. Note

that. this does uot say t.ha.t. any partic11.ln・1・node is uogood, only that the

8imultanco118 belief of all the uodes is nogoocl. Nogood-set thus ma.kes the

AND of a. set of nodes inconsistent; no good called on ea.ch member of a. set of

nodes makes the OR of the set, i11co11siste11t. a.nd is therdore a. much stronger

coudition.

1L is possible to no1irnonot.011ica.lly retract. a. siugle node hy creating a

new assumption (containing the da.t.a, "This other node is really uogoocl" i.11

a. ma.nu.er similar to conditioua.l rcl.raction of implica.tious (Figure'.2)) and

I.lien calling nogood-set wit.Ii bot.Ii tl1e node and the assumption. ¥Vhen

t.lie assHrnption is believed, the uode is retracted; when the a.ssumpt.iou is

11ot beli<う＼でcl,t.he uocle is not retract<うd. Not.e that t.l1e ca.pa.city to revoke

the retract.ion must be specified a.t. the time of retract.ion; .if the user syst.~m
simply ca.lls nogood 011 the node itself, the system caunot la.ter change its

miud.

11.4 Interpreting the Results

Once tlw problem has been set up, the user system 1weds to obt.aiu t.lie

required results from tbe ATMS, and be able to interpret them.

16

There a.re two basic operations that call be performed on the system 0J1ce

the problem has been set up. The first one is asking what concepts are (or

whether a particular concept is) BELrE¥「EDiu a particular possible world.

Tlie second operation is the dual to this: asking iu what possible~worlds a

particular con<でptis beliPved.

Several functions, including the explanation facilities, are built up arouud

these operations. How tlie user actually uses these functions depends upon

details of the problem and t.he approach.

11.4.1 System Environments vs. User Environments

There are two main approaches that can be taken towards data. interpre-

ta.tion. One is to let tlie ATMS system ha.Helle the euvironments (possible

worlds). The system only creates aucl reports environments tha.t a.re siguifi-

caut, i.e. uecessary aucl minimal. The user system can tl1en work with these

（→ 11viro11me11t.s, in a. da.La. ベ:lriveu fashion. The system performs this functiou

in any case; thus this approach is faster than the second approach. However,

t.hese enviroumeHLs ca.11 be smaller that what the user system bas i11 mind.

The other approach is for the user to handle the enviro111ne11Ls. The user

system specifies the environments it is iuterest.ed i11, and has tl1e system

follow the course of those environments. The user system has more cout.rol

in this case, but in genera.I the particular environments specified by the user

will probably not be us<:'d by Lhe system-ouly various subsets of them. The

result.s thus require more interpretation.

ln the following section, genera.I functions that are used ullClcr either

approach are discussed. Then, the system cnviroument a,t。)proa.d1 is described.

Filla.Hy, fuuct.ious supporting the user c11vironme11t approach are discussed.

11.4.2
．

General Functions

Hemember that a. "possible world''can be thought of either a.s the environ-

11/fllf (a. set of l3ELlE¥「EDasstunpt.ions that specify the set o[concepts or

nodes Lli, しt.are believt1d), or tl1e confc:rl (the set of all nodes that a.re be-

lieved, given a. particular environment).]うa.chcontext has a. charncteriごing

r11・11iron m r・11 t t. ha.L 1でpresentsit.. Alt.bough 1.be ATf¥・IS system itself only (ka.ls

with characterizing environments, in ge11eral when the user system specifi(ぷs

an enviro11me11L to tl1e ATf¥1S this will not be a. characterizing endronment.

4-7

¥・¥「hetherthe user system depends on the AT1IS system or specifies its own

etl¥'ironmeuts, it is important to realize ¥.Vhen a.n e11virom11e11t has become

nogoocl (i11consiste11t). This is tested for by the function (nogood-p env),

or equiva.lently, (inconsistent-p env). Having an environment become

uogood is a. monotonic process; once it is iuconsistcnL, it stays inconsistent.

The incousisteucy of an environment is a global property, unlike the NOT

BELIEVED value of a uocle, which is local relative to a particular environment

(e.g., see no good-set).

A list of the assumptions t.lta.t make up an environnwnt can a.lways be

returned using the comniaud (env-assums env). A list of a.II of the rnn-

ccpts that are J3ELLEVED under a. particular environment, including beぅlieved

ATMS-11odes, assumptions, allCI premis<cs, ca.n be returned L,y uRing the corn-

rna11cl (context env); howewヽr,t.liis is a.n expensive function. If a. sirnple

test for a particular node is desired, it is 111ud1 faster to use the function

(in-context-p node env), or equivaleut.ly, (in-world-p node env). If it
is kuown that Lbe 11ode is au assumption, it is even faster to use the function

(in-env-p assum env); this is the functiou that should be used most of the

time.

Occa.siona.lly it may be the case that the user knows that a.n entire environ-

rneut (aud all o[its supersets therea.fl.er) is 11ogoocl, even though the system

ma.y Hot believe this yet. To infonn the system o「thisclecisiou, the command

(nogood-env env) should be used.'J.'his esseutia.lly calls nogood-set 011 (the

couj unction of) al I of the assumptions i 11 tlie e11viroJ1ment, so that that par-

ticular comhilla.l.ion of assumptions can ll('VE'r be valid a.gain. In general,

ltowever, t.ltis sltou.ld be used only because of so111e higher-level kuowledge or

decision tlia.1: is not pa.rt of the lmowledge represented in Llie A'l'l¥IS; other-
wise, the correct metl10d is to nogood the particular node, nodes, or set of

nodes iu the environment that were responsible for this decision.

/

＼

11.4.3 System Environments

し「uderthe system environment. metlwcl, the user system n1akes use of the re-

suit cuviromueuts returned by the system. These will be a.s small as possible.

The user system must then iutcrpret the results.

The l'unctiou (env-assums env) wa.s already discussed to determine the

a.ssumptious that au u11fa111ilia.r euviromnt'lli posesses. In order to get a. list of

the (consistent) mi11i1nと e11vironn1ent.siu which a. particular node is believed,

L18

use (node-label node)、orcquiva.lcntly, (node-envs node) or (why-envs

node) .11 1f a list of all oft.he known (consistent) e11vironn1ents under which a.

gi¥'en node is believed is desired, t.he fuuct.ion (all-node-envs node) should

be ca.lied; however, this function is slightly expensive, as the ATl¥lS is desiguecl

Lo vYork wit.It minimal euvironment.s.

Suppose that t,vo particular environments are interesting (say, from two

clilforent nodes). It, is possible to create the concatenation of these two en-

vironmeuts by using the fuuction (OR-env env1 env2). This returns an

enviromneut composed of the uuion of the Lvvo enviroumeut's a.ssu111ptiou

sets. The user system mu then keep track of this single e11viro11111ent; the

systf.'lll will mark it as NOGOOD if it ever becomes iuronsisteut.

One of the problems witl1 using the environments given by the system

is that t.liey are always minimal. 111 addition, tl1e system tends to create

small pieces of power sets of the assumptions. Alt.hough the enviro1une11ts

front a single node are gua.rant.eed t.o be rniuimal, Uiat is, 1.liey arc as sn1all

as possible and any oue environment is not a. subset of any other envirou-

meut, wheu the environments from several nodes are combined, some of the

environments in the set will be non-interesting, "insignificant" subsets of

other environments. To elimiua.t.~these insiguifica.nt. environments, the fu!lc-
I.ion (significant-envs env-list) (or, (sig~envs env-list)) should be
ca.lied.'「hisreturns a list of the remaining envu・o11me!lLs, aller t.lie i11sig11ifi-

cant enYironrnents have been <―lropped from the giVC'll list.. The enviro11111cut.s

a.re clieckecl for va.lidiLy a.t the same time, so only the cousistent enviro11u1eHts

are rct.11r11<→ cl. H Lltis function is called with 110 argu111ellt., it defaults to ex-

a.mining *environments*, a list of all t.lie (valid and inva.lid) environments

kuowu to t.lte system. Tlrns, (sig-envs) returns the largest sig11ifirn11t euvi-

ro11rne11ts known to the system. For the int.era.dive user, these two fun<・Lions

also lia.ve a printing output version, (print-significant-envs env-list)

or (print-sig-envs env-list), which again defaults to the entire system's

kuown euvirouments without au argument.

There a.re two ways to retract a. concept. Oue way is done iusicle the

ATMS by seUiug the node representing the concept Lo NOGOOD, as has been

previously discussed. The second lllf.'thod is for the user system to disrcgaぃl

all enviro1111wnts co11taiui11g that coucept. The secoud method costs more

i11 terms o[ATMS comput.a.Liou, but it has the adva.uLage tlrnL concepts can

11This is actually the same as IN-p.

4~)

lw temporarily rd.meted or can be easily un-ret.ractecl without sp四 ilirnt.ion

ahead of time. The best function to use to follow this met.hod is (dont-use

assum-list env-list), which returns a. list of environments consisting ol'

the gi¥'ell environment list, from・which a.11 euviro1111H→ 11ts conta.i11i11g a11y of

Ute a.ssutupt.ious in the given a.ssumpLiou list lta.ve been deleted. Dii:;rega.rding

all environments in which a. pa.rticula.r assumption is used lia.s the result

of effectively settiug that concept to NOT BELIEVED in all used possible

worlds. Tliere is a.n analogous function that takes any kind of ATMS node

as its input, instead of just assumptions, (dont-use-nodes nodes envs);

this function disregards an e11viro11me11t if one of tlie given nodes is in that

em・irournent's context. Tlrns, this is a. more general fu11cLio11, but it is slightly

computa.Liona.lly expensiYe.

11.4.4
.

User Enviromnents

Under the user environment method, the user system creates environments

consisting of sets of assumptions that the user system is specifically int.crested

iu. The system thcu follmvs this uew e11viro11meut as well, noticing ,vha.L

nodes are it its coHtext a.ucl when it becomes 110good.

This is a rela.t.ively easy a.pproa.cl1; it is also computationally irn.'X])E'11sive.

However, there is a danger tlta.t., for a.11y pa.rt.icular concept or srna.11 set of

concepts, the set o「l'(ヽlevauta.ssumptious picked by tl1e user could bf. → la.rger

than necessary, and therefore could even include some irrelevant assumpt.ions

t ltat unnecessarily force the node to be NOT BEi、IEVIりDinthat f•nvirornne11t.
(The previously discussed (node-envs node) function returns the system's

record of the minimal environmeuts for that node, in which tha.t node is

believed, iu ease the system's opinion is de:,;ired.)

The ad vantage of this method is thatしheuser systPn1 can specify exa.c!.ly

wliiclt enviro1111H:'11ts it thinks a.re significa.1tt.; U1ere is then uo t.rouble iuLer-

preting the results when the system returns a. smaller subs(ぷteuviro11111ent

t1Bi11g the previous approach. Specifying a ue,v cuvironmeut is doue usiug

the co11111ta1Jd (create-env assum-list), wl1id1 creates and returns a new

enviro11meut if necessary, or returns the old one if tlte syst.f'lll l1ad created

it a.lrca.cly. H a.n ATl¥lS-node in the assumption list was not previoLtsly au

assumption, it is assumed by this function; however, this side-ef「ectshould

be usell with care. If the resulting euvironmeut is NOGOOD, this foactiou

currently returns nil instead of an environment.

50

If the user sysic>m simply wants to什nclout ,vlwthcr a particular environ-

ment exists or not, but does not want to create it if it does not exist, the

function (find-env assum-list) cau he used. This function returns nil if

the cm・iro11me11t is not already there. Find-env is a fa.st function.

lf there is an existing interesting environment a.ncl the user system wants
to enlarge it wiLl1 oue or more extra a.ssurnpl.ious, the fund.ion (add-assums-to-env

old-env assumptions ...) will create (if uecessary) a.ncl rd urn the new

e11viro11ment. (or, cnnでu!.ly,nil if the environment is NOGOOD). The old

euviromneut. is un!.oud1ed.

As wa.s p1でviou:,;lydiscussed, ii'there are two i11t1,resl.i'.1g enviro11111e11!.s,

a.11d the user system wa.111.s to cornbiue tl1em to form an euv1roume11!. cousist-

ing of their union, t.he functiou (OR-env e1 e2) is used.

1.'ltC'function (subsumed-by-p larger-env smaller-env) can be used

to test whether a. user system environment is subsumed by (is a. superset

of) a particular system environment. In this case, if the smaller system

e11viro11me11t. becomes NOGOOD, the larger user euvironrneut will, too. This

function is extremely fast.

¥¥1lie11 t.he user system specifies a _part.icular e11viro11me11t, it is useぶl'ul

!.o kuow whet.Ii.er a.uy of the a.:,;sumpt.1011s in the euvirornnent. a.re rec―I I II t-

dant (i「npli<'dby some of tlte other assurnpl.ions) or uot. The funcliou

(characterizing-env env) will rel.urn an e11vironnwnt lia.viug a. set o「as-
sumpt.io11s a.s small as pos:,;ible. Tl1is l'nnct.ion returns i.he given euviromnellt

if it. is a. d1ara.d.erizing euv, or nil il'the givcu environment is inco11sistent.

11.5 Examples: Demonstration of Capabilities

11.5.1 Truth Maintenance: Consistency Management

One of t.lie main t.aRks of any truth ma.iutcuance system is to manage the

consistency or Lite data-base it st.ores. If a node or sc、tof nodes becomes

iucousistcut., the i111plica.tio11s of this fact should a.uLomaLica.lly propagate

Lltrougl101.1t. t.l1e network.

To de111ousLra.te this capability, a test uf't,work, shovvu iu Figure 6, is

created using Lhe following commands:

(implication (atms-node'D)'1 (assumption'A))

(implication (atms-node'G)'2 (atrns-node'D))

ーR
J

,-
｛

＼
ヽ

Figure 6: Network for Truth l¥fa.intenanee Example.

(implication (atms-node'E)'3 (assumption'A) (assumption'B))

(implication (atms-node'F)'4 (assumption'A))

(implication (atms-node'F)'5 (assumption'C))

As can be seen, node C: is basPd 011 node D, which in turn is based on the

assumption that A is believed true. Node A is also used to justify node E

with an AND connectio11, that is, node A and node B imply node E. ln
addition, node A is used to justify node F with an OR conuection, i.e. node

A or node C implies node F.'「hebasic assumptions iu Lhis case are nodes

A, B, and C.

lu the network a.s it stands, all the nodes a.re IN for one reason or an-

other. Both nodes D aud G have Lhe sole enviro11111e11t {A}; node 8 has the

cnvirom11e11t. {A,B}, and node、Fha.s two environments i11 its label, {A} and

{ C}. Hcmcrnbcr that each environmeuL corresponds to a. possible world in

which this uoc―le is bcliewcl. Of course, all the assumptions have one euvi-

rounieut. apiece, i.e. {A}、{I3},and {C}, respectively. This i11formatio11 ca.11
be summarized by using the command (explain-nodes).

NOGOOD-NODE is out.

A is in, under #<Env 1>: {A}.

ぅ
l

r
J

Bis in, under #<Env 2>: {B}.

C is in, under #<Env 4>: {C}.

Dis in, under #<Env 1>: {A}.

Eis in, under #<Env 3>: {A, B}.

Fis in, under #<Env 1>: {A} #<Env 4>: {C}.

Gisin, under #<Env 1>: {A}.

¥Ve now decide to permanently clisregarcl/rctract node A by ma.king it NO-

GOOD, usi11g the (nogood (atrns-node'A)) com111alld. The nogood com-

rnancl sets up a. direct. implication to the *nogood-node*. Tln1s, node A will

be NOT BELIEVED in all possible worlds.

By this commaml alone, the results of ma.king 11orle A iuco11sistent a.re au-

toma.tically propagated throughout the network. Node D and therefore node

C both become OUT, because they had 110 other justification. Node E also
becomes OUT, because it depends on both A a.ud B heing believed. HO¥vever,

uod<、Fisst.ill IN, because ii. is still believed iu a.L lea.st one euvirnlllneuL. H

now has a la.lwl with 011ly one eHvironment, {C}. Naturally, assumptions 13

and C a.re unaffect.ed by A beeorn.ing NOGOOD、andare still tN. Aga.iu, using

(explain-nodes) gives a suuuna.ry of this information:

NDGODD-NDDE is in, under XX#<Env 1>: {A}.

A is out.

Bis in, under #<Env 2>: {B}.

C is in, under #<Env 4>: {C}.

Dis out.

Eis out.

Fis in, under #<Env 4>: {C}.

G is out.

Note t.ha.L a. computer program can get. the same information for a. pa.rtic—

ular node (rat.her t.ha.11 simply a printed expla.11a.lio11) by calling (why-envs

(atrns-node'A)).

11.5.2 Multiple Contexts: Parallel Contradictory Representations

An ATl¥IS is ca.pahle of reprPsPuting multiple worlds at the same time. In

addition, these multiple ¥Vorldsぐanbe mutvallリcontradictory-thiugscan he

lll''.LIEVIrn in one world tliat colltradict things that are 13じLIEVIりDinanother

3

r
J

□

Figure 7: Network for Parallel H.eprese1Jta.tions Example.

world. Bot.It halves of a. contradict.ion ca.11 he explored a.t t.l1e sa.11w time; there

is no ueed to swit.cli back a.11d fort.l1 bet.ween contexts, as Llte syst.em n1aint.a.ins

,vha.t is true in a.Hy one possible world. The ATJ¥'lS sets up the worlds for

tl1e user, and derives them a.utoma.tica.lly, based on the assumptions and the

nogoocl contra.dictious that are asserted.

This example st.arts out ,vit.lt a consist.en(. single world, iu which nodes

A and 13 together imply uodc D, and 1wdes A a,1)(1 C tog叫herimply node

E. Nodes D a.nd E imply node F. The world rn11 be found by the function

(print-significant-envs), which pr.ints out. #<Env 6>: {A, B, C}. 111

a.cldit.iou, this is retllr11ed by the l'uncLiou (significant-envs) or equiva. ―

kntly (sig.:.envs). This e11viro11111cnL implies a.II of the uodes (i.e., A tl1rouglt

F).

Next, it is learned that C is actually the same as NOT n. Tlws, to

have B and C be in t.he same world t.ogether is inconsistent. To repre-

sent this inconsistency in a permanent. fashion, the function (nogood-set

(atrns-node'B) (atrns-node'C)) is called. (Tl」isis implemented by im-

plying the *nogood-node* with the conjunct.ion of 13 aud C.)

This has the cff cct of splitting the previous single world int.o two (mutually

inco11siste11t.) parallel worlds. In one world, A a.ad D are bdi<:'ved, ¥¥'ith the

54

result Urnt D is believed. However, C is uot. belieYed、andthus both E and

F are not believed either. The second world is a mirror of t.lte first— in this
possibility, A a.nd C are believed, aud thus E as well, while 13, D, a.ncl r a.re
not believed. Notice that node Fis uo longer believed i11 eit.her world. Tliese

possibilities a.re again returned as a. list by (sig-envs), a.nd priuted out by

(print-sig-envs):

#<Env 3>: {A,B}

#<Env 5>: {A,C}

IL is worthwhile to note tha.t under most logics, when both I3 aucl not

l3 a、rerepresented, the logic collapses allCl auy assumption ca.u be proved or

disproved. However, under the BELJEVED/UNhNOWN(NOT BELrnVED) logic

used by the ATl¥lS, v,rlien the k110,vledge base represents something tltat is

inconsistent, anything that depends exclusively ou that incousisteucy (e.g.,

nod<ぷ F)silllply beco111es NOT BELlEVEJJ. All otlier derivaLious (e.g., D「L'Olll
lふorE frorn C) are left iutact.-they do uot collapse simply because another

pa.rt of Ll1e knowledge base is iaconsistcut. Fiua.Lly, au inconsistency splits

the knowledge ba.se into two [sets of] possible ,vorlds-onc in which only one

half of tlie inconsistency is believed, and one in which only the other half of

the inconsistency is believed.

One of the powerful features of an ATl¥IS is that now hot.Ji possible worlds

can be explored and expa.uded simply by performing actions on the 011c

ATMS da.ta.-basc; there is no need Lo s¥¥'itch back and forth between para.lid

1'(、presentationsiu multiple worlds. For instance, say that it is uow learned

tl1a.t B implies G. If this justil'ica.tiou is eutenxl, G becomes belicwd iu the

{A, 13} world, but it is not believed in the {A, C} world. Lt was 011ly 11ec-

essary to enter the one illlplication into the data-base, aud t.l1e appropriate

possible world was expanded. Now, say tlta.t it is learned tlrnt A implies 11.

Wlieu tliis implica.tiou gets added, both possible worlds a.re updated. Node

H is BELIEVED iu both worlds {A,B} and {A, C}. Note tha.t. under nor-

ma.I para.llel rC:'prese11ta.tions of multiple worlds not using a.n AT.l'vlS, node H

would have-ha.cl to ha.Ye been added twice, once for world { A,B}, and once for

{ A, C}. Tbe ATMS allows exploration and appropriate update of multiple

couLra.didory worlds a.L Lhe same time, usiug siugle operations.

11.5.3 Explanation: Justifying Results

r
J

L
J

etc吋二鯰

(An answer
has been
reached)

/

¥

Figure 8: Network for Explanation Example.

111 this example, we haw a complex network with some basic j11st.ifyi11g con-

cepts 011 Ute left (nodes A through F), a.nd some possible deri va.tious on the

right (11ocles M through 0). vVe a.re willing to assume that nodes A, B, D,
a.ucl F coulcl be believed. Tl1rough mouitoring, we have discovered t.lwt. N

is an auswer.12 Now, we waut the ATMS system to explain why uode N is

believed.

'fhe first step ii:i to find out iu what possible worlds (e11viro11mf'1Lts) node N

is ht、lieved. This is done usiug the fu11c.:tio11 (why-en vs (atms-node'N)),

which rel.tLras all Lhe envirournenl.s iu which N is BELlGVED: #<Env 5>:

{A, B}. (Note that this is a.dually the same function a.s IN-p). Ideally,

there will he onl.)「onesolution, but it is possible that there can be mor<, than

one-the AT1'IS is powerful enough to represent this. Tl1ese will be rniuima.l

(as small a.s possible) and 11011-reclumla.11t. Solutions must be explored one

/

1'.! Act.11ally, t.l1e monit.ori11g process is just one more level of explnnation, reaclted by
calling (why-envs (atms-node'ANSWER)) and Lhen (why-nodes (atms-node'ANSWER)
り111)Lo get node N, as sltown i11 the illust .. rntion. Also, if an i11Lerrnptー<lrin'ni11stead
of a pollc沢Isystem is desired, it is possible t.o inst.all a user processing routine into t.ltcう

ANS¥¥'F;H nod<'t.liat. gd.s triggered when the node~becomes IN. e.g. to report. I.he ansWt'l'.
, Ihis i8 done with the com1rn111d (install-action'ANSWER'user-routine).

5G

at a tirnP. when using tbe following fondions, as it. only makP.s SP.Use to talk

about. whether a node is believed _or not in a part.icula.r environment.

The euviromnent. itself rel.urns a list of exactly all the assumptions t.l1a(,

are used to originally justify that uode-t.bat is, if t.be used just.ilicat.ions

are recursively followed all the way back, what are the assumptions at tl1e

beginning of the justification 11et.work. llowevcr, say that we want to get an

奴 pla.na.t.ionof the immediate justifications of the uode.

There are two types of answers for immediate back-chaining explana-

Lions. The first is c911cernecl with the justifica.tiou (or implica.tiou) itself.

For iusta.nce, in our exan1 pie there are three j nstifications lea.ding to node N:
numlwrs 7, 8, and~). To obtain which jusLifica.t.ion is the signiflrnut one u11clげ

c11viro11meut. #5, the commaud (why-implies (atms-node'N) (env# 5))

is used, which rel.urns the list (#<Implic 11>); uext, (implication-data

(implic# 11)) will the11 return the iuforma.tiou desired (7).

The second type of answer is concerned with the nodes immediately j11s-

Lifyiug the node iu question. ln this example, there are six nodes potentially

ju::;tifying node N (i.e., nodes G thro11gh L). However, in the solution, nu-

cler environment #5 ({A,B}), only nodes C and I―l a.ctua.lly justify node N

and cause it to be BELIEVED. To obtai11 tliis immediate explana.tio11, use

the comrnaiHI (why-nodes (atms-node'N) (env# 5)), ,vhich returns_ the

answer (#<Atms-Node 3> #<Atms-Node 1>). Again, it is necessary to call

a cla.t.a access functio11, in this case (atms-node-data (atms-node# 1)), to

get the dcsirccl information G.

0 f course, i r the net.work werで deeperthan two levels, these fuuct.iolls

c~、）nld be used recursi vdy i11 a ba.ckwanls-clrni11i11g mode on the previously

gt ven a.nsw<:、rs,to o『erfurther inunediate explanations of why tho.c;e nodes

were believed.

12 Conclusion

Tliis nianual has presented the theory aud pra.ct.ice of the use of the ATH

Assumptio11-hased Truth l¥laiuteuance System written in Lisp. l「singthe、

rune・tionsancl examples described h日・e,Lhe user can set up a problem, ex-

panel aud explore the proble1n iut:era.ctively, aud interpret Lite results to the

problem as rcpreseuted by the ATMS. The ATl¥lS ca.n propa,gate implications

to maintain truth ・ヽalues:it c、a.nexplore multiple possible contexts simulta-

l
i

R
J

ucously, eYen if they are contrndict.ory; a.nd, it can explain and justify its

result.s. Tl1e resulting system can be used as a tool to explore co11st.rai11t.,

search, logic, and multiple-world problems.

8

r
J

A Implementation

As a brief review, from the user's vie,vpoint囀 thE'reare t.l1ree kinds of nodes:

ATJ¥1S-nodes, premises, and assumptions. There is also one kind of conuectiou

枷 tweennodes, the implication (or,''justification"). Fiua.lly, there are the

environments, which consist of sets of assumptions. Use of thE'system con-

sis ts of crea.t.i ng nodes, a.nd then creating implica.tious to link them together.

The user ca.1t a.lso indicate inconsistent uocles or sets of nodes. Euvirounwnts

can then be referenced, to see wha.t assumptions a、rerequired iu a. pa」:tirnlar

possible world, aml whic、hpossible ¥¥「orldsa.re inconsistent.

A.1 Implementation Data Structures

The actual clata.-structnres that are used to acco1nplish this a.re somewhat

cliffere11t front the user conceptualization. There a.re four types of structures

in the implementation: the ATMS-node, the a.ssumpt.iou-ta.g, the implica.-

tion, aud the euviroument. Premises a.re implemented a.s a. special case of

the ATl¥lS-node. An assumption is implemcutcd a.s a.n ATMS-uode toge1.l1er

with an assumption-tag, with a. single-antecedent. illlplication poiutiag to tbe

ATl¥lS-uocle from the a.ssu111ptio11-ta.g. All of these objects a.re irnplemeut叫

a.s structures for speed.

A.1.1 A.TMS-node structure

An AT.MS-node has the fields data, implie.s, implied妙， label,叫 lーCl88UIII, ID,

a.11d ,・u.fr・. Ju a.ddit:ion, it ha.s an a.si:;ocia.ted print-fuudion. Tlie da.t.a. fi叫 l

stores the user's clat.a., a.ucl is not referenced by the A1'MS system. The implies

fidcl contains a list of implications that have this node as an ant.ececl<、ut..

i.e. the node irnplies something. The implied-by field contains a list. of

i111plica.t.ions (.liat. have this node as a. co11seqw'1tt, i.e. tit.is uocle is irnpli<:'d-

by t. hose j ust.i什cat.ions. Tl1e label field co11t.ai11s a. sorted list of cousist.Put

cl1a.ra.derizing c11Yironment.s which this node is in the context of, i.e. directly

or indirectly implied by. If this node is a premise, the label consists of a

single etl¥'ironment, I.he null environmeut *truth-env*. The enviro1une11ts

in a label are sorted by size; Lhe size of an environmeut is the number of

assumptions it comprises. The my-assum field cont.a.ins the a.ssumpt.ion~ta.g
for this node if the uocle is an assumption. or nil otherwise. The ID field

5~)

co11tai11s a unique non-negative integer identifying this node. And, the rnle

field is usually uil, but cau co11tai11 a short program tha.t gets executed when

the node becomes IN.

A.1.2 The Assumption-Tag Structure

An a.ssurnption-t.ag has the fields my-node, en、,uironmenf8, a.ml JD. In addi-

Lion, it has au associated print-function. The a.ssumpt.ion-tag's my-node fip]c[

contains the correspoudiug ATJ¥IS-node that gets assumed, tliat this ta.g j11s-

tifies. Assumption-tags cau oulyjustify one A'J'MS-uode. The enviroumeuts

field coutains a li::;t ol'all tlie explicitly-identified euvironrnents tliis assump-

tion is in. And, tlic ID field contains a non-negative iutegcr to identify this

assumption-tag1 that is unique among the assumption-ta.gs.
¥＼

A.1.3 The Implication Structure

An implirnt.io11 lia.s tbe fields data, antecedents, conserrncnt, a.ud ID. In a.cl-

clit.ion, it, has au associated print-function. The data field contains Lbe user

clat.a for this implication, which is 1Jot. used by tlie ATMS.'l'he a11t.PceclenLs

飯klcontains a list of au assumption-tag, or a list of one or more nodes,

tlwt. an→ antecedents to the irnplirntion. The consequent fidd contains an

A'J'MS-uoc―le tl1a.t is the co11seque11t of the irnplicatio11.'「lie[l) field contaius

a non-negative iuteger to identify the implication, that is u1iique among the

implica.tious.

A .1.4 The Environment Structure

A」1environment has the fields nodじs,no_r;ood-p, si::c, JD, a.ncl assum-bits. ln

addition, it ha.s a.n associated pri11t-fuuctiou. The uodes fidd conta.ius t.lte

context of the environment, i.e. a. list of a.II of tlte nodes that luしvethis

c11viro11meut i11 their label. The uogood-p field is 11il unless the e11virourne11t

is nogoocl; this provides a. quick check, a.It.hough it is not strictly necessa.ry.

The size 1ield provides a count as to the number of a.ssumpt.ions in this

environrn.ent; it. is used to order the environment in lists. The ID什 contains

a non-negative integer to identify the enviro111nent, that is unique among Hie

e11vironmc1it.s. And, t.lte a.ssurn-bits field coutaius a special bit-array t.lia.t. lias

a bit. set for t.he uumber of ea.ch assumption that cornposcs t.ltc environment.

/

GO

A.2 Important V
．

anables

Besides the data. st.ructures, there a.re a. few special important variables that

are used by Lhe system Lo represent Lhe ATl¥lS.

A.2.1 *nogood-node*

Upon reset, the system creates a single ATMS-uocle a.ncl st.ores it in the vari-

able *nogood-node*. Tl1is node then is used iu a special ma.n11er by t.lie

system; it is the consequeut. of irnplica.tio11s that represent co11Lraclictio11s、!

a.ud it is Lest(心dfor Lo dct.ern1ine when to handle uogood euvirourneuLs.

A.2.2 *truth-env*

I「pcmresd., the system creates a. siugle special environnwnt a.nd stores it in

the variable *truth-env*. This <:'m・iro1uue1it. is the empty euviro11nie11t; it

t111iq11ely ba.s no assumptions. Thus, it. subsumes all other environments, and

is there「orea subset of all environments. Since pr<'mises have (*truth-env*)

as their lab<:、1,all premises cしreaut.omat.ically included iu all environments.

A.2.3 *reprocess-unphcat.1011-queue*

This variable cont.a.ins a. queue of a.ll implications t.hat will be reprocessed.

As rcprocccヽssingpropagates, irnplica.tious a.re pushed onto this queue. Hepro-

cessiug contiuucs until the queue is empty. Usiug a. queue allows it.era.Lion

i11::;t.ead of recursiou.

A.2.4 *environments*

C'o1tLa.ins a. lisL of all <:'nvironrne11ts iH the reverse order created. focludes all

euviro11me11Ls. ev四 ifthey are i11co11siste11t.

A.3 Creation and Propagation

A.3.1 Creation of ATl¥lS-nodes, premises, and assumptions

Crea.ting c1n ATMS-11ode]>f'l'se has no extra d「ect.,as .it is uoL at.ta.ched Lo

anything when it. is created. 1L has the default Lrut.h value of OUT.

Gl

Creating a premise involves creating an ATMS-nocle a.ncl then resetting its

label Lo the empty e11viro11111e11t, eHviro11111eut #0 (which, of course, is always
true). Premises are thus always a11tomatica.lly IN.

Creating an assumption iuvolves creati11g an ATJ¥IS-nocle, creating a sep-

a.rate assumption-tag, aud justifyiug tl1e ATMS-nocle with the assumption

llOC—le. Assumption-tags are a different kill(l of structure, couta.i niug less in-

format ion; they are designed to augnwnt t.l1e corresponcliug ATMS-11ocle's in-

fonnatiou, not duplicate it; thus, 1torma.lly one thinks of the assumption-tag

and its correspoudiug ATJ¥lS-nodc as a unit. Crea.ting a new assumption has

110 significant extra. effect.

A.3.2 A
．．

ssummg or prenusmg an existing node

llowever、performingan a.ssume-tl1is-nocle 011 an existing no<―le that is t.lte a.11-

厨 eclenLof an i叫）lica.tion requires a possible propagation of the a.ssumptiou,

whicl1 is clone in the same way as installing a. uew implication. (discuss叫 in

the 11<:、xt.para.graph). A 11ocle is assurned by justifyiug it with its assumptiou-

tag. This inherently installs a.u implication (from tl1e assumption-tag to

the assumed ATHS-node). wliiclt then canses the assunH:'cl node to propaga.t.e

forward, 1でprocessingall the irnplica.tions that that node is a.u a.nteced叫

of. Note that there is 110 need to propagate backwards or to recornput.e

the label of the assumed node from its other, previous implications、because
assumption-ta.gs are unique, atomic, and assigned to justify 011ly the one

assumed nocle.

Premising an existing nock、involvesresettiug tl1e node's label to the

empty, Truth envir011mc11t, a.ud t.lieu propa.ga.ting tlia.t uode's change by re-

processing a.H Lhe i111p.licatio11s tlrnt use that uode as an autecedcut.

A.3.3 Creatmg and propagatmg 1111phcat1011s

Creating an implication is more complex. When a new implication is in-

stalled (or an old ATMS-nocle is assumed), it is necessary to propagate the

new cout.ribut.ion to the truth ma.iutenauce network, by reprocessing t.he iu1-

plication. There a.re tlirce cases: either the node implied by the implication

(the consequent) is a premise, the no-good node、ora regular node. If it

is a premise, propa.ga.tion stops, as a premise's label is by definition auto-

ma、ticallyconsistent, sound, cornpl<→ te, and minimal. In particular, premises

I

＼

G2

cannot be nogood or directly imply the nogood node without another node

as an a11Lecede11t. Given that Llie node is not a premise, the other two cases

a.re discussed separately below.

A.3.4 Processing an implication with the nogood node as a con-

sequent

,vlien an irnplirnt.ion implies the nogood node, it means that all the d1a.r-

a.cterizing environments in ,vha.t、wo・uldhe the label of the implied node (the

nogood node) are inconsistent. Tlrns, the first thing to do is to calculate tl1e

label of the implied node, by forming the cross-product of the environments

(labels) of the antecedents, as discussed below. Next, all of these cm・iron-

ments a.re a.clclecl i11t.o a. specia.l nogoocl bin. This bin keeps t.he nogoocls sorted

by size, which makes substuupt.iou testiug faster. Na.Lura.Uy, the 11ogood bin

is kept, rninimal, wliich means that the new nogood cnviro11mc11ts as t.hey are

adcled are test.eel for subsuming previous entries in tl1e bin (in which cとI.SC

the previous eut.ry is deleted). Tliere is uo 11(→ eel to test for the uew 11ogood

itself being subsumed by a previous entry, as it has already het•n guaranteed
to be minimal. In addition to heiJJg euterecl iu storage, t.he uew 1togoods

are tested a.ga.iust all the previous environments, to see whetl1<:・r any of the

prc,・io11s enviromncHLs a.re uow newly suh:rnn1ed a.ncl a.re nogoocl. These en-

virou111e11t.s, however, do uot. need to he tested for further snbsumpt.ion, as

suhsurnptiou i:,; t.ransitiYe. Finally, all of the newly i11consist.cnt enviro1u11cuts

a.re removed from all nodes'labels that co11taiued those euvironnH:•nts.'J'hesc-~
111odified nodes will then propagate their changes forward. In a.clclitiou, the
e11viron1rn→ uts are added iut.o the nogoocl node's label, for reference.

A.3.5 Processing an implication with a regular node as a conse-

quent

¥Vhcn an irnplica.t.ion to be reprocessed implies a. node that is not the nogood,

tlie crnss-procluct of its a.utecedents'labels is cakula.t.ed, and then OH叫 iuto

the cuneut label ol'the cousequeut. lf this action changes the cousequeut's
la.bd, the node's change uurnt be propagated forward.

G:3

A.3.6 Cross-product

Ca.lcula.t.ing a. cross-product for an implication involves the permutations of

choosing oue environment from ea.ch ATMS-node antecedent's label, a.nd com-

bining the resulting assumptions together into a. new euviromncut (using OH

on the bit vectors). These new environments then form a. new label (which

will be combined into the consequent uode's current label). As these new en-

vironrneuts are being created, they a.re tested for minimality a.ud consistency,

usiug the subsumption test on e11viro11me11ts a.nd nogoocl environments. If
a.11 euvironuwut is subsumed by a regular e11viro11rneut., theぅ11it is reduuda.11t

(nou-mi nimal) and does not need to be cousiderecl fort.her. lf an <:'nvironme11t.

is subsumed by a. nogoocl <:'11viromnent, then it is 11ogood (i11co11siste11t) and

a.gain does 11ot need to be cousidered further.

A.3.7 Subsumption

Subsmnpt.ion is conceptua.lly performed by testing to see whether one envi-

roumeut is a subset of another environment. The subset environment then

subsmnes 1.lie superset. environment. Subsumpt.io11 is a.d.ua.lly perfor1ned 1?.Y

comparing t.he environm<-・11ts'assum-bit vectors, for sp<-'<-'d. H Lhc OH of tbe

assmu-bit i'edors is equal Lo Lhe assum-bit vector oft.he larger environment.,

then that larger envirom11ent is subsumed by the other.

Comparing subsumpt.iou between an environment and a label is made

faster by lrnviug the contents of the labels sorted as to tlie number of assump-

1.ions in ea.ch environment. That way, wlten testing for being subsumed, only

the cnviro11m<:nts iu the label sma.ller or equa.l to the testing environmc

size need to be processed; ,vhen testing for subsuming, ouly the environments

of equal or larger size need Lo be tested.

Subsurnption Lests occur when new enviro111nent.s arc created, and wl1en

new nogood sets arc noticed or explicitly implied. 111 tltis case, if the new

uogood is subsuuJ<・'d by previous, smaller nogoocls, it. is reduucla.ul. a11d not

noticed. Otherヽvise,it is a new, valid nogoocl, aucl must be tested agaiust.

environments aud nogoods larger than itself, Lo see whether it subsumes

them.

G,1

A.3.8 Propagating a node's changes

Propagating the changes to a. node {forward) int.he cunmt implirnLio11 co11-

i:;ists simply of (rc)processiug all of the implirntious tlrnt use that node as

an antecedent, in the mauner expla.iued above. Rcproces1:,ing the implication

lia.udles the 1でquireddetails.

Propagation is curreutly done depth-flrst, through iteration at the propagating-

node level and FIFO-queue recurnion at the reprocess-implication level.

A.4 Forming Answers to Queries

r「herea.re a. few basic quf、riesthat the user can ask the system. The syst.em

answers according to the following a.lgorithms.

Is an environment consistent? A11 environ1nent is consistent if it. is

not a superset of one of the environments that are known to be uogood. This

is tested by using the extremely fast subsumptiou operation.

Is a node IN? In other words, is there some consistent environment tha.t

supports the uode? Yes, i『the11ode's label is 11011-uull.

Is a node N in the context of an environment E? Yes, i「IりisR

superset. of a.t. least. oue e11viron111e11t. i11 N's la.lwl. (Aga.in, t.liis is t.est.ed

using t.he subsumption operation.) No, if otherwise. llowever, if the envi-

romneut. is inconsistent, the question is probably meaningless; iu a.uy case,

since only consistent enviro11111ents are ma.iuta.inecl in labels (except for the

nogood-node) the query will not find a match.

A.5 Efficiency Considerations

Data strnctures a.re implemented・with Lisp structures, instead of fla,vor ob-

j沢.・ts.This results iu faster access time. Some previous ATMSs have based

t, h<、irpropagation on nodes, rcquiri11g a node to recompute its label from its

justifications and their antccedeut nodes wheu a cliange is propagated. This

involves u1111ecessa.ry cornputa.tion. The ATR ATMS bases propagation 011

implica.tious. which is faster. As explained above、t!tepropagated cbauge

contribut<:'d hy a11 implication is uuioned into tbe label of the irnplica.tion's

GG

consequent; t.lwre is no need to examine the sister implirntions cont.ribut.ing

t.o t.he consf'quent. Some previous AT.l¥ISs lrnvc r<'presen1.ed their labels using

lists、whichrequire list comput.at.ions. This ATl¥[S uses bit vectors to repre-

seut labels; as a result., label computations a.re extremely fast. In pa.rt.icula.r、}

the irnportaut subsurnption test is represented as two accesses and a single

bit-vector operation, resulting in extremely efficient operation.

G6

B Discussion of Use of the ATMS

B.1 The ATMS's capabilities

B.1.1 Atomic Data

The ATMS stores, in each node, data that is 1rndul to the user system.

However, the ATMS never cramincs thi8 data. The ATMS treats the data
as an atomic assertion, all([only works with whether the node containing tl1e

data. is believed or not. This means that the user system can store anything

inside the node, iucluding facts, lists, hash tables, functions, or other krnds
of complex data structures. The data. is treated as an atomic assertion, and

assigned a belief value. Later on the user system ca.11 access this cla.La, pcrl1a.ps

expa.uding it or modifyi11g it inside the user system, creating a new ATMS

node to store the results of the rnodification.

Most typically, the data stored inside a node is a. sentence, representing

a segment of a semantic network.

B.1.2 Positive Data

The ATl¥IS only stores positive data .. The da.t.a. inside a. node is either "be-

lieved true" or "11ot believed true"("no opi11io11"), but the ATl¥1S can11ot

represeut "believed not trne".

J 11 order t.o represent the negation of data "X", the user system must

explicitly create a separate node with the data "(llot X)" inside it (remember

that we ca.n put anything in the data of a node that we want). Then, wheu

tl1is uodc is belicYcd by the system, tlie ATl¥1S is representing "believed (uot
X)". (Of course, ,vhen this node is not believed by the syst<うm,it. repres<:'11ts

"uot believed (uot X)", which is still "no opiniou"-it does uot 111ea.11 "bdienxl

X".)

B.1.3 Constant Data

The data stored ia the ATMS is treated a.s constant, si11ce it. is not used

by t.he ATMS. The ATMS cannot represent variables, aud there is 110 way

t.o have the ATMS instantiate different values, ma.Leh pat.terns, or perform

other manipulations rC'quiring variables. r「hatis the job of the user system.

6 7

B.1.4 Finite Problem

Since an ATI¥IS explicitly 1でpresentsall important instantiations of the user

system's variables, the problem must be finite.

B.2 What are the Strengths and Weaknesses of an

ATMS?

An ATMS is useful in deterministic problems. ATMSs a.re also useful when

there is just one solution Urnt nmst be found, or several solutions tlrnt must

all be found. One of the strengths of an A'l'MS is its ability to represent

and reason about rnany different possible worlds simultaneously, where these

worlds ca.11 be coufiicting or contradictory. Natura.Hy, an A'「MSis useful

when truth maintenance mu::;t be done, i.e. when the belief or disbelief of a

particular co11⑬ pt has consequences that propagate 1,o other couccpts; tl1us,

an ATl¥lS can be ernployed in problerns wheu there is binary evidence. It is
part.icuJa.dy useful when a couc<'pt's belief value will be cha.ng叫 bとl、ckand

forth many Llllles. A'l、MSscau also be employed w!l.h a.cl vantage iu problems

wh<ぅrecoucepts ha.ve:、jutitifirntious,a.nd where expla.ua.tious for the belief iu

a particular concept are desired.

However, since an ATMS represents discrete concepts that propagate

truth values iu au all-or-nothing 1na1111er, the ATl¥lS itself is uot good at

stochastic problems, or those dealing with coutiuuous va.riahles t.lrnt Lake

on ra.11ges of importaut values. Also, forしhesanle rea.sou the ATMS itself

is 110L good at weighted evidentia.l reasoning, wit<入resome possibilities must

be chosen over other possibilities because of sligltl.ly larger evidence scores.

ht addition, tlte ATMS a.utomatica.Uy Jiuds all signil1ca11t possible solut.ious;

thus, it is wastel'ul wlwn there is a. large class of solut.ions, ouly one of wliich

needs to be found.

Besides these. an ATMS by itself cannot represent possible worlds that

lrnve t.l1e sa、mest.ate hut dif「erellLhistories. It can represe1tt clefiuite no1uno110-

tonic actions, simultaneous possible stat.es. or possible rnonot.onic (.e,npora.l

actions, but. it cannot. 1・epresent.possible nonmo11olonic nrlio118. For t.ltis rea.-

son, a11 ATMS must be augmented if it is to reasou about a.ctious over time.

/

＼

・
~

．

68

B.3 Su1nmary of Conceptual User Operation of the

ATMS

• The ATl¥JS is given a set of assumpt.ions.

• The ATMS given a set of implications.

• These are supplied one at a time.

• The ATl¥IS incrementally updates itsC'lf as assumptions aucl implica.-
tious come i u:

• The ATMS deterrninrs the contexts.

• It answers: ¥¥「henhas a context become inconsistent?

• lt a.J1SWf'1・s: Does a node hold in t.ltis cont.ext?

• It. answers: ¥Vha.t is i11 this context.?

• H reniembcrs all part.ial results of the nser systern; these do 1101, have

to be rcdcrivecl, e.g. whcu switching sca.rcl1-spa.ces.

• The usrr system can switch states back and forth easily by temporarily
changing assしt111ptions.

As was 111c11tionecl before, it is important to note that alt.hough assump-

t.io11s are structures in tlie problem solvcr, tltey a.re atom、icin the A'l'MS.

Problem solving is the process of accumulating implications and clrn11gi11g

beliefs until some goal is met. The ATMS ouly kt10ws wha.t Ure user tells it.

G9

Figure D: Network for Example 1.

C Further Examples

C .1 Example 1: Two In1plications

The network for this example is sltmvn in Figure 9.

This demo demonstrates the capabilities of the ATMS system.

The variable *watch-atms* is T, so whenever a new item

is added to the ATMS, the ATMS prints it out.

Naturally, the first thing to do is to reset the ATMS.

(reset-atms)

Atms-node NOGOOD-NODE.

(setq A1 (assumption'Ai))

Assumption Atms-node A1.

Assuming node #<Atms-Node 1> : A1.

Implication ASSUMED: Ai<= #<Assum 1>

(setq Pi (premise'Pi))

Premise Atms-node Pi.

(setq Ni (atms-node'Ni))

70

Atms-node Ni.

(setq !1 (implication Ni (list Pi Ai)'Ii))

Implication Ii: Ni<= #<Atms-Node 2> #<Atms-Node 1>

(setq A2 (assumption'A2))

Assumption Atms-node A2.

Assuming node #<Atms-Node 4> : A2.

Implication ASSUMED: A2 <= #<Assum 2>

(setq A3 (assumption'A3))

Assumption Atms-node A3.

Assuming node #<Atms-Node 5> : A3.

Implication ASSUMED: A3 <= #<Assum 3>

(setq N2 (atms-node'N2))

Atms-node N2.

(setq 12 (implication N2 (list A2 A3)'12))

lmplication 12: N2 <= #<Atms-Node 4> #<Atms-Node 5>

(print-atms)

Nodes:

#<Atms-Node O>: NOGOOD-NODE

#<Atms-Node 1>: Ai

#<Atms-Node 2>: Pi

#<Atms-Node 3>: Ni

#<Atms-Node 4>: A2

#<Atms-Node 5>: A3

#<Atms-Node 6>: N2

Assumptions:

#<Assum 1>: #<Atms-Node 1>

#<Assum 2>: #<Atms-Node 4>

#<Assum 3>: #<Atms-Node 5>

lmplications:

#<lmplic 1>: #<Atms-Node 1> <= #<Assum 1>

#<lmplic 2>: #<Atms-Node 3> <= #<Atms-Node 2> #<Atms-Node 1>

#<lmplic 3>: #<Atms-Node 4> <= #<Assum 2>

#<lmplic 4>: #<Atms-Node 5> <= #<Assum 3>

#<lmplic 5>: #<Atms-Node 6> <= #<Atms-Node 4> #<Atms-Node 5>

Environments:

#<Env O>: {}

#<Env 1>: {#<Atms-Node 1>}

#<Env 2>: {#<Atms-Node 4>}

71

#<Env 3>: {#<Atms-Node 5>}

#<Env 4>: {#<Atms-Node 4>, #<Atms-Node 5>}

(explain-nodes)

NOGOOD-NODE is out.

Ai is in, under (#<Env 1>)

Pi is in, under (#<Env O>)

Ni is in, under (#<Env 1>)

A2 is in, under (#<Env 2>)

A3 is in, under (#<Env 3>)

N2 is in, under (#<Env 4>)

(nogood Ni)

Implication NOGOOD: NOGOOD-NODE <= #<Atms-Node 3>

(nogood N2)

Implication NOGOOD: NOGOOb-NODE <= #<Atms-Node 6>

(print-atms)

Nodes:

#<Atms-Node O>: NOGOOD-NODE

#<Atms-Node 1>: Ai

#<Atms-Node 2>: Pi

#<Atms-Node 3>: Ni

#<Atms-Node 4>: A2

#<Atms-Node 5>: A3

#<Atms-Node 6>: N2

Assumptions:

#<Assum 1>: #<Atms-Node 1>

#<Assum 2>: #<Atms-Node 4>

#<Assum 3>: #<Atms-Node 5>

Implications:

#<Implic 1>_: #<Atms-Node 1> <= #<Assum 1>

#<Implic 2>: #<Atms-Node 3> <= #<Atms-Node 2> #<Atms-Node 1>

#<Implic 3>: #<Atms-Node 4> <= #<Assum 2>

#<Implic 4>: #<Atms-Node 5> <= #<Assum 3>

#<Implic 5>: #<Atms-Node 6> <= #<Atms-Node 4> #<Atms-Node 5>

#<Implic 6>: #<Atms-Node O> <= #<Atms-Node 3>

#<Implic 7>: #<Atms-Node O> <= #<Atms-Node 6>

Environments:

#<Env O>: {}

-XX#<Env 1>: {#<Atms-Node 1>}

#<Env 2>: {#<Atms-Node 4>}

#<Env 3>: {#<Atms-Node 5>}

ぅ
l

l
(

XX#<Env 4>: {#<Atms-Node 4>, #<Atms-Node 5>}

(explain-nodes)

NDGOOD-NDDE is out.

A1 is out.

Pi is in, under (#<Env O>)

Ni is out.

A2 is in, under (#<Env 2>)

A3 is in, under (#<Env 3>)

N2 is out.

C.2 Example 2: AND and OR Networks

The network for this exa.1nple is shown .in Figure」0.Thi::; example is more

complex, but it amply demonstrates tlie capahiliしiesof the sysl.,em. The

example experime11ts ,vith both a. network of AND com1ectio11s and a net.work

of OR co1111ections. As t.,he out.put. from this progrnn1 is too long to rea.sona.bly

put in a ma.nua.l, this exa.mpl<ぅisleft as au exerc、isefor the user.

(reset-atms)

(setq a (atms-node "A"))

(setq b (atms-node "B"))

(setq c (atms-node "C")~
(setq d (atms-node "D"))

(setq e (atms-node "E"))

(setq f (atms-node "F"))

(setq g (atms-node "G"))

(setq h (atms-node "H"))

(setq i (atms-node "I"))

(setq j (atms-node "J"))

(setq k (atms-node "K"))

(setq 1 (atms-node "L"))

(setq ABC (atms-node "ABC"))

(setq DEF (atms-node "DEF"))

(setq GHI (atms-node "GHI"))

(setq JKL (atms-node "JKL"))

(setq ABCDEF (atms-node "ABCDEF"))

(setq GHIJKL (atms-node "GHIJKL"))

7:3

＊

RBCDEF

~

GHIJKL

(!) Nodes without assunpt i ans

ABCDEF

三＊＊＊
,---.. ~swer

C 3) AssuMi ng a set of nodes

倣日・＊
ABCDEF

~]'iゎ
answer

笏さ
*~

I;
女

RB畑EF

~;f

(2) Assuning one node apiece

殴累
1ABCDEF

〖含点は＊
answer

/

＼

（り） AssuMing all the nodes

＊＊
"'rt-

回
ABCDEF

ヽ＊＊
t:lc*

(S) Setting one node apiece to no good (b) Setting sets of nodes to nogood

Figure 7. Network for ExaMple 2.

(setq answer (atms-node "answer"))

(Implication ABC'Imp! A)

(Implication ABC'Imp2 B)

(Implication ABC'Imp3 C)

(Implication DEF'Imp4 D)

(Implication DEF'Irnp5 E)

(Implication DEF'Imp6 F)

(Implication GHI'Imp7 G HI)

(Implication JKL'Imps J KL)

(Implication ABCDEF'Imp9 ABC)

(Implication ABCDEF'Imp10 DEF)

(Implication GHIJKL'Irnp11 GHI JKL)

(Implication answer'Irnp12 ABCDEF)

(Implication answer'Irnp13 GHIJKL)

(print-atrns)

(explain-nodes)

(assume-this-node A)

(explain-nodes)

(assume-this-node G)

(explain-node G)

(explain-node GHI)

(assume-this-node B)

(assume-this-node C)

(explain-nodes)

(assume-this-node H)

(assume-this-node I)

(explain-node GHIJKL)

(explain-node GHI)

(assume-this-node D)

r
J

l
/

(assume-this-node E)

(assume-this-node F)

(assume-this-node J)

(assume-this-node K)

(assume-this-node L) ,

贔

•

(print-atms)

(explain-nodes)

(nogood A)

(nogood G)

(print-atms)

(explain-nodes)

(nogood-set DEF)

(explain-nodes)

(nogood-set J KL)

(explain-nodes)

(print-atms)

76

D Command Dictionary

(add-assums-to-env old-env assumptions…) Creates (if necessary) and
returns a. new environment. consisting of the assumptions of t.lie old eu-
viro111uent plus the new series of assumptions. Currently returns nil if
uew environment is nogood. Does not af「ectthe old environment..

(all-node-envs node) Heturns a. list of all oft.he known consistent. environ-

nwnts nuder wliich a. given node is believed. This function is slightly
叫）ens1ve.

(assume-this-node node) Turns an AT1JS-node into an assumption. (Tech-

11ically, justifies the node with a 11ew a.ssmnption-tag wl1ose data. con-

ta.ins t.he node.) Returns the node. Typically used only for effect. Of

course, the user should uot call this 011 nodes that a.re already a.ssump-
tions or premises.

(assumpt1011 data) C't t l A t ・l _,ons ,rue ,s anc.. returns an ssump .1011 noc e stonug
U1t、giVt'U information.

(Assumption# n) Accessor functions for assHmptions.

assumption-count Tlie nu1nbcr of assumptions knovvn to the system.

(assumption-data assum) Returns the data. stored iu an assumption.

（ assumption-ID assump) ID number function for assurnptions. Returns
NIL if not au assumpt101―l.

(assumption"-p node) Tests whether object is a11 assumption (i.e., an as-
sunH:~d 11ode) or not.

＊ assumpt1011s* This variable st.ores a list of all the assumptions known to
the system.

(Assum# n) Accessor functions for a.sstunpt.ions.

(atms-node data) Const ruct.s and returns an ATl¥tS node represe11ting the
given information. The nodes are 11u111be1でdserially. Note: Node O is

always the NOGOOD-NODE.

(ATMS-Node# n) Accessor functions for ATI¥IS叫 nodes. These functions
ret.urn the node, given the lD munber for it. Same a.s (uode# 11).

,-.,-.

''

atms-node-count The uumber of ATMS-nocles, including those that have

been turned into assumptions or premises, known to the system.

(atms-node-data node) Returns the data stored in a node.

(atms-node-ID node) ID munbcr function for nodes.

(atms-node-p node) Tests whe1.ltcr object is a.n ATJ¥-IS-nocle or not. NOTE:

"assumptions" (assumed nodes) and premises are also A'l'l¥1S-uodes.

atms-nodes This variable stores a list of a.11 the ATl¥JS-nodes known to

the system.'「hisiucludes the assumptions and the premises.

(characterizing-env env) Returns t.he characterizing environment of the

given environment (possibly itself). Returns uil if iuconsisteut.

(context env) Returns a list of the nodes in an environment's context, in-

cludiug the ATM.S-nodes, tlie a.ssumptious, and the prcu1ises. ¥Vorks
even if the context is invalid. This is an expe11sive fu11ct.io11 to call.

(create-env ass um-list) Creates a. new envi ronrnent. for the sy::;tem to keep

track of and follow, co11sist.ing of the set of a.11 the a.ssumptious iu the

given a.ssurnpt.io11-list. Het.urns the enviromneut. Ret.urus the old en-

viromneut i11stead of creating it if previously there. Currently returns

nil if uew e11viroun1e11t is nogood. If a.11 ATMS-uode i11 the assumption
list wa.s not in fact previously a.n assumption, it is a8sum.ed by this

fuudiou. Note t.lrnt this side-<、ffectshould be used with care・

debug-atms This flag makes the system print out debugging informa-

tio11. Default is uil.

(dont-use assum-list env-list) net.urns a. list of environments where en-
vironrneuts coutaining any of Llie given a.sstuuptio11s ltave been deleted.

(dont-:1se-11odes nodes envs) Rd.urns a. list of environments where en-
v1ronments whose context coutains any of the giveu 11odes have Ix、eu

deleted. A rather expensive function.

(env-assums env) Returns a list consisting of the assmnptions tltat are

13 EI、 rnvt•~D ill a given environment. Does not check vvbetl1er environ-

ment is inconsistent or not. Note that more, derived ATMS-nocles will

be b<:、lieveclunder this environment, in t.i1e environment's context.

(Environment# n) Accessor function for environmeuts.

亀

．

＼

／

．．

＼

8

I

、_

＊ env1ro11111ent-count* The number of environments known to the system.

(environment-ID env) JD number lunct.1011 l"or cnvironme11t.s.

＊ environments* This variable stores a list of all (bot.Ii valid a.nd iuconsis-
tent) of the environments kno,vn to the system.

f ccessor iunct.1011 for environments. (Env# n) ¥

(env-nogood-p env) Tests whether env is nogoocl.

(explain-node node) Gives environments in which node is IN.

(explain-nodes) Runs explain-node on all the nodes.

(find-env assum-list) Finds ancl returns an existing cnviromneut. Returns
nil if it did not exi::;t previously. Docs not create auy 11ew environ-
nwnts. This is a fa.st fu11ctio11.

geometric-limit-increase This flag tells whet.her *incremental-assumption-
limit.* doubles aJtcr every expansion (geornc、tricincrease) or stays con-
st.ant (a.ritl1met.ic increase). This uumber indirectly a『ectsmemory
a.llorntio11, paging, and perfonna.11ce. Default is T.

(Implic# n) Accessor functions for implications.

(implication consequent data antecedents) Constructs and returns an
implication. Sa.me as (justification ...) .

(Implication# n) Accessor function for implications.

implication-count The number of implications kuown t.o t.he system.

(implication-data impl) Returns t.lte data. stored in a.11 implica.Lion.

(implication-ID implic) ID number function for implications.

(implication-p imp) Tests whether object is a.u implication or not.

implications This ,・aria.ble stores a. list of all the implications known t.o
the system. Each assumption internally generates au implication; these
a.re iududed as well.

(inconsistent-p env) Returns T if given em・ironment is NOGOOD (INCON-

SISTENT), uil otherwise. Au environment. is NOGOOD if the *nogood-node*
i::; BELIEVED because of it. (i.e., iu its context). Same as nogood-p.

79

(in-context-p node env) JI't.lie giv<:'11 node is i11 the givPn e11viro11111ent'::;

context, returns a, (nsuaJly sma,Jler) clrnrncteriziug enviro11rne11t describ-

ing why that uocle is believed. Otherwise, returns nil.

incremental-assumption-size This number tells how much Lbe sys-
tern's bit-vector size is increased during the next growth cycle. See

ini t ial-assumpt ion-1 imi t. This 11u111bcr i11directly affects mcm-

ory allocatio111 paging, aud performance. Default is 50.

(inference consequent data antecedents) Constructs and returns a11 im-

1>licatio11 (i11fereuce). Same as implica.tio11.

initial-assumption-limit This number gives a soft lirnjt on the numl)('r

of assumptio118 that the system ca11 store. H is used to determine the
initial size of the assumption-bit-vector a.ssiguecl to each enviro11me11t..

lt must be set before calling (reset-atms). Set this to the reasona.ble

maxi111un1 11urnber of assumptions expect心 lto be handled by the sys-
tern. This 11u 111ber a『<xt::;memory a.llocatiou, pa.gi11g1 a.ud pcrforuw.uce.

Default is 200.

(IN-p node) Tests whether 1tode is TN. Rctmns a list of co11siste11L e11viro11-

meu.Ls entailing the node (tlie label) if the node is IN; returns uil if the

l!Odt、isOUT. This is the reconm1ended fu11cLio11 Lo ust'wlieu trnci11g a

node with a us<:'r-prograru.

(install-action node action) fostalls tl1e comnrn11d (action) i11t.o t.he given

llocle. If tlie given node becomes IN, (i.e., believed in any valid context)i
the given action con1mand is executed.

(in-world-p node env) Same as in-context-p.

(justification consequent data antecedents) Constructs a.11d returns an

implication (jnsLifica.tion). Sa.me a.s implication.

(Justification# n) Accessor function for irnplications.

(justification-data just) Returns the data stored in an implication.

(justification-ID just) ID number function for implica.t.ions.

(Just# n) Accessor function for implications.

(Node# n) Accessor l'undious for ATMS-nodes. These functions return the

node1 given the ID number for it. Same as (a.tms-node# n). Note that

(Node# 0) returns the NOGOOD node.

S
脅

疇

80

(node-envs node) Returns a list of the minimal environments under wliich

the giveu node is believed.

(node-label node) Heturns a list of the minimal environments under which

the given node is believed.

(nogood nodel) Builds a jnst.ifica.Liou from the node to *nogoocl-uocle*.

Standard mcH10d of entering contradictions, which is the sarne as per-

maneutly ma.king the node's data false. This function can also be called

,vith a scqueuce of nodes, in ,vhich case each node in the seqncuce is

sd Lo NOGOOD.

(nogood-env env) Forces the given enviroument (and all of its supersets)

to b奴 ・omeNOGOOD. Calls nogood-set on the (co11junction of the) set

of ass11111ptiolls cornposing the environment. 111 general, this should be

used only because of higher-level knowledge not part of the knovvledge

represented iu the ATJVlS.

nogood-node This variable st.ores the NOGOOD node. This node is

allocated on reset. Note that (Node# 0) also returns this node.

(nogood-p env) Returns T if giv<'ll (-'llVil'Olllllellt is NOGOOD (INCONSIS-

TENT). 11il otl1erwise. A11 enviro11rnent is NOGOOD if the *nogood-node*

is BELfEVED bemuse of it (i.e., i11 its coutext). Same a.s inconsistent-p.

(nogood-set nodel node2 etc) Builds a just,ifica.ti011 to *nogood-nocle*

based 011 the conjunct ion of the given 11odes. Starnla.rd 111ethod of

entering contrndictions. Note carefully that (nogood-set) of a. set

of uodes, which contradicts the AND of the set, is not the same as

(nogood) of each of the members of the set, which contra.diets the on

of the set.

(OR-env envl env2) Heturus an enviroument consisting of tlie uuion of

Ow assumption sets from the two given environments. This may be

i11consistent, even if both of the previous two are not. Such an envi-

ro11me11t might noL be a, characterizing environment.

OS This rnriable hohls the 0叫）ut Stream for the print functions. Default

is T, mea11i11g standard screen o叫）ut stream.

(OUT-p node) Tests whether uocle is OUT. Returns T if OUT, NIL other-

¥¥'!Se.

8 ー

(premise data) Constructs a.nd returns a. Premise node storing the giveu

m1orma.L10u.

(Premise# n) Accessor function for prernises. This function returns a.
premise. Since、premisesare really ATMS-nodes, this is the same as

Nod哨

＊ prenuse-count* The 11umber of premises known to the system.

(premise-data node) Returns the data. stored in a. premise.

(premise-ID node) ID number function for premises. Sa.me as (at.ms-
node-ID).

(premise-p node) Tests whether object is a. premise or not.

premises This・I 1 vana) e stores a. list of a.11 the premises known to the

system.

(premise-this-node node) Turns an ATMS-node into a prernise. Teclmi-
ca.lly, overwrites tlie label wit.h the single, empty environment *TRUTH-
ENV*. Same as (presume-this-node).

(presume-this-node node) Turns a.n ATMS-node int.o a. ptでmisc.1
cally, overwrites Uie la.be! with the single, empty e11viro11me11L *TlUJTH-
ENV*. Sarne a.s (premise-t.his-1tocle).

(print-assum assum) 1牙intsau assumption.

(print-assums) Prints a list of a.ll the assumptions, and the corresponding
nodes.

(print-atms) Dumps everythiug. Use this t.o get used to tlw system.

print-data ¥Vhen this fla.g is T, the print functions print out the data

inside nodes alld a.ssmnptions. ¥Vheu it, is 11il, the priut functions ouly
print out. a nun1hered uode. Set this to nil when very long da.t.a. is stored
in nodes. Default is T. ・

(print-implic implic) Prints a. given implication.

(print-implies) Prints a list of all the irnplica.tious, iuclucliug assumption
j ustifica t.ions.

(print-env env) Prints an environment..

•

＼

ぅ
]8
 ”

 冒

(print-envs) Prints a list of a.11 the environments.

(print-node node) Iudividua.l item printing functions.

(print-nodes) Prints a list of a.11 the nodes, and their cla.ta.

(reset-at ms) Clea.rs the system out.

(sig-envs env-list) Returns a list of cuvironmcuts where subset and iucon-

sistcut cnvironmc叫 havebccu climina.Lccl. De£ 恥 Itsto using *environments*,

all of the kuo,vu environmeuts, as input if 110 argument is given.

(significant-envs env-list) Returns a. list of enviro11me11t.s where subset

and inconsistent environments have bee11 eliminated. Defaults to us-

iug *environments*, all of the kuown environments, as input if 110

argument. is given.

(subsumecl-by-p larger-env smaller-env) Tests to see whether larger-

cnv is subsumed by (is a. superset of) sma.llcr-cnv. Returns T if sub-

sumecl, nil otherwise. Extremely fast.

truth-env This variable stores the empty environme11t. Tl1is environ-

rnent's context cont.a.ins a.11 the premise nodes; it is always true.

use-umquificat1011 Tl1is伽gLelis ,vhetlier ATl¥'IS data is t.rC:'at.ecl as be-

i11g unique (mHkr equal) or whether it call he duplicated. ff unique,

(atms-node data) a.nd similar fuuctions will ret.uru a. previously ere-

atE•d node instead of creating a 11ew one. Default is T.

watch-atms This flag makes the system print out a notifirntion each

time an item is created. 枷 faultis T.

watch-enlarge This DHg makes tl1e system print ont a. message when

t.lie sysl.em enlarges the bit-vector arrays for a.ssurnptions. D<ぶfault.is

T.

(why-assumptions node env) Explains the assumptions that directly or

iucliredly contribute Lo the given uode u!lder the giveu c11viro11rnc11t.

Returns a. list of all tbe BELIEVED assumptions that justify the uocle in

the environment's context.

(why-env-assums node) Explains t.he dilTcrent assumption sets that. t.liis

node is BELIE¥「EDin. lust.eacl of returniug a. list of environments justi-

fying this node、likewhy-envs, this function returns the en¥'ironments'

assumption sets, in th(→ form of a list of lists of assumptions.

8 3

(why-envs node) HeLurns a. list of !.he consist.P.ut P.11vironmeuts under which

(iu ,vhose cont.ext.) this node is BELIEVED.

(why-implications node env) Explains the coutrihuti11g immedi,d.e im-

plicatious that make the given node believed under the given environ-

ment.. Returns a list of all t.he active implications that, dil'rctlリactually

justify tlw given node in t.he given euvironmc11t's cont.ext. Does not re-

turn implica.t.io11s that. i11directly justify the node, or potellt.ia.lly j ust.ify

the 1Jode but are inactive. Returns the system-gcnera.tecl justificat.io11

for an assumption.

(why-nodes node env) Explains the contributing immediately preceding

nodes that make the given node believed under the given environment.

Hetu ms a. list of all the believed nodes that directly justify the given

node iu the given environment's context.

(why-nogood-assumptions env) Explains t.he assumpt.ions that directly

or iudirectly coutribut.e to NOGOOD under the giveu e11viro11me11t.

The enviro11meut should be inconsistent. This is a very useful function,

a.sit returns ouly Uw mutua.lly couflictiHg a.ssumptious that a.re ca.using

tlte probh← ~Ill with au iucousisteut euviro11me11t.

(why-nogood-implications env) Explains the implications that immedi-

a.t.t>ly co11tribute to the *nogood-node* under the given eJJviro11111e1ti ..

The enviro1111wnt should be inconsist.f→ nt.. n叫 lll'llSa. list. or Lhe ad.ive

implicatious that a.ct.ua.lly justify the *NOGOOD-NODE* in t.he environ-

ment's cont.ext.

(why-nogood-nodes env) Explains the inunedia.1.ely pr~ceding nodes that
cout.ribute to ma.king tl1e *nogood-node* believed nncler the give11 en-

viroum(→ ut.'J'lte euviro11ment should be inconsist.eut.

塩

,.,

/．
I
¥

8,J

看

References

口

[dKSGa.] .Joba.u cl<、IGecr.An a.ssumpLiou-lmsed tms. A,-.t~ficial Intelligence,
28(2):127-162, March HJSG.

[clKSGb] .Johan de Kleer. Extending the a.tms. A l'fi;(icial Inidligc11ce,

28(2):16:3--HJG, March HJ8G.

[dKSGc] .Jolia.n de Kleer. Problem solving with the a.t~ns. Ari:zficial fold-
ligcncc, 28(2):1!)7-22-1, March 1986. ・

[.JdKW87] Kenuct.'i1 Forbus .Johan de l(lccr and Dria.n \~'illiams. Aa.a.i'87

tul.oria.l on trnt.h 1na.intena.11ce systems. In AAAl'81: The Si:dh

National Conference on Art.z{lcial Inf:clligence, Seattle, ¥¥TA., HJ87.

TuLoriaJ No. TA 4.

[I¥lMSS] Da.vid l¥lcAllister and Drew MdJerrnoU. Aa.a.i'SS tutorial ou

truth 111ai11tena.J1ce systerns. In A1lAf'88: The Seventh Natio11al

(―:o'llfC1'c'l/cc O'II Arti; 五cialIntelligrnce, St. Pa.ul, MN., 1988. Tul.o-

ria.l No. MP 1.

[¥¥「N88] .John R. ¥,Va.Hers a.11d Nonna.11 H .. Nit'lsen. C/'(/Jhng Knowlnlが,_

J3asul Sysff.:・ms: Erpfrt Systems J¥Iade (Easy) Realistic . .Jolrn Wi-

ley & Sons, New York, NY, 1988. A good explaua.tion of non-

111011oto11ic irreversible actions.

口

8 5

	001
	002
	003

