
TR-1-0071

RETIF

A Rewriting System for Typed Feature Structures

Martin EMELE and Remi ZAJAC

1989. 03

Abstract

This report describes a prototype of a rewriting system for typed feature
structures which was implemented primarily in order to develop a transfer and a
generation model for Machine Translation of dialogues. The formalism is based
on the semantics of typed feature structures as described in [A it-Kaci 84}.

In section 1、wepresent the extension of unification of feature structures with a
type system; in section 2, the syntax of the formalism is presented, together with
the type system derived from the set of definitions; the interpreter is described
in the next section、andsome necessary developments are outlined in the last
section. A short example of transfer and generation is given in the appendix.

ATR Interpreting Telephony Research Laboratories
ATR自動翻訳電話研究所

c(株）ATR自動翻訳電話研究所 1989
c1989 by ATR Interpreting Telephony Research Laboratories

RETIF: A Rewriting System for Typed Feature Structures

Martin Emele and Remi Zajac

ATR Interpreting Telephony Research Laboratories

Sanpeidani, lnuidani, Seika-cho, Soraku-gun, Kyoto 619-02, Japan

Abstract

r
(
、

We describe a prototype of a rewriting system for typed feature structures which

was implemented primarily in order to develop a transfer and a generation model

for Machine Translation of dialogues. The formalism is based on the semantics

of typed feature structures as described in [Ait-Kaci 84]. Compared to the one

developed by A'it-Kaci, the originality of this first prototype lies mainly in the

search for efficiency: (1) reducing the cost of the unification (instead of undoing

coreference merging, we use a non-destructive unification algorithm) and (2)

avoiding unecessary expansions of disjunctions.

In section 1, we present the extension of the unification of feature structures

with a type system. In section 2, the syntax of the formalism is then presented

together with the type system derived from a set of definitions. The intepreter is

described in the next section. Some necessary developments are outlined in the

last section. A short example of transfer and generation is given in the appendix.

(I

Key-Words rewriting system, unification-based formalisms, feature structures, type

inheritance, transfer, generation.

R四 1F:A Rewriting System for Typed Feature Structures

TABLE

Introduction

1 • A Type System for Feature Structures

1.1 A Lattice of Types

1.2 Unification of Typed Feature Structures

A. Typed Feature Structures

B. The Unification Algorithm

2 . The RETIF Formalism and the Type System

2.1 RETIF Definitions

2.2 Embedding the Partial Ordering in a Meet Semi-Lattice

A. The Embedding

B. The Meet Operation

3. The Interpreter

3.1 The EV AL function

3.2 The Rewriting Algorithm

3. 3 A Detailed Example

4. Developments

4.1 Keeping Disjunctions Local

4.2 Multiple Inheritance

4. 3 Negation

5. Applications to Natural Language Understanding: an example

Conclusion

References

Appendix 1: a sample of transfer and generation grammars

Appendix 2 : PROLOG and RETIF

2

RETIF: A Rewriting. System/or Typed Feature Structures

Introduction・

This report describes a・cakulus of typed feature structures suitable for natural language processing.

The implementation of such a system has been motivated by the need for a formalism which can

describe (and compute!) mappings between different linguistic representations. More precisely, in our

case, we wanted to be able to write grammars (and dictionaries) for transfer and generation modules of

a machine translation system prototype.

The goal of this report is to give a rather informal account of the calculus, and is adressed to

readers who are interested in unification-based formalism and their applications, rather than just in the

theoretical foundations. However, this calculus has a precise formal foundation, and we ask the reader

to refer to the original work of [Art-Kaci 84].

｛
 The initial constraints on the choice of a formalism can be characterized as follows.

1) the input for transfer and generation should be a feature structure;

2) the output for transfer should be a feature structure, and for generation a string;

3) it should be able to incorporate current theories in the framework of unification-based grammars;

4) it should enhance modularity in grammar development

5) if possible, it should be inherently reversible

Some formalisms such as FUG [Kay 84] or CIL [Mukai 88] used in computational linguistics

meet some of these requirements. However, none of these formalisms facilitate a very important

property for formalisms which are intended to be used for reasonable size grammars: modularity. For

most of them, this failure also includes the consequence that the computational cost is very high at each

(s t ep of computation, all rules are possible candidates for application. In fact, some external control

mechanism is often added, such as context-free rules for parsing.

If we look at recent developments in programing languages, we find two interesting paradigms: the

so-called object-oriented paradigm, and the rewriting system paradigm used for theorem-proving or for

implementing specification languages. A recent work by Ai't-Kaci [Ai't-Kaci 84] presents a unified

view of semantic networks, inheritance hierarchies, first-order term rewriting, and partially ordered

types in programming. We found that the formalism proposed by Ai't-Kaci and which incorporates this

synthetic approach met all our requirements, and was perfectly suited for our problem. In particular,

the partially ordered type system with inheritance meets the modularity requirement.

The data structures used by the formalism are typed feature structures~The feature structures in this

formalism are general graphs. The formalism allows defining partially ordered types, and disjunctions

of type definition. The type definitions specify a set of constraints on well-formed typed feature

3

R四1F:A Rewriting System/or Typed Feature Structures

structures. Given as input a typed feature structure, the interpreter uses a rewriting mechanis_m to apply

this set of constraints on the input, deriving the set of structures compatible with the input and with the

set of type definitions. Reversibility can be achieved if some care is taken in the writing of definitions.

Depending on the form of the definitions, the system can also be used to generate a set of structures

described by some grammar. In that respect, it can be compared favourably with PROLOG (see

appen<;Iix 2).

（

（

4

REIIP: A Rewriting System for Typed Feature Structures

1. A Type System for Feature Structures

1.1 A Lattice of Types

The type system is defined on a set of type symbols P which always contain type symbols T

(≪top≫) and ..L (≪bottom≫), and which are partially ordered. The partially ordered set of type symbols is

called~. the signature of the type system.

Take for example P = {T, ..L, PERSON, STUDENT, EMPLOYEE, STAFF,.FACULTY, PETER, MARY,
WORKSTUDY, PAUL, JEAN, BILL, JOAN, SIMON, ROGER}. We define a hierarchy between types, as

graphically depicted in Figure 1.

1
PERSON

＼
EMPLOYEE

万~~ぐ~7()\
PETER MARY BILL . JOAN PAUL JEAN SIMON ROGER

ー

Figure 1: The partial ordering Lon a set of type symbols.

This hierarchy defines implicitly a partial order玄onthe set of type symbols P:

- STUDENT and JOAN are comparable : JOAN s; WORKSTUDY s; STUDENT,

- STUDENT and EMPLOYEE are not comparable.

This partial order defines (in this case) a lattice structure on P: it is both a meet semi-lattice and a

join semi-lattice.

5

REI'JF: A Rewriting System for Typed Feature Structures

Meet semi-lattice:

For any pair of symbols (x, y) of P, there exists a unique symbol z in P such that x :::= z and y :::= z,

and for all u in P, if x;;:: u and y;;:: u then z :::= u : z is called the Greatest Lower Bound of x and y, and

we write z = x A y. The operation A is called the meet operation.

Join semi-lattice:

For any pair of symbols (x, y) of P, there exists a unique symbol z in P such that x~z and y~z,

and for all u in P, if x~u and y~u then z~u : z is called the Least Upper Bound of x and y, and we

write z = x v y. The operation v is called the join operation.

For example:

STUDENT I¥ JOAN = JOAN

STUDENT I¥ EMPLOYEE = WORKSTUDY

STUDENT I¥ SIMON = ..L

1. 2 Unification of Typed Feature Structures

A. Typed Feature Structures

／
＼

Feature structures used in unification-based grammar formalisms such as D-PATR [Shieber 86]

can have only two kind of types: complex (which are not represented explicitly) and atomic (which are

represented by a symbol). A straightforward extension allows complex structures to explicitly bear

type symbols, as proposed for example in [Pollard and Sag 86]. The unification algorithm is then (

extended using a calculus on type symbols.

In the following examples, type symbols are in upper-case letters, and feature symbols in

lower-case. Symbols beginning with # are tag symbols, which represent co-reference (≪sharing≫) in

the structure.

6

RETIF:A Rewriting Systemfor Typed Feature Structures

#x=STUD:ENT[advisor:FACULTY[secretary:#y=STAFF,

assistant: #x],

roommate:EMPLOYEE[representative:#y]]

#u=EMPLOYEE[advisor:SIMON[secretary:EMPLOYEE,

assistant: #v=PERSON],

roommate:#w=STUDENT[representative:#w],

helper:BILL[spouse:#u]]

secretary representative

roommate

representative

Figure 2: Graphical representation of two typed feature structures witli type symbols inside

nodes. Note that these are general directed graplis, not only DAGs.

B . The Unification Algorithm

The standard unification algorithm for feature structures is modified to use type information (see

[A'it-Kaci 84 pp 102-111]). The unification on ordinary feature structures is already defined as a meet

operation on the set of feature structures partially ordered by the subsumption ordering (see for

example [Shieber 86]). This is extended in a straightforward way also using the meet operation on the

lattice of types to compute the new type associated with the result of the unification of two feature

structures. For atomic types, we get exactly the same interpretation as for ordinary feature structures,

and we can simplify the internal representation of the lattice by not explicitly including atomic types.

Instead, we consider every type symbol which is not explictly defined in the lattice to be atomic.

The unification of the two feature structures above can be done essentially like ordinary unification.

The only extension we need is to compute the meet of two type symbols which are associated with the

feature structures.

7

R四1F:A Rewriting System for Typed Feature Structures

merged paths associated types new type symbol

e

advisor.assistant STUDENT /¥ EMPLOYEE /¥ PERSON WORKSTUDY
helper .spouse

advisor FACULTY A SIMON SIMON

advisor .secretary
roommate STAFF A EMPLOYEE A STUDENT WORKSTUDY
roommate.representative

helper TA BILL BILL

Figure 3: the meet for merged paths.

（

The merging of common paths and the computation of the meet yields the following typed feature

structure:.

非x=WORKSTUDY

[advisor:SIMON

[secretary:#y=WORKSTUDY

[representative:#y],

assistant: #x],

roommate:#y,

helper:BILL[spouse:#x]]

(
i

roommate

secretary

helper spouse

~

representative

Figure 4: Graphical representation of the typed feature structure.

8

RE'FIF: A Rewriting System for Typed Feature Structures

This kind of unification algorithm could be used in a unification-based parser, such as the D-PATR

system, but we use it as the basic operation of a type rewriting system that fully exploit the possibilities

of the type system, namely to inherit type definitions according to the subsumption ordering introduced

by the KB definitions. In addition, disjunctions of types can be used to express indeterminacy in the

feature descriptions.

，

R町 1F:A Rewriting System for Typed Feature Structures

2. The RETIF Formalism and the Type System

2 .1 RETIF Definitions

A type is defined as a disjunction of typed feature structures (a disjunction can be reduced to one

element):

<type definition> ::= <type-symbol>'='<typed feature structure> {'I'<typed feature structure> } .

There are two constraints imposed on definitions:

1) Definitions must not lead to a cycle in the type system, otherwise, the type system cannot be

ordered.

2) Tags are local to one disjunct.

During the evaluation process, any typed feature structure of type A must verify the constraints

stated in the definition of A: for a disjunction, it must verify one of the constraints stated as disjuncts;

for one disjunct (a typed feature structure), it must be compatible with the feature structure, and it

inherits the constraints of the type of this feature stn1cture (see section 3).

The three cubes example

:KB threecubes

COLOR= GREEN I NON-GREEN.

NON-GREEN= BLUE I OTHERS.

THREE CUBES THREECUBES is-a STACK which-has top, middle and bottom slots.

STACK[top:GREEN,

middle:COLOR,

bottom: BLUE] .

10

R肛 1F:A Rewriting System for Typed Feature Structures

ON = ON土s e土thera THREECUBES where top= above・and middle= below

or a THREECUBES with middle = above and bottom = below.

THREECUBES [top: #x,

middle:#y,

above:#x,

below:#y]

I'1'HREECUBES[r'niddle:#z;

bottom: #t,

above:#z,

below:#t].

QUERY=

（

Is there a green cube on top of a non green cube?

ON[above:GREEN, below:NON-GREEN].

s

E
 予上／

ー

¥

/oR
＼戸

COL

／ミ
‘
B

i/ERS
H

T
 ゜

i
¥＼

Figure 5: The partial ordering on type symbols extracted from the KB definitions

11

R肛 IF:A Rewriting System for Typed Feature Structures

2. 2 Embedding the Partial Ordering in a Meet SemiNLattice

A. The embedding

The Normal Form of the Definitions

In order to be interpreted, the definitions of the KB are put in Normal Form where a disjunction of

typed feature structures is replaced with a disjunction of new symbols, one for each disjunct. For

example, the definition of ON above is replaced with:

ON= ONl I ON2.

ONl = THREECUBES[top:#x,,

middle:#y,

above:#x,

below:#y].

ON2 = THREECUBES[middle:#z,

bottom:#t,

above:#z,

below:#t].

The new partial order on type symbols extracted from the KB definitions is shown in Figure 6.

二
＼

T

/
-

．

z
 ゚

z

STACK

／「文：cUBES

QUERY ON1 .ON2

t
Figure 6: The partial ordering on type symbols extracted from the KB definitions

The partial ordering on type symbols can be extended to a partial ordering on typed feature

structures, as shown in Figure 7.

12

R肛 1F:A Rewriting Systemfor Typed Feature Structures.

/OR\

—>/

cot¥

G
 g/ERS

H

T
 ゜

Figure 7: The partial ordering on typed feature structures extracted from the KB definitions.

B . The Meet Op~r,t,ion

As we allow any kind of definition, the partial order extracted from the type definitions is not

guaranted to be a lattice, as in the example above: there are two solutions for the meet of ON and

THREECUBES, ONl and ON2. The solution is to embed the partial ordering P extracted form the KB

definitions in the (restricted) power set 2(P) (the set of all non-empty finite subsets of pairwise not

comparable elements of P).

13

R町 1P:A Rewriting System for Typed Feature Structures

l•ikl
{three~ubes}

ぐ

Figure 8: Part of the restricted power set

The meet operation is then defined using the inclusion ordering in 2(P) : the meet of two elements

X and Y of P is then defined as the maximal restricdon of the intersection of the sets of sub-type

symbols for each pair of symbols x and y of X and Y.

T,he maximal restriction「Pltakes the set of maximal elements of P: when 2 elements. a1:e

comparable, the smaller is removed: 「Pl={xePly::;;x⇒x = y}. The set of sub-types symbols

of x is called the ideal principal of P generated by x : Ix = { y e P I y ::;; x}:

If X and Y are elements of 2(P), the meet of X and Y is defined as

＼
~
ノ（

XAY=「uxeX,yeYOx n ly)l. (Note that this construction does not preserve LUBs)

14

R肛 1F:A Rewriting System for Typed Feature Structures

{colo,, non-grnonア••_grn_<>n, on, quo,y, on1, on2, stack, w ... ubes}

{color, non-green, other, blue, green}

／＼
1••7゜tho文 {g,oan]

{others] {blりe}

{stack, threecubes, on1, on2}

I

Figure 9: The embedding in the set of all principal ideals preserve the GLBs:

it is a meet semi-lattice.

Example:

ON: {ON, QUERY, ONl, ON2}, THREECUBES: {THREECUBES, ONl, ON2}

ON/¥ THREECUBES: {ON, QUERY, ONl, ON2} /¥ {THREECUBES, ONl, ON2}→ {0Nl,ON2}

The RETIF interpreter directly uses this meet operation on sets of type symbols, eliminating the

need for the so-called psi-expansion, as suggested in [Ai't-Kaci 84, pp155-156]: the interpreter prunes

all non-maximal elements in one step of computation during unification before expanding a

disjunction.

Implementation note

The efficiency of the meet operation is crucial for the overall perf o皿 anceof the interpreter. The

evaluation of the cost of the unification algorithm (which is almost linear with the number of nodes)

does not take into account the cost of the meet operation.

If p=IPI the number of symbol in the type system P, then the size of X and Y, elements of 2(P) is

bound by p. The cost of computing an ideal is the cost of a traversal of the graph which represents the

partial order, and is linear with the number of nodes p, and there are at most 2p such traversals (one

for each element of X and Y): 2p2. The size of an ideal, element of 2(P) is bounded by p. The cost of

an intersection is then p2 and there are also at most p打ntersections:p4. The cost of each union is also

15

R肛1F:A Rewriting System/or Typed Feature Structures

p互andthere are at most p2 unions: p4. The maximal restriction compares each element of the set with

each other: p2 comparison. Each comparison requires a traversal of the graph and costs p. The cost of

the maximal restriction is then in p3. Finally, we get 0(2p3 + p4 + p4 + p3) = O(pりforthe cost of the

meet operation.

During the construction of the lattice out of the KB definitions, all ideals and the intersections of all

ideals are pre-computed, and the intersections are cleaned up by maximal restriction. As the meet is

most often a meet between two singletons, this is already pre-computed and requires only an access to

a hash table, but the cost of the meet is still in O(pりinthe worst case. The size of the hash table is

O(p2). It could be possible in principle to pre-compute all meets on 2(P) and have a constant time, but

the space requirement is extravagant: 0(21PI). However, this size would probably be small in practical

use, if only meets different from 0 are stored, and if we take into account the commutativity of the

meet operation.

（

(~

16

R肛 'IF:A Rewriting Sy.I'/ヽnゆrTyped Feature Structures

3. The Interpreter

3. 1 The EV AL function

A knowledge base KB consists of a set of definitions ti=KB(ti), where ti is a type symbol and

KB(!j) is either a term (a typed feature structure) f[I1: t1, ... , 10: t.i] or a disjunction of type symbols

t1 I ... t0. We can define a function EV AL: term→ term

(1) EVAL(ti I…tn) = V EVAL(ti)
i= 1...n

(2) EVAL(f[l1: t1, ... , 10: t0]) = EV AL(KB(f) I¥ T[l 1: EVAL(t1), ... , ln: EV AL(tn)])

Equations (1) and (2) define an operational semantics which reflects the type-as-set semantics of

terms in the sense that they compute unions and intersections of sets (cf. [A'it-Kaci 84, pp 117-147]).

3. 2 The Rewriting Algorithm

込： A Symbol Rewriting System (SRS) on L (signature of type symbols) is a system S of n

equations Si= Ei, i = 1, ... , n where Si E Land Ei is a term: S = { Si= Ei }.

The set of symbols of L which have a definition is E = { si, …， s0 } , the set of S-expandable

symbols. The set of symbols of L which do not have a definition is N = L -E, the set of

non-S-expandable symbols. In the three cubes example, E = { COLOR, NON-GREEN, ON, ONl, ON2,

QUERY } and N = { GREEN, BLUE, PURPLE, OTHERS, STACK } .

込： A one step rewriting relation t1→ t2 is defined iff there exists a symbol si e E at some

address (path) u in t1 such that Ei is≪substituted≫at address u: Ei is unified with the sub-term

at adress u, and the result of unification is inserted at that adress. The new term is called tが

t2 = t1[E/u] = t1[u: T] /¥ u.Ei

17

R肛 1F:A Rewriting System for Typed Feature Structures

3. 3 A detailed example

Let's take the three cubes KB:

COLOR = GREEN I NON-GREEN. (= E1)

NON-GREEN = BLUE I PURPLE -1 OTHERS. (= E少

THREECUBES = STACK [top:GREEN, middle:COLOR, bottom:BLUE]. (= E3)

ON = ONl I 0~2. (=号）

ONl = THREECUBES[top: 非x, middle: #y, above: #x, below: #y] . (= E5)

ON2 = THREECUBES[middle:#z, bottom:#t, above:#z, below:#t]. (=馬）

QUERY= ON[above:GREEN, below:NON-GREEN]. (= Eガ
（

We shall show the behavior of the interpreter on the evaluation of the term QUERY : is there a green

cube on top of a non-green cube?

At first we substitute the type symbol of the query with the corresponding KB value (E7). In

particular this is performed by a substitution of the root symbol QUERY (at each step, expandable

symbols are written in bold face).

t1 = QUERY

t2 = t1[E7/E] = t1[e:T] A e,ON[above: GREEN, below:NON-GREEN]

= ON[above:GREEN, below:NON-GREEN]

（｝
The new term t2 is expandable with symbol ON at address e and with symbol NON-GREEN at

address below: Note that the expansion of NON-GREEN is a disjunction of symbols BLUE I PURPLE I

OTHERS, which are not further expandable. This disjunction is kept local.

t3 = t2[E咋］

== (ONl I ON2) [above:GREEN, below:NON-GREEN]

t4 = t3 [E2/below]

= (ONl I ON2) [above:GREEN, below: BLUE I PURPLE I OTHERS]

After these two rewritings of t2 we get a term with a disjunction of symbols at the root and at

address below. Notice, that only the disjunction at the top-level has to be further expanded: the

disjunction at address below need not be further expanded because these symbols are

18

R肛 1F:A Rewriting System for Typed Feature Structures

non-S-expandable symbols. The next step expands the disjunction ONl I ON2 and create two new terms:

t4'and tぶwithtype symbols ONl and ON2 respectively. These terms are further expanded in two

differents branches of computation.

Branch 1 of the disjunction: expand ONl.

t41 = ONl[above: GREEN, below: BLUE I PURPLE I OTHERS]

も=t4'[E5/E] = THREECUBES[top: #x=GREEN,

middle: #y= BLUE I PURPLE I OTHERS,

above: #x, below: #y]
We yield the first solution by finally expanding THREECUBES. At this time the ;ewriting

process stops because there are no more S~expandable symbols in t6'

First solution: t6 = t5[E3/eJ = STACK[top:#x=GREEN,

Branch 2 of the disjunction: expand ON2.

middle:#y=BLUE I PURPLE I OTHERS,

bottom:BLUE,'

above:#x, below:#y]

tぶ=ON2[above: GREEN, below: BLUE I PURPLE I OTHERS]

t7 = tぶ[Es/cl=THREECUB~S[middle: #z= GREEN,

bottom: #t = BLUE I PURPLE I OTHERS,

above: #z,

below: #t]

Second solution: tg = t7[E5/e] = STACK[top: GREEN,

middle: #z = GREEN,

bottom: #t = BLUE,

above: #z,

below: #t]

19

R町 IF:A.Rewriting Systemfor Typed Feature.Structures

4':D'1. ,. • ・evelo'pments
:・." I

4
"

．． ’

'.',. '-,- . ・'、*

4.1 Keeping Disjunctions Local

:・.. -、;; , ,·:·j 』'•,,'·,,;,-、:.: .. : ;;; ~:,·,r,

,・., ,, ・:・-.

.t
ら

ヽ

•7

.

.

§

ヽ
.o. ．．． .‘

 •.
[

4

.• ,9・4.

•5
•. ‘̀

.9

.•
，

•.•
鼻
•

f

": , ; ヽ，:;;;、<,ふ--:,,・;・/f江b

In the present implementation, all disjunctions are expanded・to, yield. a, set ,ofterm-s・wh'ere no.<・

disjunctions occur inside a term, except for; disjunctions of:atomic, type symbols whic~, cannot be

rewritten.
• :・..、・,. ー・：・:.:,C • • : •.:. C 、 ・~

~．ヽ.. え

First, this systematic expansion・is cofuputationally very costly: the interpreter must create as many

copies of a term as there are disjuncts, where some will'probably be rewritten to ..L.
---、―, - -, -

:、,・., . . ,.,--.,

Second, in some cases, it is'preferable to・describe'alternatives "lbcally inside a term, factoring

common sub-parts, rather than expanding the. w,p.ol.e-e?(prys~jon. Thi~qould pe 4qny':"i,tl¥, the

introduction of a dummy typ~syt.nboJJor~local c;lisjunction浪ndthen this symbol would be defined as

a disjunction. However, it would be much simpler to~ll<;>w disjunctions to appear inside a term. For

grammar writing for example, it would be preferable to k,.eep the description of possible ambiguities

local: this would help to keep track of the sources of ambiguities, and to make possible a finer analysis

（

of these phenomena. -':,-. ..,
••

E
.
r『

9

.••
-
．．

●
-
．

For implementation, the algorithm described in [Eisele and Dorre 88] would be a good candidate,

and could be incorporated in the present unification algorithm. The syntax of. tbeformalism·needs-t~be

extended to allow disjunction~ofJe~,s inside a_term instead of having disjunctions at the top level of a

definition only. There would then be three different possible co.mputational behaviors for handling

disjunctions: (1) all disjunctions are expanded to the top }eve¥ of terms, as it is done presently, (2)

internal disjunctions are expanded locally and~isjunctions at the top level of a definition are only

expanded to the top level, (3) all disjunctions are expanded focaliy and the re・sult is a・sfogle term. Note

that it is possible in any case to factorize -a set of _'typed feature structures, and build a compact typed

feature description (with local disjunctions) that represent this set (as the≪pack≫function described in

[Eisele and Dorre 88]). , ・

（

4.2 Multiple Inheritance

The interpreter described in [A'it-Kaci 84] allows only single inheritance. For grammar description,

we need multiple inheritance, especially for lexical descriptions: the verb like could be described as a

BASE verb and a MAIN verb and a STRICT-TRANSITII氾 verb[Pollard and Sag 87].

We shall augment knowledge base definitions to handle disjunction and give the definition of the

evaluation function for disjunctions. A knowledge base KB consists of a set of definitions ti=KB(ti),

20

Rl!/'IF: A Ut!writing Sy.1・tttmj{Jr Typed Feature Structures

and KB(ti) is then allowed to be a conjunction of type symbols t1 &… tn. The EVAL function is

augmented with the following definition:

(3) EVAL(t1 &… tn) = &i = 1…n EVAL(ti)

As for local disjunctions, multiple inheritance is syntactically nothing other than a conjunction of

terms, and the formalism can be extended to accomodate local conjunctions.

4.3 Negation

Another extension we need is negation. This was introduced by [AYt-Kaci 84] as complemented

(types. Negation could always be written as it is in the three cubes example: the set of colors is divided

into two sub-sets: GREEN and NON-GREEN. NON-GREEN can in turn be decomposed in the same way.

But this makes the description of knowledge very cumbersome. [Nit-Kaci 84] proposed writing

COLOR¥GREEN and write COLOR as a simple set of colors. This is equivalent saying

COLOR A -,GREEN, and if we do not want to overspecify, we can simply state -,GREEN.

Let's take for example the term STUDENT[sport: SURFING]. The set of students who practice

surfing is a sub-set of the set of students who practice a sport, which is a sub-set of the set of students,

which is a sub-set of the set of persons, as depicted in Figure 10. With the type-as-set interpretation in

mind, it is not difficult to see that ,STUDENT[sport: SURFING] should be interpreted as the set of

persons who are not students or if they are students, then we take the set of students who do not

practice any sport, or if a sport is practiced, it should not be surfing.

PERSON

／

STUDENT[sport:T]

STUDENT[sport:SURFING]

Figure 10: type as set semantics for negation.

21

R町 1F:A Rewriting System for Typed Feature Structures

The semantics of complemented types is described in [Ai't-Kaci 84]. The negation is described in

[Smolka 88] and is defined there as: -,(label: TYPE) = -,label: T v label: ,TYPE.

Our definition of negation for typed terms is then:

-,A[l1: S1, ... ln:Sn] =→ A v A[--.(11: S1), ... → On:Sn)1

= -,A v A[-,l1 :T v 11: -,Si, …古：Tvln呂 S叫

= -,A v A[l 1: --.Si, ... ln圧 Sn]

The EV AL function is augmented with the following definition:

（

(4) EVAL(,t1) =-. EVAL(ti)

All those exte~sions are very basic ones, and give the formalism a good expressive power. Fuヰher

developments can be envisaged once full logical expressions have been implemented (see for example

[A'.it-Kaci 84 Chap 7], [Kasper 88]).

(.～

22

R四1F:A R・ewriting System for Typed Feature Structures

5. Applications to Natural Language Understanding

We shall present here some input/ouput typed feature structures for the transfer and generation

grammars described in the appendix. Note that this example is built to examplify some features of the

RETIF fom叫ism,and thus the grammars have been kept as simple as possible. We refer to [Emele

89, Zajac 89] for more details on transfer and generation grammars.

An example of transfer from Japanese to English

The input structure is shown in Figure 11: it could be the structure produced by application of an

abstract communicative act grammar on the result of a surface parser, as described in [Kogure,

Yoshimoto et al. 88]. The output structure (Figure 12) is produced by the application of the transfer

grammar on this structure. Note that the process is monotonic and works by addition of new

information: the result is a structure which contains all information of the input structure. This property

also makes the transfer grammar reversible.

TRANSFER-ACA
[japanese:J-PLAN-SCHEMA

[abstract:J-ABSTRACT-COMMUNICATIVE-ACT
[relation:REQUEST,
agent:#20,
recipient: #19,
object:J-PROP

[relation:J-OKURU,
agent:#19,
recipient:#20,
object:J-TOUROKUYOUSHI],

manner:INDIRECTLY-BY-ASKING-POSSIBILITY])]

、
ー
、 Figure 11: Japanese input for transfer.

23

REI'IF: A Rewriting System for Typed Feature Structures

[english:E-PLAN-SCHEMA
[abstract:E-ABSTRACT-COMMUNICATIVE-ACT

[relation:#l=REQUEST,
agent:#12=E-SPEAKER,
recipient:#ll=E-HEARER,
object:#6=E-PROP

[relation:E-SEND,
agent:#10=E-HEARER,
recipient:#9=E-SPEAKER,
object: #7=E-REGISTRATION-FORM] ,

manner:#4=INDIRECTLY-BY-ASKING..,.POSSIBILITY]],

japanese:J-PLAN-SCHEMA
[abstract:J-ABSTRACT-COMMUNICATIVE-ACT

[relation:#1,
agent :#3=J-SPEAKER,
recipient:#2=J-HEARER,
object:#S=J-PROP

[relation:J-OKURU,
agent:#2,
recipient:#3,
object:#B=J-TOUROKUYOUSHI],

manner:#4]],
translate-obj: [english: #6,

japanese:#5,
translate-obj: [english: #7, japanese: #8],
translate-rec: [english:#9, japanese:#3],
translate-agt: [english: #10, japanese: #2]],

translate-rec: [english:#11, japanese:#2],
translate-agt: [english:#12, japanese:#3]]

／
＼

Figure 12: result of Japanese-English transfer.

An example of English generation

The input structure (Figure 13) is a part of a structure that could be produced by a transfer

grammar: the level of description is the level of sematic relations. After application of the generation (

gramm紅， theoutput structure (Figure 14) describes the constituent structure and the associated string

of lexems (feature≪phon≫).

E-PROP
[relation:E-SEND,
agent:E-HEARER,
recipient:E-SPEAKER,
object:E-REGISTRATION-FORM]

Figure 13: a fragment input for English generation.

24

REI'IF: A Rewriting System for Typed Feature Structures

PHRASAL-SIGN

[phon:#39=<#1="send"

; #38=<#2="I"

; #36=<#9=a I the
; #37=<#10="registration form">>>>,

relation:#31=LEXICAL-SIGN

[phon:#40=<#1>,

syn:CATEGORY

agent:PHRASAL-SIGN

[head:#29=[lexem:#1],

subcat:<#27=PHRASAL-SIGN

[phon:#6=<#2>,

relation:#2,

syn:CATEGORY

[head:#3=[lexem:#2],

subcat:#4=<>],
dtrs:TREE

[head-dtr:LEXICAL-SIGN

[phon: #7=<#2>,

syn・: CATEGORY

[head: #3,

subcat:#4]],
comp-dtrs :<>]]

#32=<#28=PHRASAL-SIGN

[phon: #17=<#9

； #11=<#10>>,
relation:#10,

syn:CATEGORY

[head:#12=[lexem:#10],

subcat:<>],
dtrs:TREE

[head-dtr:PHRASAL-SIGN

[phon:#11,

syn:CATEGORY

[head:#12,

subcat:#13=<LEXICAL-SIGN

[phon: #18=<#9>,

syn:CATEGORY
[head:

[lexem:#9]]]>],
dtrs:TREE

[head-dtr:LEXICAL-SIGN

[phon: #15=<#10>,

syn:CATEGORY

[head:#12,

subcat: #13]],
comp-dtrs:<>]],

comp-dtrs:#13],
spec:#9]

#30>>]],

[phon:#23=<#20="you">,

relation:#20,

syn:CATEGORY

[head:#2l=[lexem:#20],

subcat:#22=<>],

dtrs:TREE

[head-dtr:LEXICAL-SIGN

[phon:#24=<#20>,

syn:CATEGORY

25

RI刃'IF:A Rewriting System/or Typed Feature Structures

[head:#21,
subcat:#22]],

comp-dtrs:<>]J,
recipient:#27,
object:#28,
syn:CATEGORY

[head:#29,
subcat:#30),

dtrs :TREE
[head-dtr:#31,
comp-dtrs:<#27

#33=<#28>>]]

Figure 14: the result of English generation.

（

(
i

26

RE11F: A Rewriting System/or Typed Feature Structures

Conclusion

The main characteristics of the formalism are (1) type inheritance which provides a clean way of

defining classes and sub-classes of objects, and (2) the rewriting mechanism based on unification of

typed feature structures which provides a very powerful and semantically clear mean of specifying and

computing relations between classes of objects. In this respect, the formalism can be compared

favourably with PROLOG (see the append example in appendix 2).

So far, we have used this formalism to develop sample grammars for transfer [Zajac 89] and

generation [Emele 89] in order to demonstrate the feasability of this approach for natural language

generation and transfer. It can also be used for parsing, in a DCG-like style, as shown in [A'it-Kaci 84,

pp 161-165], and therefore seems to be useful in more general natural language applications.

The interpreter has been implemented in Common Lisp, and runs on Vax and Symbolics. Some

implementation work is still needed to achieve greater efficiency, and to provide a better user interface.

However; the system can already be used for the development of NLP systems, and the speed is no

longer a limiting factor (even on a Micro-Vax).

The main developments envisaged in a second step are the implementation of multiple inheritance

and the implementation of negation. The introduction of functional application ought to be studied.

27

RETIF: A Rewriting Systemfor Typed Feature Structures

References

Hassan AIT-KACI, 198-4, A Lattice Theoretic Approach to Computation Based on a Calcuh!,s of

Partially Ordered Type Structures, Ph.D. Thesis, University of Pennsylvania.

Hassan AITmKACI, 1986, An Algebraic Semantics Approach to the Effective Resolution of Type

Equations, Theoretical Computer Science 45, pp 293-351.

Hassan AIT-KACI and Roger NASR, 1986, LOGIN: a Logic Programming Language with

Built-in Inheritance, J. of Logic Programming, 3, pp 185-215.

Martin EMELE, 1989, A Generation Model Using a TFS Rewriting System with Inheritance,

submitted for the 2nd European Workshop onNarural Language Generation, 6-8April, University of

Edinburgh.

Andreas EISELE and Jochen DORRE, 1988, Unification of Disjunctive Feature Descriptions,_

Proc. of the 26hAnnual Meeting of the ACL, 7-10 June, Buffalo, pp 286-294.

Pierre ISABELLE and Eliot MACKLOVITCH, 1986, Transfer and MT Modularity, Proceedings

of COLING~B6, Bonn.

Ron KAPLAN and J. BRESNAN, 1982, Lexical Functional Grammar, a Formal System for

Grammatical Representation. In J. Bresnan (ed.), The Mental Representation of Grammatical

Relations, The MIT Press, 1982, pp 173-381.

Robert T. KASPER and William C. ROUNDS, 1986, A Logical Semantics for Feature

Structures, Proceedings of the 24th Annual Meeting of the ACL, 10-13 June, Columbia University,

New-York, pp 257-266.

Robert T. KASPER, 1987, A Unification Method for Disjunctive Feature Descriptions, Proceedings

of the 25th Annual Meeting of the ACL, 6-9 June, Stanford University, pp 235-242.

（

Robert T. KASPER, 1988, Conditional Descriptions in Functional Unification Grammar,

Proceedings of the 26h Annual Meeting of the ACL, 7-10 June, Buffalo, pp 233-240.

Martin KAY, 1984, Functional Unification Grammar: a Formalism for Machine Translation,

Proceedings of COUNG-84.

28

R四 1F:A Rewriting System/or Typed Feature Structures

Kiyoshi KOGURE, Kei YOSHIMOTO, Hitoshi IIDA, and Teruaki AIZA WA, 1989, The

Intention Translation Method, A New Machine Translation Method for Spoken Dialogues, submitted

for IJCAI-89, Detroit.

Ikuo KUDO and Hirosato NOMURA, 1986, Lexical-Functional Transfer: A Transfer Framework

in a Machine Translation System based on LFG, Proceedings of COLING-86, Bonn, 112-114.

Masako KUME, Gayle K. SATO, and Kei YOSHIMOTO, 1989, A Descriptive Framework for

Translating Speaker's Meaning -Towards a Dialogue Translation System between Japanese and

English, 4th Conference of ACL-Europe, Manchester.

Kuniaki MUKAI, 1988, Partially Specified Terms in Logic Programming for Linguistic Analysis,

Proc. of the International Conference on Fifth Generation Computer Systems, Nov.28-Dec.2, Tokyo,

pp 479-488.

Carl POLLARD and Ivan A. SAG, 1987, Information-based Syntax and Semantics, CSLI,

Lecture Notes Number 13.

Stuart M. SHIEBER, 1986, An Introduction to Unification-based Approaches to Grammar, CSLI,

Lecture Notes Number 4.

Gert SMOLKA, 1988, A Feature Logic with Subsorts, LILOG-REPORT 33, IBM Deutschland

GmbH, Stuttgart.

Kei YOSHIMOTO, Kiyoshi KOGURE, 1988, Japanese Sentence Analysis by means of Phrase

Structure Grammar, ATR Technical Report TR-I-0049.

David A. WROBLEWSKI, 1987, Nondestructive Graph Unification, Proc. of the 6th National

Conference on Al, MAI-87, July 13-17, Seattle, pp 582-587.

Remi ZAJAC, 1989, A Transfer Model Using a TFS Rewriting System with Inheritance, 27th

Annual Meeting of the ACL, 26-29 June, Vancouver.

29

R肛 1F:A Rewriting System for Typed Feature Structures

Appendix: a sample of transfer and generation grammars

1. A grammar for surface/abstract Japanese communicative act representation

:KB J-CA

J-APPLY-SIMPLE-DISCOURSE-HEURISTICS = _ replaces the variables for speaker
and hearer with instances

[abstract:J-ABSTRACT-COMMUNICATIVE-ACT

[agent:J-SPEAKER,
recipient: J-HEARER]]

J-PLAN-SCHEMA = _ toplevel plan recognition rule
(it should be of course a disjunction of others)

J-APPLY-SIMPLE-DISCOURSE-HEURISTICS

[abstract:J-ABSTRACT-COMMUNICATIVE-ACT

[relation:REQUES叫

agent:#agent,
recipient:#recipient,
object:#object=[agent:#recipient],
manner:INDIRECTLY-BY-ASKING-POSSIBILITYJ,

surface:J-SURFACE-COMMUNICATIVE-ACT
[relation:J-INTERROGATE-IF,

agent:#agent,
recipient:#recipient,
object:J-SURFACE-COMMUNICATIVE-ACT

[relation:J-CAN,
agent:#agent,
object:J-SURFACE-COMMUNICATIVE-ACT

[relation:J-RECEIVE-FAVOR,

agent:#agent,
object:#object,

source: #recipient]] J J .

2. Some examples for Japanese

J-SCA-1 =_Japanese structure produced by the parser for

_ "watashi-ni tourokuyousi-wo o-okuri itadake masu ka?"

_ the evaluation produces the abstract communicative act:
(kbl-eval'j-sca-1)

,J-PLAN-SCHEMA

[surface:J-SURFACE-COMMUNICATIVE-ACT

[relation :J-IN'rERROGATE-IF,

agent:#15,

object:J-SURFACE-COMMUNICATIVE-ACT
[relation:J-CAN,

agent:#14,
object: J-・SURFACE-COMMUNICATIVE-ACT

[relation:J-RECEIVE-FAVOR,

agent: #14,

object:J-PROP

[relation:J-OKURU,

agent:#16,

recipient:#15,

object:J-TOUROKUYOUSHI]],

source:#16]]] .

('

（

30

J-ACA-1

R肛 1F:A Rewriting System for Typed Feature Structures

abstract communicative act for

"watashi-ni tourokuyousi-wo o-okuri itadake masu ka?"
the evaluation produces the surface co血 unicativeact:
(kbl-eval'j-aca-1)

J-PLAN-SCHEMA
[abstract:J-ABSTR和:::T-COMMUNICATIVE-ACT

[relation:REQUEST,
agent:#18,
recipient:#17,
object:J-PROP

[relation:J-OKURU,

agent:#17,

recipient:#18,
object:J-TOUROKUYOUSHI],

manner:INDIRECTLY-BY-ASKING-POSSIBILITY]]

J-ACA-TRANS-1 abstract communicative act for
_ "watashi-ni tourokuyousi-wo o-okuri itadake masu ka?"

_ The evaluation I)roduces the English abstract communicative act:
_ (kbl-eval'j--raca-trans-1'(j-ca ej-trans))

_ To produce the English phonological string:
(kbl-eval'j-aca-trans-1'(j-ca ej-trans e-ca e-gen))

TRANSFER-ACA

[japanese:J-PLAN-SCHEMA

[abstract:J-ABSTRACT-COMMUNICATIVE-ACT

[relation:REQUEST,

agent:#20,
rec・ipient: #19,

object:J-PROP

[relation:J-OKURU,

agent:#19,
recipient:#20,

object:J-TOUROKUYOUSHIJ,
manner:INDIRECTLY-BY-ASKING-POSSIBILITY]]]

J-SCA-TRANS-1 =_the Japanese input for plan recognition and transfer:

_ "watashi-ni tourokuyousi-wo o-okuri itadake masu ka?"

_ the slot'japanese.surface'is the result of the parser
_ the evaluation produces the abstract communicative act

_ representation and the English part:

(kbl-eval'j-sca-trans-1'(j-ca ej-trans e-ca e-gen))
TRANSFER-ACA

[japanese:
J-PLAN-SCHEMA

[surface:J-SURFACE-COMMUNICATIVE-ACT

[relation:J-INTERROGATE-IF,

agent:#22,
object:J-SURFACE-COMMUNICATIVE-ACT

[relation:J-CAN,

agent:#21,
object:J-SURFACE-COMMUNICATIVE-ACT

[relation:J-RECEIVE-FAVOR,

agent:#21,
object:J-PROP

source:#23]]]]

31

[relation:J-OKURU,

agent:#23,

recipient:#22,

object:J-TOUROKUYOUSHI]],

REI'IF: A Rewriting System for Typed Feature Structures

3. A transfer grammar

:KB EJ-TRANS

TRANSFER-ACA = transfer rule for abstract communicative acts.
[english:E-PLAN-SCHEMA

[abstract:E-ABSTRACT-COMMUNICATIVE-ACT

[relation:#rel,

agent:#e-agt,

recipient:#e-rec,

object: #e-obj,
manner:#manner]],

japanese:J-PLAN-SCHEMA

[abstract:J-ABSTRACT-COMMUNICATIVE-ACT

[relation:#rel,

agent:#j-agt,
recipient:#j-rec,

object:#j-obj,
manner:#manner]],

translate-agt:TRANS[english:#e-agt, japanese:#j-agt],

translate-rec:TRANS[english:#e-rec, japanese:#j-rec],
translate-obj:TRANS[english:#e-obj, japanese:#j-obj]]

TRANS=_ transfer rules for the propositional part.
SEND I REG-FORN I INTERLOCUTORS.

SEND a relation: translate recursively the arguments.
[english:E-PROP

[relation:E-SEND,

agent:#e-agt,
recipient:#e-rec,
object: #e-obj],

japanese:J-PROP

[relation:J-OKURU,
agent : jf j-agt,

recipient:#j-rec,

object:#j-obj],

translate-agt:TRANS[english:#e-agt, japanese:#j-agt],

translate-rec: TRANS [eng.lish: #e-rec, japanese: #j-rec],

translate-obj:TRANS[english:#e-obj, japanese:#j-obj]]

REG-FORM = _ a noun.

[english:E-REGISTRATION-FORM, japanese:J-TOUROKUYOUSHI]

INTERLOCUTORS= SPEAKER I HEARER.

SPEAKER= [english:E-SPEAKER, japanese:J-SPEAKER],

HEARER= [english:E-HEARER, japanese:J-HEARER].

(、

（～

32

RETIF: A Rewriting Systemfi)r Typed Feature Structures

4. A grammar for surface/abstract English communicative act representation

:KB E-CA

E-APPLY-SIMPLE-DISCOURSE-HEURISTICS = _ replaces the variables fo.r speaker

and hearer with instances

[abstract:E-ABSTRACT-COMMUNICATIVE-ACT

[agent:E-SPEAKER,

recipient: E-HEARER]]

E-PLAN-SCHEMA = E-APPLY-SIMPLE-DISCOURSE-HEURISTICS

[abstract:E-ABSTRACT-COMMUNICATIVE-ACT

[relation:REQUEST,

agent:#42,

recipient:#41,

object:#43=E-PROP[agent:#41],

manner:INDIRECTLY-BY-ASKING-POSSIBILITY],

surface:E-SURFACE-COMMUNICATIVE-ACT

[relatiort:E-INTERROGATE-IF,

agent:#421

recipient:#41,

object:E-ASK-MODALITY

[relation:E-CAN,

agent:#41,

object: #43]]] .

5. Some English examples

E-PROP-1 =_The evaluation produces the surface representation and

_ the phonological string "send I (a the) registration form".

(kbl-eval'e-prop-1'(e-ca e-gen))

E-PROP

[relation:E-SEND,

agent:E-HEARER,

recipient:E-SPEAKER,

object:E-REGISTRATION-FORM].

E-SCA-1 =_the English surface representation for

_ "could you send me the registration form"

_ the evaluation will produce the english phonological string

_ and the abstract communicative act representation.

(kbl-eval'e-sca-1'(e-ca e-gen))

E-PLAN-SCHEMA

[surface:E-SURFACE-COMMUNICATIVE-ACT

[relation:E-INTERROGATE-IF,

agent:#45=E-SPEAKER,

recipient:#44=E-HEARER,

object:E-ASK-MODALITY

[relation:E-CAN,

agent: #44,

object:E-PROP

[relation:E-SEND,

recipient:#45,

object: E-REGISTRATION-FORM]]]]

33

RETIF: A Rewriting System for Typed Feature Structures

E-ACA-1 = the English abstract representation for

"could you send me the registration form"

the evaluation will produce the surface representation and the

phonological string: (kbl-eval'e-aca-1'(e-ca e-gen))

E-PLAN-SCHEMA

[abstract:E-ABSTRACT-COMMUNICATIVE-ACT

[relation:REQUEST,
agent:#40=E-SPEAKER,

recipient:#39=E-HEARER,
object:E-PROP

[relation:E-SEND,

agent:#39,
recipient:#40,
object: E-REGISTRATION-FORM] ,

manner:INDIRECTLY-BY-ASKING-POSSIBILITY]].

E-ACA-TRANS-1 = _ The English abstract representation for

_ "could you send me the registration form"

_ The evaluation produces the Japanese abstract and
_ surface representations.
_ (kbl-eval'e-aca-trans-1'(e-ca ej-trans j-ca))

_ or the English phonological string:
(kbl-eval'e-aca-trans-1'(e-ca e-gen))

TRANSFER-ACA

[english: E-PLAN-SCHEMA

[abstract:E-ABSTRACT-COMMUNICATIVE-ACT

[relation:REQUEST,
agent:#25=E-SPEAKER,

recipient:#24=E-HEARER,
object:E-PROP

[relation:E-SEND,

agent: 4t2 4,
recipient:#25,
object:E-REGISTRATION-FORM],

manner:INDIRECTLY-BY-ASKING-POSSIBILITY]]]

-
(

E-SCA-TRANS-1 = _ the English surface representation for ,

"could you send me the,registration form" （
_ the evaluation produces the Japanese surface representation:

_ (kbl-eval'e-input-1'(e-ca ej-trans j-ca)) or the English

surface string: (kbl-eval'e-input-1'(e-ca e-gen))
TRANSFER-ACA

[english: E-PLAN-SCHEMA

[surface:E-SURFACE-COMMUNICATIVE-ACT

[relation:E-INTERROGATE-IF,

agent:#26=E-SPEAKER,

recipient:#27=E-HEARER,

object:E-ASK-MODALITY

[relation:E-CAN,

agent: #27,
object:E-PROP

[relation:E-SEND,

agent:#27,

recipient:#26,

object: E-REGISTRATION-FORM],

source:#27]]]] .

34

REI'IF: A Rewriting Systemfor Typed Feature Structures

6。Agrammar for English generation

:KB E-GEN

LIST= END I CONS .

APPEND= APPENDO I APPENDl

APPENDO = [whole:#l=LIST, front:<>, back:#1] .

APPENDl = [front:<#2 ;. #4>,

MINOR=

back:#5=LIST,

whole:<#2; #3>,

patch:APPEND[front:#4, back:#5, whole:#3]].

Lexical head: relates lexem with the phonological string

LEXICAL-SIGN

[phon:<非6>,

syn:CATEGORY [head: [lexem:#6]]]

MAJOR= MAJORl I MAJOR2 .

MAJORl = _ saturated phrasal sign=

head phrasal sign+ single complement phrasal sign

PHRASAL-SIGN

[phon:#9,

syn:CATEGORY

[head: #7,
subcat:<>),

dtrs:TREE

[head-dtr:PHRASAL-SIGN

[phon:#11,

syn:CATEGORY

[head: #7,
subcat: #8=< [phon: #10 J >J),

comp-dtrs:#8),

patchO:APPEND[whole:#9, front:#10, back:#11)) .

MAJOR2 = _ unsaturated phrasal sign=

head lexical sign+ complement phrasal sign*

MAP

[phon:#13,

syn:CATEGORY[head:#12),

dtrs:TREE

[head-dtr:LEXICAL-SIGN

[phon:#14,

syn:CATEGORY[head:#12]]],

patchO:APPEND[whole:#13, front:#14, back:#15),

patchl: [whole: #15 J]

MAP = MAPO I MAPl .

MAPO = PHRASAL-SIGN

[syn:CATEGORY[subcat:#16],

dtrs:TREE

[head-dtr:LEXICAL-SIGN [syn:CATEGORY [subcat:#16)),

comp-dtrs: <> J,

patchl:[whole:<>]].

35

R四1F:A Rewriting System for Typed Feature Structures

MAPl = PHRASAL-SIGN

[patch:MAP

[syn: CATEGORY [subcat: #17],

dtrs:TREE

[head-dtr:LEXICAL-SIGN[syn:CATEGORY[subcat:#18]],

comp-dtrs:#20],

patchl: [whole: #22]],

syn:CATEGORY[subcat:#17],

dtrs:TREE
[head-dtr: LEXICAL-SIGN [syn :CATEGORY [subcat :<#19= [phon: #21]

comp-dtrs :<#19 ; #20>], _

patchl: APPEND[front:#21, back:#22]]

UB>] J,

PRONOUN= Pronouns define fully saturated simple

MAJOR
[relation:#23,

dtrs:TREE

[head-dtr:MINOR

[syn: CATEGORY

[head: [lexem:#23],

subcat:<>]]]]

NPs

、`（

NP abstracted

determiner

MAJOR
[relation:#24,

dtrs:TREE
[head-dtr:MAJOR

[dtrs:TREE

[head-dtr:MINOR

[syn:CATEGORY[head: [lexem:#24]]],

comp-dtrs:<>]J,
comp-dtrs:<MINOR

[syn :CATEGORY [head: [lexem: 非25]]]>],

NP head will be filled withヱelationslot,

with SPEC.slot

spec:#25)

E-PROP = E-VP-DITRANS E-VP-TRANS E-VP-INTRANS.

E-VP-DITRANS =_partial tree for ditransitive

with relation, recipient, and

MAJOR

[relation:#26,

recipient:#27,

object:#28,

dtrs:TREE

[head-dtr: #2 6,

comp-dtrs: XP (Obj2)

<#27 #28>))

vp

object.

（

'
~' 1,
.

I

l

36 ー
|
卜
'

R肛 IF:A Rewriting System for Typed Feature Structures

CLAUSE= MAJOR

[relation:#29,

agent:#32,

recipient:#30,
object:#31,

dtrs:TREE

[head-dtr: VP (Head)

VP-DITRANS

[relation:#29,

recipient:#30,

object :#31],
comp-dtrs: <#32>]]

E-DECLARE-MODALITY = MAJOR

[relation:#33,

agent:#35,

object:#34,

dtrs:TREE

[head-dtr: VP (Head)

MAJOR

[dtrs:TREE

[head-dtr: #33,

comp-dtrs: VP (Comp)

comp-dtrs: XP (Subj)

E-ASK-MODALITY = MAJOR

[relation:#36,

agent:#37,

object:#38,

dtrs:TREE

[head-dtr: #36,

<#35>]] .

comp-dtrs: XP (Subj)

<#37 #38>] J •

7. The English lexicon

DET = a I the .

E-SPEAKER = PRONOUN[relation:"エ＂］

E-HEARER = PRONOUN[relation:"you"] .

<#34>]],

E-REGISTRATION-FORM = NP[relation:"registration form", spec:DET] .

E-SEND = MINOR[syn:CATEGORY[head: [lexem:"send"]]]

E-CAN = MINOR [syn: CATEGORY [head: [lexem: "could"]]]

37

R四 1F:A Rewriting System for Typed Feature Structures

Appendix 2 : PROLOG and RETIF

We give here the definitions for append written in PROLOG and in RETIF. In PROLOG,

argument te皿 sare identified by position; in RETIF they are identified by name. Apart from syntactical

differences one should note the similarity of the definitions. The similarity is not restricted to syntax,

and the computational behavior too is very similar in this case .. In particular, for a given input, the set

of solution is the same (modul~the difference of data structures). However, it is possible in RETIF to

enforce type checking very naturally, but this is impossible in PROLOG without adding cumbersome

patches.

APPENDinPROLOG

append([], W, W). _

append([XIY], z,, [X'.IUl) :-append(Y, Z, U).

＇

、ヽ

（

., ．．． し9,
』`

?- append(X, Y, [a,b]).

X = [a, b]

y = ［］

X = [a]

y = [b]

X = ［］ （
y = [a, b]

38

R肛 1F:A Rewriting System for Typed Feature Structures

APPEND inRETIF

APPEND= [front:<>, whole:#W=LIST, back:#W]

[front:<#X; #Y>,

back:#Z=LIST,

whole:<#X; #U>,

patch:APPEND[front:#Y, back:#Z, whole:#U]].

QUERY APPEND[whole: <ab>].
」

(kbl-eval'query)

n

[front:<>,

back:#l=<a b>,

whole:#1]

[front:#l=<a>,

back: #2=<b.>,

whole:#3=<#1; #2>,

patch: [front:<>, back:#2, whole:#2]]

し）

[front:<#l=a; #2=<#3=b>>,

back:#4=<>,

whole:<#1 ; #6=<#3>>,

patch: [patch: [front:<>, back:#4, whole:#4],

front:#2,

back:#4,

whole:#6]]

39

