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Abstract

Numerical modelling of fundamental frequency (F0) is hampered by the
lack of suitable tools. This memorandum describes two tools intended to
facilitate the exploration of numerical models of F0 and other phrase-level
phenomena. One is a modelling program with some unusual characteris-
tics, including input in the form of a description of the prosodic tree, run-
time contro) over parameter settings and rule application, and provision of
analysis-by-synthesis facilities that allow analysis-by-synthesis to be carried
out using arbitrary mixtures of any utterance types for which the model is
defined. The second is an interactive interface to the model that allows it to
be manipulated using a programmable time-series editor. This allows the
user to see immediately the result of changing parameters and enabling and
disabling rules, and also allows easy visual comparison of computed values
with data.
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1. Introduction

Numerical modelling of fundamental frequency (F0) is becoming increas-
ingly important not only for work in areas like speech synthesis, where nu-
merical models are essential, but also {for more theoretically oriented work
in linguistics. However, this work is hampered by the lack of suitable tools,
without which the study of a wide range of F0 models, especially models
that depend crucially on the structure of the utterance, is time-consuming
and tedious.

This memorandum describes two tools intended to facilitate the explo-
ration of numerical models of FO and other phrase-level phenomena. One
is a modelling program with some unusual characteristics, including input
in the form of a description of the prosodic tree, run-time control over pa-
rameter settings and rule application, and provision of analysis-by-synthesis
facilities that allow analysis-by-synthesis to be carried out using arbitrary
mixtures of any utterance types for which the model is defined. The second
is an interactive interface to the model that allows it to be manipulated
using a programmable time-series editor. This allows the user to see imme-
diately the result of changing parameters and enabling and disabling rules,
and also allows easy visual comparison of computed values with data.

2. A Flexible FO Modelling Program

Computing FO contours for utterances of fixed structure, using a fixed
F0 model, is easy. Even if the F0 model is fairly complex, with many
parameters and complex equations, implementing it is a matter of simple
numerical programming. However, such simple models are difficult to use
for studying F0. A program that can handle only a fixed utterance type
is of little use if intonation depends on the structure of the ntterance. A

program containing a model that is completely fixed must be edited in order -

to try out different models. In order to make it easier to study a variety of
different F'0 models, we have implemented an F0 modelling program that
provides an unusual degree of flexibility.

One special property is that it accepts as input a description of the
utterance in an extremely general format, so that, for a very wide range of
possible models, no change either in the input module or the input files is
necessary when the model itself is changed — it is only necessary to change
the model subroutine and how it uses the information about the structure
of the utterance.

Provision is also made for a degree of run-time configuration of the
model. Moreover, the program is written in such a way that the actual
model code is very much isclated, so that the user can change the F0 model
by replacing a single source file, without knowing anything about the bulk
of the program.

Finally, the program provides for the model to be fit to data using
arbitrary mixtures of any type of data for which the model is defined.



2.1. Tree Descriptions

Much research on intonation in a variety of languages shows us that
fundamental frequency is determined not only by lexical information and
sermental perturbations but by the prosodic structure of the utterance,
where the prosodic structure is a hierarchical phrasal structure similar to,
but different from, syntactic structure (Selkirk 1984).

Consequently, in order to represent this information as directly as pos-
sible, the program takes as input a file containing a description of a tree
structure. The file describes the type (level in the prosodic hierarchy) of
each node and names its daughters. It also allows attribute-value pairs to
be associated with each node. For example, the following file describes an
utterance containing two minor phrases, each three moras long and unac-
cented, contained within a single major phrase.?

S utterance (M1)

M1 “major phrase” (ml,m2)
ml “minor phrase” (NIL)
m2 “minor phrase” (NIL)
ml morae 3

m?2 morae 3

ml accent 0

m2 accent 0

The first line says that the node named S is of type utterance and has one
daughter, M. The next line says that the node named M is a magor phrase
and has two daughters, mI and m2. The next two lines indicate that each
of the nodes mI and m2 is a miner phrase and has no daughters. The last
four lines associate attribute-value pairs with the two minor phrase nodes.
In both cases the number of morae is set to three and the accent position
is set to zero (i.e. there is no accent).

The program reads the tree description from the file and constructs
the tree in memory, associating with each node its own attribute list. The
subroutine that actually computes the F0 contour is passed a pointer to the

“tree structure, so that it has available all of the information associated with
the tree.

This input format allows us to interpret theoretical notions about prosodic
~ structure directly. It also provides an input. format that is independent of
the details of the F0 model, and whose similarity to syntactic structure fa-
cilitates studies of the relationship between syntactic structure and prosodic
structure.

2.2. Model Descriptions

Although some aspects of the model are fixed by the underlying model
program, the model may be configured to some extent at run time. The

* In this file, as in all of the other files read by the model, blank lines and anything on a
line following a cross-hatch character(s) are ignored. The treatment of a cross-hatch
character as a comment indicator may be disabled by preceding it with a backslash
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model configuration is read from the model definition file, whose name is
specified on the command line. Model parameters may be set by includ-
ing lines whose first field is the keyword set followed by the name of the
parameter to be set and its value, e.g.:

set DsRatio 0.9

which sets the value of the parameter DsRatio to 0.9. If the model is used
{or analysis-by-synthesis and the named parameter is estimated, the value
specified in the model definition file is used as the initial value.

If the model contains rules whose application is conditional, by default
these rules are disabled, To cause a rule to be applied it is necessary to
include in the model definition file a line beginning with the keyword apply
{followed by the name of the rule to apply, e.g.:

apply Downstep

which causes the Dounstep rule to be applied when the model is run.

2.3. Analysis-by-Synthesis

Any or all of the model parameters may be estimated by analysis-by-
synthesis, using data from utterances of any type for which the model is
defined. The analysis-by-synthesis algorithm used is essentially the same as
that of Miyatake & Sagisaka (1988). At each iteration, it loops over the
parameters to be estimated and attempts to optimize each parameter in
turn, where optimization means minimization of the total distance between
the predictions of the model and the data. Optimization is performed by
following the gradient at a quantization given by the current step size for
the given parameter. When the current parameter value is no worse than
those one step to either side, the algorithm halves the step size for that
parameter and moves on to the next parameter on the list. When it has
optimized all of the parameters on the list, it checks to see whether it should
proceed to the next iteration.

Information about how to carry out the analysis-by-synthesis process
and what data to use is provided in the ABS conirol file, whose name is
specified on the command line. Lines may begin with one of the keywords:
estimate, iterations, norm, step or threshold, in which case they are inter-
preted as follows:

estimate ParameterName

Estimate the value of the parameter ParameterName during the ABS run.
If a parameter is not specified as subject to estimation it is fixed.

iterations IterationCount

Iterate for a minimum of IterationCount iterations. The default is 25.

norm NormName

Use the named norm as the distance function. The legal values are Hi1 norm
and L2 morm. The H1l_norm the sum of the diflerence of the iwo values and
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the difference of their first derivatives, 1.e, if r and s are vectors of length
N, their root-mean-square H1 distance is: d{r,s} = {(Z:ié\ (r(7) — s({)P +
[dr(i)/dt —ds(i)/dt}*)/N)/?. The first derivative is approximated by comput-
ing the first left difference (i.e. df/dt}; >~ f(i) — f(i = 1)). The L2_norm is the
usual Euclidean distance. The default is the L2 norm.

step ParameterName StepSize

Set the initial search step for the parameter ParameterName to StepSize.
The defaults are dependent on the model.

threshold Threshald
If the ABS process is converging sufficiently quickly, only the minimum number
of iterations are carried out. If the difference in the error between two iterations
is larger than Threshold convergence is taken to be going slowly and the
number of iterations to be carried out is increased. The default value is (.0.

All other lines are taken to be data specifications and consist of the
name of the data file, the number of tokens in the data file, and the name
of the corresponding tree description file.

There are no constraints on the order in which the elements of an ABS
control file are given. Keywords may be given in any order and may be
freely intermixed with data file specifications. However, in order to allow
the user to control the order in which parameters are estimated, which can
make a difference to the ABS process, parameters are estimated in the order
in which they are named in lines with the keyword estimate.

Here is a typical ABS control file:

# Parameters to estimate
estimate DsRatio
estimate DecSlope
estimate Range

estimate Base

estimate Beta

# Step sizes
step Range 5.0

" step Base 5.0
step DsRatio 0.1

step DecSlope 1.0
step Beta 0.1 -

# ABS control parameters

iterations 25
threshold 0.5
norm Hl _norm

# Data files
corfiles/takeda2_001.cor 4 treefiles/takeda2_001.tree
corfiles/takeda2_002.cor 7 treefiles/takeda2 002.tree

corfiles/takeda2 003.cor 6 treefiles/takeda2 003.tree
corfiles/takeda2.004.cor § treefiles/takeda2 004.tree

The ABS data files are text files containing one line for each token. Each
line consists of data values separate by whitespace (spaces and/or tahs). A
well-forimed data file therefore looks like this:
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117 153 127 93 83
123 139 107 83 80
123 142 115 93 806
96 141 126 96 82

The tree description files for ABS data have exactly the same format
as the tree description files used to drive the model when used to generate
synthetic FO contours.

During an ABS run the model reports on its progress by writing infor-
mation on the standard error output. It makes a report at the beginning of
each iteration, reporting the time, the iteration number, the current value
of the distance, and the change in the distance since the previous iteration.

More detailed information is written in a log file, whose name is the
name by which the program is called followed by the suffix .abslog, e.g.
model.abslog. An entry is made in the log file at the beginning of each
iteration. Each entry contains the same information as is written on the
standard error output (the time, the iteration count, the distance, and the
change in the distance), together with the values of the parameters being
estimated and the step size for each parameter. At the end of the ABS run
summary information is generated, including the time at which the ABS
run terminated and the iteration count at termination, the number of data
points used, and the final error. The L2-norm error is always given, as well
as the Hl-norm if that was used as the distance for the ABS process. This
_information is followed by the final values of all model parameters together
with an indication of whether the parameter value was obtained by ABS or
was fixed.

An extract from a typical ABS log file {ollows. This log is from a run
of a simple pause duration model with two parameters, MajorPause (the
length of a pause after a major phrase) and MinorPause (the length of a
pause after a minor phrase), in which the value of MajorPause was fixed and
the value of MinorPause was estimated. Notice that the first value of delta
is negative since prior to the first iteration the model assumes a distance of
zero.

Mar 3 13:30:18 iteration 0 delta = -162738.6197 distance = 162738.6197
MinorPause = 12.000 step = 5.000

Mar 3 13:30:19 iteration 1 delta = 162721.2463 distance = 17.3733
MinorPause = 2.0000 step = 2.5000

Mar 3 13:30:19 iteration 2 delta = 0.0000 distance == 17.3733
MinorPause = 2.0000 step = 1.2500

Mar 3 13:30:37 iteration 25 delta = 0.0000 distance = 14.9395
MinorPauvse = 2.7885 step = 0.0000

ABS terminated Mar 3 13:30:38 at iteration 26
Total data pcints = 17640
RMS distance using Hl norm = 14.9395
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RMS distance using L2 norm = 13.1945
Parameter Estimates:

MajorPause 40.0000 (fixed)
MinorPause 2.78853 (estimated)

2.4, Command Line Syntax

Command line options are used both to provide the names of the various
control files and to specify other options. The command line options are:

—a[bs control file specification] ABS_control file
Read ABS control information from the file ABS_control file.

~d[raw tree]

Write on standard output a description of the tree read from the utterance
description file in the form of a LISP S-Expression. This can be used as input
to other tree drawing programs.

—h[elp]
Print 2 summary of command line options.

—m[model definition] model.definition file

Read the model description information from the file model. definition_file.

~o[utput file] output_file
Write the results of the synthesis in the file output_file.

—p[arameters]

Print a list of the available model parameters and their documentation.

—r[ules]

Print a list of the available rules and their documentation.

—uftterance description] utterance description_file

Read the tree description information from the file utterance._description. file.

—~v[erbose]

Print information about what is happening. This is mainly useful during ABS

runs.

If an ABS control file is specified on the command line, analysis-by-
synthesis is attempted. Otherwise it is assumed that the user wishes to
generate a synthetic F0 contour. Thus, for an ABS run 2 typical command
line would be:

model -a absctrl -m model.def -v

while for a synthesis run a typical command line would be:

model -m model.def -u ﬁibun.tree

-G -



2.5. Program Internals

Although the model can be configured to some extent at run time, major
modifications of the model require changes in the underlying C code. This
section provides the information necessary to make such changes in the
model. :

The actual model code is contained in a single file named model.c in the
source directory. This file is not compiled separately but is automatically
included in the file modelframe.c at compile time. To change the model one
creates a new model.c file, moves it to the source directory, and types make,
Assuming that there are no errors in model.c, a new model program will be
generated automatically.

The file model.c must define two data structures and one subroutine.
The two data structures are the parameter list and the rule list. The pa-
rameter list looks like this:

static struct pardesc pars[j={

“DecSlope”,10.0,1.0,FALSE,“Slope of declination line”,

“Beta”,1.0,1.0,FALSE,“Time constant of accent unit smoothing func-
tion”

H

The parameter list must be declared to be an array of pardesc structures
named pars. A pardesc structure contains the name of the parameter, its
value, the ABS step size, a flag indicating whether or not the parameter is
to be estimated, and a documentation string:

struct pardesc {
char *name;
double val;
double step
int estimate;
char *doc;

5

The estimation flag should be initialized to FALSE.
The rule list looks like this:

struct ruledesc rules[}= {
“Declination” FALSE,“Linear declination rule”,
“Dowunstep”,FALSE,“Downstep of step function amplitude”

b '

The rule list must be declared to be an array of ruledesc structures
named rules. A ruledesc structure contains the name of the rule, a flag
indicating whether or not the is to be applied, and a documentation string:

struct ruledesc {
char *name;
int apply;
char *doc;
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The rule application flag should be initialized to FALSE.

The file model.c must also define the subroutine rmodel, which performs
the actual calculations. model is called with two formal parameters, a
pointer to the root of an utterance description tree, and the name of an
array in which to write the results, e.g.:

model(tree,result)
NODE_PTR tree;
double result(};

{
}

model should return the number of points for which values were gener-
ated.

To refer to the value of a parameter, simply index into the pars array
and use the pal member of the structure. In the above example, the value of
the parameter DecSlope is pars/0].val and the value of Beta is pars/l].val?

To decide whether to apply a rule, simply index into the rules array
and test the value of the apply member. For example, to test whether the
Declination rule is to apply, write:

Body of Subroutine

if(rules[0).apply) {
}

The root of the utterance description tree is a pointer to a node struc-

Code for Declination Rule

ture, defined in the file nodes.h. This structure contains the name of the -

node, its type, how many daughters it has, a list of daughters, a pointer to
its parent node, and pointer to an attribute list. The parent node and the
daughter nodes are themselves pointers to node structures.

An attribute has two values, one a string, the other a double preci-
sion floating point number. The model program automatically converts the
string value to a double, if that is possible, so the model subroutine may
refer to whichever value is appropriate. :

It is possible for the user to manipulate a node’s attribute list directly,
but this should never be necessary. Instead, access is provided by the sub-
routines get.atiribute and get_pnuval

get_attribute takes as arguments a pointer to a node and the name of an
attribute and returns the string that is the value of the given attribute of
the specified node, or a null pointer if no such attribute exists.

get.pnval takes as arguments a pointer to a node and the name of an

attribute and returns a pointer to the numerical value of the given attribute
of the specified node, or a null pointer if no such attribute exists.

n . v . . I
“ Itis convenient to define symbolic names {or the array entries so that it is nct necessary
to refer directly to the indices into the parameter list,
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3. Interactive F0 Modelling Using a Programmable Time

Series Editor

When studying numerical models of fundamental frequency, it is neces-
saty either to visualize the effect of changing parameters by carefully study-
ing the equations, or to execute a numerical model and plot the results.
This quickly becomes difficult and tedious, especially if we change not only
the parameters of the model but the model itself. In order to allow easy
interactive study of a variety of F0 models we have created an interface
between the F0 modelling program and the L3 programmable time series
editor.

The use of this interface, which provides an instant display of any par-
ticular model configuration and allows easy visual comparison of model
configurations and of synthetic FO contours with data, greatly facilitates
the study of a variety of F0 models.

3.1. The L3 Programmable Time Series Editor

L3 is an editor that provides for display, measurement, printing, and
modification of any number of time series. Unlike other tools of this type,
L3 is completely programmable. In fact, it is best thought of as an inter-
preter for a Turing-complete recursive programming language with unusual
semantics, much as the programmable text-editor EMACS (Stallman 1984)
may be viewed as an interpreter for a programming language that contains
primitives for editing text. L3 can read commands from files, can write
text to files, and can execute other programs as child processes, so it has
avallable the necessary means of communication with the F0 model. L3 is
described in detail in (Poser 1987) and (Poser 1988).

3.2. The Interface to the F0 Model

The interface to the FO model is created by executing the initializa-
tion file runmodel.init. This in turn executes commands that create the

necessary windows and data buffers, define the procedures that form the in- -

terface, and create the necessary L3-internal variables. runmodel.init loads
the standard L3 library files sid.aliases.l3, std_procs.18, and mouse.modes. 13,
the files synf01.19 and synf02.19, which create and configure the necessary
windows and data buffers, and the file runf0.13, which contains the heart of
the interface to the F0 model. All of these files are to be found in the L3
library directory, which is normally /usr/local/lib/L3.

L3 variables are used to represent the parameters of the model and to
control the application of rules. When the L3 program that implements the
interface is loaded, it queries the model program for the currently defined
rules and parameters, so changes in the model do not require changes in the
interface.® The user may ask L3 to show the current values of the parameters

% 13 queries the model by executing the model with the -p and -r command line

options and then executing an AWK program to convert the parameter and ruje lists
provided by the model into L3 commands, which are then read. Consequently, the
AWK language must be available (as it is on virtnally all UNIX systems).
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and may set parameters and enable or disabie rules. Execution of the L3
procedure run causes L3 to pass the current values of the parameters to
tlie model, to execute the model, and to read in and display the resuiting
svnthietic 0 contour.

The user may arrange for the model to be re-executed and the new syn-
thetic F0 contour displayed automatically whenever a parameter is changed
or a rule enabled or disabled. L3 variables have, in addition to a name
and a value, a hook, that is to say, a pointer to an L3 procedure which is
automatically executed whenever the variable is assigned to. Binding the
procedure run to a variable’s hook, will cause the procedure run to be
executed automatically whenever that variable is changed.

By using two windows instead of one it is possible to compare two dif-
ferent versions of the model or to compare a synthetic FO contour with a
real one. The procedures L2 _norm and HI_norm may be executed in order
to compute the distance between the time series in the two windows.

The procedures defined by the interface library are:

bind_all_hooks

Binds the procedure run to the hooks of all of the currently defined
parameters, rule application flags, and the tree definition file.

disable rule ;
Disable application of the named rule.

enable rule

Enable application of the named rule.

Hil norm

Print the Hl norm distance between the time series in the two data
buffers, leaving the value in the variable rval

L2_,nofrn

Print the Euclidean distance between the time series in the two data
buffers, leaving the value in rval.

run -

Execute the model with the current parameters, load the selected data
buffer with the result, and display it.

show_parameters

Print the current model parameters in the Messages window.

toggle_windows

Switches back and forth between two different windows for displaying
the synthetic FO contours, if two windows have been set up.

unbind.all_hooks

Unbinds the procedure hooks of all of the currently defined parameters,
rule application flags, and the tree definition file.

- 10 -
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Since L3 provides a true programming language, the user may impose
constraints on the values of model parameters by writing a procedure that
computes the value of one parameter frcm that of another and binding this
procedure to the hook of the independent variable. Thereafter, whenever
the independent variable is assigned a new value, the procedure will au-
tomatically be executed and will compute a new value for the dependent
parameter.

As asimple example, suppose that the model contains parameters named
A and B and that we wish to constrain B to be 2.0 times A. First, we write
a procedure that computes B given A. Then we bind this procedure to A’s
hook, so that whenever we change the value of A the procedure will be
executed and change the value of B accordingly. ‘

procedure SetB
*§A 2.0
“set B $rval
end.procedure

bind_procedure.to_hook A SetB
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