
.、・

lnterna.1 r~E'Onh 

TR-I-0069 

Tools for Fundamental Frequency l¥1odelling 
¥Villia1n J. Poser 

March 31 1989 

Abstract 

Numerical modelling of fundamental frequency (FO) is hampered by the 
lack of suitable tools. This memorandum describes two tools intended to 
facilitate the e..xploration of numerical models of FO and other phrase-level 
phenomena. One is a modelling program with some unusual characteris-
tics, including input in the form of a description of the prosodic tree, run-
time control over parameter settings and rule application, and provision of 
analysis-by-synthesis facilities that allow analysis-by-synthesis to be carried 
out using arbitrary mixtures of any utterance types for、vhichthe model is 
de五ned.The second is all'interactive interface to the model that allows it to 
be manipulated using a programmable time-series editor. This allows the 
user to see immediately the result of changing parameters and enabling and 
disabling rules, and also allows easy visual comparison of computed values 
with data. 

Copyright 1989 ATR Interpreting Telephony Research La.boratories 
All Rights Reserved 



COI¥TE?¥TS 

1 In trod uct1on . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 
2 A Fle泣bleFO Modelling Program . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 
2.1 Tree Descriptions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2 
2.2 Model Descriptions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2 
2 .3 Analysis-by-Synthesis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3 
2.4 Command Line Syntax .. . .. . . . .. . . .. . .. . .. .. . .. . . .. . .. . .. .. .. . 6 
2.5 Program Internals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7 
3 Interactive FO Modelling Using a Programmable Time Series Editor 9 
3.1 The 13 Programmable Time Series Editor . . . . . . . . . . . . . . . . . . . . . 9 
3.2 The Interface to the FO Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9 
References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11 

I
 

(
 



1. Introduction 

Numerical modelling of fundamental frequency (FO) is becoming increas-
ingly important not only for work in areas like speech synthesis, where nu-
merical models are essential, but also for more theoretically oriented work 
in linguistics. However, this work is hampered by the lack of suitable tools, 
without which the study of a wide range of FO models, especially models 
that depend crucially on the structure of the utterance, is time-consuming 
and tedious. 

This memorandum describes two tools intended to facilitate the explo-
ration of numerical models of FO and other phrase-level phenomena. One 
is a modelling program with some unusual characteristics, including input 
in the form of a description of the prosodic tree, run-time control over pa-
rameter settings and rule application, and provision of analysis-by-synthesis 
facilities that allow analysis-by-synthesis to be carried out using arbitrary 
mixtures of any utterance types for which the model is defined. The second 
is an interactive interface to the model that allows it to be manipulated 
using a programmable time-series editor. This allows the user to see imme-
diately the result of changing parameters and enabling and disabling rules, 
and also allows easy visual comparison of computed values with data. 

2. A Flexible FO Modelling Program 

Computing FO contours for utterances of紐edstructure, using a fixed 
FO model, is easy. Even if the FO model is fairly complex, with many 
parameters and complex equations, implementing it is a matter of simple 
numerical programming. However, such simple models are difficult to use 
for studying FO. A program that can handle only a fixed utterance type 
is of little use if intonation depends on the structure of the utterance. A 
program containing a model that is completely紐edmust be edited in order 
to try out different models. In order to make it easier to study a variety of 
different FO models, we have implemented an FO modelling program that 
provides an unusual degree of fie泣bility.

One special property is that it accepts as input a description of the 
utterance in an extremely general format, so that, for a very wide range of 
possible models, no change either in the input module or the input files is 
necessary when the model itself is changed - it is only necessary to change 
the model subroutine and how it uses the information about the structure 
of the utterance. 

Provision is also made for a degree of run-time configuration of the 
model. Moreover, the program is written in such a way that the actual 
model code is very much isolated, so that the user can change the FO model 
by replacing a single source file, without knowing anything about the bulk 
of the program. 

Finally, the program provides for the model to be fit to data using 
arbitrary mixtures of any type of data for which the model is defined. 

-1-



2.1. Tree Descriptions 

Much research on intonation in a variety of languages shows us that 
fundamental frequency is determined not only by le幻calinformation and 
segmental perturbations but by the prosodic structure of the utterance, 
where the prosodic structure is a hierarchical phrasal structure similar to, 
but different from, syntactic structure (Selkirk 1984). 

Consequently, in order to represent this information as directly as pos-
sible, the program takes as input a file containing a description of a tree 
structure. The file describes the type (level in the prosodic hierarchy) of 
each node and names its daughters. It also allows attribute-value pairs to 
be associated with each node. For example, the following file describes an 
utterance containing two minor phrases, each three moras long and unac-
cented, contained within a single major phrase.1 

S utterance (Ml) 
Ml "major phrase" (ml,m2) 
ml "minor phr邸 e"(NIL) 
m2 "minor phrase" (NIL) 

ml morae 3 
m2 morae 3 
ml accent 0 
m2 accent 0 

The first line says that the node named Sis of type utterance and has one 
daughter, Ml. The next line says that the node named Ml is a. major phrase 
and has two daughters, ml and m2. The next two lines indicate that each 
of the nodes ml and m2 is a minor phrase and has no daughters. The last 
four lines associate attributeャ叫uepairs with the two minor phrase nodes. 
In both cases the number of morae is set to three and the accent position , 
is set to zero (i.e. there is no accent). 

The program reads the tree description from the file and constructs 
the tree in memory, 邸 sociatingwith each node its own attribute list. The 
subroutine that actually computes the FO contour is passed a pointer to the 
tree structure, so that it has available all of the information associated with 
the tree. 

This input forma.t allows us to interpret theoretical notions about prosodic 
structure directly. It also provides an input. format that is independent of 
the details of the FO model, and whose similarity to syntactic structure fa. 
cilitates studies of the relationship between syntactic structure and prosodic 
structure. 

2.2. 鼠odelDescriptions 

Although some aspects of the model are fixed by the underlying model 
program, the ri:1odel may be configured to some extent at run time. The 

In this file, as in all of the other files read by the model, blank lines and anything on a 
line following a cross-hatch character(#) are ignored. The treatment of a cross-hatch 
character as a comment indicator may be disabied by preceding it with a backslash 
（／）． 

-2 

T
 



model configuration is read from the model definition file. whose name is 
specified on the command line. Model parameters may be set by includ-
ing lines whose first field is the keyword set followed by the name of the 
parameter to be set and its value, e.g.: 

set DsRatio 0.9 

which sets the value of the parameter DsRatio to 0.9. If the model is used 
for analysis-by-synthesis and the named parameter is estimated, the value 
specified in the model definition file is used as the initial value. 

If the model contains rules whose application is conditional, by default 
these rules are disabled. To cause a rule to be applied it is necessary to 
include in the model definition file a line beginning with the keyword apply 
followed by the name of the rule to apply, e.g.: 

apply Downstep 

which causes the Downstep rule to be applied when the model is run. 

2.3. Analysis-by-S匹 hesis

Any or all of the model parameters may be estimated by analysis-by-
synthesis, using data from utterances of any type for which the model is 
defined. The analysis-by-synthesis algorithm used is essentially the same as 
that of Miyatake & Sagisaka (1988). At each iteration, it loops over the 
parameters to be estimated and attempts to optimize each parameter in 
turn; where optimization means minimization of the total distance between 
the predictions of the model and the data. Optimization is performed by 
following the gradient at a quantization given by the current step size for 
the given parameter. ¥芍ihenthe current parameter v叫ueis no worse than 
those one step to either side, the叫gorithmhalves the step size for that 
parameter and moves on to the next parameter on the list. ¥7'.7hen it has 
optimized all of the parameters on the list, it checks to see whether it should 
proceed to the next iteration. 

Information about how to carry out the an叫ysis-by-synthesisprocess 
and what data to use is provided in the ABS control file, whose name is 
specified on the command line. Lines・may begin with one of the keywords: 
estimate, iterations, norm, step or threshold, in、vhichcase they are inter-
preted as follows: 

estimate P arameterN ame 

Estima.te the value of the parameter ParameterName during the ABS run. 
If a parameter is not specified as subject to estimation it is fixed. 

iterations IterationCount 

Iterate for a minimum of Iteration Count iterations. The default is 25昏

nonn NonnName 

Use the named norm as the distance function. The legal values are Hlユ1orn1
and L2-11orm. The Hl-11orm the sum of the difference of the two values aJ1d 

-3-



the difference of their first deriYatives, i.e., if , and s are vectors of length 
N their rooじmean-squareHl distance is: d(,, s) = [(こi=X i=O [,(1) -s(i)J2 + 
[d,(i)/dt-ds(i)/dt]2)/N]112. The first derivative is approximated by comput-
ing the first left difference (i.e. df /dtl;::::: 只i)-f (i -1)). The L2工ormis the 
usual Euclidean distance. The default is the L2_norm. 

step ParameterName StepSize 

Set the initial search step for the parameter ParameterN ame to Step Size. 
The defaults are dependent on the model. 

threshold Threshold. 

If the ABS process is converging sufficiently quickly, only the minimum number 
of iterations are carried out. If the difference in the error between two iterations 
is larger than Threshold convergence is taken to be going slowly and the 
number of iterations to be carried out is increased. The default value is 0.0. 

All other lines are taken to be data specifications and consist of the 

11ame of the data file, the number of tokens in the data file, and the name 

of the corresponding tree description file. 

There are no constraints on the order in which !he elements of an ABS 
control file are given. Iくeywords:i:nay be given in any order and may be 

freely intermixed with data file specifications. However, in order to allow 

the user to control the order in which parameters are estimated, which can 
make a difference to the ABS process, parameters are estimated in the order 
in which they are named in lines with the keyword estimate. 

Here is a typical ABS control file: 

# Parameters to estimate 
estimate DsR叫io
estin1ate DecSlope 
estimate Range 
estimate Base 
estimate Beta 

# Step sizes 
step Range 5.0 
step Base 5.0 
step DsRatio 0.1 
step DecSlope 1.0 
step Beta 0.1 

# ABS control parameters 
iterations 25 
threshold 0.5 
norm HLnorm 

# Data files 
corfiles/takeda2_0Ql.cor 4 treefiles/takeda2_001. tree 
cor月les/takeda2_002.cor 7 treefiles/ takeda2_002. tree 
corfiles/ takeda2_003 .cor 6 treefiles/ takeda2_003. tree 
corfiles / taked a2_QO 4.cor 8 treefiles/ takeda2 _004. tree 

The ABS data files are text files cont叫ningone line for each token. Each 

line consists of data. values separate by whitespace (spaces and/or tabs). A 
well-formed data丑letherefore looks like this: 

-4-

T
'
 



117 
123 
123 
96 

153 
139 
142 
141 

127 
107 
115 
126 

93 
83 
93 
96 

85 
80 
86 
82 

The tree description files for ABS data have exactly the same format 
as the tree description五lesused to drive the model when used to generate 
synthetic FO contours. 

During an ABS run the model reports on its progress by writing infor-
mation on the standard error output. It makes a report at the beginning of 
each iteration, reporting the time, the iteration number, the current va.lue 
of the distance, and the change in the distance since the previous iteration. 

More detailed information is written in a log file, whose name is the 
name by which the program is called followed by the suffix .abslog, e.g. 
model.abslog. An entry is made in the log file at the beginning of each 
iteration. Each entry contains the same information as is written on the 
standard error output (the time, the iteration count, the distance, and the 
change in the distance), together with the values of the parameters being 
estimated and the step size for each parameter. At the end of the ABS run 
summary information is generated, including the time at which the ABS 
run terminated and the iteration count at termination, the number of data 
points used, and the final error. The 12-norm error is always given, as well 
邸 theHl-norm if that was used as the distance for the ABS process. This 
information is followed by the final values of all model parameters together 
with an indication of whether the parameter value was obtained by ABS or 
w邸 fixed.

An extract from a typical ABS log file follows. This log is from a run 
of a simple pause duration model with two parameters, MajorPause (the 
length of a pause after a major phrase) and MinorPause (the lengtl1 of a 
pause after a minor phrase), in which the value of Major Pause w邸丘xedand 
the value of Minor Pause w邸 estimated.Notice that the五rstvalue of delta 
is negative since prior to the五rstiteration the model assumes a distance of 
zero. 

Mar 3 13:30:18 iteration O delta=•162738.6197 distance= 162738.6197 

MinorPause = 12.000 step = 5.000 

Mar 3 13:30:19 iteration 1 delta= 162721.2463 distance= 17.3733 

MinorPause = 2.0000 step = 2.5000 

Mar 3 13:30:19 iteration 2 delta = 0.0000 distance= 17 .3733 

MinorPause = 2.0000 step = 1.2500 

Mar 3 13:30:37 iteration 25 delta= 0.0000 distance = 14.9395 

MinorPause = 2.7885 step = 0.0000 

ABS terminated Mar 3 13:30:38 at iteration 26 

Total data points = 17640 

RMS distance using Hl.110rm := 14.9395 

-5-



RMS distance using L2JJorm = 13.1945 

Parameter Estimates: 

MajorPause 40.0000 (fixed) 

MinorPause 2.78853 (estimated) 

彎

i

2.4. Con1mand Line Syntax 

Command line options are used both to provide the names of the various 

control files and to specify other options. The command line options are: 

-a[bs control file specification] ABS _controlふle

Read ABS control information from the file ABS_control.lile. 

-d[raw tree] 

Write on standard output a description of the tree read from the utterance 
description file in the form of a LISP S-Expression. This can be used as input 
to other tree drawing programs. 

-h[elp] 

Print a summary of command line options. 

-m[ model definition] modeLdefinition..:file 

Read the model description information from the file modeLdefinition..:file. 

-o[utput file] output..:file 

Write the results of the synthesis in the file output玉le.

-p[arameters] 

Print a list of the available model parameters and their documentation. 

-r[ules] 

Print a list of the available rules and their documentation. 

-u[ tterance description] utterance_descriptionふle

Read the tree description information from the file utterance_description_file. 

-v[erbose] 

Print information about what is happening. This is mainly useful during ABS 
runs. 

If an ABS control file is specified on the command line1 analysis-by-
synthesis is attempted. Otherwise it is assumed that the user wishes to 

generate a synthetic FO contour. Thus1 for an ABS run a typic叫 comma.nd
line would be: 

model -a absctrlゴmmodel.def -v 

while for a synthesis run a typical command line would be: 

model -m model.def -u nibun.tree 

6 -



2.5. Program Internals 

Although the model can be configured to some extent at run time、major
modifications of the model require changes in the underlying C code. This 
section provides the information necessary to make such changes in the 

model. 

The actual model code is contained in a single file named model.c in the 
source directory. This file is not compiled separately but is automatica恥
included in the file mode/frame.cat compile time. To change the model one 
creates a new model.c file, moves it to the source directory, and types make. 
Assuming that there are no errors in model.c, a new model program will be 
generated automatically. 

The file model.c must define two data structures and one subroutine. 
The two data structures are the parameter list and the rule list. The pa-
rameter list looks like this: 

static struct pardesc pars[]={ 
uDecSlope" ,10.0,1.0,FALSE,"Slope of declination line", 
uBeta" ,1.0,1.0,FALSE,"Time constant of accent unit smootlting func-

t10n ” 
｝； 

The parameter list must be declared to be an array of pardesc structures 
named pars. A pardesc structure contains the name of the parameter, its 
value, the ABS step size, a flag indicating whether or not the parameter is 
to be estimated, and a documentation string: 

struct pardesc { 
char *name; 
double val; 
double step 
int estimate; 
char *doc; 

•) 

｝
 
The estimation flag should be initialized to FALSE. 

The rule list looks like this: 

struct rul~desc rules[]= { 
"Declination" ,FALSE,"Linear declination rule", 
"Downstep" ,FALSE,"Downstep of step function amplitude" 
}; 

The rule list must be declared to be an array of ruledesc structures 
named rules. A ruledesc structure contains the name of the rule, a flag 
indicating whether or not the is to be applied, and a documentation stri11g: 

struct ruledesc { 
char *name; 
int a.pply; 
char *doc; 

-7-



｝； 

The rule application flag should be initialized to FALSE. 

The file model.c must also define the subroutine model, which performs 
the actual calculations. model is called with two formal parameters, a 
pointer to the root of an utterance description tree, and the name of an 
array in which to write the results, e.g.: 

model(tree,result) 
NODE王TRtree; 
double result[); 

｛ 

｝ 
Body of Subroutine 

model should return the number of points for which values were gener-
ated. 

To refer to the value of a parameter, simply index into the pars array 
and use the val member of the structure. In the above example, the value of 
the parameter DecSlope is pars/OJ.val and the value of Beta is pars[1}.val.2 

To decide whether to apply a rule, simply index into the rules array 
and test the value of the apply member. For example, to test whether the 

Declination rule is to apply, write: 

if(rules[OJ.apply) { 

｝ 
Code for Declination Rule 

雫
，

The root of the utterance description tree is a pointer to a node struc-
ture, defined in the file nodes.h. This structure contains the name of the・ 
node, its type, how many daughters it has, a list of daughters, a pointer to 
its parent node, and pointer to. an attribute list. The parent node and the 
daughter nodes are themselves pointers to node structures. 

An attribute has two values, one a string, the other a double preci-
sion floating point number. The model program automatically converts the 
string value to a double, if that is possible, so the model subroutine may 
refer to. ,vhichever value is appropriate. ・ 

It is possible for the user to manipulate a node's attribute list directly, 
but this should never be necessary. Instead, access is provided by the sub岬
routines get_attribute and get_pnval. 

geLattribute takes as arguments a pointer to a node and the name of an 
attribute and returns the string that is the value of the given attribute of 
the specified node, or a null pointer if no such attribute e立sts.

get_pnval takes as arguments a pointer to a node and the name of an 
attribute and returns a pointer to the numerical value of the given attribute 
of the specified node, or a null poh1ter if no such attribute ex.ists. 

2 It is convenient to define symbolic names for the array entries so that it is not necessary 
to refer directly to the indices into the parameter list. 

8-



3. Interactive FO :¥1odellingじsinga Progra111mable 

Series Editor 

¥Vhen studying numerical models of fundamental frequency, it is neces-
sary either to visualize the effect of changing parameters by carefully study-
ing the equations, or to execute a numerical model and plot the results. 
This quickly becomes difficult and tedious, especially if we change not only 
the parameters of the model but the model itself. In order to allow easy 
interactive study of a variety of FO models we have created an interface 
between the FO modelling program and the L3 programmable time series 
editor. 

The use oft出sinterface) which provides an instant display of any par-
ticular. model configuration and allows easy visual comparison of model 
configurations and of synthetic FO contours with data, greatly facilitates 
the study of a variety of FO models. 

3.1. The 13 Programmable Time Series Editor 

13 is an editor that provides for display, measurement, printing, and 
modification of any number of time series. Unlike other tools of this type, 
13 is completely programmable. In fact, it is best thought of as an inter-
preter for a Turing-complete recursive programming language ,with unusual 
semantics, much as the programmable text-editor EMACS (Stallman 1984) 
may be viewed as an interpreter for a programming language that contains 
primitives for editing text. 13 can read commands from files, can write 
text to files, and can execute other programs as child processes, so it has 
available the necessary means of communication with the FO model. 13 is 
described in det叫1in (Poser 1987) and (Poser 1988). 

3.2. The Interface to the FO J¥1:odel 

The interface to the FO model is created by executing the initializa.-
tion file runmodel. init. This in turn executes commands that create the 
necessary windows and data buffers, define the procedures that form the in-
terface, and create the necessary L3-interi1al variables. runmodel.init loads 
the standard 13 library files std_aliases.l3, std_procs.l3, and mouse_modes」3,
the files synj01.l3 and synj02.l3, which create and configure the necessary 
windows and data buffers, and the file runj0.l3, wllich cont叫nsthe heart of 
the interface to the FO model. All of these files are to be found in the 13 
library directory, which is normally /usr/local/lib/13. 

13 variables are used to represent the parameters of the model and to 
control the a.pplication of rules.'l:¥Then the 13 program that implements the 
interface is loaded, it queries the model program for the currently defined 
rules and parameters, so changes in the model do not require changes in 
interface互Theuser may ask 13 to show the current values of the parameters 

3 L3 queries the model by executing the model with the -p and -r command line 
options and then executing au A'¥VI{ program to convert the paramet,er and rule lists 
provided by the model into L3 commands, which are then read. Consequently, the 
AWK language must be available (as it is on virtually an UKIX systems). 

，
 



may set parameters and enable or disiible rules. Execution of the 
procedure run causes L3 to pass the current values of tl1e parameters to 
the model, to execute the model, and to read in and display the resulting 
synthetic FO con tour. 

The user may arrange for the model to be re-executed and the new syn-
thetic FO contour displayed automatically whenever a parameter is changed 
or a rule enabled or disabled. L3 variables have, in addition to a name 
and a value, a hook, that is to say, a pointer to an 13 procedure which is 
a.utomatically executed whenever the variable is assigned to. Binding the 
procedure run to a variable's hook, will cause the procedure run to be 
executed automatically whenever that variable is changed. 

By using two windows instead of one it is possible to compare two dif他
ferent versions of the model or to compare a synthetic FO contour with a 
real one. The procedures L2_norm and HLnorm may be executed in order 
to compute the distance between the time series in the tヽvowindows事

The procedures de介nedby the interface library are: 

bind...alLhooks, 

Binds the procedure run to the hooks of all of the currently defined 
parameters, rule application flags, and the tree definition file. 

disable rule 

Disable application of the named rule. 

enable rule 

Enable application of the named rule. 

耳l..norm

Print the Hlュormdistance between the time series in the two data 
buffers, leaving the value in the variable rval. 

L2_norm 

run 

Print the Euclidean distance between the time series in the two data 
buffers, lea,ving the value in rval. 

Execute the model with the current para.meters, load the selected data 
buffer with the result, and display it. 

show_parameters 

Print the current model parameters in the入1'essageswindow. 

toggle_windows 

Switches ba.ck and forth between two different windows for displa~·ing 
the synthetic FO contours, if two windows have been set up. 

unbind_all上ooks

Un binds the procedure hooks of all of the currently defined parameters, 
rule a.pplication flags1 and the tree definition file. 

-10-



() 

0 

Since 13 provides a true programming language, the user may impose 
constraints on the values of model parameters by writing a procedure that 
computes the value of one parameter from that of another and binding this 
procedure to the hook of the independent ,・ariable. Thereafter, whenever 
the independent variable is assigned a new value, the procedure will au-
tomatically be executed and will compute a new value for the dependent 

narameter、

As a simple example, suppose that the model contains parameters named 
A and Band that we wish to constrain B to be 2.0 times A. First, we write 
a procedure that computes B given A. Then we bind this procedure to A's 
hook, so that whenever we change the value of A the procedure will be 
executed and change the value of B accordingly鯵

procedure SetB 
* $A 2.0 
set B $rval 

end_procedure 

bind_proced ure_to上ookA SetB 

Acknowledgments 

I wish to thank Dr. Akira Kurematsu and Dr. Kiyohiro Shikano for 
their support of this research, Mr. Masanori Miyatake for his assistance 
with the analysis-by-synthesis algorithm, and Mr. Takaharu Tanaka for his 
assistance in porting 13 to the Microvax. 

References 

Miyatake, Masanori & Yoshlnori Sagisaka (1988) "Prosodic Chara.cteristics 
and Their Control in Japanese Speech with Various Speaking Styles," 
ATR Interpreting Telephony Research Laboratories Technical Report 
I-0025會

Poser, ¥!¥1illiam J. (1987) L3 Reference Manual. Stanford, California: Cen-
ter for the Study of Language and Information, Stanford University. 
Technical Report 87-94. 

Poser, William J. (1988) "13 -A  Programmable Multiple Time Series Edi-
tor for Speech Research,''ms. Stanford University, Stanford, California, 
USA. 

Selkirk, Eliza.beth (1984) Phonology and Syntax: The Relation Between 
Sound and Meaning. Cambridge, Massa.clrnsetts: The MIT 

Stallman, R. M. (1984). "EMACS: The Extensible, Customizable, Self-
Documenting Displa.y Editor," Interactive Programming En℃ ironments令
edited by D. R. Barstow, H. E. Shrobe, &: E. Sandwelし(KewYork: 
McGraw-Hill), pp.300-325. 

-11 




