
Internal l:se Onlv

TR-I-0066

:tvfodified MITalk
"¥Villiam J. Poser & Masanobu Abe

January 23, 1989

Abstract

This memorandum describes a modi升edversion of the
MITalk text-to-speech system that produces Japanese of
a sort for experimental purposes. The modi介edversion
accepts romanized Japanese text as input and produces
speech whose spectral properties are those of English but
to which the phonological rules of English have not ap-
plied. The modi升edversion allows the prosodic proper-
ties of the speech (duration and fundamental frequency)
to be speci丘edseparately and merged with the segmental
information generated by the higher levels of MIT叫k.

Copyright 1989 ATR Interpreting Telephony Research Laboratories
All Rights Reserved

CONTENTS

1 In trod uct1on . 1
2 The Organization of the MITalk System 1
3 Modifications to the Standard Modules 2
4 Writing Letter-to-Sound Rules 3

4.1 Organization of the Letter-to-Sound Rule File 3
4.2 Prefixes and Suffixes . 4
4.3 Letter-to-Sound Rules . 4
4.4 Variables . 7
4.5 Installing the Letter-to-sound Rules • 7

5 Input to MITalk 8
6 Prosodic Information . 9

6.1 How MITalk Handles Prosodic Information . . 9
6.2 Modifying P rosod1c Informat10n 10

References . 11
Appendix - Japanese Letter-to-Sound Rules 12

1. Introduction

The MITalk system in its normal form synthesizes English speech from
textual input. This memorandum describes a modified version of MITalk
that produces Japanese of a sort. The modified version accepts romanized
Japanese text as input and produces speech whose spectral properties are
those of English but to which the phonological rules of English have not
applied. The modified version allows the prosodic properties of the speech
(duration and fundamental frequency) to be specified separately and merged
with the segmental information generated by the higher levels of MITalk.

2. The Organization of the MITalk System

MITalk consists of a top-level program which coordinates the execution
of a sequence of modules.1 The standard version of the program contains
the following modules, which execute in this order:

FORMAT

Converts numbers written using Arabic numerals and special symbols
such as %-sign and $-sign to words. Also handles pronunciation of
abbreviations.

DECOMP

Attempts morphological analysis of input words based on search of lex-
icon. Produces part-of-speech information, morphological analysis, and
phonemic representation of morphemes if possible.

PARSER

Produces a gross syntactic parse intended for the use of the prosodic
rules.

SOUNDl

Applies letter-to-sound rules to words not decomposed by DECO MP.
Also applies stress rules and associated phonological rules, such as vowel
reduction.

PHONOl

厨 liesprosodic rules. These seem to have to do mainly with destress-
mg and marking of boundaries. However, there are four allophonic rules
in this module as well.

PHON02

Applies segmental phonological rules.

PROSOD

1 Allen et al. (1987) provides an overall description of MITalk.

-1-

Applies durational rules. It also generates FO information, but this is
ignored by FOTARG.

FOTARG

Computes FO targets. Produces an FO value for the center of every
segment and for the left boundary of every segment.

PHONET

Generates synthesizer control parameters at 5 ms. intervals. The FO
values are interpolated from the information supplied by FOTARG.
The other parameters depend in part on table-lookup of specifications
associated with each symbolic phone. Also takes care of coarticulatory
effects.

VTCOEF

Converts control parameter specifications into a set of linear amplitude
coefficients.

CWTRAN

Simulates the Klatt cascade/parallel formant synthesizer. It accepts 50
coefficient frames from VTCOEF and generates the next frame of the

waveform.

This division into modules makes it fairly straightforward to replace an
entire module or to break into the data stream and modify the data.

One other aspect of the system, namely the letter-to-sound rules, is
easy to modify, since these rules are written in a special high-level rule
specification language and are confined to a single file.

However, MITalk is not designed as a general development system for
text-to-speech systems. With the exception of the letter-to-sound rules,
the rules that it applies are hard-coded (with very few comments) and are
designed specifically for English.

3. J¥1odifications to the Standard J¥.1odules

The modifications to the standard modules eliminate the application of
English phonological rules and orthographic conventions, and provide for
the use of an input orthography appropriate for Japanese. 2

(a) The module DECOMP has been modified so that it does not at-
tempt dictionary lookup. Lookup of Japanese words in the English
dictionary has the effect of bypassing the correct letter-to-sound

2 If it were desired to use this system as a practical Japanese text-to-speech system
rather than for the research purposes for which it was intended, it would be neces-
sary to replace the FORMAT module as well in order to generate correct Japanese
pronunciations of numerals and the like.

t し

-「T

-2-

じ-

rules, so it is necessary either to a.void dictionary lookup or to replace
the dictionary with one appropriate for Japanese.

(b) The module SOUND 1 has been modified so tliat it does not apply
any phonological rules and so that it uses a revised set of letter-to←

sound rules more appropriate for Japanese. The Japanese letter-to-
sound rules are given in the Appendix.

(c) Four allophonic rules have been removed from the module PHO NO 1.

(d) The module PHON02 has been modified so that it does not apply
any allophonic rules.

With these modifications, MITalk generates speech with English prosody
and English spectral values for the phones, but without applying any En-
glish phonological rules or spelling conventions.3

4. Writing Letter-to-Sound Rules

One of the few parts of the MITalk system that is easy to modify
are the letter-to-sound rules. However, the grammar of the letter-to-sound
rules is not described in Allen et al. (1987) and there appears to be no other
documentation available. Consequently, we describe here how to define new
letter-to-sound rules. This description is based on reading the source code,
studying the English letter-to-sound rules distributed with MITalk, and
experimenting with the system. It is incomplete in that it describes only
those aspects of the system that have been exercised. In particular, since
we have had no use for prefix and suffix declarations and associated rules it
contains little information on them.

4.1. Organization of the Letter-to-Sound Rule File

The letter-to-sound rules must be written in a single file. Lines begin-
ning with a slash (/) are interpreted as comments; blank lines are ignored.
All other lines are treated as meaningful by the rule compiler.

The file consists of seven sections, which must be ordered as follows:

prefixes
suffixes
variables
consonant rules
prefix rules
suffix rules
vowel rules

list of prefixes
list of suffixes
definitions of variables
rules applying to consonants
rules applying to prefixes
rules applying to suffixes
rules applying to vowels

Lines beginning with a percent-sign(%) denote the ends of sections. If
the necessary section delimitters are omitted, the rule compiler will report

3 In addition to the modifications related to removing English-specific aspects of the
system, the modules VTCOEF and CWTRAN have been modified to use an output
sampling rate of 12 KHz instead of the original 10 KHz.

-3-

an error and abort. If the section delimitters are present but no rules are
given the rule compiler will not complain but the compilation of parts of

the system will fail.

A skeletal letter-to-sound rule file is therefore:

/Prefix Declarations

％

/Suffix Declarations

％

/Variable Dennitions

％

/Consonant Rules

％

/Prefix Rules

％

/Suffix Rules

％

/Vowel Rules

％

4.2. Prefixes and Su缶xes

Prefixes and suffixes are morphemes to be treated specially. Even if you
do not wish to declare any such morphemes, you must declare at least one
prefix and at least one suffix due to a. bug in the code. Failure to declare at
least one prefix and at least one suffix causes the compilation of soundl to
fail.

To get around this, you may declare prefixes and suffixes that do not
occur in the language in which you are working. Note tha.t prefixes and
suffixes are represented using phoneme strings not as arbitrary letter strings.

4.3. Letter-to-Sound Rules

The letter-to-sound ruies themselves are of the form:

letter_pattern > phoneme平atterncontext..specifier left..context _ right_context

where the context..specifier is one of],[,(, and). The phoneme_pattern must
be a string of phoneme names, not arbitary characters. The phoneme names
are not Iくlattcodes and do not correspond to normal phonetic practice, so
some experimentation is necessary. Roughly speaking, single-letter codes

F

'し

9

-4-

have their typical American English values, so you will be surprised if you
follow phonetic practice or assume the values found in most languages writ-
ten in the Roman叫phabet.Rela.ted sounds, especially those us叫 lywritten
with digraphs in American English, are denoted by prefi: 泊nga circumflex.
Thus, S represents the voiceless alveolar fricative, while -S represents the
voiceless palatal fricative.

The following table gives the correspondences between the phoneme
symbols used in letter-to-sound rules and Klatt codes. The values of the
Klatt codes may be found in Appendix B of Allen et al. (1987). Note that
there is not a phoneme symbol for every Klatt code, so some rules that one
might wish to write are not possible. ・

EYBB

翌
F
F
G
G
H
H
A
Y
Y
y
K
K
1
1
M
M
N
N
O
W
P
P
R
R
S
S
T
T
u
w
v
V
W
W
A
X
z
Z
A
A
C
H
D
H
E
H

誓
J
J
E
L
E
M
E
N
A
O
S
H
T
H
u
H
A
H
z
H

A
B
D
E
F
G
H
I
J
K
1
M
N
O
P
R
S
T
u
v
w
Y
Z
凶
℃

m
t
℃

1
万

エ

紅

＼

℃

で

T
て
Y

1

-5-

"A AE
"I IX
"O OY
"U AW

The context..specifier indicates whether the contexts are phoneme con-
texts or letter contexts, as follows:

i
Specifier Left Context Right Con text ,}

（ phoneme phoneme

） letter phoneme

［ phoneme letter

） letter letter

The phoneme_pattern, left_context and right..r.ontext may be null; but
the contextふpecifi.erand the >-sign may not be omitted. Note that the
underscore in the context may not be omitted. That is, a rule that applies
everywhere must have the form:

A > B context..specifier

A rule of the form:

A > B context..specifier

is ill-formed and will cause the rule compiler to abort after generating an
error message indicating that it does not recognize the phoneme],[,(, or),
whichever was given as the context specifier.

This system h邸 nodefault rules. That is, it is necessary to provide a
rule with no context to map each valid input symbol to itself, e.g.:

B > B] _
／

which takes B to B everywhere.

However, it does observe the Elsewhere Principle, so it is not necessary
to specify complementary environments. That is, if we want A to go to B
before C and remain A elsewhere we need only write:

A > B] _ C

A>A]_

The first rule will apply before C, and the second rule in all other
environments. It is not necessary to specify all environments other than
before C in the second rule.

r

り＇

-6-

4.4. Variables

What MITalk refers to as variables are not really variables邸 theymay
not be邸 signednew values. Rather, they are constant sets. A set has a
name that begins with a $-sign. The sets are defined by giving the name of
the set followed by a comma and then the members of the set, separated by
commas, e.g.:

$¥V,A,E,I,O,U,Y, 十A,十E,十r,+o,十U,+Y,LE#,RE#

This line defines a set called $W to consist of A,E,I, etc., that is to say,
roughly, the syllabic segments other than the nasals.

Sets are referred to in rules by their names, as in the following rule:

GU> GW) N _$W

This rule takes the sequence ofletters GU to GW when preceded by the
letter N and followed by any member of the set $W.

Note that in this language the $ is not a dereferencing operator as it is
in some la11guages. It is simply part of the naming convention for identifiers.
Thus, it is an error to attempt to define a set without using a $-sign in the
name of the set. For example,

W,A,E,I,O,U,Y, 十A,十E,十r,+o,十u,十Y,LE#,RE#

is not a legal set definition since the first identifier, "W", is not a legal set
name.

The $-sign precedes the letter in the variable name in a variable defi-
nition and when the variable is mentioned to the right of th~_ in the
environment of the rule. However, when the variable is ment10ned to the
left of the_ in the environment ofヰ erule, the $-sign and the letter are
transposed. Thus, a rule that takes G to'G between members of the set
$B is written thus:

G >~G l B$ _:_ $B

Placing the $-sign on the left will cause rulecomp to abort with an
unidentified phoneme error message.4

4.5. Installing the Letter-to-Sound Rules

MITalk expects to丘ndthe letter-to-sound rules in a file called Source
in the directory $MITALK/src/soundl.5 The file with this name in the

4 This is not a joke.

5 The environment variable MITALK is assumed to contain the name of the MITalk
root directory. This directory is the parent of the MITalk src, lib, and bin directo-
ries. The original MITalk program had a bug that required the value of this variable
to end in the slash that is used to separate path components. This bug has been fixed
in the modified version.

-7-

MITalk distribution contains the standard rules for English; it is wise to
save this file under another name before modifying or repla.cing it.

The new set ofletter-to-sound rules should be put in a file called Source
in the directory $MITALK / src/ sound 1. To compile the rules, cd to this
directory and execute the program rulecomp. This compiles the rules into
the form in which MITalk uses them and creates a number of files. You
must then do a "make" to rebuild soundl, followed by a "make install" to
install the modified version of soundl along with some of the files created
by rulecomp.

5. Input to MITalk

Roughly speaking, this modified version of MITalk邸 ceptsinput in the
Hepburn romanization, with each utterance followed by a period. However,
there are several details that it is necessary to consider.

First is the question of treatment of long segments, since there is no
consonant length distinction in English and vowel length is associated with
vowel quality. MITalk treats geminate consonants as single segments of
greater duration than the corresponding singletons. Left to its own devices,
MITalk treats double vowels as sequences of two segments. Since MITalk
does nothing to produce the effect of rearticulation, these sound like a single
long vowel. In order to simplify modification of the prosody, the Japanese
letter-to-sound rules reduce clusters of like vowels to singletons, thereby
neutralizing the contr邸 tbetween long and short vowels. The appropri-
ate duration can then be supplied at the prosody modification stage. In
sum, this version of MITalk effectively ignores the distinction between long
and short segments on the assumption that appropriate durations will be
supplied separately.

Second is the problem of syllabification. MITalk provides no way to
indicate syllabification directly. ¥i¥There variants are associated with differ-
ent positions in the syllable, these can be indicated by using special input
symbols, provided that these can be mapped onto sounds known to MITa1k.
Thus, distinctions like that between /tani/ "valley" and /tan'i/ "unit" can-
not be represented in terms of syllable structure. As a simple expedient
the letter-to-sound rules have been written to allow the use of the letter
X, which does not otherwise occur in romanized Japanese, to represent the
mora nasal. 6

'¥Vhere the crucial distinction is one of syllabification pure and simple,
MITalk provides no means of representing it at all. For example, MITalk
cannot distinguish between satooya "sugar seller" [sato:ya], which has a
single long [o], and satooya "foster parent" [sato$oya] which has a sequence
of two short [o]s.7

6 The symbol N commonly used for the mora nasal cannot be used here because the
FORMAT module maps all alphabetic characters to upper case.

A full text-to-speech system for Japanese would not only provide a representation
for such distinctions but would generate them automatically, given morphological
information, since potentially monosyllabic sequences of vocoids are normally hetero-

-8-

／

The inability to specify syllable structure also poses problems with Cy
clusters. When such clusters are preceded by a vowel MITalk邸 sociatesthe
initial consonant with the preceding syllable. Although this is not exactly
what it should do, this at least yields output in which the consonant is
produced. When no vowel precedes, MITalk effectively deletes the initial
consonant since it has no provision for Cy clusters in syllable onsets.

For the purposes for which this version of MITalk was intended these lim-
itations are not severe, but any attempt to use MITalk for general Japanese
speech synthesis would require both a means of representing syllabification
information and modification of the syllabification rules.

Finally, a few miscellaneous comments on the letter-to-sound rules are
in order.

(a) No distinction is made between [ei) and [e:], both of which are treated
the same as [e).

(b) /h/ is converted to/ sh/ before /i/ whether or not the /i/ is voiceless,
which correctly reflects the speech of many but not all Standard
Japanese speakers.

(c) / g/ is realized as a nasal intervocalically and as an oral stop else-
where. This reflects the speech of some speakers in some stylistic
registers, but there is a great deal of variation in the context for

nasalization of / g/.

6. Prosodic Information

The prosodic information generated by MITalk is specific to English,
and depends upon the morphological and syntactic analysis performed by
previous modules, which themselves are not e邸 ilymodified. Consequently,
instead of modifying MITalk itself, we have provided a means of replacing
the prosodic information generated by MITalk with prosodic information
from other sources.

6.1. How MITalk Handles Prosodic Information

MITalk generates durations in the module PROSOD and FO values in
the module FOTARG.8 These values are then passed, together with the
identity of the seginent and a flag indicating whether or not the segment is
in a stressed syllable, to the module PHO NET, which interpolates the FO
values and generates parameter tracks for the formant synthesizer.

For each segment FOTARG generates two FO target values. One is the
target for the left boundary of the segment. The other is the target for the
midpoint of the segment. FOTARG may generate non-zero values for FO in

syllabic when separated by compound boundary and monosyllabic when tau tomor←

phemic or when separated only by morpheme boundary.

8 MITalk also generates FO values in the module PRO SOD, but these are ignored and
overwritten by FOTARG.

-9-

voiceless segments. PHONET sets these to zero. FOTARG may generate
negative values for FO. In these cases the real FO value is the absolute value,
and the sign is used to flag the presence of a glottal stop. This situation
should not arise in this version of MITalk.

The FO interpolation algorithm used by PHONET is linear interpo-
lation through the sequence of left boundary targets and midpoint tar-
gets.Segmental perturbations of FO are dealt with in FOTARG; PHO NET
does nothing but interpolation. The only exceptions to this are that:

(a) There is a special FO pattern for glottal stop, which ramps FO down-
ward linearly from the midpoint target to 40 Hz over the last 50 ms.
of the segment preceding the glottal stop.

(b) Voiceless regions have an FO of 0.

6.2. Modifying Prosodic Information

The prosodic information generated by PROSOD and FOTARG may
be modified by placing a filter between FOTARG .and PHONET. The
program modify _prosody is such a filter. It reads binary data in the for-
mat generated by FOTARG from the standard input, modifies the prosodic
information, and writes the data on the standard output in the same for-
mat. The modified values are taken from files whose names are supplied
on the command line. The input files should contain single precision (four
byte) floating point numbers in binary format. The FO values should be in
Hz. modify _prosody will take care of the conversion to decihertz, which
is the unit actually used by FOTARG and PHONET.

modify _prosody also sets a fiag on every segment indicating that it is
in a stressed syllable, since the result of cutting out the stress rules is that
every syllable is regarded as unstressed. The reason that the stress flag is
relevant in a system in which the allophonic rules are turned off and the
prosodic information is to be replaced is that PHO NET uses the stress flag
to decide how much aspiration to generate for voiceless stops. Aspiration
seems more natural with the stress flag set.

The parameter files should contain a leading value corresponding to the
initial silence and a trailing value corresponding to the trailing silence. That
is, for an N segment word they should contain N +2 values.

The parameter data file names are given as arguments to the option
flags:

d - duration value

1 - FO target at left boundary of segment

m - FO target at midpoint of segment

Therefore, to modify all three values the command line would look like
this:

1

J

-l'
↓！

modify_prosody -d duration_file -1 leftJO...fi.le -m midJO...fi.le

-10 -

Any or all of these options may be omitted. If an option is omitted, the
corrsponding parameter is not modified.

MITalk is normally run by executing the top-level program mi talk with
command line arguments specifiying which modules are desired. mitalk
sets up an appropriate pipeline, starts all of the necessary child processes,
and passes necessary command-line arguments to them. In order to insert
modify_prosody into the pipeline it is necessary to bypass mitalk. The
following shell script may be used instead. A copy will be found, under the
name mod_mitalk, in the MITalk bin directory. It sets up a pipeline in-
eluding modify _prosody with the correct command-line arguments亙This
script takes a single command-line argument, which is the name of the file
containing the text to be synthesized. The script expects duration, left
boundary FO, and midpoint FO values to be in files with the suffixes .d, .lf
and .mf respectively. If it is not desired to modify all three parameters, the
unnecessary options to modify _prosody may be removed.

format < $1 I decamp $MITALK/lib/Lexicon I parser I

soundl $MITALK/lib/ I phonol I phono2 I prosod I fOtarg I
modify _prosody -1 $1.lf -m $1.mf -d $1.d I

phonet I vtcoef I cwtran > $1.sp

In order to execute this script succesfully, the user's path must contain
the MITalk bin directory. The csh command

setenv path= ($path $MITALK/bin)

adds the MITalk bin directory to the user's path.10

References

Allen, J., Hunnicutt, M.S., & D. Klatt (1987) From Text to Speech: the
MITalk system. Cambridge: Cambridge University Press.

9 Recall that the environment variable MITALK should contain the pathname of the
MITalk root directory.

10 The equivalent sh command is:

P ATH=SPATH:SMITALK/bin

export PATH

. ・・'-

-11 -

Appendix - Japanese Letter-to-Sound Rules

These rules are taken from the file $MITALK/src/soundl/Source,
with comments translated into English.

ぶ

i

// Prefixes

/ / In order to evade a bug we define a prefix that cannot

/ / occur in Japanese input.

'DA

％

/ / Suffixes

/ / In order to evade a bug we define a suffix that cannot

/ / occur in Japanese input.

.j

F 23 -'DE

％

/ / Variables

/Vowels

$B ,A,I,U ,E,O

/Labials

$1,P,B,M

/Velars

$V,Iく，G

％

/ / Consonant Rules

/ / These two rules convert long consonants into the corresponding

/ / short consonants.

SSH >'S
TCH >'C

―-Iヨ

-12 -

SH
CH
J

>

＞

>

>

＞

>

＞

>

>

＞

>

k
s
z
T
D
N
N
N

G

^

k

s

z

T

D

M

^

Z

S

C

J

＾^

L

V

＄
＄

二―

I I I gl becomes a velar nasal between vowels

口

G

G

X

＞ 瞬 _ $B

＞
＞

AG

G
AG

/ / /h/ becomes / sh/ before /i/

H

＞

~s _ I

↑

↑

↑

こ

↑

．． ↑
↑

・

・

d

↑

.

↑

H
F
P
B
M
J
R
W

>

＞

>

＞

>

>

>

>

H
F
P
B
M
y
R
W

％

(J
/ / Prefix Rules

// None

％

/ / Suffix Rules

// None

％

// Vowel Rules

¥
：
'
，
'

’

9

,

9

.

-13 -

/ / These rules convert long vowels into the corresponding short vowels.

I I No distinction is made between [e:] and [ei].

AA
II
uu
EE
EI
00

>

＞

>

＞

＞

>

>

＞

>

＞

>

A
ー

U

E

O

A

A

^

E

U

A

A

0

^

E

U

A

0

％

-14 -

