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Abstract
Speech research activities at the speech processing department of the ATR Interpretlng
' Telephony Research Laboratories are introduced.
First, speech recognition research activities are summarized as follows :

‘(1) Hidden Markov phoneme models have been improved and successfully apphed to Japanese :
phrase utterance recognition combined with the LR predictive parser.

(2) A phoneme segmentation expert based on spectrogram reading knowledge has been
developed.

-(.3)' Time-Delay Neural Networks (I'DNN) have been applied to phoneme recognition in word
utterances.

(4) Speaker édaptation algorithms have been improved using separate vector quantization and
fuzzy vector quantization.

.Second, the research activities on speech synthesis, voice conversion and noise reduction‘,are

summarized as follows :

_(1) The speech synthesis system proposed is a synthesis-by-rule based on an optimal selection of
" non-uniform synthesis units which aims at producing natural, high quallty speech sounds.
(2) Voice conversion is a method to change voice individuality. The conversion method proposed
here is to make use of conventional vector quantization technique. The essential part of this
technique is to make mapping codebooks between two different speakers for such acoustic
" parameters as spectrum, pitch fréquency, and power level. The conversion experiments reveal
that this method is effective and promissing for the conversion of voice individuality.
(3) Noise reduction is another technique which the interpreting telephony system should
' incorporate. This is done by a four-layered neural network with the back-propagation learning
algorithm. The result reveals that the network can indeed learn to perform noise reduction even
for speech and noise signals that were not part of the training data.
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I. Speech Recognition Research

Abstract ,

Speech recognition research activities at the ATR Interpreting Telephony Research
Laboratories are briefly described and summarized as follows: _
(1) Hidden Markov phoneme models have been improved and successfully applied to
Japanese phrase utterance recognition combined with the LR predictive parser.
(2) A phoneme segmentatlon expert based on spectrogram readlng knowledge has been
developed.
(3) Time-Delay Neural N etworks (TDNN) have been apphed to phoneme recognition in
word utterances.
(4) Speaker adaptation algorithms have been improved using separate vector
quantization and fuzzy vector quantization. ‘

I-1. Introduction

An automatic-telephone interpretation system is a facility which enables a person
speaking in one language to communicate readily by a telephone with someone
speaking another language. At least three constituent technologies are necessary for
such a system: speech recognition, machine translation and speech synthesis.
Moreover, the integrated research of these technologies is also very important. We
propose the interpreting telephony model shown in Figure I-1-1. In this model,
language processing is split into a language source model stage and a language
analysis stage. Our main research targets are fundamental research into speech and
language processing and integration of speech and language processing technologles to
show the feasibility of an automatic telephone interpretation system.

In this paper, we describe speech recognition research efforts in the ATR
Interpreting Telephony Research Laboratories. Efforts aimed at speaker-dependent
phoneme recognition and speaker-independent phoneme segmentation have resulted
in dramatically improved phoneme recognition performance. We are now pursuing
three approaches: (1) Hidden Markov Model approach for continuous speech
recognition, (2) Feature-Based approach especially for accurate phoneme
segmentation, and (3) Neural Network approach for accurate phoneme recognition.
Research progress is summarized in Sections 2, 3, and 4, respectively. For speaker-
independent speech recognition, a speaker adaptation approach has been undertaken
using the Vector Quantization and Spectrum Mapping concept, whose research
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progress is summarized in Section 5. All research has been carried out using a
Japanese, large-scale speech database with phoneme transcription developed at ATR.
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FigureI-1-1. Proposed Interpreting Telephony Experimental System.

I-2. . Continuous Speech Recognition by Hidden Markov Modeling
. - HMM phoneme models have been improved and successfully combined with the LR

predictive parser to recognize Japanese phrase utterances.

1-2.1. Improvement of HMM Phoneme Models [4,11]
‘The following techniques are introduced and evaluated for discrete HMM phoneme
récognition 5l :
(a). Duration control techniques [3],
(b) Separate vector quantization techniques 1],
(c) Fuzzy VQ techniquesi2l.. -
These techniques -are evaluated on phoneme recognition in word utterances using
large-size (2,620 words) and small-size (216 words) training data sets. -

.- Effective duration control is realized by combining two duration control techniques.
One is phoneme duration control for each HMM phoneme model and the other is a state
duration control for each. HMM state. Phoneme duration control is carried out by
weighting HMM output probabilities with phoneme duration histograms obtained
from training sample statistics. State duration control is realized by state duration
penalties calculated by modified forward-backward probabilities of training samples.

Separate vector quantization (multiple codebook) techniques for HMM phoneme
recognition are useful for reducing VQ distortion. In our case, spectral features,



Recognition

spectral dynamic features [6] and energy are quantized separately. In the training
stage, the output vector probabilities of these three codebooks are estimated
simultaneously and independently, and in the recognition stage all the output
probabilities are calculated as a product of the.output vector probabilities in these
codebooks. : D

HMM training procedures are performed using the large-size training data (2,620
words) set uttered by one male speaker. Recognition experiments for male speakers are
carried out using another 2,620 word set, which is composed of different words and is
uttered by the same speaker. Phoneme boundaries are specified accurately by visual
examination of spectrogram outputs. The phoneme boundary information is used in
training procedures and also used in recognition experiments to evaluate phoneme
‘recognition performance. Improvements in the recognition rates using the large
training data set are shown in Table I-2-1, where (a) uses a single codebook for Spectral
features and energy, (b) uses duration control techniques with a single codebook, (c)
uses three separate codebooks for spectral features, spectral dynamic features, ‘and
“energy, and (d) uses duration control techniques with three separate codebooks for:
spectral features, spectral dynamic features, and energy. Duration control and
separate codebook techniques are effective for HMM phoneme recognition. These
recognition experiments resulted in a 7.5% improvement from 86.5% to 94.0% in the
phoneme recognition rate for the average of three speakers using separate codebooks
‘and duration control techniques.

Thefuzzy VQ technique is effective for parameter smoothing when the number of
training samples is insufficient, so this technique is evaluated using the small-size
training data (216 words) set uttered by a male speaker. The phoneme recognition rate
is improved by about 7% as shown in Table I-2-2. o
“Table I-2-1. Phoneme Recognition Rates = Table I-2-2. Phoneme Recognition

.. for Separate Codebooks and Duration . ; Performances for Fuzzy VQ.
Control (2620 word tralnlng set) (216 word training set,
’ male speaker MAU)
@ | b | ( (d) _. 7
PWLR | PWLR | WLR& | WLR& || o vQ ;lfzzy
DUR |DCEP& | DCEP& ' Q
ler POW | POW (a) '
| Speaxer - | pur PWLR 64.6% 72.1% -
MAU |84.8%|89.8%| 93.2% | 94.1% || (c) wLre | |
MHT |90.1% [92.4% | 95.2% | 95.39, || DCEPEPOW | 70.9% | 78.1%
MNM | 84.5% | 88.7% | 91.9% | 92.7% || (@) WLR&
DCEP&POW - 80.9%

average | 86.5% [ 90.3%{ 93.4% | 94.0% DUR
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‘1-2.2.. HMM Continuous Speech Recognition Using the LR Parser[7] -
. The HMM phoneme models are integrated with the generalized LR predictive |
~parser as shown in Figure I-2-1. The LR parser was originally developed for use as a
compiler and extended to handle arbitrary context-free grammar [8). An LR parser is
guided by an LR Table automatically created from context-free grammar rules, and
proceeds left-to-right without backtracking. In the LR parsing mechanism, the next
parser action (accept, error, shift, or reduce) is determined by looking up the current
state of the parser and next input symbol in the LR table. This parsing mechanism is
valid only for symbolic data and cannot have been applied to continuous data such as
‘speech, ' o

" In-our approach, the LR Table I-is used to predlct the next phoneme in the speech
input. For phoneme prediction, the grammar terminal symbols are phonemes instead
of the grammatical category names generally used in natural language processing.
That is; a lexicon for the task is embedded in the grammar. The following describes the
‘system operation. First, the parser picks up all phonemes which the initial state of the
‘LR table is expecting, and invokes the HMM phoneme models to verify the existence of
these expected phonemes. During this time, all possible parsing trees are constructed
in-parallel. The phoneme verifier (HMM phoneme model) receives a probability array,
which includes end point candidates and their probabilities, and updates.it using an
HMM phoneme probability calculation process (trellis algorithm). This probability
array is attached to each node of the partial parsing tree. When the highest probability
‘in the'array is below a threshold level, the parsing tree is pruned, and also pruned by a
beam searching algorithm. The parsing process stops. if the parser detects an accept
action in the LR table and the end of an utterance.

This integration algorithm is applied to Japanese phrase recognition, whose task is
secretarial . serv1ce for-an international conference Utterances are uttered phrase by
phrase. The syntax of phrases includes a general J apanese syntax structure of phrases,
whose perplex1ty per phoneme is about five. Supposmg that the average phoneme
Iength per word is three, the perplexity of words is more than one hundred.

The HMM phoneme models are trained using 5,240 words. The duration control
;parameters are modified. according to the ratio of utterance speed between word
{utterances and phrase utterances The phrase recognltlon rate is 83% for 279 phrase
inputs, as shown in Table I-2-3.

The integration of the HMM and the LR parser is further developed to deal with
.continuous speech using a word spotting algorlthm[zl]

}I-3. Phoneme Segmentation Using Sp‘ectrogram Reading Knowledg'e [9] .
The phonemé segmentation approach by an expert system utilizing the spectrogram
reading strategy and knowledge used by human experts to read spectrograms is
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Fi gure I-2-1. HMM-LR Continuous Speech Recognition System.
Table I-2-3. Phrase Recognition Experiment Results

Phrase Recognition Rate 832%
e withinTop TWO choices o 94.3 %
within Top THREE choices 97.1 %

descrlbed The expert system into which the strategy and knowledge are 1ncorporated

detects phonemes in continuous speech and determines. their boundaries as well as

their coarse categories. The system configuration is shown in Figure I-3-1.

Since Zue and his colleagues [10] showed that a trained spectrogram reader is able to
identify phonetic segments in an unknown speech spectrogram with high dcecuracy,
several speech recognition systems based on spectrogram reading knowledge have
been developed The previous research proved the effectiveness of the experts'
knowledge of phoneme identification rather than phoneme segmentation. However,
human experts perform phoneme segmentation and identification simultaneously and,
as the result, are able to determine the phoneme boundaries as well as their categories,
with high accuracy. The method proposed here utilizes the experts' strategy and
knowledgefor phoneme segmentation in continuous speech. Phoneme boundaries
obtained by this system are so accurate that the phonemes can be identified using a
stochastic or neural network phoneme recognition method [4,12]. |

The eXpert system is constructed based on the experts' strategy and knowledge
which can be expressed easily and naturally, as follows:

(a) The system adopts assumption-based inference, which makes it easy to describe
segmentation rules depending on phonetic context. These rules are applied
separately under their own phonetie context hypotheses. Hypotheses which are
assigned large certainty factors survive.

(b) Acoustic features are extracted from the spectrogram when they are referred to by
rules under certain hypotheses. This makes it possible to extract various kinds of
global and local features. ' | .

(c) Some acoustic features are ass1gned certainty factors, which makes it possible to
describe human experts' fuzzy knowledge. Distinct thresholds can be avoided.
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Knowledge of Japanese phoneme segmentation is incorporated into the system and
tested using contlnuously spoken Japanese words. The phoneme boundaries are
compared to-the boundaries labeled by a spectrogram reader whose results are shown
in Table I-3-1. The result shows that the system achieves performance equal to human
experts’. In patlcular boundary al1gnment error is small, that is, most of the

boundarles obtained are w1th1n 10 msec of the hand labeled boundarles
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' »Figyure I-3-1. Phoneme Recognition Expert System Architecture.

Table I-3-1. Segmentation Results for Unvoiced Fricatives.

}} word | Number of [Number of missed boundaries|
o] et oneme | phonemes Left Right
(é)‘ s/ 32 1 (3%) 1 (3%)
216 /sh/ 25 1 (4%) 1 (4%)
words +
total 57 2 (35%)| 2 (35%)]
(b) /s/ 1,086 36 (3.3%) 38 (3.5%)
5,240 - /shy/ 783 21 (2.7%) | 25 (3.2%)
words -
: “total - 1,869 57 (3.0%) 63 (3.4%)

I-4.

. A number of studies have recently demonstrated that connectlonlst archltectures
capable of capturlng some critical aspects of the dynamic nature of speech can achleve

Phoneme Reéognition by Neural Networks [12]
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superlor recogmtlon performance for small but difficult phoneme discrimination tasks
[13l. One problem that emerges, however, as we attempt to apply neural network
models to the full speech recognition problem, is the problem of scaling. In this section
: We demonstrate that, based on a set of experiments aimed at phoneme recognition, it is
i}hdeed possible to construct large neural networks by exploiting the hidden structure
of smaller trained subcomponent networks. A set of successful techniques that bring
the design of practical large scale connectionist recognition systems within the reach of
today's techhology is developed. ‘ |

For the recognition of phonemes, a four-layer net is constructed. The network is

trained us1ng the Back-Propagation Learning Procedure. To evaluate our TDNNs
(Time- Delay Neural Networks) on all phoneme classes, recognition experiments have
been carried out for six consonant subclasses found in the Japanese d,atabase. For each
of these classes, TDNNs with a similar architecture is used. ‘A total of six nets aimed at
the major coarse phonetic classes in Japanese were trained, including voiced stops
/b,d,g/, voiceless stops /p,t,k/, the nasals /m,n/ and syllabic nasals /N/, fricatives /s,sh,h/
-and /z/, affricates /ch,ts/, and liquids and glides /r,w,y/ . Note, that each net was trained
only within each respective coarse class and had no notion of phonemes from other
classes. Table I-4-1 shows the recognition results for each of these major coarse classes
including a vowel class. ;
- 'To shed light on the question of scaling, we considered the problems of extending our
networks from the tasks of voiced stop consonant recognition (hence the BDG task) to
the task of distinguishing among all stop consonants (the BDGPTK-task). Several
experiments were performed for resolving that problem. As a strategy for the efficient
construction of larger networks we found the following concepts to be extremely
effective: modular, incremental learning, class distinctive learning, connectionist glue,
partial and selective learning and all-net fine tuning.

One of the techniques is applied to the task of recognizing all consonants
(/b,d,g,p,t,k,m,h,N,s,sh,h,z,ch,ts,r,w,y/). After completion of the learning run the entire
net achieves a 95.0% recognition accuracy. All net fine tuning yields 96.0% correct
consonant recognition over testing data. The TDNN consonant recognition rate of
96.0% is superior to the HMM rate of 93.8%. ’

1-5. Speaker Adaptation by Fuzzy VQ and Spectrum Mapping [14,15,17]

This section describes an approach to speaker adaptation which is achieved by
spectral mapping from one speaker to another. This algorithm realizes general speaker
adaptation which does not depend on speech recognition systems for post-processing.
Evaluation experiments on HMM and voice conversion [16] have already clarified the
performance and general applicability.
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Crpahle T4-1 T T anem sition - TableI-4-2. TDNN All'Consonant ..
'T?{gltii éi};hg‘l%lgg‘;hg?:srggsgecognltlon Recognition Rate rafter All-Net

- FlneTunlng

e phoneme rec. - :

»lﬁtask rate » —
bdg | 986 % | o ~ Phoneme ~ {
s L ) o task recognition -
pstk: | 987 % - c ~ rate.

“muo N | 966 % '
s,sh,h,z 99.3 9% 18 consonants | 96.0 %
- chts . | 100 % | -
rwy | 999 % HMM 93.8. %
coarseclasses | 96.7 %
aiueolvowels)|  98.6 %

The spectrum mapping method is based on the following three ideas. The first is
accurate representation of input vectors by separate VQ and fuzzy VQ. The second is
accurate establishment of spectral correspondence based on the fuzzy relationship of
membership function obtained from supervised training procedure by DTW. The third
is continuous spectral mapping from one speaker to another by fuzzy mapping. In this
algorithm, the input vector represented by fuzzy membership function is mapped onto
the target speaker’s space by fuzzy mapping theory. This fuzzy mapping allows
continuous mapping of the input vector onto the target speaker’s space. These
algorithms are evaluated from the viewpoint of spectral distortion. The evaluation
results are summarized in Figure I-5-1.

- In the application to HMM, the input vector is represented as the weighted
combination of fuzzy membership function Ug; and codevector. The mapping function
calculated from the correspondence histogram h;; is the fuzzy relationship between
codevector-i and codevector j of each speaker, therefore the output probability of HMM
is calculated as a product of Ugy; and hlJ At the same time, separate vector quantization
with speetrum; difference spectrum and power term is adopted as the product of each
output probability. The /b,d,g/ recognition results are shown in Table I-5-1.

Evaluation experiments are carried out and the results are as follows:

(a) Average intra-speaker VQ distortion is reduced by about 28% using fuzzy VQ
technigues and k-nearest neighbor rule. : :

(b) Inter-speaker mapping distortion is reduced 10% using the fuzzy VQ .and fuzzy
continuous mapping technique rather than the conventional technique.

(¢)'The number of training words required for finding correspondence is reduced from
100 to 30.
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(d) Phoneme recognition experiments on the /b,d,g/ task by HMM were carried out. The

recognltlon rate for the /b,d,g/ task is 78% on average. Improvement of about 27% in

the recogmtlon rate is accomplished. : -
Phoneme recognition experiments on the TDNN neural networks through the

Speaker adaptation algorithms are being carried out.
Table I-5-1. /b,d,g/ Recognltlon Rates by

Inter-Speaker Distortion HMM Speaker Adaptation, which is the
030 [ ° average of male to male and male to female.
L N - ~ | Recognition
o + Separate VQ ] . Method -
0.28 r . Rate (“A))
o - without adaptation . 51.7
°
0.26 S, ) . ’ Mapped Codebook [22] | 64
N $.... Fuzzy Mapping 23] : 72.1
.0.24 : ; ; . - g
Fuzzy Mapping + SPVQ 73.2
I SeparateVQ & Fuzzy Mapping + SPVQ + FZvQ | 75.7"
0.22
Fuzzy VQ : : "
B Fuzzy Mapping + SPVQD + FZVQ 78.1
0-20 . 75 1 ) . . .
0 25 50 00 sPVQ: Separate vector quantization with spectrum
Number of learning words and power term
' SPVQD:  Separate vector quantization with
Figure I-5-1. Speaker Adaptation v spectrum and power and difference
Algorithm Evaluatlon by Spectral spectrum term
Dlstortlon v FZVQ: Fuzzy vector quantlzatlon

I-6.. Summary

Speech recognition research activities at ATR were summarized. In addition to the
above research activities, the following research activities have also been carried out |
(1) Word category predlctlon by N-gram neural networks [18]. '

(2) English word recognition by HMM phoneme models.

(3) Phoneme spotting by TDNN neural networks [20].

(4) Fastback-propagation algorithm for neural networks in speech [19].

(5) Continuous speech recognition using HMM word spotting and LR parser [21].

‘We are focusing our speech research on the speech recognition research itself and
the integration with language processihg to show the possibility of an automatic
telephone interpretation system. Moreover, international research collaboration to
handle many languages is needed to develop automatic telephone interpretation

technologies.
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II. Speech Synthesis, Voice Conversion, and Noise Reduction
Research .

Abstract .

The outline of studies on speech synthesis, voice conversion and noise reduction
which are now being conducted at ATR are described. The speech synthesis system
proposed is a synthesis-by-rule based on an optimal selection of non-uniform synthesis
units which aims at producing natural, high quality speech sounds, Voice conversion is
a method to change voice individuality. The conversion method proposed here is to
make use of conventional vector quantization technique. The essential part of this
technique is to make mapping codebooks between two different speakers for such
acoustic parameters as spectrum, pitch frequency, and power level. The conversion
experiments reveal that this method is effective and promissing for the conversion of
voice individuality. Noise reduction is another technique which the interpreting
telephony system should 1ncorporate This is done by a four-layered neural network
with the back:-propagation 1earmng algomthm The result reveals that the network
can indeed learn to perform noise reduction even for speech and noise si gnals that were
not part of the tralnlng data ‘

II-1. Introduction
' Since the foundation of ATR in 1986, we have been conducting basic research in
speech recognition and speech synthesis which are parts of an automatic interpreting
telephony system we are trying to develop. The final goal of the system is to enable
people speaking different languages to communicate smoothly by telephone. To
achieve this goal, three basic research should be taken into consideration: (1) speech
recognition, (2) machine translation, and (3) speech synthesis. Since telephone
conversation must be dealt with by this system, speech recognition must recognize
continuous Speechv speaker-independently. After the speech recognition is completed,
machine translation will follow.- Difficulties of translation lie in the fact that we have
to translate spoken dialogue not written language. The output of machine translation
which is a sequence of symbols of another language is the input to the text-to-speech
syste'm to produce speech sounds at the other telephone. This paper outlines the speech
synthesis, voice conversion, and noise reduction research that is now being conducted
at ATR.

Speech synthesis is done by a synthesis-by-rule using non-uniform synthesis
units which aim at producing high-quality, natural sounding speech. Basedona large-
scale speech database, an entry dictionary for non-uniform speech units is compiled.
According to the input phoneme sequences, speech units are selected optimally from

11
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theentry dictionary based on some measure of appropriateness; Any speech segments
that correspond to phoneme substrings of the given set can be used as unit»temipl‘ates
from the dictionary. Statistical properties of phoneme sequences are also analyzed
using a word dictionary and a text database to estimate the amount of speech data that
covers all likely phoneme sequences necessary to produce Japanese sentences.

- Voice conversion is a technique that can give the output speech from a computer
spe,ech individuality. With this method, we aim to produce Speech sounds that mimic
the-original speaker’s voice.. The basic idea of this technique is to make use of speaker
adaptation.- by vector ,quantiz_ation to make a speaker-dependent speech recogn:ition
system to be a speaker-independent. Codebooks for both spectrum and pitch frequency
parameters are made separately for different speakers using a set of learning words.
Then, based on the histogram, mapping codebooks which represent the ;correspo‘ndence
between the codebooks of different speakers are made. Use.of a listening tekst., to
evaluate this technique is also discussed. y o o

N oise reduction study has been conducted here us1ng a method dlfferent from the
convent_lonal .one, namely, using a neural network. A four—layered,fee_d-_forward
network is trained with the back propagation algorithm using a set of training samples
to realize a mapping from noisy signals to noise-free signals. Giving the noisy speech
waveforms directly to the input layer and the noise-free signals to the output layer for
training, the network has been shown to learn to perform noise reduction. Analysis
has been made to examine how the noisy signals are processed at each layer. The
performance of noise reduction has also been discussed.

I1-2. Speech Database , _ .

For the multiple purposes of speech research a large- scale speech database is now
under construction in ATR.[1H9] Tt consists of (1) a word database, (2) a continuous
sp_eech database. The word database contains 5,240 common Japanese words serlected
from a dictionary and the continuous speech database is a set of 503 phonetically
balanced short sentences. Fine acoustic-phonetic transcriptions are made in five
different. layers. Professional announcers’ speech sounds were collected first and
databases for fifteen speakers, eight males and seven females, have been completed so
far. A database management system has also been developed to handle the database
easily and efficiently. Efforts are now being made to extend the database to include

non-professional speakers.
[I 3. Speech Synthesm

In this paper, we propose a synthes1s scheme that prov1des an efficient selection of
speech segments in a given speech data set according to an input phoneme string(2).

12
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‘Anyspeech segments corresponding to phoneme substrings of the given:set can'be:used
as unit templates with their contextual information. The statistical: properties of
;phoneme sequences are analyzed using a Japanese'word dictionary.and a text database
to estimate the:desired amount of speech-data that might. prov1de sufficient coverage of
all likely: phoneme sequences ind apanese '

éliI--<3.~f1e;-0utlinezdf ’Speech,Syn'thesis Scheme R S S _
ol b Figure I1-3.1. shows a flow diagram of the speech synthesis scheme:focusing on its
unit template selection part. Speech synthesisiscarried out as follows: -

NATURAL
SPEECH DATA WITH
ACOUSTIC PHONETIC

... PHONEME STRING WITH:{
‘TRANSCRIPTION /"

.. PROSODIC INFORMATION |

- [ - i S v PR
E . ;

»
ENTRY LATTICE | Y |

GENERATION LT IR R

. Japanese .

R i phoneme E
M ne/ghbounng
TEMPLATE NUMBER . ‘characteristics |

.. RESTRICTION = e . i

OPTIMAL TEMPLATE
SELECTION

| PROSODY
“CONTROL ||
—. "MODULE || spEgcH
SY‘NTHE’SI\‘S / SRS TS | SE(I3:l|\I/_IEENT

(SPEECH)

L

A
Y

Flgure II—3 1 Outhne of the synthe51s scheme using
non-uniform units
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(1) For an arbitrary input phoneme strlng, all phoneme substrings in each breath
group are listed. ' : T
. (2) After the search of the synthesis unit entry (SUE) dlctlonary, phoneme
substrings found in the dictionary are collected in the form of a unit entry lattice. . .
(3) As each synthesis unit entry in the lattice can be extracted from multiple speech
samples, only a few templates are selected in each unit entry for an efficient search
for the most preferable unit template sequence. Comparison of the contextual
- similarities between speech samples having this entry and the corresponding
portion in the input string reduces the number of all ‘
possible templates to a small set of suitable candidates.
(4) In the unit template lattice, the most preferable unit template sequence is
selected mainly evaluating the continuities between unit templates.
(5) The selected by template portions are extracted from the speech samples in the
segment file. After, being lengthened or shortened according to the segmental
- duration calculated by the prosody control module, they are concatenated. A
synfhesizer is driven using the spectral parameters and the source characteristics

generated by the prosody control module.

11-3.2 The Synthesis Unit Entry Dictionary

The SUE 'dictionary'is made by sorting and merging all phoneme sub-sequences
contained in all the available speech data. Table II-3.1 shows the size of a SUE
dictionary using 5,240 words to generate the entry lattice. In av‘SUE dictionary, all
entries are ordered according to their phoneme length in a tree-structured format
which allows the quick generation of entry and template lattices for an input phoneme
string. Each entry in the dictionary contalns the followmg 1nformat10n

Table I-3.1 Number of entries and templares in the SUE d1ct10nary

PHONEME NUMBER NUMBER PHONEME NUMBER NUMéER
STRING OF OF ) STRING OF OF
1 LEI\!GTH - ENTRIES TEMPLATES LENGTH | ENTRIES TEMPLATES
1 a3 | 29974 | 7 | 2084 | 2210
2 327 | 24734 8 890 | 908
3 2138 | 19498 9 275 278
4 | 5497 | 14328 | 10 100 100
5 6513 | 9396 11 19 19
6 4539 | 5226 12 2 2
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- (1) The total number of branch entries.
1. (2)The address of branch: entries. ' S e
; :::(3)'The total number of speech templates that contaln the entry e
- :(4):Addresses of speech templatesthat contain-the entry. O SIS
- Using:the.SUE dictionary, an entry lattice is- automatlcally made by searchmg
ffor the. longest right-matching entry for each phoneme position in the input-pheneme
-8 trlng ‘ Dy

II 3.3 Optlmal Selectlon of the Umt 'I‘emplate Sequence EE SR Lrwdon
In the concatenation type synthesis system, dlscontlnultles between unlts
introduce speech quality degradation: ‘To decrease such degradation, & unit template
sequence is selected using the following criteria: ~ S e e el
..+ §1) Conservation of:consonant-vowel transitions. The concatenation at C-V
5 » boundaries, especially.ifit is not continuant, is highly-penalized. - -- ;. o
(2) Conservation of vocalic.sound succession.. Concatenatlon at.inter- vocahc
boundaries is also penalized. . ,
(3) Long unit preference. Since any concatenation degrades the resulting speech
quality, units should be as long as possible.
(4) Template overlap. The greater the overlap between selected umts that make up
the synthesized utterance, the smaller the resultlng dlscontlnultles To. m1n1m1ze
_J_;;:the d1scont1nu1t1es we try to max1m1ze the overlap by evaluatlng the ﬁt to the left
C .and rlght of a candldate unit. o .
e Ade ';rdlng to. these criteria; there.is'a tendency for preferentlal selection of long

: un1t templates followed by voiceless consonants if their comblnatlon exists in the input
phoneme string. For example, the string /hanagasakldashlta/ could be realized by
the following template sequence: /hanabanashii/ +/nag_sa/ +/murasak1/ +
/hikidashi/+/aghita/. C

11-3.4 Control of Prosody A

We are trylng to find rules for prosodlc control to i improve naturalness Prosodic
characteristics have been 1nvest1gated for words uttered in seven different ways: fast,
normal, slow, loud, weak, high, and low.[10] Their prosodic parameters, pitch
frequency (Fo), power, and segmental duration, were compared. The results reveal
that there is a strong correlation between Fy and power, and a.difference lnFO patterns
between speaking styles. Fg pattern shows systematical changes as the speaking Style
changes. " Estimation of the Fo control parameter has been made to realize-these
tendencies in.speech synthesis by rule system.
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II-4. Voice Conversion . , ,

Speech individuality generally consists of two major factors: -acoustic features
and prosodic features. ' As the first step in this research, we.are trying to control
acoustic features. In this paper; we propose a new voice conversion technique without

‘separating ‘these acoustic parameters.[11{13] The basic idea of this technique is to
‘make usé of codebooks for several acoustic parameters. These codebooks carry all
information about the speech individuality in terms of the varying acoustic features: A
conversion of acoustic features from one speaker to another is, therefore, reduced to the
problem of mappmg the codebooks of the two speakers ‘ ' 4

‘II-4.1 Voice Conversion through Vector Quan»tization :
1) Learmng Step ' -
“The mapping codebooks are codebooks that describe a mapping function between
the vector spaces of two speakers, The block diagram in Figure II-4.1 illustrates how a
‘mapping codebook for spectrum parameters is generated. ' ’

Iearmn words for o
: speaker Ao - . - codebook of speaker A

codebook:
> generatlon

. |vector '—_——]

(A—>;B)um‘ap'ping codebook

quantization -
find make a
correspondence Ly histogram
by DTW B
. jvector . y

quantization

— ) [codebogk |
—»-| generation

learning words for codebook of speaker B
speaker B

' Figurell-4.1 Method of generating a mapping codebook

(1) Two- speakers, A and B, pronounce learnmg words Then all words are vector-
' quantized framie by frame. ‘ ‘ ‘
""-(2) Theé correspondence between vectors of the same words from the two speakers is
- " determined using dynamic time warping (DTW). R
- (3) The vector correspondences between two speakers are calculated as histograms.
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(4) Using each histogram as a welghtmg functlon the mapplng codebook is defined
as a linear comblnatlon of speaker B’svectors.
() Steps 2, 3 and 4 are repeated to refine the mapplng codebook _
Mapping codebooks for. pitch frequencies and. power values are also generated
because these parameters contribute. a.great deal to. .speech .individuality. These
mapping codebooks are generated at the same. time using almost the same procedure
mentioned above. The dlfferences are: 1) p1tch frequencies and power values are
scalar- quantlzed 2) the mapping ‘codebook for p1tch frequency is defined based on the
maximum occurrence in the h1stogram
2) Conversion:Synthesis Step "
As shown in Figure II-4.2, after the LPC anays1s of speaker A’s speech the
spectrum/pltch parameters are vector/scalar quantlzed using his/her codebook. Then,
iSyntht:’S1s 15 carrled out by decodlng using mapplng codébooks between speakers A and

B. The output speech will have the voiee individuality of speaker B S

o codebook of speaker A~
(spectrum parameter)

- - ‘b LPC —>| vector decode || synthesis © |- -

e U .. |- quantization - N i s S
T ~ | analysis - b= |- qua : - fiter . . converted speech
o ooespeechof o o0 L R o ‘ o _ tospeakerB
B sPeakerA ) SR B e T e ST T T T L
. : scalar | | .

(A-—>B) mapplng codebook
spectrum parameter).

Y.

L St decode |— . - .
quantization: ' " R | S AP

codebook of speaker Aé -

(pitch frequency)

->B) mappin codebook =
,(pltch)fregl?en%y) . E

Figure II-4.2 Block diagram of voice conversion from speaker A to'speaker B

5 <

II 4 2 Converswn Fxperlments ’ _ . o
#» Tao.evaluate the performance of the conversion. technlque dlstortlon
measurements ‘were, carrled out on the spectrum parameters and. pltch frequencles
Table 11-4.1 shows the results of the open test. After vector-quantization, two. k1nds of
spectrum distortions between two speech samples were calculated; between the 1nput
and target speaker’s, and between the converted speech and. the target. speaker s
speech In the female-to-female conversion, the distortion decreased by 27% compared
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~ Table I1-4.1 ‘Svectrum distortion before and after conversion: -

e before - | after -

. speaker combmatlon _ _ conversion | conversion

~ female1- femaleZ | oarse | 02109
»f}_em_ale1“—>female3‘ , 0.2070 0.1489
‘male1 > male2 | 0334 | 04717

 malel >male3 | 02851 | 01550

malet — female1 | 06084 | 02193

to the non-conversion, in the male-to-male conversion by 49%, arid in the__‘mal:e-bo)-
female conversion by 66%. . : - .
P1tch frequency conversion was also carr1ed out through the same process
Accord1ng to the result, 60 words are considered sufﬁc1ent for maklng a mapplng
codebook for pitch fr_eque.ncy regardless of speaker combrnatlons., and the average pitch
frequency are less than 15Hz. | |

11-4.3 Evaluation by Hearing Test

To evaluate the overall performance of this technique, three kinds of hearing
tests were carried out. Because of the limitations on paper length, we present here only
the results of one experiment, the male-to-female conversion. The experiment was
done using a pa1r comparlson hearlng test. - In addltlon to fully converted speech,
converswn was also' done’ for p1tch and spectrum parameters separately in order to
examine their contribution to speech individuality. The following is a list of 5 different
speech conversions performed in thls experlment '

- (1) Vector-quantized original male speech (m) -
(2) Male-to- female converted speech pitch frequency conversion only (mp-fp)
(3) Male to- female converted speech; spectrum conversion only (ms-fs)
(4) Male-to-female converted speech on all parameters (m-f)
(5) Vector-quantized original female speech, the target for the conversions (f)-

Stimulus pairs were presented to listeners through a loud-speaker in a sound-
proof room. Twelve participants in the experiment were asked to rate the similarity for
each pair on five categorles "similar","slightly similar","difficult to decide" "shghtly
dissimilar”, "d1ss1m11ar Hayash1 s forth method of quant1ﬁcat1on was apphed to the
_experlment data of the hearlng test. This method places stimuli on a two- dlmensmnal
space according to the 51m11ar1t1es between ¢ every two stimuli. The prOJectlon onto a
two- dlmensmnal space is shown in Figure II-4.3 which represents -the relative
s1m11ar1ty—d1stance between stimuli. In this figure, converted speech 'm— " is most:
closely placed to the ‘speech "f", Th1s indicates that the male speech was' properly
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. converted to the target female speech by this technique. Judging from’ thepositions of
~"mp—fp" and "ms—fs"; it is observed that the first and second axes roughly correspond
Ato piteh:frequency and spectrum differences; respectively.~The result indicates that

neither pitch frequency nor spectrum-carries enough 1nformatlon about speech
4 1nd1v1d11ahty, and that both:are necessary ' : ’ :

11
® ms—fs

e

}

FlgureH 4 3 DlStI‘lbutlon of psychologlcal dlstances
“in the male-to-female voice conversion

«II 5 Nmse Reductlon .

- We. propose a new ‘noise reduction method using connectlomst models [14}- [15]
Noise reduction can be viewed as a mapping from a set of noisy signals to a setof noise-
free signals. Connectionist models are attractive for such mapping for the following
reasons. ' " : SRS
i (1) An- arbitrary decision surface can be formed in a multi-layered connectionist
13 network. Any complex mapping from the set of noisy speech s1gnals to the set of
-+ 1noise-free speech signals can; in principle, be realized .- e RS
. :£2)- Simplelearning algorithms exist to construct a suitable mapping functlon
7 (3) Conneetionist networks have attractive generalizing properties: -

s 1 In the following; we first-describe a connectionist model for mapping noisy to'noise-
+ i free-speech s1gnals and then show the effectiveness of this approach by computer
r:experlments. fe ‘ ’ ' s ’

s ‘»‘aI-I-'ﬁ;l aN_etw‘ork Architecture -

-+ .Afour-layerfeed-forward network was chosen for the architecture because it<can,
in principle, realize any mapping function. Each layer has 60 units and:is fully
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“.interconnected with its next higher layer'as shown in. Figure II-5.1. The network's
-state; by Wa;i of each-unit’s output, is updated synchrenously on each layer and signals
; flowwpward from: the input-layer to the output layer. .For the network to uge as'mu¢h
~information aboutspeech and noise as- possible,- the input and output:of:the= . ..

network is given by the waveform itself, the units on the output and input:layers are
all linear units, i.e., are not passed though a non-linear output function. A unit

Output layer O O

' Hidden layers W % EAU - j-th unit
| ° J.th unit’s output = £( £ w (i)oli) + 8())),
' ~where
Input layer e :

flx)=1/(L + exp(-x)) is the sigmoid functxon,
6(7),the bias value of j-th unit and w(j,i),
the link weight from the i-th unit to the

j-th unit
FigureII-5.1 Network for Figure I1-5.2 Property of

noise reduction ¢+ - ot an element :

element is one of many simple processors that make up the network. It first computes

the weighted sum of all its inputs (including a bias input) and then:deforms this sum by
.passing it through a nonlinear function, in our case the sigmoid function . asshown in

Figure—llf»S_.Z.. . : ' :

I1-5.2 Network Learning 5

~-: A subset-of 216 phoneme balanced words from this database.was used for our
:gxperiments;' Computer room noise was chosen as non-stationary noise. Noisy speech
" data was generated artificially by adding the computer room noise to the speech data.
The resulting S/N. ratio was about -20db. During this phase, the back-propagation
learning procedure repeatedly adjusts the network's internal link:weights in an
attempt to find an eptimal mapping between noisy and noise-free signals. : Using the
-waveforms, of the 216 phoneme-balanced words as the target output and their-noise
added versions as the training input, the network scans each training utterance from
beginning to end at a rate of 60 data points per input frame. When the network reaches
the end of the training data, it returns to the beginning for additional learning passes.
This: procedure. is: repeated until the network's squared .error rate converges to a

sufficiently smdll value.
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11:5.3 Noise Reduction Experiments: : - .« - o oo s e
CaittvcFigures H-5:3 and 11:5.4 show:the. results of- testlng the network’s ablhty to xﬁndaa
:generalized noise reduction mapping based on the observations in the training:data.;In

Rigure 1k5.3, we:show:asrinput to the network: the Japanese word "kakyritsa!

T T ¥ ST Tt

time (inms)

o g P A
17 LR

.time . ( in'riis})

noxsy speech time ( in ms )

. freq(inkHz ) freq_(in KHz)freq (inkz)

o~ o S

R=E

o[ ‘I-A- SN 5-‘: . T . Tiw 1 .xx Ao

é N network’ soutput tlmp (in ms )
Flgure II 5 3 Spectrograms of or1g1nal : Flgure II—5 4 Spectrograms of or1g1nal
. :speech (upper), noisy speech(mlddle) - speech (upper), noisy speech(middle), .-
.. and hoise reduction (lower) for a non- . .and noise reduction (lower) for a non- _
tra1n1ng Word , S tralmng Word and n01se . -

i

corrupted by.noeise.. This utterance was not part of the training data. ~-:Avg-“ain;’fWe
observe that the network’s mappmg suppresses the 1nput noise successfully In Flgure
11-5. 4 we ‘show ‘the’ result of a more dlfflcult problem ‘Here," thé same word
"kakurltsu has been corrupted by computer generated whlte nolse. Desplte the fact
that the network was-trained on a different kind of noise (non- statlonary computer
room noise), it-produces-a substantlally cleaner output s1gna1 w1thout adversely
affecting the speech slgnal e no L L

e H '}"»:
e : o

Il 6 Summary R _ _ .

Bas1c studles on speech synthes1s, v01ce conversmn, n01se reductlon and speech
database in ATR have been reviewed. The results of these studies.will be parts of the
automatlc interpreting telephony system which we are trying to establish within a
limited domain. The speech synthesis system is a synthesis-by- rule system based on
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non-uniform synthesis units which will be optimally selected from the entry dictionary
compiled from a large-scale Japanese speech database. Voice conversion is another
technique.to give the synthetic speech voice individuality. - Using mapping codebooks
through vector quantization, itis possible to convert the speech of one speaker to that
of another quite well. Noise reduction is conducted by a four-layered neural network
giving speech waveforms directly to the network for learning. The network can learn to
perform noise reduction even for unknown speech signals.
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