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、

We describe a prototype of a rewriting system for typed feature structures which 

was implemented primarily in order to develop a transfer and a generation model 

for Machine Translation of dialogues. The formalism is based on the semantics 

of typed feature structures as described in [Ait-Kaci 84]. Compared to the one 

developed by A'it-Kaci, the originality of this first prototype lies mainly in the 

search for efficiency: (1) reducing the cost of the unification (instead of undoing 

coreference merging, we use a non-destructive unification algorithm) and (2) 

avoiding unecessary expansions of disjunctions. 

In section 1, we present the extension of the unification of feature structures 

with a type system. In section 2, the syntax of the formalism is then presented 

together with the type system derived from a set of definitions. The intepreter is 

described in the next section. Some necessary developments are outlined in the 

last section. A short example of transfer and generation is given in the appendix. 
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RETIF: A Rewriting. System/or Typed Feature Structures 

Introduction・ 

This report describes a・cakulus of typed feature structures suitable for natural language processing. 

The implementation of such a system has been motivated by the need for a formalism which can 

describe (and compute!) mappings between different linguistic representations. More precisely, in our 

case, we wanted to be able to write grammars (and dictionaries) for transfer and generation modules of 

a machine translation system prototype. 

The goal of this report is to give a rather informal account of the calculus, and is adressed to 

readers who are interested in unification-based formalism and their applications, rather than just in the 

theoretical foundations. However, this calculus has a precise formal foundation, and we ask the reader 

to refer to the original work of [Art-Kaci 84]. 

｛
 The initial constraints on the choice of a formalism can be characterized as follows. 

1) the input for transfer and generation should be a feature structure; 

2) the output for transfer should be a feature structure, and for generation a string; 

3) it should be able to incorporate current theories in the framework of unification-based grammars; 

4) it should enhance modularity in grammar development 

5) if possible, it should be inherently reversible 

Some formalisms such as FUG [Kay 84] or CIL [Mukai 88] used in computational linguistics 

meet some of these requirements. However, none of these formalisms facilitate a very important 

property for formalisms which are intended to be used for reasonable size grammars: modularity. For 

most of them, this failure also includes the consequence that the computational cost is very high at each 

(s t ep  of computation, all rules are possible candidates for application. In fact, some external control 

mechanism is often added, such as context-free rules for parsing. 

If we look at recent developments in programing languages, we find two interesting paradigms: the 

so-called object-oriented paradigm, and the rewriting system paradigm used for theorem-proving or for 

implementing specification languages. A recent work by Ai't-Kaci [Ai't-Kaci 84] presents a unified 

view of semantic networks, inheritance hierarchies, first-order term rewriting, and partially ordered 

types in programming. We found that the formalism proposed by Ai't-Kaci and which incorporates this 

synthetic approach met all our requirements, and was perfectly suited for our problem. In particular, 

the partially ordered type system with inheritance meets the modularity requirement. 

The data structures used by the formalism are typed feature structures~The feature structures in this 

formalism are general graphs. The formalism allows defining partially ordered types, and disjunctions 

of type definition. The type definitions specify a set of constraints on well-formed typed feature 
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structures. Given as input a typed feature structure, the interpreter uses a rewriting mechanis_m to apply 

this set of constraints on the input, deriving the set of structures compatible with the input and with the 

set of type definitions. Reversibility can be achieved if some care is taken in the writing of definitions. 

Depending on the form of the definitions, the system can also be used to generate a set of structures 

described by some grammar. In that respect, it can be compared favourably with PROLOG (see 

appen<;Iix 2). 

（
 

（
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REIIP: A Rewriting System for Typed Feature Structures 

1. A Type System for Feature Structures 

1.1 A Lattice of Types 

The type system is defined on a set of type symbols P which always contain type symbols T 

(≪top≫) and ..L (≪bottom≫), and which are partially ordered. The partially ordered set of type symbols is 

called~. the signature of the type system. 

Take for example P = {T, ..L, PERSON, STUDENT, EMPLOYEE, STAFF,.FACULTY, PETER, MARY, 
WORKSTUDY, PAUL, JEAN, BILL, JOAN, SIMON, ROGER}. We define a hierarchy between types, as 

graphically depicted in Figure 1. 

1 
PERSON 

＼ 
EMPLOYEE 

万~~ぐ~7()\
PETER MARY BILL . JOAN PAUL JEAN SIMON ROGER 

ー

Figure 1: The partial ordering Lon a set of type symbols. 

This hierarchy defines implicitly a partial order玄onthe set of type symbols P: 

- STUDENT and JOAN are comparable : JOAN s; WORKSTUDY s; STUDENT, 

- STUDENT and EMPLOYEE are not comparable. 

This partial order defines (in this case) a lattice structure on P: it is both a meet semi-lattice and a 

join semi-lattice. 
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Meet semi-lattice: 

For any pair of symbols (x, y) of P, there exists a unique symbol z in P such that x :::= z and y :::= z, 

and for all u in P, if x;;:: u and y;;:: u then z :::= u : z is called the Greatest Lower Bound of x and y, and 

we write z = x A y. The operation A is called the meet operation. 

Join semi-lattice: 

For any pair of symbols (x, y) of P, there exists a unique symbol z in P such that x~z and y~z, 

and for all u in P, if x~u and y~u then z~u : z is called the Least Upper Bound of x and y, and we 

write z = x v y. The operation v is called the join operation. 

For example: 

STUDENT I¥ JOAN = JOAN 

STUDENT I¥ EMPLOYEE = WORKSTUDY 

STUDENT I¥ SIMON = ..L 

1. 2 Unification of Typed Feature Structures 

A. Typed Feature Structures 

／
＼
 

Feature structures used in unification-based grammar formalisms such as D-PATR [Shieber 86] 

can have only two kind of types: complex (which are not represented explicitly) and atomic (which are 

represented by a symbol). A straightforward extension allows complex structures to explicitly bear 

type symbols, as proposed for example in [Pollard and Sag 86]. The unification algorithm is then ( 

extended using a calculus on type symbols. 

In the following examples, type symbols are in upper-case letters, and feature symbols in 

lower-case. Symbols beginning with # are tag symbols, which represent co-reference (≪sharing≫) in 

the structure. 
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#x=STUD:ENT[advisor:FACULTY[secretary:#y=STAFF, 

assistant: #x], 

roommate:EMPLOYEE[representative:#y]] 

#u=EMPLOYEE[advisor:SIMON[secretary:EMPLOYEE, 

assistant: #v=PERSON], 

roommate:#w=STUDENT[representative:#w], 

helper:BILL[spouse:#u]] 

secretary representative 

roommate 

representative 

Figure 2: Graphical representation of two typed feature structures witli type symbols inside 

nodes. Note that these are general directed graplis, not only DAGs. 

B . The Unification Algorithm 

The standard unification algorithm for feature structures is modified to use type information (see 

[A'it-Kaci 84 pp 102-111]). The unification on ordinary feature structures is already defined as a meet 

operation on the set of feature structures partially ordered by the subsumption ordering (see for 

example [Shieber 86]). This is extended in a straightforward way also using the meet operation on the 

lattice of types to compute the new type associated with the result of the unification of two feature 

structures. For atomic types, we get exactly the same interpretation as for ordinary feature structures, 

and we can simplify the internal representation of the lattice by not explicitly including atomic types. 

Instead, we consider every type symbol which is not explictly defined in the lattice to be atomic. 

The unification of the two feature structures above can be done essentially like ordinary unification. 

The only extension we need is to compute the meet of two type symbols which are associated with the 

feature structures. 
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merged paths associated types new type symbol 

e 

advisor.assistant STUDENT /¥ EMPLOYEE /¥ PERSON WORKSTUDY 
helper .spouse 

advisor FACULTY A SIMON SIMON 

advisor .secretary 
roommate STAFF A EMPLOYEE A STUDENT WORKSTUDY 
roommate.representative 

helper TA BILL BILL 

Figure 3: the meet for merged paths. 

（
 

The merging of common paths and the computation of the meet yields the following typed feature 

structure:. 

非x=WORKSTUDY

[advisor:SIMON 

[secretary:#y=WORKSTUDY 

[representative:#y], 

assistant: #x], 

roommate:#y, 

helper:BILL[spouse:#x]] 

(
i
 

roommate 

secretary 

helper spouse 

~ 

representative 

Figure 4: Graphical representation of the typed feature structure. 
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RE'FIF: A Rewriting System for Typed Feature Structures 

This kind of unification algorithm could be used in a unification-based parser, such as the D-PATR 

system, but we use it as the basic operation of a type rewriting system that fully exploit the possibilities 

of the type system, namely to inherit type definitions according to the subsumption ordering introduced 

by the KB definitions. In addition, disjunctions of types can be used to express indeterminacy in the 

feature descriptions. 

，
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2. The RETIF Formalism and the Type System 

2 .1 RETIF Definitions 

A type is defined as a disjunction of typed feature structures (a disjunction can be reduced to one 

element): 

<type definition> ::= <type-symbol>'='<typed feature structure> {'I'<typed feature structure> } . 

There are two constraints imposed on definitions: 

1) Definitions must not lead to a cycle in the type system, otherwise, the type system cannot be 

ordered. 

2) Tags are local to one disjunct. 

During the evaluation process, any typed feature structure of type A must verify the constraints 

stated in the definition of A: for a disjunction, it must verify one of the constraints stated as disjuncts; 

for one disjunct (a typed feature structure), it must be compatible with the feature structure, and it 

inherits the constraints of the type of this feature stn1cture (see section 3). 

The three cubes example 

:KB threecubes 

COLOR= GREEN I NON-GREEN. 

NON-GREEN= BLUE I OTHERS. 

THREE CUBES THREECUBES is-a STACK which-has top, middle and bottom slots. 

STACK[top:GREEN, 

middle:COLOR, 

bottom: BLUE] . 
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ON = ON土s e土thera THREECUBES where top= above・and middle= below 

or a THREECUBES with middle = above and bottom = below. 

THREECUBES [top: #x, 

middle:#y, 

above:#x, 

below:#y] 

I'1'HREECUBES[r'niddle:#z; 

bottom: #t, 

above:#z, 

below:#t]. 

QUERY= 

（
 

Is there a green cube on top of a non green cube? 

ON[above:GREEN, below:NON-GREEN]. 

s
 

E
 予上／

ー

¥
 

/oR
＼戸

COL

／ミ
‘
B

i/ERS 
H
 

T
 ゜

i
¥＼

 
Figure 5: The partial ordering on type symbols extracted from the KB definitions 
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R肛 IF:A Rewriting System for Typed Feature Structures 

2. 2 Embedding the Partial Ordering in a Meet SemiNLattice 

A. The embedding 

The Normal Form of the Definitions 

In order to be interpreted, the definitions of the KB are put in Normal Form where a disjunction of 

typed feature structures is replaced with a disjunction of new symbols, one for each disjunct. For 

example, the definition of ON above is replaced with: 

ON= ONl I ON2. 

ONl = THREECUBES[top:#x,, 

middle:#y, 

above:#x, 

below:#y]. 

ON2 = THREECUBES[middle:#z, 

bottom:#t, 

above:#z, 

below:#t]. 

The new partial order on type symbols extracted from the KB definitions is shown in Figure 6. 

二
＼

T
 

/
-

．
 

z
 ゚

z
 

STACK 

／「文：cUBES 

QUERY ON1 .ON2 

t 
Figure 6: The partial ordering on type symbols extracted from the KB definitions 

The partial ordering on type symbols can be extended to a partial ordering on typed feature 

structures, as shown in Figure 7. 
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/OR\

—>/
 
cot¥ 

G
 g/ERS 

H
 

T
 ゜

Figure 7: The partial ordering on typed feature structures extracted from the KB definitions. 

B . The Meet Op~r,t,ion 

As we allow any kind of definition, the partial order extracted from the type definitions is not 

guaranted to be a lattice, as in the example above: there are two solutions for the meet of ON and 

THREECUBES, ONl and ON2. The solution is to embed the partial ordering P extracted form the KB 

definitions in the (restricted) power set 2(P) (the set of all non-empty finite subsets of pairwise not 

comparable elements of P). 
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l•ikl 
{three~ubes} 

ぐ

Figure 8: Part of the restricted power set 

The meet operation is then defined using the inclusion ordering in 2(P) : the meet of two elements 

X and Y of P is then defined as the maximal restricdon of the intersection of the sets of sub-type 

symbols for each pair of symbols x and y of X and Y. 

T,he maximal restriction「Pltakes the set of maximal elements of P: when 2 elements. a1:e 

comparable, the smaller is removed: 「Pl={xePly::;;x⇒x = y}. The set of sub-types symbols 

of x is called the ideal principal of P generated by x : Ix = { y e P I y ::;; x}: 

If X and Y are elements of 2(P), the meet of X and Y is defined as 

＼
~
ノ（
 

XAY=「uxeX,yeYOx n ly)l. (Note that this construction does not preserve LUBs) 
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{colo,, non-grnonア••_grn_<>n, on, quo,y, on1, on2, stack, w ... ubes} 

{color, non-green, other, blue, green} 

／＼ 
1••7゜tho文 {g,oan]

{others] {blりe}

{stack, threecubes, on1, on2} 

I 

Figure 9: The embedding in the set of all principal ideals preserve the GLBs: 

it is a meet semi-lattice. 

Example: 

ON: {ON, QUERY, ONl, ON2}, THREECUBES: {THREECUBES, ONl, ON2} 

ON/¥ THREECUBES: {ON, QUERY, ONl, ON2} /¥ {THREECUBES, ONl, ON2}→ {0Nl,ON2} 

The RETIF interpreter directly uses this meet operation on sets of type symbols, eliminating the 

need for the so-called psi-expansion, as suggested in [Ai't-Kaci 84, pp155-156]: the interpreter prunes 

all non-maximal elements in one step of computation during unification before expanding a 

disjunction. 

Implementation note 

The efficiency of the meet operation is crucial for the overall perf o皿 anceof the interpreter. The 

evaluation of the cost of the unification algorithm (which is almost linear with the number of nodes) 

does not take into account the cost of the meet operation. 

If p=IPI the number of symbol in the type system P, then the size of X and Y, elements of 2(P) is 

bound by p. The cost of computing an ideal is the cost of a traversal of the graph which represents the 

partial order, and is linear with the number of nodes p, and there are at most 2p such traversals (one 

for each element of X and Y): 2p2. The size of an ideal, element of 2(P) is bounded by p. The cost of 

an intersection is then p2 and there are also at most p打ntersections:p4. The cost of each union is also 

15 
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p互andthere are at most p2 unions: p4. The maximal restriction compares each element of the set with 

each other: p2 comparison. Each comparison requires a traversal of the graph and costs p. The cost of 

the maximal restriction is then in p3. Finally, we get 0(2p3 + p4 + p4 + p3) = O(pりforthe cost of the 

meet operation. 

During the construction of the lattice out of the KB definitions, all ideals and the intersections of all 

ideals are pre-computed, and the intersections are cleaned up by maximal restriction. As the meet is 

most often a meet between two singletons, this is already pre-computed and requires only an access to 

a hash table, but the cost of the meet is still in O(pりinthe worst case. The size of the hash table is 

O(p2). It could be possible in principle to pre-compute all meets on 2(P) and have a constant time, but 

the space requirement is extravagant: 0(21PI). However, this size would probably be small in practical 

use, if only meets different from 0 are stored, and if we take into account the commutativity of the 

meet operation. 

（
 

(~ 
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3. The Interpreter 

3. 1 The EV AL function 

A knowledge base KB consists of a set of definitions ti=KB(ti), where ti is a type symbol and 

KB(!j) is either a term (a typed feature structure) f[I1: t1, ... , 10: t.i] or a disjunction of type symbols 

t1 I ... t0. We can define a function EV AL: term→ term 

(1) EVAL(ti I…tn) = V EVAL(ti) 
i= 1...n 

(2) EVAL(f[l1: t1, ... , 10: t0]) = EV AL(KB(f) I¥ T[l 1: EVAL(t1), ... , ln: EV AL(tn)]) 

Equations (1) and (2) define an operational semantics which reflects the type-as-set semantics of 

terms in the sense that they compute unions and intersections of sets (cf. [A'it-Kaci 84, pp 117-147]). 

3. 2 The Rewriting Algorithm 

込： A Symbol Rewriting System (SRS) on L (signature of type symbols) is a system S of n 

equations Si= Ei, i = 1, ... , n where Si E Land Ei is a term: S = { Si= Ei }. 

The set of symbols of L which have a definition is E = { si, …， s0 } , the set of S-expandable 

symbols. The set of symbols of L which do not have a definition is N = L -E, the set of 

non-S-expandable symbols. In the three cubes example, E = { COLOR, NON-GREEN, ON, ONl, ON2, 

QUERY } and N = { GREEN, BLUE, PURPLE, OTHERS, STACK } . 

込： A one step rewriting relation t1→ t2 is defined iff there exists a symbol si e E at some 

address (path) u in t1 such that Ei is≪substituted≫at address u: Ei is unified with the sub-term 

at adress u, and the result of unification is inserted at that adress. The new term is called tが

t2 = t1[E/u] = t1[u: T] /¥ u.Ei 

17 
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3. 3 A detailed example 

Let's take the three cubes KB: 

COLOR = GREEN I NON-GREEN. (= E1) 

NON-GREEN = BLUE I PURPLE -1 OTHERS. (= E少

THREECUBES = STACK [top:GREEN, middle:COLOR, bottom:BLUE]. (= E3) 

ON = ONl I 0~2. (=号）

ONl = THREECUBES[top: 非x, middle: #y, above: #x, below: #y] . (= E5) 

ON2 = THREECUBES[middle:#z, bottom:#t, above:#z, below:#t]. (=馬）

QUERY= ON[above:GREEN, below:NON-GREEN]. (= Eガ
（
 

We shall show the behavior of the interpreter on the evaluation of the term QUERY : is there a green 

cube on top of a non-green cube? 

At first we substitute the type symbol of the query with the corresponding KB value (E7). In 

particular this is performed by a substitution of the root symbol QUERY (at each step, expandable 

symbols are written in bold face). 

t1 = QUERY 

t2 = t1[ E7/E] = t1[e:T] A e,ON[above: GREEN, below:NON-GREEN] 

= ON[above:GREEN, below:NON-GREEN] 

（｝ 
The new term t2 is expandable with symbol ON at address e and with symbol NON-GREEN at 

address below: Note that the expansion of NON-GREEN is a disjunction of symbols BLUE I PURPLE I 

OTHERS, which are not further expandable. This disjunction is kept local. 

t3 = t2[E咋］

== (ONl I ON2) [above:GREEN, below:NON-GREEN] 

t4 = t3 [ E2/below] 

= (ONl I ON2) [above:GREEN, below: BLUE I PURPLE I OTHERS] 

After these two rewritings of t2 we get a term with a disjunction of symbols at the root and at 

address below. Notice, that only the disjunction at the top-level has to be further expanded: the 

disjunction at address below need not be further expanded because these symbols are 

18 
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non-S-expandable symbols. The next step expands the disjunction ONl I ON2 and create two new terms: 

t4'and tぶwithtype symbols ONl and ON2 respectively. These terms are further expanded in two 

differents branches of computation. 

Branch 1 of the disjunction: expand ONl. 

t41 = ONl[above: GREEN, below: BLUE I PURPLE I OTHERS] 

も=t4'[E5/E] = THREECUBES[top: #x=GREEN, 

middle: #y= BLUE I PURPLE I OTHERS, 

above: #x, below: #y] 
We yield the first solution by finally expanding THREECUBES. At this time the ;ewriting 

process stops because there are no more S~expandable symbols in t6' 

First solution: t6 = t5[E3/eJ = STACK[top:#x=GREEN, 

Branch 2 of the disjunction: expand ON2. 

middle:#y=BLUE I PURPLE I OTHERS, 

bottom:BLUE,' 

above:#x, below:#y] 

tぶ=ON2[above: GREEN, below: BLUE I PURPLE I OTHERS] 

t7 = tぶ[Es/cl=THREECUB~S[middle: #z= GREEN, 

bottom: #t = BLUE I PURPLE I OTHERS, 

above: #z, 

below: #t] 

Second solution: tg = t7[E5/e] = STACK[top: GREEN, 

middle: #z = GREEN, 

bottom: #t = BLUE, 

above: #z, 

below: #t] 
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4.1 Keeping Disjunctions Local 
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In the present implementation, all disjunctions are expanded・to, yield. a, set ,ofterm-s・wh'ere no.<・ 

disjunctions occur inside a term, except for; disjunctions of:atomic, type symbols whic~, cannot be 

rewritten. 
• :・..、・,. ー・：・:.:,C • • : •.:. C 、 ・~

~．ヽ.. え

First, this systematic expansion・is cofuputationally very costly: the interpreter must create as many 

copies of a term as there are disjuncts, where some will'probably be rewritten to ..L. 
---、―, - -, -

:、,・., . . ,.,--., .... 

Second, in some cases, it is'preferable to・describe'alternatives "lbcally inside a term, factoring 

common sub-parts, rather than expanding the. w,p.ol.e-e?(prys~jon. Thi~qould pe 4qny':"i,tl¥, the 

introduction of a dummy typ~syt.nboJJor~local c;lisjunction浪ndthen this symbol would be defined as 

a disjunction. However, it would be much simpler to~ll<;>w disjunctions to appear inside a term. For 

grammar writing for example, it would be preferable to k,.eep the description of possible ambiguities 

local: this would help to keep track of the sources of ambiguities, and to make possible a finer analysis 
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of these phenomena. -':,-. .., 
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For implementation, the algorithm described in [Eisele and Dorre 88] would be a good candidate, 

and could be incorporated in the present unification algorithm. The syntax of. tbeformalism·needs-t~be 

extended to allow disjunction~ofJe~,s inside a_term instead of having disjunctions at the top level of a 

definition only. There would then be three different possible co.mputational behaviors for handling 

disjunctions: (1) all disjunctions are expanded to the top }eve¥ of terms, as it is done presently, (2) 

internal disjunctions are expanded locally and~isjunctions at the top level of a definition are only 

expanded to the top level, (3) all disjunctions are expanded focaliy and the re・sult is a・sfogle term. Note 

that it is possible in any case to factorize -a set of _'typed feature structures, and build a compact typed 

feature description (with local disjunctions) that represent this set (as the≪pack≫function described in 

[Eisele and Dorre 88]). , ・

（
 

4.2 Multiple Inheritance 

The interpreter described in [A'it-Kaci 84] allows only single inheritance. For grammar description, 

we need multiple inheritance, especially for lexical descriptions: the verb like could be described as a 

BASE verb and a MAIN verb and a STRICT-TRANSITII氾 verb[Pollard and Sag 87]. 

We shall augment knowledge base definitions to handle disjunction and give the definition of the 

evaluation function for disjunctions. A knowledge base KB consists of a set of definitions ti=KB(ti), 
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and KB(ti) is then allowed to be a conjunction of type symbols t1 &… tn. The EVAL function is 

augmented with the following definition: 

(3) EVAL(t1 &… tn) = &i = 1…n EVAL(ti) 

As for local disjunctions, multiple inheritance is syntactically nothing other than a conjunction of 

terms, and the formalism can be extended to accomodate local conjunctions. 

4.3 Negation 

Another extension we need is negation. This was introduced by [AYt-Kaci 84] as complemented 

(types. Negation could always be written as it is in the three cubes example: the set of colors is divided 

into two sub-sets: GREEN and NON-GREEN. NON-GREEN can in turn be decomposed in the same way. 

But this makes the description of knowledge very cumbersome. [Nit-Kaci 84] proposed writing 

COLOR¥GREEN and write COLOR as a simple set of colors. This is equivalent saying 

COLOR A -,GREEN, and if we do not want to overspecify, we can simply state -,GREEN. 

Let's take for example the term STUDENT[sport: SURFING]. The set of students who practice 

surfing is a sub-set of the set of students who practice a sport, which is a sub-set of the set of students, 

which is a sub-set of the set of persons, as depicted in Figure 10. With the type-as-set interpretation in 

mind, it is not difficult to see that ,STUDENT[sport: SURFING] should be interpreted as the set of 

persons who are not students or if they are students, then we take the set of students who do not 

practice any sport, or if a sport is practiced, it should not be surfing. 

PERSON 

／ 

STUDENT[sport:T] 

STUDENT[sport:SURFING] 

Figure 10: type as set semantics for negation. 
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The semantics of complemented types is described in [Ai't-Kaci 84]. The negation is described in 

[Smolka 88] and is defined there as: -,(label: TYPE) = -,label: T v label: ,TYPE. 

Our definition of negation for typed terms is then: 

-,A[l1: S1, ... ln:Sn] =→  A v A[--.(11: S1), ... → On:Sn)1 

= -,A v A[ -,l1 :T v 11: -,Si, …古：Tvln呂 S叫

= -,A v A[l 1: --.Si, ... ln圧 Sn]

The EV AL function is augmented with the following definition: 

（
 

(4) EVAL(,t1) =-. EVAL(ti) 

All those exte~sions are very basic ones, and give the formalism a good expressive power. Fuヰher

developments can be envisaged once full logical expressions have been implemented (see for example 

[A'.it-Kaci 84 Chap 7], [Kasper 88]). 

(.～ 
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5. Applications to Natural Language Understanding 

We shall present here some input/ouput typed feature structures for the transfer and generation 

grammars described in the appendix. Note that this example is built to examplify some features of the 

RETIF fom叫ism,and thus the grammars have been kept as simple as possible. We refer to [Emele 

89, Zajac 89] for more details on transfer and generation grammars. 

An example of transfer from Japanese to English 

The input structure is shown in Figure 11: it could be the structure produced by application of an 

abstract communicative act grammar on the result of a surface parser, as described in [Kogure, 

Yoshimoto et al. 88]. The output structure (Figure 12) is produced by the application of the transfer 

grammar on this structure. Note that the process is monotonic and works by addition of new 

information: the result is a structure which contains all information of the input structure. This property 

also makes the transfer grammar reversible. 

TRANSFER-ACA 
[japanese:J-PLAN-SCHEMA 

[abstract:J-ABSTRACT-COMMUNICATIVE-ACT 
[relation:REQUEST, 
agent:#20, 
recipient: #19, 
object:J-PROP 

[relation:J-OKURU, 
agent:#19, 
recipient:#20, 
object:J-TOUROKUYOUSHI], 

manner:INDIRECTLY-BY-ASKING-POSSIBILITY])] 

、
ー
、 Figure 11: Japanese input for transfer. 
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[english:E-PLAN-SCHEMA 
[abstract:E-ABSTRACT-COMMUNICATIVE-ACT 

[relation:#l=REQUEST, 
agent:#12=E-SPEAKER, 
recipient:#ll=E-HEARER, 
object:#6=E-PROP 

[relation:E-SEND, 
agent:#10=E-HEARER, 
recipient:#9=E-SPEAKER, 
object: #7=E-REGISTRATION-FORM] , 

manner:#4=INDIRECTLY-BY-ASKING..,.POSSIBILITY]], 

japanese:J-PLAN-SCHEMA 
[abstract:J-ABSTRACT-COMMUNICATIVE-ACT 

[relation:#1, 
agent :#3=J-SPEAKER, 
recipient:#2=J-HEARER, 
object:#S=J-PROP 

[relation:J-OKURU, 
agent:#2, 
recipient:#3, 
object:#B=J-TOUROKUYOUSHI], 

manner:#4]], 
translate-obj: [english: #6, 

japanese:#5, 
translate-obj: [english: #7, japanese: #8], 
translate-rec: [english:#9, japanese:#3], 
translate-agt: [english: #10, japanese: #2]], 

translate-rec: [english:#11, japanese:#2], 
translate-agt: [english:#12, japanese:#3]] 

／
＼
 

Figure 12: result of Japanese-English transfer. 

An example of English generation 

The input structure (Figure 13) is a part of a structure that could be produced by a transfer 

grammar: the level of description is the level of sematic relations. After application of the generation ( 

gramm紅， theoutput structure (Figure 14) describes the constituent structure and the associated string 

of lexems (feature≪phon≫). 

E-PROP 
[relation:E-SEND, 
agent:E-HEARER, 
recipient:E-SPEAKER, 
object:E-REGISTRATION-FORM] 

Figure 13: a fragment input for English generation. 
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PHRASAL-SIGN 

[phon:#39=<#1="send" 

; #38=<#2="I" 

; #36=<#9=a I the 
; #37=<#10="registration form">>>>, 

relation:#31=LEXICAL-SIGN 

[phon:#40=<#1>, 

syn:CATEGORY 

agent:PHRASAL-SIGN 

[head:#29=[lexem:#1], 

subcat:<#27=PHRASAL-SIGN 

[phon:#6=<#2>, 

relation:#2, 

syn:CATEGORY 

[head:#3=[lexem:#2], 

subcat:#4=<>], 
dtrs:TREE 

[head-dtr:LEXICAL-SIGN 

[phon: #7=<#2>, 

syn・: CATEGORY 

[head: #3, 

subcat:#4]], 
comp-dtrs :<>]] 

#32=<#28=PHRASAL-SIGN 

[phon: #17=<#9 

； #11=<#10>>, 
relation:#10, 

syn:CATEGORY 

[head:#12=[lexem:#10], 

subcat:<>], 
dtrs:TREE 

[head-dtr:PHRASAL-SIGN 

[phon:#11, 

syn:CATEGORY 

[head:#12, 

subcat:#13=<LEXICAL-SIGN 

[phon: #18=<#9>, 

syn:CATEGORY 
[head: 

[lexem:#9]]]>], 
dtrs:TREE 

[head-dtr:LEXICAL-SIGN 

[phon: #15=<#10>, 

syn:CATEGORY 

[head:#12, 

subcat: #13]], 
comp-dtrs:<>]], 

comp-dtrs:#13], 
spec:#9] 

#30>>]], 

[phon:#23=<#20="you">, 

relation:#20, 

syn:CATEGORY 

[head:#2l=[lexem:#20], 

subcat:#22=<>], 

dtrs:TREE 

[head-dtr:LEXICAL-SIGN 

[phon:#24=<#20>, 

syn:CATEGORY 
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[head:#21, 
subcat:#22]], 

comp-dtrs:<>]J, 
recipient:#27, 
object:#28, 
syn:CATEGORY 

[head:#29, 
subcat:#30), 

dtrs :TREE 
[head-dtr:#31, 
comp-dtrs:<#27 

#33=<#28>>]] 

Figure 14: the result of English generation. 

（
 

(
i
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Conclusion 

The main characteristics of the formalism are (1) type inheritance which provides a clean way of 

defining classes and sub-classes of objects, and (2) the rewriting mechanism based on unification of 

typed feature structures which provides a very powerful and semantically clear mean of specifying and 

computing relations between classes of objects. In this respect, the formalism can be compared 

favourably with PROLOG (see the append example in appendix 2). 

So far, we have used this formalism to develop sample grammars for transfer [Zajac 89] and 

generation [Emele 89] in order to demonstrate the feasability of this approach for natural language 

generation and transfer. It can also be used for parsing, in a DCG-like style, as shown in [A'it-Kaci 84, 

pp 161-165], and therefore seems to be useful in more general natural language applications. 

The interpreter has been implemented in Common Lisp, and runs on Vax and Symbolics. Some 

implementation work is still needed to achieve greater efficiency, and to provide a better user interface. 

However; the system can already be used for the development of NLP systems, and the speed is no 

longer a limiting factor (even on a Micro-Vax). 

The main developments envisaged in a second step are the implementation of multiple inheritance 

and the implementation of negation. The introduction of functional application ought to be studied. 
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Appendix: a sample of transfer and generation grammars 

1. A grammar for surface/abstract Japanese communicative act representation 

:KB J-CA 

J-APPLY-SIMPLE-DISCOURSE-HEURISTICS = _ replaces the variables for speaker 
and hearer with instances 

[abstract:J-ABSTRACT-COMMUNICATIVE-ACT 

[agent:J-SPEAKER, 
recipient: J-HEARER]] 

J-PLAN-SCHEMA = _ toplevel plan recognition rule 
(it should be of course a disjunction of others) 

J-APPLY-SIMPLE-DISCOURSE-HEURISTICS 

[abstract:J-ABSTRACT-COMMUNICATIVE-ACT 

[relation:REQUES叫

agent:#agent, 
recipient:#recipient, 
object:#object=[agent:#recipient], 
manner:INDIRECTLY-BY-ASKING-POSSIBILITYJ, 

surface:J-SURFACE-COMMUNICATIVE-ACT 
[relation:J-INTERROGATE-IF, 

agent:#agent, 
recipient:#recipient, 
object:J-SURFACE-COMMUNICATIVE-ACT 

[relation:J-CAN, 
agent:#agent, 
object:J-SURFACE-COMMUNICATIVE-ACT 

[relation:J-RECEIVE-FAVOR, 

agent:#agent, 
object:#object, 

source: #recipient]] J J . 

2. Some examples for Japanese 

J-SCA-1 =_Japanese structure produced by the parser for 

_ "watashi-ni tourokuyousi-wo o-okuri itadake masu ka?" 

_ the evaluation produces the abstract communicative act: 
(kbl-eval'j-sca-1) 

,J-PLAN-SCHEMA 

[surface:J-SURFACE-COMMUNICATIVE-ACT 

[relation :J-IN'rERROGATE-IF, 

agent:#15, 

object:J-SURFACE-COMMUNICATIVE-ACT 
[relation:J-CAN, 

agent:#14, 
object: J-・SURFACE-COMMUNICATIVE-ACT 

[relation:J-RECEIVE-FAVOR, 

agent: #14, 

object:J-PROP 

[relation:J-OKURU, 

agent:#16, 

recipient:#15, 

object:J-TOUROKUYOUSHI]], 

source:#16]]] . 

(' 

（
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abstract communicative act for 

"watashi-ni tourokuyousi-wo o-okuri itadake masu ka?" 
the evaluation produces the surface co血 unicativeact: 
(kbl-eval'j-aca-1) 

J-PLAN-SCHEMA 
[abstract:J-ABSTR和:::T-COMMUNICATIVE-ACT

[relation:REQUEST, 
agent:#18, 
recipient:#17, 
object:J-PROP 

[relation:J-OKURU, 

agent:#17, 

recipient:#18, 
object:J-TOUROKUYOUSHI], 

manner:INDIRECTLY-BY-ASKING-POSSIBILITY]] 

J-ACA-TRANS-1 abstract communicative act for 
_ "watashi-ni tourokuyousi-wo o-okuri itadake masu ka?" 

_ The evaluation I)roduces the English abstract communicative act: 
_ (kbl-eval'j--raca-trans-1'(j-ca ej-trans)) 

_ To produce the English phonological string: 
(kbl-eval'j-aca-trans-1'(j-ca ej-trans e-ca e-gen)) 

TRANSFER-ACA 

[japanese:J-PLAN-SCHEMA 

[abstract:J-ABSTRACT-COMMUNICATIVE-ACT 

[relation:REQUEST, 

agent:#20, 
rec・ipient: #19, 

object:J-PROP 

[relation:J-OKURU, 

agent:#19, 
recipient:#20, 

object:J-TOUROKUYOUSHIJ, 
manner:INDIRECTLY-BY-ASKING-POSSIBILITY]]] 

J-SCA-TRANS-1 =_the Japanese input for plan recognition and transfer: 

_ "watashi-ni tourokuyousi-wo o-okuri itadake masu ka?" 

_ the slot'japanese.surface'is the result of the parser 
_ the evaluation produces the abstract communicative act 

_ representation and the English part: 

(kbl-eval'j-sca-trans-1'(j-ca ej-trans e-ca e-gen)) 
TRANSFER-ACA 

[japanese: 
J-PLAN-SCHEMA 

[surface:J-SURFACE-COMMUNICATIVE-ACT 

[relation:J-INTERROGATE-IF, 

agent:#22, 
object:J-SURFACE-COMMUNICATIVE-ACT 

[relation:J-CAN, 

agent:#21, 
object:J-SURFACE-COMMUNICATIVE-ACT 

[relation:J-RECEIVE-FAVOR, 

agent:#21, 
object:J-PROP 

source:#23]]]] 
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3. A transfer grammar 

:KB EJ-TRANS 

TRANSFER-ACA = transfer rule for abstract communicative acts. 
[english:E-PLAN-SCHEMA 

[abstract:E-ABSTRACT-COMMUNICATIVE-ACT 

[relation:#rel, 

agent:#e-agt, 

recipient:#e-rec, 

object: #e-obj, 
manner:#manner]], 

japanese:J-PLAN-SCHEMA 

[abstract:J-ABSTRACT-COMMUNICATIVE-ACT 

[relation:#rel, 

agent:#j-agt, 
recipient:#j-rec, 

object:#j-obj, 
manner:#manner]], 

translate-agt:TRANS[english:#e-agt, japanese:#j-agt], 

translate-rec:TRANS[english:#e-rec, japanese:#j-rec], 
translate-obj:TRANS[english:#e-obj, japanese:#j-obj]] 

TRANS=_ transfer rules for the propositional part. 
SEND I REG-FORN I INTERLOCUTORS. 

SEND a relation: translate recursively the arguments. 
[english:E-PROP 

[relation:E-SEND, 

agent:#e-agt, 
recipient:#e-rec, 
object: #e-obj], 

japanese:J-PROP 

[relation:J-OKURU, 
agent : jf j-agt, 

recipient:#j-rec, 

object:#j-obj], 

translate-agt:TRANS[english:#e-agt, japanese:#j-agt], 

translate-rec: TRANS [eng.lish: #e-rec, japanese: #j-rec], 

translate-obj:TRANS[english:#e-obj, japanese:#j-obj]] 

REG-FORM = _ a noun. 

[english:E-REGISTRATION-FORM, japanese:J-TOUROKUYOUSHI] 

INTERLOCUTORS= SPEAKER I HEARER. 

SPEAKER= [english:E-SPEAKER, japanese:J-SPEAKER], 

HEARER= [english:E-HEARER, japanese:J-HEARER]. 

(、

（～ 
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4. A grammar for surface/abstract English communicative act representation 

:KB E-CA 

E-APPLY-SIMPLE-DISCOURSE-HEURISTICS = _ replaces the variables fo.r speaker 

and hearer with instances 

[abstract:E-ABSTRACT-COMMUNICATIVE-ACT 

[agent:E-SPEAKER, 

recipient: E-HEARER]] 

E-PLAN-SCHEMA = E-APPLY-SIMPLE-DISCOURSE-HEURISTICS 

[abstract:E-ABSTRACT-COMMUNICATIVE-ACT 

[relation:REQUEST, 

agent:#42, 

recipient:#41, 

object:#43=E-PROP[agent:#41], 

manner:INDIRECTLY-BY-ASKING-POSSIBILITY], 

surface:E-SURFACE-COMMUNICATIVE-ACT 

[relatiort:E-INTERROGATE-IF, 

agent:#421 

recipient:#41, 

object:E-ASK-MODALITY 

[relation:E-CAN, 

agent:#41, 

object: #43]]] . 

5. Some English examples 

E-PROP-1 =_The evaluation produces the surface representation and 

_ the phonological string "send I (a the) registration form". 

(kbl-eval'e-prop-1'(e-ca e-gen)) 

E-PROP 

[relation:E-SEND, 

agent:E-HEARER, 

recipient:E-SPEAKER, 

object:E-REGISTRATION-FORM]. 

E-SCA-1 =_the English surface representation for 

_ "could you send me the registration form" 

_ the evaluation will produce the english phonological string 

_ and the abstract communicative act representation. 

(kbl-eval'e-sca-1'(e-ca e-gen)) 

E-PLAN-SCHEMA 

[surface:E-SURFACE-COMMUNICATIVE-ACT 

[relation:E-INTERROGATE-IF, 

agent:#45=E-SPEAKER, 

recipient:#44=E-HEARER, 

object:E-ASK-MODALITY 

[relation:E-CAN, 

agent: #44, 

object:E-PROP 

[relation:E-SEND, 

recipient:#45, 

object: E-REGISTRATION-FORM] ] ] ] 
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E-ACA-1 = the English abstract representation for 

"could you send me the registration form" 

the evaluation will produce the surface representation and the 

phonological string: (kbl-eval'e-aca-1'(e-ca e-gen)) 

E-PLAN-SCHEMA 

[abstract:E-ABSTRACT-COMMUNICATIVE-ACT 

[relation:REQUEST, 
agent:#40=E-SPEAKER, 

recipient:#39=E-HEARER, 
object:E-PROP 

[relation:E-SEND, 

agent:#39, 
recipient:#40, 
object: E-REGISTRATION-FORM] , 

manner:INDIRECTLY-BY-ASKING-POSSIBILITY]]. 

E-ACA-TRANS-1 = _ The English abstract representation for 

_ "could you send me the registration form" 

_ The evaluation produces the Japanese abstract and 
_ surface representations. 
_ (kbl-eval'e-aca-trans-1'(e-ca ej-trans j-ca)) 

_ or the English phonological string: 
(kbl-eval'e-aca-trans-1'(e-ca e-gen)) 

TRANSFER-ACA 

[english: E-PLAN-SCHEMA 

[abstract:E-ABSTRACT-COMMUNICATIVE-ACT 

[relation:REQUEST, 
agent:#25=E-SPEAKER, 

recipient:#24=E-HEARER, 
object:E-PROP 

[relation:E-SEND, 

agent: 4t2 4, 
recipient:#25, 
object:E-REGISTRATION-FORM], 

manner:INDIRECTLY-BY-ASKING-POSSIBILITY]]] 

-
(
 

E-SCA-TRANS-1 = _ the English surface representation for , 

"could you send me the,registration form" （ 
_ the evaluation produces the Japanese surface representation: 

_ (kbl-eval'e-input-1'(e-ca ej-trans j-ca)) or the English 

surface string: (kbl-eval'e-input-1'(e-ca e-gen)) 
TRANSFER-ACA 

[english: E-PLAN-SCHEMA 

[surface:E-SURFACE-COMMUNICATIVE-ACT 

[relation:E-INTERROGATE-IF, 

agent:#26=E-SPEAKER, 

recipient:#27=E-HEARER, 

object:E-ASK-MODALITY 

[relation:E-CAN, 

agent: #27, 
object:E-PROP 

[relation:E-SEND, 

agent:#27, 

recipient:#26, 

object: E-REGISTRATION-FORM], 

source:#27]]]] . 
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6。Agrammar for English generation 

:KB E-GEN 

LIST= END I CONS . 

APPEND= APPENDO I APPENDl 

APPENDO = [whole:#l=LIST, front:<>, back:#1] . 

APPENDl = [front:<#2 ;. #4>, 

MINOR= 

back:#5=LIST, 

whole:<#2; #3>, 

patch:APPEND[front:#4, back:#5, whole:#3]]. 

Lexical head: relates lexem with the phonological string 

LEXICAL-SIGN 

[phon:<非6>,

syn:CATEGORY [head: [lexem:#6]]] 

MAJOR= MAJORl I MAJOR2 . 

MAJORl = _ saturated phrasal sign= 

head phrasal sign+ single complement phrasal sign 

PHRASAL-SIGN 

[phon:#9, 

syn:CATEGORY 

[head: #7, 
subcat:<>), 

dtrs:TREE 

[head-dtr:PHRASAL-SIGN 

[phon:#11, 

syn:CATEGORY 

[head: #7, 
subcat: #8=< [phon: #10 J >J), 

comp-dtrs:#8), 

patchO:APPEND[whole:#9, front:#10, back:#11)) . 

MAJOR2 = _ unsaturated phrasal sign= 

head lexical sign+ complement phrasal sign* 

MAP 

[phon:#13, 

syn:CATEGORY[head:#12), 

dtrs:TREE 

[head-dtr:LEXICAL-SIGN 

[phon:#14, 

syn:CATEGORY[head:#12]]], 

patchO:APPEND[whole:#13, front:#14, back:#15), 

patchl: [whole: #15 J ] 

MAP = MAPO I MAPl . 

MAPO = PHRASAL-SIGN 

[syn:CATEGORY[subcat:#16], 

dtrs:TREE 

[head-dtr:LEXICAL-SIGN [syn:CATEGORY [subcat:#16)), 

comp-dtrs: <> J, 

patchl:[whole:<>]]. 
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MAPl = PHRASAL-SIGN 

[patch:MAP 

[syn: CATEGORY [subcat: #17], 

dtrs:TREE 

[head-dtr:LEXICAL-SIGN[syn:CATEGORY[subcat:#18]], 

comp-dtrs:#20], 

patchl: [whole: #22]], 

syn:CATEGORY[subcat:#17], 

dtrs:TREE 
[head-dtr: LEXICAL-SIGN [syn :CATEGORY [subcat :<#19= [phon: #21] 

comp-dtrs :<#19 ; #20>], _ 

patchl: APPEND[front:#21, back:#22]] 

UB>] J, 

PRONOUN= Pronouns define fully saturated simple 

MAJOR 
[relation:#23, 

dtrs:TREE 

[head-dtr:MINOR 

[syn: CATEGORY 

[head: [lexem:#23], 

subcat:<>]]]] 

NPs 

、`（
 

NP abstracted 

determiner 

MAJOR 
[relation:#24, 

dtrs:TREE 
[head-dtr:MAJOR 

[dtrs:TREE 

[head-dtr:MINOR 

[syn:CATEGORY[head: [lexem:#24]]], 

comp-dtrs:<>]J, 
comp-dtrs:<MINOR 

[syn :CATEGORY [head: [lexem: 非25]]]>],

NP head will be filled withヱelationslot, 

with SPEC.slot 

spec:#25) 

E-PROP = E-VP-DITRANS E-VP-TRANS E-VP-INTRANS. 

E-VP-DITRANS =_partial tree for ditransitive 

with relation, recipient, and 

MAJOR 

[relation:#26, 

recipient:#27, 

object:#28, 

dtrs:TREE 

[head-dtr: #2 6, 

comp-dtrs: XP (Obj2) 

<#27 #28>)) 

vp 

object. 

（
 

' 
~' 1, 
. 

I 

l 
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CLAUSE= MAJOR 

[relation:#29, 

agent:#32, 

recipient:#30, 
object:#31, 

dtrs:TREE 

[head-dtr: VP (Head) 

VP-DITRANS 

[relation:#29, 

recipient:#30, 

object :#31], 
comp-dtrs: <#32>]] 

E-DECLARE-MODALITY = MAJOR 

[relation:#33, 

agent:#35, 

object:#34, 

dtrs:TREE 

[head-dtr: VP (Head) 

MAJOR 

[dtrs:TREE 

[head-dtr: #33, 

comp-dtrs: VP (Comp) 

comp-dtrs: XP (Subj) 

E-ASK-MODALITY = MAJOR 

[relation:#36, 

agent:#37, 

object:#38, 

dtrs:TREE 

[head-dtr: #36, 

<#35>]] . 

comp-dtrs: XP (Subj) 

<#37 #38>] J • 

7. The English lexicon 

DET = a I the . 

E-SPEAKER = PRONOUN[relation:"エ＂］

E-HEARER = PRONOUN[relation:"you"] . 

<#34>]], 

E-REGISTRATION-FORM = NP[relation:"registration form", spec:DET] . 

E-SEND = MINOR[syn:CATEGORY[head: [lexem:"send"]]] 

E-CAN = MINOR [syn: CATEGORY [head: [ lexem: "could"]]] 
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Appendix 2 : PROLOG and RETIF 

We give here the definitions for append written in PROLOG and in RETIF. In PROLOG, 

argument te皿 sare identified by position; in RETIF they are identified by name. Apart from syntactical 

differences one should note the similarity of the definitions. The similarity is not restricted to syntax, 

and the computational behavior too is very similar in this case .. In particular, for a given input, the set 

of solution is the same (modul~the difference of data structures). However, it is possible in RETIF to 

enforce type checking very naturally, but this is impossible in PROLOG without adding cumbersome 

patches. 

APPENDinPROLOG 

append([], W, W). _ 

append([XIY], z,, [X'.IUl) :-append(Y, Z, U). 

＇ 

、ヽ

（
 

., ．．． し9,
』`

?- append(X, Y, [a,b]). 

X = [a, b] 

y = ［］ 

X = [a] 

y = [b] 

X = ［］ （ 
y = [a, b] 
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APPEND inRETIF 

APPEND= [front:<>, whole:#W=LIST, back:#W] 

[front:<#X; #Y>, 

back:#Z=LIST, 

whole:<#X; #U>, 

patch:APPEND[front:#Y, back:#Z, whole:#U]]. 

QUERY APPEND[whole: <ab>]. 
」

(kbl-eval'query) 

n
 

[front:<>, 

back:#l=<a b>, 

whole:#1] 

[front:#l=<a>, 

back: #2=<b.>, 

whole:#3=<#1; #2>, 

patch: [front:<>, back:#2, whole:#2]] 

し）

[front:<#l=a; #2=<#3=b>>, 

back:#4=<>, 

whole:<#1 ; #6=<#3>>, 

patch: [patch: [front:<>, back:#4, whole:#4], 

front:#2, 

back:#4, 

whole:#6]] 
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