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Abstract 

Speech research activities at the speech processing department of the ATR Interpreting 

Telephony Research Laboratories are introduced. 

First, speech recognition research activities are summarized as follows: 

(1) Hidden Markov phoneme models have been improved and successfully applied to Japanese 

phrase utterance recognition combined with the LR predictive parser. 

(2) A phoneme segmentation expert based on spectrogram reading knowledge has been 

developed. 

(3)『rime-DelayNeural Networks ('I'DNN) have been applied to phoneme recognition in word 

utterances. 

(4) Speaker adaptation algorithms have been improved using separate vector quantization and 

fuzzy vector quantization. 

Second, the research activities on speech synthesis, voice conversion and noise reduction are 

summarized as follows : 

(1)'I'he speech synthesis system proposed is a synthesis-by-rule based on an optimal selection of 

non-uniform s_ynthesis units which aims at producing natural, high quality speech sounds. 

(2) Voice conversion is a method to change voice individuality. The conversion method proposed 

here is to make use of conventional vector quantization technique. The essential part of this 

technique is to make mapping codebooks between two different speakers for such acoustic 

parameters as spectrum, pitch frequency, and power level. The conversion experiments reveal 

that this method is effective and promissing for the conversion of voice individuality. 

(3) Noise reduction is another technique which the interpreting telephony system should 

incorporate. This is done by a four-layered neural network with the back-propagation learning 

algorithm. The result reveals that the network can indeed learn to perform noise reduction even 

for speech and noise signals that were not part of the training data. 
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I. Speech Recognition Research 

Abstract 

Speech recognition research activities at the ATR Interpreting Telephony Research 

Laboratories are briefly described and summarized as follows: 

(1) Hidden Markov phoneme models have been improved and successfully applied to 

Japanese phrase utterance recognition combined with the LR predictive parser. 

(2) A phoneme segmentation expert based on spectrogram reading knowledge has been 

developed. 

(3)'l'ime-Delay Neural Networks (TDNN) have been applied to phoneme recognition in 

word utterances. 

(4) Speaker adaptation algorithms have been improved using separate vector 

quantization and fuzzy vector quantization. 

1-1. Introduction 

An automatic telephone interpretation system is a facility which enables a person 

speaking in one language to communicate readily by a telephone with someone 

speaking another language. At least three constituent technologies are necessary for 

such a system: speech recognition, machine translation and speech synthesis. 

Moreover, the integrated research of these technologies is also very important. We 

propose the interpreting telephony model shown in Figure I-1-1. In this model, 

language processing is split into a language source model stage and a language 

analysis stage. Our main research targets are fundamental research into speech and 

language processing and integration of speech and language processing technologies to 

show the feasibility of an automatic telephone interpretation system. 

In this paper, we describe speech recognition research efforts in the ATR 

Interpreting Telephony Research Laboratories. Efforts aimed at speaker-dependent 

phoneme recognition and speaker-independent phoneme segmentation have resulted 

in dramatically improved phoneme recognition performance. We are now pursuing 

three approaches: (1) Hidden Markov Model approach for continuous speech 

recognition, (2) Feature-Based approach especially for accurate phoneme 

segmentation, and (3) Neural Network approach for accurate phoneme recognition. 

Research progress is summarized in Sections 2, 3, and 4, respectively. For speaker-

independent speech recognition, a speaker adaptation approach has been undertaken 

using the Vector Quantization and Spectrum Mapping concept, whose research 
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progress is summarized in Section 5. ・All research. has been carried out using a 

Japanese, large..:scale speech database with phoneme transcription developed at ATR. 
Phoneme/ Word/ Phrase Word/ Phrase 
Recognition Results Candidates 

Speech 

Knowledge-
Based Speech 
Recognition 
(Feature-Based 
& Neural Net) 

Voice 
Conversion 

Phoneme /Word I Phrase 
Prediction Linguistic Knowledge 

Figure I-1-1. Proposed Interpreting Telephony Experimental System. 

Translated 
Speech 

1-2. •- -Co;ntlnuous Speech Recognition by Hidden Markov Modeling 

HMM phoneme models have been improved and successfully combined with the LR 

predictiye pfl.rser to r~cognize Japanese phrase utterances. 

1-2.l. Improvement of HMM Phoneme Models [4,111 

The following techniques are introduced and evaluated for discrete HMM phoneme 

recognition[$]. 

(a) Duration control techniques [3], 

(b) Separate vector quantization techniques [11, 

(c) Fuzzy VQ techniques [2]. 

These techniques are evaluated on phoneme recognition in word utterances using 

large-size (2,620 words) and small-size (216 words) training data sets. 

Effective duration control is realized by combining two duration control techniques. 

One is phoneme duration control for each HMM phoneme model and the other is a state 

duration control for each HMM state. Phoneme duration control is carried out by 

weighting HMM output probabilities with phoneme duration histograms obtained 

from training sample statistics. State duration control is realized by state duration 

penalties calculated by modified forward-backward probabilities of training samples. 

Separate .vector quantization (multiple codebook) techniques for HMM phoneme 

recognition are. useful for reducing VQ distortion. In our case, spectral features, 
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spectral dynamic features [61 and energy are quantized separately. In the training 

stage, the output vector probabilities of these three codebooks are estimated 

simultaneously and independently, and in the recognition stage all the output 

probabilities are calculated as a product of the output vector probabilities in these 

codebooks. 

HMM  training procedures are performed using the large-size training data (2,620 

words) set uttered by one male speaker. Recognition experiments for male speakers are 

carried out using another 2,620 word set, which is composed of different words and is 

uttered by the same speaker. Phoneme boundaries are specified accurately by visual 

examination of spectrogram outputs. The phoneme boundary information is used in 

training procedures and also used in recognition experiments to evaluate phoneme 

recognition performance. Improvements in the recognition rates using the large 

training data set are shown in Table I-2-1, where (a) uses a single codebook for spectral 

features and energy, (b) uses duration control techniques with a single codebook, (c) 

uses three separate codebooks for spectral features, spectral dynamic features, and 

energy, and (d) uses duration control techniques with three separate codebooks for 

spectral features, spectral dynamic features, and energy. Duration control and 

separate codebook techniques are effective for HMM phoneme recognition. These 

recognition experiments resulted in a 7.5% improvement from 86.5% to 94.0% in the 

phoneme recognition rate for the average of three speakers using separate codebooks 

~nd duration control techniques. 

TheJuzzy VQ technique is effective for parameter smoothing when the number of 

training samples is insufficient, so this technique is evaluated using the small-size 

training data (216 words) set uttered by a male speaker. The phoneme recognition rate 

is improved by about 7% as shown in Table 1-2-2. 

Table I-2-1. Phoneme Recognition Rates 
for Separate Codebooks and Duration 
Control. (2620 word training set) 

(a) (b) (c) (d) 

PWLR PWLR WLR& WLR& 
DUR DCEP& DCEP& 

speaker 
POW POW 

DUR 

MAU 84.8% 89.8% 93.2% 94.1% 

MHT 90.1% 92.4% 95.2% 95.3% 

MNM 84.5% 88.7% 91.9% 92.7% 

average 86.5% 90.3% 93.4% 94.0% 

Table 1-2-2. Phoneme Recognition 
Performances for Fuzzy VQ. 
(216 word training set, 
male speaker MAU) 

VQ 
Fuzzy 
VQ 

(a) 

PWLR 64.6% 72.1% 

(c) WLR& 
DCEP&POW 70.9% 78.1% 

(d) WLR& 
DCEP&POW 80.9% 

DUR 
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1-2.2. HMM Continuous Speech Recognition Using the LR Parser [7] 

The HMM phoneme models are integrated with the generalized. LR predictive 

parser as shown in Figure 1-2-1. The LR parser was originally developed for use as a 

compiler and extended to handle arbitrary context-free grammar [8]. An LR parser is 

guided by an LR Table automatically created from context-free grammar rules, and 

proceeds left-to-right without backtracking. In the LR parsing mechanism, the next 

parser action (accept, error, shift, or reduce)is determined by looking up the current 

state of the parser and next input symbol in the LR table. This parsing mechanism is 

valid only for symbolic data and cannot have been applied to continuous data such as 

speech. 

・In our approach, the LR Table I-is used to predict the next phoneme in the speech 

input. For phoneme prediction, the grammar terminal symbols are phonemes instead 

of the grammatical category names generally used in natural language processing. 

That is,・a lexicon for the task is embedded in the grammar. The following describes the 

system operation. First, the parser picks up all phonemes which the initial state of the 

LRtable is expecting, and invokes the HMM phoneme models to verify the existence of 

these・expected phonemes. During this time, all possible parsing trees are constructed 

in parallel. The phoneme verifier (HMM phoneme model) receives a probability array, 

which includes end point candidates and their probabilities, and updates it using an 

HMM phoneme probability calculation process (trellis algorithm). This probability 

array is attached to each node of the partial parsingtree. When the highest probability 

'in the・array is below a threshold level, the parsing tree is pruned, and .also pruned by a 

beam searching algorithm. The parsing process stops if the parser detects an accept 

action in the:LR table and the end of an utterance. 

This integration algorithm is applied to Japanese phrase recognition, whose task is 

secretarial service for an international conference. Utterances are uttered phrase by 

phrase. The syntax.of phrases includes a general Japanese syntax structure of phrases, 

whose perplexity per phoneme is about five. Supposing that the average phoneme 

length per word is three, the perplexity of words is more than one hundred. 

The HMM_ phoneme models are trained using 5,240 words. The duration control 

;Parameters are modified. according to the ratio of utterance speed between word 

utterances and phrase utterances. The phrase recognition rate is 83% for 279 phrase 

inputs, as shown in Table I-2-3. 

The integration of the HMM and the LR parser is further developed to deal with 

continuous speech using a word spotting algorithm[211. 

I-3. Phoneme Segmentation Using Spectrogram Reading Knowled.ge [91 

The phoneme segmentation approach by an expert system utilizing the spectrogram 
reading strategy and knowledge used by human experts to read spectrograms is 
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Figure I-2-1. HMM-LR Continuous Speech Recognition System. 

Table I-2-3. Phrase Recognition Experiment Results 

Phrase Recognition Rate 83.2% 

within Top TWO choices 94.3% 

within Top THREE choices 97.1% 

described. The expert system, into which the strategy and knowledge are incorporated, 

detects phonemes in continuous speech and determines their boundaries as well as 

their coarse categories. The system configuration is shown in Figure 1-3-1. 

Since Zue and his colleagues [101 showed that a trained spectrogram reader is able to 

identify phonetic segments in an unknown speech spectrogram with high accuracy, 

several speech recognition systems based on spectrogram reading knowledge have 

been developed. The previous research proved the effectiveness of the experts' 

knowledge of phoneme identification rather than phoneme segmentation. However, 

human experts perform phoneme segmentation and identification simultaneously and, 

as the result, are able to determine the phoneme boundaries as well as their categories, 

with high accuracy. The method proposed here utilizes the experts'strategy and 

knowledge for phoneme segmentation in continuous speech. Phoneme boundaries 

obtained by this system are so accurate that the phonemes can be identified using a 

stochastic or neural network phoneme recognition method [4,12J. 

The expert system is constructed based on the experts'strategy and knowledge 

which can be expressed easily and naturally, as follows: 

(a) The system adopts assumption-based inference, which makes it easy to describe 

segmentation rules depending on phonetic context. These rules are applied 

separately under their own phonetic context hypotheses. Hypotheses which are 

assigned large certainty factors survive. 

(b) Acoustic features are extracted from the spectrogram when they are referred to by 

rules under certain hypotheses. This makes it possible to extract various kinds of 

global and local features. 

(c) Some acoustic features are assigned certainty factors, which makes it possible to 

describe human experts'fuzzy knowledge. Distinct thresholds can be avoided. 
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Knowledge of Japanese phoneme segmentation is incorporated into the system and 

tested using continuously spoken Japanese words. The phoneme boundarie~are 

compared to the boundaries labeled by a spectrogram reader whose results are shown 

in Table I-3-1. The result shows that the system achieves performance equal to human 

experts'. In paticular, boundary alignment error is small, that is, most of the 

boundaries obtained are within 10 msec of the hand labeled boundaries. 
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Figure I-3-1. Phoneme Recognition Expert System Architecture. 

Table I-3-1. Segmentation Results for Unvoiced Fricatives. 

1, 
Word 

Phoneme 
Number of Number of missed boundaries 

set phonemes Left Riaht 

(a) 
Isl 32 1 (3%) 1 (3%) 

216 /sh/ 25 1 (4%) 1 (4%) 
words 

total 57 2 (3.5%} 2 (3.5%} 

(b) Isl 1,086 36 (3.3%) 38 (3.5%) 

5,240 /sh/ 783 21 (2.7%) 25 (3.2%) 
words 

total 1,869 57 {3.0%) 63 (3.4%) 

/，． 

1-4. Phoneme Recognition by Neural Networks [12] 

A number of studies have recently demonstrated that connectionist architectures 
capable of capturing some critical aspects of the dynamic nature of speech can achieve 
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superior recognition performance for small but difficult phoneme discdmination tasks 

[13]. One problem that emerges, however, as we attempt to apply neural network 

mod~ls to the full speech recognition problem, is the problem of scaling. In this section 

we demonstrate that, based on a set of experiments aimed at phoneme recognition, it is 

indeed possible to construct large neural networks by exploiting the hidden structure 

of smaller trained subcomponent networks. A set of successful techniques that bring 

the.design of practical large scale connectionist recognition systems within the reach of 

today's t~chnology is developed. 
For the recognition of phonemes, a four-layer net is constructed. The network is 

trained using the Back-Propagation Learning Procedure. To evalua_te our TDNNs 

(Time-Delay Neural Networks) on all phoneme classes, recognition experiments have 

been carried out for six consonant subclasses found in the Japanese database. For each 

of these classes, TDNNs with a similar architecture is used. A total of six nets aimed at 

the major coarse phonetic classes in Japanese were trained, including voiced stops 

/b,d,g/, voiceless stops /p,t,k/, the nasals /m,n/ and syllabic nasals /N/, fricatives /s,sh,h/ 

and /z/, affricates /ch,ts/, and liquids and glides /r,w,y/. Note, that each net was trained 

only within each respective coarse class and had no notion of phonemes from other 

classes. Table 1-4-1 shows the recognition results for each of these major coarse classes 

including a vowel class. 

To shed light on the question of scaling, we considered the problems of extending our 

networks from the tasks of voiced stop consonant recognition (hence the BDG task) to 

the task of distinguishing among all stop consonants (the BDGPTK-task). Several 

experiments were performed for resolving that problem. As a strategy for the efficient 

construction of larger networks we found the following concepts to be extremely 

effective: modular, incremental learning, class distinctive learning, connectionist glue, 

partial and selective learning and all-net fine tuning. 

One of the techniques is applied to the task of recognizing all consonants 

⑮, d,g,p,t,k,m,~,N,s,sh,h,z,ch,ts,r,w,y/). After completion of the learning run the entire 

net achieves a 95.0% recognition accuracy. All net fine tuning yields 96.0% correct 

consonant recognition over testing data. The TDNN consonant recognition rate of 

96.0% is superior to the HMM rate of 93.8%. 

1-5. Speaker Adaptation by Fuzzy VQ and Spectrum Mapping [14,15,17] 

This section describes an approach to speaker adaptation which is achieved by 

spectral mapping from one speaker to another. This algorithm realizes general speaker 

adaptation which does not depend on speech recognition systems for post-processing. 

Evaluation experiments on HMM and voice conversion [16] have already clarified the 

performance and general applicability. 
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Table I-4-1. TDNN Phoneme Recognition 
Rates within Coarse Classes. 

-task phoneme rec. 
rate 

~` 

b,d,g 98.6 % 
' 

p,t,k 98.7 % 

m,n;N 96.6 % 

s,sh,h,z 99.3 % 

ch,ts 100 % 

r,w;y 99.9 % 
. -

96.7 % coarse classes 

a,i,u,e,o(vowels) 98.6 % 

Table I-4-2. TDNN All Consonant 
Recognition Rate after All-Net 
Fine Tuning. 

Phoneme' 

task 
recognition・ 

rate 

18 consonants 96.0 % -

HMM 93.8 % 

The ,spectrum mapping method is based on the following three ideas. The first is 

accurate representation of input vectors by separate VQ and fuzzy VQ. The second is 

accurate establishment of spectral corre'spondence based on the fuzzy relationship of 

membership function obtained from supervised training procedure by DTW. The third 

is continuous spectral mapping from one speaker to another by fuzzy mapping. In this 

algorithm, the input vector represented by fuzzy membership function is mapped onto 

the target speaker's space by fuzzy mapping theory. This fuzzy mapping allows 

continuous mapping of the input vector onto the target speaker's space. These 

algorithms are evaluated from the viewpoint of spectral distortion. The evaluation 

results are summarized in Figure 1-5-1. 

In the application to HMM, the input vector is represented as the weighted 

combination of fuzzy membership function U五andcodevector. The mapping function 1 

calculated from the correspondence histogram hij is the fuzzy relationship between 

codevecfor:i a.0:d codevector j of each s~eaker, therefore the output probability of HMM 

is calculated as a product of Uai and hij, At the same time, separate vector quantization 

with spectrum, difference spectrum and power term is adopted as the product of each 

output probability. The /b,d,g/ recognition results are shown in Table 1-5-1. 

Evaluation experiments are carried out and the results are as follows: 

(a) Average intra-speaker VQ distortion is reduced by about 28% using fuzzy VQ 

techniques and k-nearest neighbor rule. 

(b)・Inter-speaker mapping distortion is reduced 10% using the fuzzy VQ and fuzzy 

continuous mapping technique rather than the conventional technique. 

(c) The number of training words required for finding correspondence is reduced from 

100 to 30. 
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(d) Phoneme recognition experiments on the /b,d,g/ task by HMM were carried out. The 

recognition rate for the /b,d,g/ task is 78% on average. Improvement of about 27% in 

the rec~gnition rate is accomplished. 

Phoneme recognition experiments on the TDNN neural networks through the 

speaker adaptation algorithms are being carried out. 

Table I-5-1. /b,d,g/ Recognition Rates by 
HMM Speaker Adaptation, whicμis the 
average of male to male and male to female. 

Inter-Speaker Distortion ． ． ． ． 
疇． 

•. Separate VQ ． ． ． ． ． •. ． ． 
• 

••••••••••• 

0.30 

0.28 

0.26 

. 0.24 

0.22 

0.20 

Separate VQ & 

FuzzyVQ 

O 25 so 75 

Number of learning words 

Figure 1-5-1. Speaker Adaptation 
Algorithm Evaluation by Spectral 
Distortion. 

Method 
Recognition 
Rate(%) 

without adaptation 51.7 

Mapped Codebook 1221 66.4 
~ ~ 

Fuzzy Mapping (231 72.1 

Fuzzy Mapping + SPVQ 73.2 

Fuzzy Mapping + SPVQ + FZVQ 75.7 

Fuzzy Mapping + SPVQD + FZVQ 78.1 

100 SPVQ: Separate vector quantization with spectrum 
and power term 

SPVQD: Separate vector quantization with 
spectrum and power and difference 
spectrum term 

FZVQ: Fuzzy vector quantization 

1-6. Summary 

Speech recognition research activities at ATR were summarized. In addition to the 

above research activities, the following research activities have also been carried out. 

(1) Wprd categ:ory prediction by N-gram neural networks [181. 

(2) English word recognition by HMM phoneme models. 

(3) Phoneme spotting by TDNN neural networks [20]. 

(4) Fast back-propagation algorithm for neural networks in speech [19]. 

(5) Continuous speech recognition rising HMM word spotting and LR parser [21]. 

We are focusing our speech research on the speech recognition research itself and 

the integration with language processing to show the possibility of an automatic 

telephone interpretation system. Moreover, international research collaboration to 

handle many languages is needed to develop automatic telephone interpretation 

technologies. 
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II. Speech Synthesis, Voice Conversion, and Noise 
Research 

Abstract 

Reduction 

The outline of studies on speech synthesis, voice conversion and noise reduction 

which are now being conducted at ATR are described. The speech synthesis system 

proposed is a synthesis-by-rule based on an optimal selection of non-uniform,synthesis 

units which aims at producing natural, high quality speech sounds. Voice conversion is 

a method to change voice individuality. The conversion method proposed here is to 

make use of conventional vector quantization technique. The essential part of this 

technique is to make mapping codebooks between two different speakers for such 

acoustic parameters as spectrum, pitch frequency, and power level. The conversion 

experiments reveal that this method is effective and promissing for the conversion of 

voice individuality. Noise reduction is another technique which the interpreting 

telephony system should incorporate. This is done by a four-layered neural network 

with the back~propagation learning algorithm. The result reveals that the network 

can indeed learn to perform noise reduction even for speech and noise signals that were 

not part of the training data. 

11-1. Introduction 

Since the foundation of ATR in 1986, we have been conducting basic research in 

speech recognition and speech synthesis which are parts of an automatic interpreting 

telephony system we are trying to develop. The final goal of the system is to enable 

people speaking different languages to communicate smoothly by telephone. To 

achieve this goal, three basic research should be taken into consideration: (1) speech 

recognition, (2) machine translation, and (3) speech synthesis. Since telephone 

conversation must be dealt with by this system, speech recognition must recognize 

continuous speech speaker-independently. After the speech recognition is completed, 

machine translation will follow.・Difficulties of translation lie in the fact that we have 

to translate spoken dialogue not written language. The output of machine translation 

which is a sequence of symbols of another language is the input to the text-to-speech 

system to produce speech sounds at the・other telephone. This paper outlines the speech 

synthesis, voice conversion, and noise reduction research that is now being conducted 

atATR. 

Speech synthesis is done by a synthesis-by-rule using non-uniform synthesis 

units which aim at producing high-quality, natural sounding speech. Based on a large-

scale speech database, an entry dictionary for non-uniform speech units is compiled. 

According to the input phoneme sequences, speech units are selected optimally from 

11 
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the'entry dictionary based on some measure of appropriateness; Any speech se;gments 

that correspond to phoneme substrings of the given set can be used as unit-templates 

from the dictionary. Statistical properties of phoneme sequences are also analyzed 

using a word dictionary and a text database to estimate the amount of speech dat!l, that 

.:;overs ali likely phoneme sequences necessary to produce Japanese sentences, 

Voice conversion is a technique that can give the output speech from a computer 

speech individuality. With this method, we aim to produce speech sounds th~t mimic 

the original speaker's voice. The basicidea of this technique is to make use of speaker 

adaptation by vector quantization to make a speaker-dependent speech recognition 

system to be a speaker-independent. Codebooks for both spectrum and pitch frequency 

pai:ameters are made separately for different speakers using a set of learning words. 

Thea, based on the histogram, mapping codebooks which represent the _correspondence 

betweep the codeboo½.s of different. speakers are made. Use. of a listening test to 

ev,aluate this technique is also discussed. 

Noise reduction study has been conducted here using a method different from the 

conventional one, namely, using a neural network. A four-layered feed-forward 

network is trained with the back propagation algorithm using a set of training samples 

to realize a mapping from noisy signals to noise-free signals. Giving the noisy speech 

waveforms directly to the input layer and the noise-free signals to the output layer for 

training, the network has been shown to learn to perform noise reduction. Analysis 

has been made to examine how the noisy signals are processed at each layer. The 

performance of noise reduction has also been discussed. 

II-2. Speech Database 
For the multiple purposes of speech research, a large-scale speech database is now 

under construction in ATR.[1]-[9] It consists of (1) a word database, (2) a continuous 

spe~ch database. The word database contains 5,240 common Japanese words selected 

from a dictionary and the continuous speech database is a set of 503 phon~tically 

balanced sh9rt_sentences. Fine a~oustic-phonetic transcriptions are made in five 

differe1;1t layers. Professional announcers'speech sounds were collected first and 

databases for fifteen speakers, eight males and seven females, have been completed so 

far .. A database management system has also been developed to handle the database 
easily and efficiently. Efforts are now being made to extend the. database to include 

non-professional speakers. 

II-3. Spfech Synthesis 

In this paper, we propose a synthesis scheme that provides an efficient selection of 

speech segments in a given speech data set according to an input phoneme string(2). 

12 
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<Any,speech segments corresponding to phoneme substringsofthe givenset:ca.ri.::b~d.1.sed 

as unit templates with their contextual information. The statistical; properties of 

・phoneme sequences are analyzed using a Japanese word dictionary and a text database 

to esti:m:ate the,desired amount of speech-data that might provide sufficient coverage of 

,:;i.H likely :phoneme sequences in Japanese. 

;JJ,.3.:i. 0Rtline of SpeechSynthesis Scheme 

. , , ・','・Figure 11-3 :1. shows a flow diagram of the speech synthesis schenie:focusing on its 

unit template selection part. Speech synthesis is carried out as follows: 

;、

、,.,'''

>'.'''''' 
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Figure II~3.1 Outline of the synthesis sc4eme using 
non-uniform uni ts 
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・(1) For an arbitrary input phoneme string, all phoneme substrings _in each breath 

group are listed. 

(2) After the search of the synthesis unit entry (SUE) dictionary, phoneme 

substrings found in the dictionary are collected in the form of a unit entry lattice. 

(3) As each synthesis unit entry in the lattice can be extracted from multiple speech 

samples, only a few templates are selected in each unit entry for an efficient search 

for the most preferable unit template sequence. Comparison of the contextual 

similarities between speech samples having this entry and the corresponding 

portion in the input string reduces the・number of all 

possible templates to a small set of suitable candidates. 

(4) In the unit template lattice, the most preferable unit template sequence is 

selected mainly evaluating the continuities between unit templates. 

(5) The selected by template portions are extracted from the speech samples in the 

segment file. After being lengthened or shortened according to the segmental 

duration calculated by the prosody control module, they are concatenated. A 

synthesizer is driven using the spectral parameters and the source characteristics 

generated by th~prosody control module. 

II-3.2 The Synthesis Unit Entry Dictionary 

The SUE dictfonary is made by sorting and merging all phoneme sub-sequences 

contain_ed in all the available speech data. Table II-3.1 shows the size of a SUE 

dictionary using 5,240 words to generate the entry lattice. In a SUE dictionary, all 

entries are ordered according to their phoneme length in a tree-structured format 

which allows the quick generation of entry and template lattices for an input phoneme 

string. Each entry in the dictionary contains the following information. 

Table I-3.1 Number of entries and templares in the SUE dictionary 

PHONEME NUMBER NUMBER PHONEME NUMBER NUMBER 
STRING OF OF STRING OF OF 
LENGTH ENTRIES TEMPLATES LENGTH ENTRIES TEMPLATES 

1 43 29974 7 2084 2210 

2 327 24734 8 890 908 

3 2138 19498 ， 275 278 

4 5497 14328 10 100 100 

5 6513 9396 11 19 19 

6 4539 5226 12 2 2 
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(1) The total number of branch entries. 

, : (:2)-The address of branch entries. 

.Speech Synthesis ,.,etc;. 

ず・ し夕., - "ク'"" 

,(3,):Thetoialnumberofspeech templatesthatcontaintheentry .. ・- . ・, , . -1.,. 

C4)Addresses ofspeech templatesihat contain the entry. . . . , , . _: : . 1 誓; ;. 

• , . -Using the:S.UE dictionary, an entry lattic.e. is automatically・_made-b;y .s~~rc4{1;1g 

:for th~elongestright-matching entry for each phoneme position in the.jnput ph0ne:m;e 
-strmg,・, ・ 

．，、．，． ,. r>・; ・ 

11-3.3 Optimal Selection of the;UnitTemplate Sequence • : ・.. . , .・ ~', •• ,:--• 

In the concatenation type synthesis system, discontinuities between units 

introduce speech quality degradation; To decrease such degradatioa" a unit template 

sequence 1s selected using the followmg criteria: 

、{1)Conservation -of consonant-vowel transitions. The concate.nation at C-V 

bounda:rd;es, especiallyjfit is not continuant, is highly penalized. ・. -. • i . , , , • 

(2) Conservation of vocalic. sound succession. Concatenation. at ,inter-Vocalic 

boundaries is also penalized. 

(3) Long unit preference. Since any concatenation degrades the resulting speech 

quality, units should be as long as possible. 

(4) Template overlap. The greater the overlap betwe~n selected units・that make up 

the synthesized utterance, the smaller the resulting disc.onti:11uitfes; --To, rri1nimize 

tμ,e! discontinuities, we try to maximize the overlap by evaluating the fit to the left 

and dght of a candidate unit. 

'; A<fo?tdin,g tp th~:se :cri,teria; theresis'a tendency for preferential selection of long 

unit templates followed by Voiceless consonants if'their:combina~ion exists in the input 

phoneme string. For example, the string /hanagasakidashita/ could be realized by 

the following template sequence: I担旦些anashii/+Ina胆sa/十/mura延 ki/+

/hikidashi/ + /ashita/. 

11-3.4 Control of Prosody 

We are~ryi,n_g_t? find rules for prosodic control to improve "naturalness". Prosodic 

characteristics.have been investigated for words uttered in sevendifferent ways: fast, 

normal, slow, loud, weak, high, and low.[lOJ Their prosodic parameters, pitch 

(re.quency (Fo), p9vver,and segmental duration, were compared. _T~e 1'.esults reyeal 

that there is a strong correlation between Fo and power, and a.difference i,n Fo patt~rns 

betweErn, speaking ,styles. Fo _pattern shows systematical changes as the :speaking style 

changes. Estimation of the Fo control parameter has been. made to. realiz,e-,these 

tende:nGies in.speech synthesis-by rule system. 
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II-4. Voice Conversion 

Speech individuality generally consists of two major factors: acoustic features 

and prosodic features. ・As the・first step in this research, we are trying to control 

acoustic features. In this paper; we propose a new voice conversion technique without 

・separatint:r these acoustic parametersJll]-[13] The basic idea of this technique is to 

make use of codebooks .for several acou・stic parameters. These codebooks ca,rry all 

information about the speech individuality in terms of the varying acoustic features; A 

conversion of acoustic features from one speaker to another is, therefore, reduced to the 

problem of mapping the codebooks of the two speakers. 

U-4.1¥oice Conversion through Vector Quantization 

1) Learning Step 

; ・The-mapping codebooks are codebooks that describe a mapping function between 

the vector spaces of two speakers. The block diagram in Figure 11-4.1 illustrates how a 

mapping codebook for spectrum parameters is generated. 

learning words for 
speaker A 

cocleboqk 
1→ 1 generation 

learning words for 
speaker B 

codebook of speaker A 

vector 
quantization 

codebook of speaker B 

(A→ B) map'ping codebook 

make a 
hfstogram 

~igure II-4~1 Method of generating a mapping codebook 

(1) Two·speak~rs, A and B, pronounce 1earnfog words. Then, all words are vector-

quantized frame by frame. 
(2) The・correspondence between vectors of the same words from the two speakers is 

determined usihg dynamic time warping (DTW). 

(3) The vector correspondences between two speakers are calculated・as histograms. 
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(4) Using each histogram as a weighting function, .the mapping codebook is defined 

as a linear combination of speaker B's vectors. 

(5) Steps 2, 3 and 4 arE: repeated to refine the mapping codebook.. 

Mapping codebooks・for pitch frequencies and power values are also generated 

because these parameters con.tribute a-great deal to .speech individuality. These 

mapping codebook~are generated at:the same time using. almost the same procedure 

mentioned above.'..'.The d~fferenees·are: 1) pitch'frequencies and power values are 
scalar-quantized, 2) the mapping codebook for pitch frequency is defined based on the 

maximum occurrence in the histogram. 

2) Cohversiori=-Synthesis Step・ ・' 

As shown in Figure II-4.2, after the LPC anaysis of·speak~r A's speech~the 

~~ifottti血pftch. pa:rameterg~re·vector/scalar quantized• using his/her cdd~booJL'Then, 

的tit証sisis ccatr1ecl out by decoding usfog mapping codebooks-between speakers Aan'd 
B'. The 6utputspeech will have the voice individuality of speaker B. . ·•-· ・. ・:, , 
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Figure II-4.2 Block diagram ofvoice conversion from speaker A to:speaker B 

r
こ

11-4.~Conversion Expernnents 

To. ;~vaJu:3-te the pexformance_ of the conversion techniqu.e, dr:;;t9rtio:Q. 

:m.ea~~rerne.nts w~r~carried out on tqe spectrum paramet~rs and pitcl,i fr~qll~ll~ies,

Table_II-14.1 sho:ws the re~ults of the open test. After vector-quantization, t-yvo kind~of 

~pec~rum distortions between two speech samples were calculated; betwe,en t4r ,input 

3:n,d target speaker's, and b~tween the converted speech and the target. s_peak町s

speech .. Jn the fem~le-to-female conversion, t_he distortion decreased by 27% compared 
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_,y,, Table II-4.1 -Snectrum,distortion before and after conversion 
・・. before after 

speaker combination convers． ion convers． ion 

female 1→ female 2 0.2759 0.2109 
...'" ・ヽ.

"" 

female 1→ fl;!male 3 0.2070 0.1489 

,male 1→ male2 0.3364 0.1717 
C _, 

male1→ male.3 0.2851 0.1550 

male 1→ female 1 0.6084 0.2193 .,. ， ";  

to the non-conversion, in the male-to-male conversion by 49%, and in the male-to-

fem~le consersion by 66%. 
Pitch freq1,1ency,co~version was also carried out through the sa!JJ;e _process. 

Ac.corqing t~ 長the_result,、69words are considered sufficient for making a mappi~g 
codebook for pitch frequency regardless of speaker combinations, and th_e average pitch 

frequency are less than 15Hz. 

11-4.3 Evaluation by Hearing Test 

To eva~~ate ,th,e overall performance of this technique, three kinds of hearing 
tests were carri~dout. Because of the limitations on paper.length, we present here only 

the results of one experiment, the male-to-female conversion. The experiment was 

done using a pafr.:・co:mparison h~aring test.・・In addit,ion to fully converted speech, 

conversion wJs alsc>,: done for pitch and spectrum parameters sep3:rately in order to 

examine their contribution to speech individuality. The following is a list of 5 different 

speech conversions performed in this experiment. 

(1) Vector-quantized original male speech (m) 

(2) Male-to-、femaleconverted speech; pitch frequency conversion only (mp-fp) 

(3) Male-to-:female converted speech; spectrum conversion only (ms-fs) 

(4) Male-to-female converted speech on all parameters (m-f) 

(5}Veotor-quantized original female speech, the target for theconversio11s (f) 

Stimulus pairs were presented to listeners through a loud-speaker in a sound-

proof room. Twelve participants in the experiment were asked to rate the similarity for 

each pair on five categories: "similar","slightly similar","difficult to decide","slightly 

dissiinilar'',"dissim_ilar~;, Hayashi's forth method of quantification was applied to the 

experiment'data of the hearing test. This method places stimuli on a two-dimensional 

space'according to the・similarities between every two stimuli. The projection ont6 a 

tWo-_dimensional space is shown in Figure 11-4.3 which represents the'relative 

sirtlilarity-di~tance between stimuli. In this figure, converted speech "m→ r・fsmost 

clbsely placed to the・speech "I''. This indicates that the male speech was・properly 
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converted to the target female speech by this.technique. Judging・fr.om the0positior1s-0f 

'"mp~fp" and''ms→ fs", it is observed that the first and.second axes roughly~orrespond 
ふ'topitch,fr.equency and s'pectrum differences; respectively.,,The・result. indicates"tli'.at 

neither pitch ,frequency nor spectrum carries enough information ahout .speech 

:dndividu:ality; and that.both are necessary. ・、．：

t‘ ．．
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Figure II-4.3 Distribution of psychological distances 
in the male-to-female voice conversion 
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✓11 ... 5; :Ndise0Red¥J.ctiun. 芍’~ ,ヽ,

べ,, ,. : -We .propose・a'new noise reduction method using connectionist modelsJ14Hl~J 

Noise reduction can be viewed as a mapping from a set of noisy signals to a set of noise-

free signals. Connectionist models are attractive for such mapping for the following 

reasons. 

(l); An・arbitrary decision surface can be formed in a multi-layered confiectionist 

-n,etwork. Any complex mapping from the: set of noisy speech signals to the set of 

,,. ・''.noise-free s·peech·signalscan~in principle, be realized. 

_ :.,(-2)Sjmple・Iearning algorithms exist to construct a suitable mapping function・. 

, ,; .(3) Connectionist networks have attractive generalizing properties. —い

• ¥. In the following, we first describe a connectionist model for mapping noisy to nbise-

F'. ・free 0speech signals and then show the effectiveness of this approach'by corii:pu-ter 

・,, ・.ex-per1ments嘩・.

,c, ,,; , .. ,,. 

,JI-'5.1 Network Architecture 

.ヽ.'.... "'、 9

ヽr, 
4. 

，
 

，
 

，り¥,

ぶ,, , A/our-layer feed-forward network was chosen for the architecture・because it:can.', 

in principle, realize any mapping function. Each layer has 60 units・a'nd<is fully 
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-~Jnterconn;ected·with)ts next higher layer・as shown in, Figure, 11-5.1. The network's 

:;state,-by way of each-unifs output, is updated synchronously on.each layer.and signals 

, flow,upward from the input layer to the.output la.yen .. For the network: to.use: as:much 

informationabout:speech and noise as, possible., the input and・output of,the, _ 

network is given by the waveform itself, the. units on,the output and input,la:yers are 

all linear units, i.e., are not passed though a non-linear output function. A unit 

Output layer Q Q _~ • Q .、
Hidden 

Input layer 

Figure II-5.1 Network for 
noise reduction 

邑一

w(j, i") ・
j-th unit 

J-th unit's output= f(~w (j,i)o(i) + 0(j)), 
where 
飼=1/(l+exp(-x)) is the sigmoid function, 

0(j),the bias value of j-th unit and w(j,i), 
the link weight from the i-th unit to the 
j-th unit 

Figure 11-5.2 Property of 
an element 

element is one of many simple processors that make up the network. It first computes 
the weighted sum of all its inputs (including a bias input) and then℃ leforn1s this sum by 

passing it through a nonlinear function, in our case the sigmoid function.・as ,shown in 

Figurell-:5.2., 

しふ

11-5.2 Network Learning 

，ら Asubset of 216 phoneme balanced words from this database,was,used for our 

'EP{pe,rim-ents;'Cortlputer,room noise was chosen as non-stationary noise. Noisy speech 

data was generated artificially by adding the computer room noise to tp.e sp'eech data. 

The resulting S/N,,ratio w,as about -20.db. During this phase, the back-propagation 

learning procedure ,repeat~dly adjusts the network's internal link,wei•ghts in an 

i1tt~IJ1pt to fJ.)ld.., .~ill: optim.aJ "rria,pping between noisy and noise-free signals. • Using the 

, w,ayeforms. ofthe 2:t.6 phoneme-balanced. words as the.target output and their-noise 

added versions as the training input, the network scans each training utterance from 

beginning to end at a rate of 60 data points per input frame. When the network reaches 

the end of the training data, it returns to the beginning for additional learning passes. 

1Jhis ,procedu咋 is.repeated until the network's squared .error rate converges to a 

sufficiently srn~ll value. 
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non-uniform synthesis units which will be optimally selected from the entry dictionary 

compiled from a large-scale Japanese speech database. Voice conversion is another 

technique to give the synthetic speech voice individuality.・Using mapping codebooks 

through vector quantization, it is possible to convert the speech of one speaker to that 

of another quite well. Noise reduction is conducted by a four-layered neural network 

giving speech waveforms directly to the network for learning. The network can learn to 

perform noise reduction even for unknown speech signals. 
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