
TR-1-0055

Typed Feature Structures II

The Language and its Implementation

RemiZAJAC

1988. 12

Abstract

A previous report has given the motivations and has described the formal
framework for the integratiori of attributes structures and fealure structures.
This report describes the functional interpreter which has been developped in
order to demonstrate the feasability of tile approach.

ATR Interpreting Telephony Research LaboraLories
ATR自動翻訳糀話研究所

© （株）ATR自動翻訳罰話研究所1988
© 1988 by ATR Interpreting Telephony Research Laboratories

た

Typed Feature Structures :

the Language and its Implementation

，

.＇

噌^

RemiZajac*

ATR Interpreting Telephony Research Laboratories

Twin 21, MID Tower

2-1-61 Shiromi, Higashi-ku, Osaka 540, Japan

[zajac%atr-ln.atr Junet@uunet.uu.net]

Abstract: A Machine Interpretation system will presumably use various specialized linguistic programming
languages. At some points, there will probably be transitions from an attributed tree to a feature
structure, and vice versa. A common point between attribute structures and feature structures is that
attribute structures could be considered degenerated feature structures.

On the other hand, most grammar formalisms using unification of feature structures introduce a
variety of augmentations that hamper the declarativeness of the formal認mand the monotonicity of the
computation of these equation.al formalisms.

In the spirit of functional programming (a la LISP), we have proposed a framework for such
augmentatio皿 basedon the interpretation of feature structures as objects (not邸 denotations).We have
introduced the associated functions derived from set theory. For example, union is defined as a weak
form of unification.

We have developed an experimental functional interpreter to test these ideas. The basic data structure
of the language is the typed feature structure. Operations available include conditional instructions and
sequence of instructions, boolean expressions, assignment, unification, and various functional
operations on typed feature structures. Defmitions include type definitions, template definition and
(recursive) function definitions. This interpreter has been integrated in an Earley parser. The grammar
formalism offer the grammar writer enhanced expressive power and allows using a more modular
approach to grammar developement.

A previous report has given the motivations for this approach, and described the formal framework
used for the language. This repon describes the language and its implementation.

Key Words:Equational formalisms, unification, functionnal formalisms, feature structures, attribute structures,
functional programming, equational progrnmmine.

* Visiting researcher from GETA, UJF-CNRS, 38041 Grenoble, cedex 53X, France.

typed}匹 turestructures: the language

TABLE

1. Introduction

1.1 Purposes of the implementation
1.2 Scope of the report

2 . The language

2.1 Introduction

2.2 Objects: syntax, definition and evaluation

A. True, false and undefined values
B. Numbers
C. Strings
D. Atomic symbols
E. Structures
F Paths, variables and expressions
G. Templates
H. Functions
I. Programs

2.3 Types

A. Numbers
B. Strings
C. Structures

2.4 Templates and functions

A. Templates
B. Functions

2.5 Boolean expressions

A. Boolean operators
B. Boolean functions on structures
C. Boolean predicates on structures

2.6 Control structures

A. Constants, variables and paths
B. assignment
C . Function and template call
D. Sequence
E. Conditional

2. 7 Functions on structures
A. Conjunction and union

B. Intersection and strong intersection
C. Difference

2.8 Inputs/outputs
A. The read function

B. The write function

2

typed feature structures: the language

3 . Running the interpreter

3 .1 Calling the interpreter

3. 2 Loading defi皿tions

3.3 The read-eval-print top-level loop

3.4Errors

3 .5 Environment inquiries

3. 6 LISP interface

4 . Implementation notes

4 .1 The TFS reader and printer

4.2 Types, templates and functions

4.3 Evaluation of expressions

4.4 Unification, conjunction, union, ...
/
'
,
¥

5. Conclusion

Appendix 1: examples of definitions

Appendix 2: a session with the interpreter

Appendix 3: syntax of TFS

References
＇

9
,

／

3

typed feature str匹 tures:山e畑 g匹 ge

1. INTRODUCTION

1.1 Purposes of the implementation

The language we introduce is based on typed feature structures. The approach has been

motivated and described in [Zajac 88]. We view feature structures not as denotation of sets, but

as objects standing for themselves. We argue that this interpretation is the most commonly used

by many computationnal linguists -not theoreticians, but people who actually develop grammars

for specific applications. One consequence is to allow the use of a functional programming style,

such as the LISP style, as opposed to an equational programming style, such as the PROLOG

style. 冗emain characteristic of our language is that it allows freely merging the functional style

of programming and the declarative style used in most of the proposed unification-based

grammar formalisms, using the same data structure. This feature is new in the field of

computational linguistics, and should be explored further.

The present implementation of the language is intended to be an experimental testbed for a

specialized language for linguistic programming that could include a feature structure-like data

structure. Consequently, this implementation is by no means definitive, and other

implementations could be developed depending on the insight gained while developing programs

and grammars.

1. 2 Scope of the report

This report describes a language for manipulating typed feature structures. In its present

form, it cannot stand as a grammar formalism in itself, even if it can be developed in this

direction. Nevetheless, this language has already been integrated in an Earley parser developed

by [Nicolas 88], and is used as an evaluator for expressions describing the structures associated

to the symbols of a grammar rule. This report is a description of the rules's expression evaluator.

4

typed feature structures: the language

2. THE LANGUAGE

2 .1 Introduction

The language is quite simple and offers considerably less power than full general

programming languages, such as C or LISP. The first reason is that it is designed to be used as

part of a more general specialised language for linguistic programming. The second reason is that

this language is in an experimental stage. Furthermore, developing a full programming language

without preliminary tests and experiments with a proptotype is not the most secure way to get

good and usable tools. Nevertheless, it has been designed to be easily augmented, and even in its

present state, integrated in a parser, it has all the basic capabilities of unification-based grammar

fo皿 alismssuch as D-P ATR [Shieber 86]。

2. 2 Objects: syntax, definition and evaluation

＼

,'
／

A. True, false and undefined values

The false value in a logical framework for a feature structure is generally represented by .l,

the bottom of the type lattice. However, as we are also working in a functional framework, we

need to relate a logical boolean value to a functional value. There is a special symbol *unde f*

which represents the absence of value, and has a special interpretation for each operation (see the

corresponcling defmitions). This could be used to determine if a feature has a bound value or not。

Each value returned by the interpreter has an associated type, which is related to the type of

the expression evaluated. The combination of a value and a type gives a truth value. There are

only two possibilities:

1. The value has the boolean type: {} represents the truth value FALSE, and any other value

represesnt the value TRUE (see the behavior of * u n def* in the definitions of boolean

operators).

2. The value has either the number type, the string type, or a structure type: * u n de f *

represents the FALSE value, and any other value represent the TRUE value.

One should note that if the empty set {} does not have the boolean type, it is interpreted as

TRUE: the empty set is a value, and not the absence of a value.

(、

5

typed feature sヽructures:the language

B. Numbers

Three kinds of numbers are defmed: integers, ratios and reals. Predicates and arithmetic

operations are defmed on each kind of number, and there is no need for different operators's

symbols for integers or ratios. The kind of number is recognised by its syntax, and the

arithemetic interpreter makes the necessary conversions.

An integer is written as a sequence of decimal digits, optionally preceded by a sign (+ or -) :

-0 zero (always equal to +O !)

6 posmve integer

-33. negative integer

A ratio is either an integer or the ratio of two integers, the numerator and the denominator,

separated by a'/. The denominator is not preceded by a sign. If the result of some operation is a

ratio, it will always be printed in its canonical form: the greatest common divisor of the

denominator and the numerator is one: -4/6 is a non-canonical form of -3/2.

A real number is a sequence of digits optionally preceded by a sign, followed by a decimal

point, and optionally, a sequence of digits: -3.1415 the negation of冗

Operations on numbers are boolean tests and arithmetic operations.

C. Strings

Lists of characters are represented as strings, enclosed by double quotes("). A character can

be any printing character of the ASCII set. Some characters may have a special role (", for

example): to include such characters in a string, they must be preceded by the escape character

"!. This rule applies to"-: itself: one must double this character to include it in a string.

The ordering for strings is the lexicographic ordering: upper case letters have the same rank

as lower case letters, digits are ranked before letters, non alphanumeric characters are not taken

into account: this is the≪dictionary ordering≫(see details in section 2.3.B).

Operations on strings are boolean tests and functions (e.g., concatenation).

D. Atomic symbols

An atom is either a number, a string or an alphanumeric symbol beginning with a letter. An

atom is a≪ground≫value denoted by itself. The only operation that can be performed on it is the

equality test.

6

typed feature structures: the language

E. Structures

Structures are the basic data structure of the language, as the list is the basic data structure of

LISP.

A structure is a record-like data structure. It is a generalisation of the feature structures used

in unification-based grammar formalism: each feature has a type [Shieber 86, Aft-Kaci 84], and

atomic features are either symbols, numbers or strings (atomic structures).

In the present version of the language, the type system has a degenerated lattice structure and

type definitions are intended to be able to define legal domains of values. Types need not to be

explicitly stated in a feature structure, as they must be statically declared: the interpreter associates

each symbol of a feature with its declared type. The user can create, modify or destroy structures

using assignment, unification, union, intersection of structures.
／

There are four kinds of elementary operations which are defined on structures:

- predicates without side effects are tests, for example inclusion, membership, etc. These

predicates return a boolean value. See section 2ふBBoolean functions on structures.

- predicates with side effects are unification and generalisation. They return a boolean value

and modify their arguments. See section 2.5.C Boolean predicates on structures。

- functions create new objects from their arguments: union, conjunction, intersection, etc. See

section 2. 7 Functions on structures.

- assignment which takes the object returned by the right-hand-side of the assignment, and

puts it at the location specified by the left-hand-side (erase the previous content). See section

2。6.BAssignment.

A structure is written in approximatly the same manner as traditionnal feature-structures,

surrounded by braces (usual notation for sets). Syntacticaly, there is no distinction between

atomic structures and complex structures: as every feature has to be declared, the system knows

the type of each feature. For example, the structure [Pollard and Sag 87]

PHON Kim

SYN [LOC [HEAD [MAJ N

NFORM NORM]

SUBCAT []]]

SEM [CONT KIM]]

will be written :

7

typed feature structures: the language

{ PHON:"Kim",

SYN: {LOC: {HEAD: {MAJ:N,

NFORM:NORM},

SUBCAT }},

SEM: {CONT: KIM}

The differences from traditional notations are the following:

an atomic structure is written between braces, as for complex feature-structures;

feature SUBCAT is written without values: this means that the values might be any血ng;

if feature SUBCAT were written SUBCAT: { } , this would mean that the value of feature

SUBCAT is the empty set, and not that the feature is a complex feature.

F. Paths, variables and expressions

Variables are used to store and access structures. A variable is an alphanumeric symbol

prefixed by a star: *cat31 is a variable symbol.

Sub-structures are accessed using paths. A path is a variable symbol optionally followed by

feature symbols concatenated with a period: *cat33. cat. subcat is a path. It can be used to

get the sub-structure dominated by the features cat and subcat of a structure stored in variable

*cat33. It can also be used in the left-hand-part of an assignment to replace one sub-structure

with another:

*cat33.cat.subcat <- {cnoun}.

An expression is a recursive combination of operators and operands: operators can take either

constants, variables, paths, or, recursively, complex expressions as operands.

G. Templates

A template is used to store a frequently used constant structure. The definition of a template is

static and cannot be modified by assignment (but it can be redefmed). A template symbol is an

alphanumeric symbol prefixed with a%: %agr is a template symbol.

A template symbol can occur anyplace a structure is expected: the template symbol is simply

replaced with its definition.

8

typedfeaiure structures: the language

H. Functions

Functions are the operations which are used to manipulate structures. There are two kinds of

functions: pre-defined functions and user defined functions. Pre-defined functions may be simple

operations (addition of numbers) or more complex operations (conjunction of structures, print

function, ...). The user may define his own functions by composition of other functions. In a

function definition, recursive definitions are allowed. A user defined function symbol is an

alphanumeric symbol prefixed with a & sign. It takes the same place as any pre-defined operator

sign or pre-defined funcion identifier.

A function always returns a structure as the result of its evaluation. It could be used to build a

new structure or to modify existing structures. Some functions act on the environment of the

intepreter itself (for printing, writing of modifying some interpreter's parameters).

I. Programs
9,\~

＇

A program consists of a set of definitions: type definitions, template definitions and functions

definitions. Type definitions are mandatory. Running a program consists of loading the

definitions in the interpreter memory and evaluating some expression (combination of functions).

The input data can be fed interactively or read in a file. The output can be printed at the terminal

or in a file.

2.3 Types

There are two kinds of types: atomic types and complex types. There are 3 pre-defined

atomic types: string, number, and symbol. The three following sub-sections describe the

operations on strings and numbers. The last sub-section describes the type system for complex

types. Operations on complex types are described in the following sections (2.4, ...).

A. Numbers

Predicates

The result of a predicate P, nl P n2, is undefined if nl or n2 is undefm.ed:

nl P? → nl; ? P n2→ n2.

EQUALITY: nl = n2 is true ifnl equals n2, false ifnl is different fromn2.

INEQUALITY: nl I= n2 is true if nl is different from n2, false if nl equals n2.

STRICT INFERIORITY: nl < n2 is true ifnl is less than n2, false if nl is greater than or

equal to n2.

，

、'.ypedfeaturestructures: the language

INFERIORITY: nl <= n2 is true if nl is lesser than or equal to n2, false if nl is greater than

n2.

Functions

ADDITION: nl + n2 returns the sum of nl and n2. If nl or n2 is undefined, n2 or nl is

returned: nl + ? → nl; ? + n2→ n2.

SUBTRACTION: nl -n2 returns the difference of nl and n2. If n2 is undefined, nl is

returned. If nl is undefined, the result is undefined: nl ？→ nl; ? - n2→ ? .

MULTIPLICATION: nl * n2 returns the product of nl and n2. Ifnl or n2 is undefined, n2 or

nl is returned: nl * ? → nl; ? * n2→ n2.

DIVISION: nl / n2 returns the ratio of nl and n2. If n2 is undefined, nl is returned; if nl is

undefined, the result 1s undefmed: n 1 / ? → nl; ? / n2→ ? .

B. Strings

Predicates

The result of a predicate P, sl P s2, is undefined if sl or s2 is undefined:

s1 P? → s1; ? P s2→ s2.

The ordering is the lexicographic≪ordering of the dictionnary≫:

when a string contains letters or digits, all others characters are stripped for comparison;

upper case and lower case letters are of the same rank;

digits precede letters;

non alpha-numeric characters precede digits;

non alpha-numeric characters are ordered using the ASCII ordering.

EQUALITY: sl = s2 is true if sl equals s2, false if sl is different from s2.

INEQUALITY: s1 I= s2 is true if sl is different from s2, false if s1 equals s2.

STRICT INFERIORITY: s1 < s2 is true if sl is less than s2, false if sl is greater than or equal

to s2.

INFERIORITY: s1 <= s2 is true if sl is less than or equal to s2, false if sl is greater than s2.

10

typedfeature structures: the language

Functions

CONCATENATION: s1 + s2 returns the concatenation of s1 and s2: x + y→ x.y. If

s1 or s2 is undefined, s2 or s1 is returned: s 1 + ? → sl; ? + s2→ s2.

Example: "Ab" + "cD"→ "AbcD"

SUFFIX SUBTRACTION: s1 /. s2 returns sl minus the greatest common suffix of sl and s2:

x.u /- y.v→ x . If s2 is undefined, s 1 is returned. If s 1 is undefined, the result is

undefined: s 1 / -? → sl; ? /- s2→ ? .

Examples: "abed" /-"xcd"→ "ab"

"abed" /-"x"→ "abed"

"abc" /-"abc"→ ＂＂ ー
．
＼

SUFFIX INTERSECTION: s1 /* s2 retμms the geatest common suffix of sl and s2:

x.u /* y.u→ u. If s1 or s2 is undefined, s2 or s1 is returned: s 1 / * ? → sl;

? /* s2→ s2.

Examples: "abed" /-"xcd"→ "cd"

"abed" /-"x"→ II II

"abc 11 /- "abc 11 → "abc"

PREFIX SUBTRACTION: s1 -/ s2 returns sl minus the greatest common prefix of sl and s2:

u.x .- u.y→ x . If s2 is undefmed, s 1 is returned. If s 1 is undefined, the result is

undefined: s 1 -/ ? → s1; ? -/ s2→ ? .

／
ー

Examples: "abed" /-"abx"→ "cd"

"abed" /-"x"→ "abed"

"abc" /-"abc"→ II II

11

typed Ji匹 turestrucヽures:the language

PREFIX lNTERSECTION: s1 */ s2 returns the geatest common prefix of s1 and s2:

u.x */ u.y→ u. If s1 or s2 is undefined, s2 or s1 is returned: s1 * / ? → s1;

? */ s2→ s2.

Examples: "abed" * / "abx"→ "ab"

"abed" * / "x"→ " "

"abc" * / "abc"→ "abc"

C. Structures

All kinds of complex typed feature-structures (structures for short) must be declared. In the

current implementation, there is one general type, called'DECORATION', which must always

be defmed. All top structures belong to this type (this limitation will be removed in future

versions of the language). A declaration of structures might be as follows:

:TYPES

DECORATION= logic: logic-t,

sf f : unctions,

k : classes,

lex : string,

cat : cat-t;

logic-t = :cardinality 1,

pred, argl, arg2, arg3;

functions= :cardinality 1,

gov, subj, objl, obj2, atgov, atsubj, atobj;

All possible features for a type must be listed. A complex feature has a type: the feature SF

has type FUNCTIONS, the feature LEX has the pre-defined type STRING. It is possible to

define some constraints on the legal set of values of a type: maximum number of values, and

minimum number of values. The key-word : CARDINALITY introduces a couple of integers:

: CARDINALITY O 5 means that the minimum number of value of a feature having this type

is zero, and the maximum number is five.

The default cardinality is :CARDINALITY O <number of declared features>.

When only one number is specified, it is the maximum cardinality.

When a feature must have only one atomic value, it must be declared as either a number, a

string, or a user's defined type with maximum cardinality 1 (such as the feature FS of type

FUNCTIONS in the previous example).

12

typedfeature structures: the language

The rationale for type declaration is to have the possibility of type-checking during loading of

expressions, and during evaluation of expressions: an evaluation will fail as soon as an illegal

structure is built. Before an expression is effectively loaded in the memory of the interpreter, the

reader perfonns checks to ensure that all objects have been declared: a program that can be loaded

is not only syntacticaly correct, but must also be semantically correct, with respect to the

declarations of objects, thus removing from the programmer the burden of debugging an error

which occurs because of the existence of an illegal object.

In this version, all features must have a unique explicitly defined type. In a future version,

we envisage the introduction of anonymous types, and also of a type structure with inheritance,

allowing for more flexibility.

2. 4 Templates and functions
9
,

＼

＇

A. Templates

A template is simply a name for a constant structure. Writing an expression, one can use the

name in place of the whole structure thus allowing for more concise expressions. A structure can

be either a complex one or an atomic structure (string, number).

Templates are declared as follows:

:TEMPLATES

V = {syn:{loc:{head:{maj:V}}};

mainV = {syn: {loc: {head: {aux:-, inv:-}}}}

finiteV = {syn:{loc:{head:{vform:fin}}}};
／
ー
＼

In an expression, a template name must be prefixed with the % sign: % finite v, for

example. The name is simply replaced with its defmition (in fact, this replacement occurs at

loading for type checking, and for speeding-up computation).

B. Functions

One original feature of our language is that it offers to the grammar writer not only templates

(which can be defined as constant functions), but also true function definitions. As templates are

written in place of constant structures, functions are written in place of expressions. Writing an

expression, one can replace some expression with a call to a function. This also allows for more

concise expressions.

13

typedfeat.ure structures: the language

One limitation of the present implementation is that expressions are not allowed inside

structures: structures are manipulated through path accesses, as in most unification based

grammar formalisms.

Recursive definitions are allowed. For example, the factorial function can be defined as

follows:

:FUNCTエONS

fact(*x) = COND

*x=O

*x/=O

ECOND;

1;

*x * &fact(*x -1)

A function is defined with any kind of expression. During evaluation of a function call, the

function call is replaced by the function definition (the function≪body≫), with all variables in this

expression bound to the values found in the function call. Functions can be used to define sets of

equations between paths (set of unifications). An agreement wich is written as a set of equations

between paths can be defined once, and called in several distinct places. If the writer wants to

modify the agreement condition, he need only modify the defi皿tion.

For example, in an expression, a function call might be & fact (5) and the evaluation will

return 12 O. It can also be called with a path & fact (* A . n um) , assuming that the feature n um

of structure * A is an integer. It can also be called with any expression that will return an integer.

The effect of the recursive definition of factorial is, in fact, to replace the expression & fact (3)

withtheexpression3 * &fact(3-1) whichreduceto 3 * (2 * &fact(2-1)),etc.

2. 5 Boolean expressions

There are two kinds of boolean expressions:

Boolean functions that return a boolean value and do not modify the operands;

Boolean predicates that return a boolean value and modify the arguments.

This distinction is introduced to differentiate boolean operations, such as the test of equality

of two objects, and operations that fall in the unification framework (in the present

implementation, unification and generalisation).

14

typed feature structures: the language

A. Boolean operators

Boolean operators take boolean values and return boolean values. These operations are

functions which are evaluated irnrnediatly. They should be distinguished from

conjunction-disjunction-complement operations which are defmed to describe sets of feature

structures. The latter are not defined m this implementation. However, a set of equations between

paths can be written as a boolean AND expression with the same expected behavior (this is not

true for OR and NOT operations). To be able to implement such behavior when a boolean

expression is evaluated as FALSE, all modifications on structures that were done du血 gthe

evaluation of this expression are undone. The practical mterpretation is simple: these operations

are primarily mtended to write tests (m conditional expressions, see section 2.6.E Conditional).

However, if the evaluation suceeds, the modifications become permanent. Alternative sets of

path equations can be written as

eql & eq2 & eq3

I eq4 &eq5
，ー＼

The first AND expression eql & eq2 & eq3 is evaluated、Ifit succeds, the second is not

evaluated. If it fails on eq3 for example, the unifications of eql and eq2 are undone, and

the second AND expression is evaluated. The result of the whole expression is then the result of

this evaluation.

As the evaluation of an AND expression is performed in order, the grammar writer can use

this ordering to control the evaluation (for example, to evaluate simple constraints frrst). Of

course, the result of the evaluation of a set of equation is independant or any particular order of

equations.

AND: X & y→ .il x=TRUE江 _g_y=TRUEユ皿 TRUEtl年 FALSE. The rules for

the undefined value are: x & ? → x; ? & y→ y.

／
ー
＼

OR: x I y If the first operand evaluates to TRUE, the second is not evaluated.

X I y→ il x=TRUE
then TRUE

豆ヰ y=TRUEt.hfill TRUE旦 FALSE;

The rules for the undefined value are: x I ? → x; ? I y→ y.

NOT: Ax→ il x=TRUEユ.fillFALSE~TRUE. The rule for the undefined value

is: A ? → ？．

15

typedfeature structures: the language

B. Boolean functions on structures

Boolean functions on structures take structures as operands and return a boolean value. They

do not modify the operands.

In definitions of operations, e represents an atomic structure, f represents a feature structure

(atomic or complex), and 1 represents a list of feature-structures.

UNIFIABLE: x ?>< y tests if x and y can be unified: if x >< y succeeds, returns TRUE

otherwise returns FALSE.

UNIFIED: x ><? y tests if x and y have been unified: returns TRUE if they have been unified

(they share the廿values)and FALSE if not.

EQUALITY: x = y checks recursively the feature/value pairs of x and y: all paths of x must be

in y and vice versa. Note that this does not take sharing into account. Equality could be defined

as: { 11} = { 12}→ V x e { 11}, x E { 12} .£D旦 V x E { 12}, x e { 11}

INEQUALITY: x I= y→ il x=y 1hfill FALSE tl年と TRUE.

INCLUSION: x < y or y > x checks recursively that the feature/value pairs of x are in y: all

paths of x must be in y. Note that sharing is not taken into account. Inclusion can be defined as

follows:

1. {} < {12}→ TRUE

2. {11} < {}→ FALSE

3. {el{ll}} < {el{l2}, 13}→ {11} < {12} QI: {el{ll}} < {13}

4 . {fl} < { f2, 12}→ {fl} < { 12}

5. {fl, 11} < { 12}→ {fl} < {12} MQ {11} < {12}

MEMBERSHIP WITH EQUALITY TEST: x@ y returns TRUE if the feature-structure x

belongs to the structure y: it is true if there is at least one feature-structure of y which is equals to

x. Membership with equality test can be defined as follows:

1. f E {} → FALSE

2. e{l} E {e{ll}, 12}→ l = 11 .Q.K. e {l} E { 12}

3. f E {fl, 11}→ f E { 11}

16

typed feature structures: the language

MEMBERSHIP WITH INCLUSION TEST: x @< y returns TRUE if the feature-structure x

belongs to the structure y: it is true if there is at least one feature-structure of y which contains x

(x is included in it). The definition is the same as for@, with equality test = in line 3 replaced by

inclusion test <.

MEMBERSHIP WITH UNIFIABLE TEST: x @>< y returns TRUE if the feature-structure x

belongs to the structure y: it is true if there is at least one feature structure of y which can be

unified with x. The definition is the same as for@, with equality test= in line 3 replaced by

unifiable test ?><.

C. Boolean predicates on structures

There are two operations implemented: unification and generalisation. Both can be used in

writing a set of equations: unification and generalisation are distributive relative to each other.

UNIFICATION: x >< y If x and y are paths in the expression, they have as the new value the

conjunction (see section 2.7.A Conjunction and union) of the sub-structures dominated by x and

y, and are co-indexed.

If xis a path and y is a constant structure (and not a sub-structure accessed through a path),

the new value of xis the conjunction of y and the sub-structure dominated by x (and vice versa if

x is a constant structure and y a path). There is, of course, no co-indexing of x itself.

The types of x and y are checked: if the new value for x or y is not of the type of x or y, the

unification fails (returns FALSE), otherwise it succeeds and returns TRUE.

GENERALISATION: x <> y If x and y are paths in the expression, they have as the new

value the intersection (see section2.7.B hltersection and strong intersection) of the sub-structures

dominated by x and y, and are co-indexed.

If xis a path and y is a constant structure (and not a sub-structure accessed through a path),

the new value of xis the intersection of y and the sub-structure dominated by x (and vice versa if

xis a constant structure and ya path). There is, of course, no co-indexing of x itself.

The types of x and y are checked: if the new value for x or y is not of the type of x or y, the

unification fails (returns FALSE), otherwise it succeeds and returns TRUE. In fact, the only

thing which is checked during evaluation is the maximum cardinality constraint. The minimum

cardinality constraint is checked after evaluation.

17

typedfi匹 turestructures: the language

2. 6 Control structures

A. Constants, variables and paths

A constant is a structure (either atomic or complex) written as itself: the evaluation of a

constant returns the constant itself: the number 5 returns 5, the structure {cat: noun} returns

{cat:noun}.

A variable is a means of storing and accessing a structure. Lexically, it is written as an

identifier prefixed with a star. The evaluation of a variable returns its value, the structure which

has been associated with it. If the structure {cat: noun} is associated with the variable *X, the

evaluation of *X returns {cat: noun}.

A path is either a variable or a variable with a concatenation of feature identifiers. A path is a

means of accessing a sub-structure of the variable. Using the the previous exemple, the path

* x. cat accesses to the value of cat: the evaluation of *X. cat returns {noun}.

B. Assignment

The assignment function is one of the basic operations for modifying structures (the others

are unification and generalisation). Assignment talces two arguments: a path and a constant

structure (result of some evaluation), and replaces the structure dominated by the path with the

『'constantstructure.

For example, suppose that the structure {cat: noun} is associated with the variable *X. If

we want to change the value of cat from noun to verb, we can write *X. cat <-{verb},

and *X will have the new value {cat: verb}.

Type checking is performed: if the value is of the type of the path, the assigment function

succeds and returns the value assigned (which is equivalent to the boolean value TRUE),

otherwise the assignment fails and returns the boolean value FALSE. This peculiarity is

introduced in order to use assignment in the same way as unification, which can succeed or fail.

Of course, when the order of a set of unifications and generalisations is not important (the result

is the same for any order of equation), it is important for assignment. As AND expressions are

evaluated in order, the grammar writer can use this ordering to control the order of evaluation of

a set of equations written as an AND expression.

18

typed feature structures: the language

C. Function and template calls

A template call is simply a template identifier prefixed with the % sign: it is replaced with its

definition. For example, the template main V defined as main v =

{syn: { loc: {head: {aux: no, inv: no}}}} is called %mainV, and returns

{syn: {loc: {head: {aux:no, inv:no}}}}.

A function call has the form &<function identifier> (<list of arguments>).

The variables :in the head of the def:inition (formal parameters) are replaced with the actual

parameters (arguments of the function call). The actual parameters replace the formal parameters

of the body of the function def:inition, and the body is evaluated. The function call returns the

result of this evaluation. A function can, of course, modify stJU.ctures :in the environment

(pass:ing a path as a parameter of a function call).

For example, suppose that the variable * x contains the feature n um { 3 } , and take the

function fact defmed in section 2.4.B:

fact(*x) = :COND *x=O : 1;

*x/=0 : *x * &fact(*x -1) :ECOND;

The call of & fact (*X. num) will be evaluated as follows:

1. The call form is replaced with the body in which the formal parameter *xis replaced with the

actual parameter 3, evaluation of the form * x . n um:

: COND 3 = 0 : 1;

3 /= 0 : 3 * &fact (3 -1) :ECOND;

2. This expression is evaluated: the first clause of the conditional 3=0 is evaluated as FALSE,

and does not apply; the second clause applies and the expression is further rew廿tten:

3 * &fact(3-1),then:

→ 3 * &fact(2)

→ 3 * (2 * &fact(l))

→ 3 * (2 * (1 * & fact (0)))

→ 3 * (2 * (1 * 1)) , which is eventually rewritten as 6.

／

19

typedfeature structures: the language

D. Sequence

The SEQUENCE control structure allows evaluating a list of instructions in order. An

instruction can be any expression. Each instruction of the sequence is separated form the

following instruction with a semi-colon. For example, the following operations permutate the

values of *X. tamp (say A) and Y*. tamp (say B):

:BEGIN

*Z.tamp <-*X.tamp;

*X.tamp <-*Y.tamp;

*Y.tamp <-*Z.tamp

:END

If the values of *X. tamp and *Y. tamp were respectively A and B before the evaluation

of the sequence, after the execution *X. tamp contains B and *Y. tamp contains A.

The result of the evaluation of a sequence is the result of the evaluation of the last instruction

of the sequence. For example, if during the execution of a sequence, an instruction which is a

unification fails, the evaluation continues regarclless of this particular result, and returns the result

of the evaluation of the last instruction.

E. Conditional

The conditional instruction, borrowed from LISP, allows writing expressions which are

evaluated depending on certain conditions. See as example, the factorial function section 2.4.B.

The conditional instruction is a sequence of clauses, separated with a semi-colon. Each clause

has a condition part and an action part (separated with a colon). The action part is in turn a

sequence of instructions separated with a comma The general form is

:COND

<condl>

<cond2>

<condN>

: ECOND

<instll>, <inst12>, ... ;

<inst21>, <inst22>, .。.;

<instNl>, <instN2>, ... <instNM>

The evaluation of the conditional is as follows: the clauses are evaluated in sequence. For

each clause, the condition part is first evaluated: if the result is FALSE, the evaluation of the

clause stops and returns FALSE, and the following clause is evaluated. If the condition returns

TRUE, the action part is then evaluated: each instruction of the action is evaluated in sequence.

20

typed feature structures: the language

The result of the conditional is the result of the last instruction of the clause. If no condition

applies, the conditional returns FALSE.

Note that if some condition has side-effects (modify some structure), and if the whole

condition returns FALSE, these modifications are undone.

2. 7 Functions on structures

A. Conjunction, union and unification

UNION: x + y returns the union of the sets of feature-structures x and y. This union is

recursively defined as follow:

ー {} + {12}→ {12}

2 { 11} + {}→ {11}

3 {el{ll}, 12} + {e1{13}}→ { el { [{ 11} + { 13} J } } + { 12}

4 {fl, 11} + {£2}→ {fl, [{ll}+{f2}]}

5

{11} + {f2, 12}→ {11} + {f2} + { 12}

As described in [Zajac 88], when some feature-structure is co-indexed, there are two cases: if

it is a feature which is present in both operands (line 3 of the definition above), this co-indexing

is removed in the result; if the feature-structure is present in only one of the operands, the

co-indexing remains in the result.

CONJUNCTION: x ++ y returns the union of the sets of feature-structures x and y, as defined

above, but when a feature is present in both operands (as in line 3 in the defmition of union),

they are co-indexed and they their values. This is the so-called <<non-destructive unification≫: the

structure which is returned is a new structure.

＼

／
 ,`'し

＼

＼

／
，

＇

i

EXA細 LES

Assume that:

*x <- {subject:{agr:{per:3, gen:fem}}

*y <-{predicate: {agr{num:plu}}

For union, there is no co-indexing, and futher modification of subject, agr will not

modify predicate. agr.

21

typed}匹 turestructures: the language

{agr: {per:3,

*x.agr + *y.agr→ gen:fem,

num:plu}}

and neither *x nor *y are modified. The same holds for conjunction++, but the value returned

may have new co-indexing for some features inside the structure.

For unification, subject. agr and predicate. agr are co-indexed, and each futher

operation on one will also affect the other.

{agr: {per:3,

*x.agr >< *y.agr→ gen:fem,

num:plu}}

but *x and *y have now new values:

*x <- {subject:{agr.#1:{per:3, gen:fem, num:plu}}

*y <- {predicate: {agr.#1: {per:3, gen:fem, num:plu}}

B . Intersection and strong intersection

INTERSECTION: x * y returns the intersection of the sets of feature-structures x and y. The

intersection is recursively defined as follow:

1 {} * { 12}→ ｛｝

2 { 11} * {}→ ｛｝

3 { el{ll}, 12 } * { el{l3} }→ { el{ [{11}*{13}]} }

4 {fl, 11} * {f2}→ {11} * {f2}

5

{11} * {£2, 12}→ {11}*{£2} ＋

{11}*{12}

When a feature which appears in both operands (as in line 3 of the definition), and this

feature is co-indexed, there are two cases: if the two features are co-indexed together, nothing is

changed; when they are not co-indexed together, the co-indexing is removed in the result.

22

typed feature structures: the language

STRONG INTERSECTION: x ** y returns the intersection of the structures x and y, as

defined above, but when two features are co如 dexedin one of the operands and appear also in

the result, this co如 dexingremains. That means that the values of co-indexed features加 the

result are not strictly the intersection of values of the operands, as in conjunction. See [Zajac 88]

for a complete definition.

EXA畑 LES

{subject: {agr.#1: {per:3,

gen:fem,

num:plu},

{subject: {agr: {per:3,

* gen: fem},

predicate:agr.#1} predicate: {agr: { ＇ num: sin}}}

{subject: {agr: {per:3,

→ gen:fem,

predicate: { agr: num}}

For intersection, it is as if there were no co-indexing: only the values of each features are

taken into account. But for strong intersection, co-indexing remains.

{subject: {agr.#1: {per:3, {subject: {agr: {per:3,

gen: fem, * * gen: fem},

num:plu},

predicate:agr.#1} predicate: { agヱ： {num: sin}}} (
_
¥

{subject: {agr.#1: {per:3,

→ gen:fern,

nurn},

predicate:agr.#1}

23

typed feature structures: the language

C. Difference

DIFFERENCE: x -y returns x minus the set of feature-structures y. The difference is

recursively defined as follows:

1 {} - { 12}→ ｛｝

2 { 11} - {}→ {11}

3

4

5

{ el { 11}, 12} { el{l3} }→ {12}

{fl, 11}

{11}

{ f2}→ {fl} +

{f2, 12}→ {11}

{11}

{ f2}

{£2}

{12}

Features in the result which are co-indexed in the first operand have the same co-indexing in

the result.

EXA畑 LE

{subject: {agr.#1: {per:3,

gen:fem,

num:plu},

{subject: {agr: {per:3,

gen: fern} }

predicate:agr.#1}

{predicate: { agr: {per: 3,

→ gen:fem,

num:plu}}

24

typedf, 匹 lurestructures: the language

2. 8 Inputs/outputs

Input and ouput functions are provided to the grammar writer. The grammar writer can use

output functions to display at the terminal some partial result during evaluation, to print results in

a file, etc. He can use input functions to read some previously stored information or to query the

user during interactive execution (for interactive parsing, for example).

A. The read function

There are two read functions: reread and read. reread opens the file, and reads in the

file at the beginning whether read continues to read in the file after the previous reading of that

file. If it is the first time the read function is called, it must be the reread function. The read

function always reads a structure, a defmition or an expression, and each is evaluated: the

evaluation of a structure is the structure itself, a defmition is loaded in memory, an expression is
evaluated. The read function returns the result of the evaluation.

The read function is called without parameters to read an object at the user's terminal. If

there is a parameter, it should be a string containing the name of a file (reread must always

read in a file):

&read reads an o bJect at the terminal

&reread ("def. tfs") reads an object at the beginning of file def. tfs

A read operation performed after the end of the file is an error. A write operation

performed on a file which is being read, and vice versa, is an error. A file must be closed using

the close function before reading it again:

&close ("def.tfs") closestheftledef.tfs

B . The write Junction

There are two writing functions: rewrite and write.rewrite writes an object at the

begining of a file, whether write continues to write after the previous write in the same file. If

the rewrite function is called for a file, it opens the file, the previous content is erased, and it

writes at the beginning of the file. rewrite always erases the previous contents of the file, and

writes from the beginning.

The write and rewrite functions take one or two parameters: the first is the object to be

written in the file (a structure), and the second is the file name (as a string of characters).

25

／

typedfeature structures: the language

&write (<exp>) w廿testhe object returned by the evaluation of <exp> on the tern血 al;

&rewrite(<exp>, "def.tfs") w血esthe object returned by the evaluation of <exp> at

the beginning of file def. tfs.

A read operation may be performed on a ftle which has been written and closed. Limitation:

in the present version, the write function w血esindexed structures; the read function cannot

yet read indexed structures.

26

typed feature structures: the language

3. RUNNING THE INTERPRETER

3. 1 Calling the interpreter

To call the interpreter is very simple: type the command t f s. The~terpreter will prompt

'TFS>'when ready. To exit from the interpreter, type CONTROL-X: you are in the LISP

environment. You can re-call the interpreter typing (t f s) or exit LISP with (exit) . To run

the interpreter from the LISP environment, see section 3.6.

The mterpreter has several modes set by the function &pa ram. ¥Vhen this function is called

without arguments, it simply displays the current parameters. When called with two arguments,

the function sets the parameter (first element) to the value (second element):

¶m [(p, v)] . The parameters are the followmg.

UNIFICATION: T or NIL. This parameter allows switching from true unification to

≪pseudo-unification≫[Tomita 88]. The effect of setting this parameter to NIL is that conjunction

is simply replaced with union in every occurence of conjunction and unification.

CHECK: T or NIL. The NIL value disables type checking: unification and assignment always

suceed.

SHARE: T or NIL. When this parameter is set to NIL, all co-indexing is removed, and the

unification parameter is set to NIL. Recall that when sharing is removed, feature structures are

completely equivalent to attribute stnlctures.

3. 2 Loading definitions

Before running the interpreter, you must define all the features you will use. They are more

conveniently defined in a separate file which is loaded at the beginning of a session, rather than

defining the features interactively. A file may cont血1any kind of definition or expression: types,

templates and functions definitions, and also expressions which are evaluated (a convenient

means of loading complex feature structures).

／

,'

Thefunctionis &load("filel", "file2", ...)

3. 3 The read-eval-print top-level loop

Once you have loaded your definitions, you may evaluate expressions interactively, and also

augment interactively your set of definitions (types, templates and functions). See appendix for

an example of a session.

27

typed feature structures: the language

3.4 Errors

Some errors may occur: undefmed features, an attempt to read a file which is not opened, etc.

In such cases, the interpreter displays an error message and asks if you want to use the LISP

debugger. This is not recommended. It is only to be used for debugging the interpreter itself.

3. 5 Environment inquiries

At the interpreter level, you can have some information on the state of your environment.

There are two functions, &obj list which print at the terminal the list of the current objects,

and &objects which print the defmitions of the objects. The objects could be variables,

functions, templates, and types.

Without arguments, the functions print all objects on the terminal: & objects or

&obj list.

With one argument, the functions print objects of the血 ddefined by the argument (can be a

set of arguments), on the terminal:

&objects (variables) &objects ({variables, functions}).

With two arguments, the second is string which contains a file where the objects are printed:

&objects (functions, "myfunc").

Limitation: in the present version, types, templates and function definitions are printed in the

LISP format. The TFS printer is used for variables (feature stnlctures).

3. 6 LISP interface

The TFS interpreter is implemented on the top of LISP. Once the interpreter is loaded, one

can go back in the LISP environment and call the TFS interpreter using the function

(tfs "<expression>"), where the expression to be evaluated is passed as a LISP string

(without argument, this function calls the interactive evaluation loop of the interpreter).

The corresponding function of calling the LISP interpreter

&lisp ("<S-expression>"), has not yet been implemented.

28

typedfealure structures: the language

4. IMPLEMENTATION NOTES

The interpreter is written in COM:M:ON-LISP, and does not use any implementation dependant

feature. Thus, it is in principle completetly portable.

Several general remarks on the implementation are in order.

This implementation has essentially been devised to test the idea of integrating a functionnal

framwork and a feature based unification framework. Thus, it has not been designed for

performance, and for a new version, other implementation choices should be made for a number of

parts.

Some parts are yet incomplete (such as the TFS printer for types, templates and function

definitions), other parts need to be be revised (e.g. to allow function calls inside a feature-structure).

This does not seriously alter the validity of the approach, but for a really usable version, they are, of

course, critical.

4. 1 The TFS reader and printer

The TFS reader is implemented as an (almost) LL(l) parser written in LISP. It uses two standard

parsing modules that could easily be used for writing other readers. There are three modules: the

parser module, the lexical reader, and the syntactic reader. The parser and the lexical reader modules

are very generals, and the syntactic reader is the only module which takes into account the TFS

syntax proper.

The parser module has several interface functions and variables :

(parse-file <string>) : calls the parser on the file <string>

(parse-string <string>): calls the parser on the string of characters <string>

(parse-open-file <string>): calls the parser on the file <string>. The file is not closed, and the parser

can be called again on this file.

(parse-open-string <string>): calls the parser on the ftle <string>. The file is not closed, and the

parser can be called again on this ftle.

(parse-next-stream) : continues to parse on the file opened with parse-open-file or parse-open-string.

The calls may be recursive: parse-open-x may open another file, which becomes the input for

parse-next-stream. The previous file is not lost: when this file is closed, the previous file again

becomes the input for parse-next-stream.

(close-parser-streams) : closes the current streams used by the parser. The previous ones are

reinstated.

The result of the parse is put in the variable *parsing-result*.

29

typed feature str匹 lures:the language

Two functions help to cope with syntactic errors:

(syntactic-error <unit>) : should be called when a syntactic error is detected. Build an error message

using <unit> (a string or a non-terminal identifier), and the current state of the parser as described by

the function (set-parsing-state <NT>). NT is a non terminal of the grammar. It could be a CONS

(<NT> . <idf>) used, for example, as (NT_RULE . S) and is used to generate the beginning of the

message "Error in rule S ... ".

The parser uses a modified version of the LISP read-table, where the only macro-characters are

¥ (escape character) and " (string macro character). The definition of space characters are not

changed. The following reading functions are provided.

(get-character): reads a character in the current input stream.

(peek <skip> <char>) : tests if the following character is <char>. Space characters are skipped if

<skip> is T.

(peek-alpha <skip>) : tests if the following character is a letter.

(peek-digit <skip>) tests if the following character is a digit.

(peek-number <skip>) tests if the following character is the beginning of a number(+, -or a digit).

(peek-alpha-num <Skip>) tests if the following character is a digit or a letter.

(unread <char>): unreads the character read by (get-character).

The lexical reader provides several pre-defined lexical units (syntax of identifiers, variables,

numbres, strings, operators, ...). The user can redefine all these except the key-word reader. This is

because key-words are used to select the appropriate entry point in the grammar when the parser is

called. Tow血eaparser, the programmer must provide not only the syntactic part, but also a table of

key-words to which are associated the functions defining the syntactic constructs identified by

key-words. The default entry point must be specified in the variable *expression*. This default entry

point is used when the unit to be parsed does not begin with a key-word.

The syntax of TFS expressions is defmed in the appendix. This syntax (and the corresponding

reader) is used in the interactive reader of TFS expressions, in the & read and & reread function

and in the &load function.

4. 2 Types, templates and functions

Definitions of types, templates and functions are put in association lists. As type information is

not coded in the feature structures, there紅etwo tables for types: one contains the type definition,

and the other contains the set of features with their associated types.

30

typedfeaJure structures: the language

4. 3 Evaluation of expressions

The set of variables is represented as an association list. The co-indexing information is

maintained in an array. An expression is represented as an S-expression, where the feature structures

are represented as an imbedding of lists. This structure is produced by the TFS r.eader and evaluated

by the TFS expression evaluator.

4. 4 Unification, conjunction, union, …

Operations on feature structures are implemented formthe specifications given in [Zajac 88]. No

optimisation has been made.

Operations on numbers use the LISP equivalent functions. Operations on string have a

straightforvvard implementation.
,
’
¥

9

,

/~\

31

typed feature structures: the language

5. CONCLUSION

LISP has been proven useful for building large systems. An equivalent language for building

large Machine Interpretation systems could be very useful. Such a specialized language would allow

a computational scientist to integrate various sub-components such as a speech recognition engine, a

syntactic parsing engine, and a dialog management engine, within an unified syntax and a unique

user interface. It would allow development of several sub-parts of a Machine Interpretation system

using a common syntax an a common environment for all sub-parts, and to integrate these sub-parts

to build a single large system. A functionnal language is a good candidate for such a task.

We have previously shown that feature structures can be related to attribute structures which are

used in a functionnal framework [Zajac 88], describing a common theoretical framework for both

approaches. An :interpreter has been successfuly implemented to validate this approach, and proves

the feasability of introducing a functionnal calculus for feature structures. Feature structures could be

manipulated with such an language. Therefore a unification based engine can be imbedded in a clean

way in a functionnal framework.

A preliminary attempt has been made to integrate this interpreter in the parser engine developed

by Y.Nicolas [Nicolas 88]. For this occasion, the grammar formalism has been extended to include

tree type (with a limited syntax and partial unification): the motivation is that a language with the

capabilities for writing all parts of a Machine Interpretation system should be able to manipulate not

only feature structures, but also tree structures, lattice structures, etc.

32

typed feature structures: the language

Appendix 1: examples of definitions

:TYPE DECORATION= subject: SUBJECT, predicate:PREDICATE, category: CATEGORY;

: TYPE SUBJECT= agr:AGR, case: CASE, maj: CLASS;

: TYPE PREDICATE= agr:AGR, verb: VERB, object: OBJECT, category: CATEGORY;

: TYPE VERB= category: CATEGORY;

: TYPE OBJECT= case: CASE, maj: CLASS;

:TYPE CATEGORY-= maj: CLASS, case: CASE, vform: VFORM, nform: NFORM, aux: YN;

:TYPE CLASS= n, v, a, p, d, adv;

: TYPE CASE= nom, ace, gen;

: TYPE NFORM = norm, it, there;

:TYPE VFORM = fin, inf, ger;

/

＼

＇

:TYPE AGR = per: NUMBER, gen: GENDER, num: LNUMBER;

:TYPE GENDER= mas, fem, neu;

: TYPE LNUMBER = sin, plu, neu;

:TYPE YN = y, n;

:FUNCTION

fact{*x)=

: COND

*x=O :: 1;

*x>O :: *x * &fact{*x-1)

: ECOND;

/’

33

typed feature structures: the language

Appendix 2: a session with the interpreter

atr-ln> tfs

TFS>
+--------Summary of line commands--------+
I I

! "A beginning of the line !

! "E end of the 1ュne !

! "B backward !

! "F forward !

! "D delete 1 character !
! "K delete the end of the line !

＇ . "I TAB previous command !

! "N next command !
! "L previous "K 1

! "X exit TFS, return to LISP !

+---—+
TFS> &load("hs.tfs")

> TYPE DECORATION.

> TYPE SUBJECT.

> TYPE PREDICATE.

> TYPE VERB.

> TYPE OBJECT.
> TYPE CATEGORY.

> TYPE CLASS.

> TYPE CASE.
> TYPE NFORM.
> TYPE VFORM.

> TYPE AGR.
> TYPE GENDER.

> TYPE LNUMBER.

> TYPE YN.

File hp.tfs loaded.

> NIL

TFS> *a<- {subject: {agr: {per: 2, gen: fem}}}

> {subject: {agr: {per: 2,
gen: fem}}}

TFS> *b <- {predicate: { agr: {num: plu)))

> {predicate: { agr: {num: plu)}}

TFS> *c <-*a+ *b
> {subject: {agr: {per: 2,

gen: fem}},

predicate: {agr: {num: plu}}}

TFS> *c

> {subject: {agr: fper: 2,
gen: fem)},

predicate: {agr: {num: plu}})

TFS> *c.subject.agr >< *c.predicate.agr

> {per: 2,

gen: fem,

num: plu}

34

typed feature structures: the language

TFS> *c
> {subject: {agr.#0: {per: 2,

gen: fem,
num: plu)},

predicate: { agr. #0))

TFS> *al<- {subject: {agr: {per: 1), case: nom)}
> {subject: {agr: {per: 1},

case: nom))

TFS> *bl<- {subject: {agr: {num: sin, gen: mas}, maj: n}}
> {subject: {agr: {num: sin,

gen: mas},
maj: n}}

TFS> *al>< *bl
> {subject: {agr: {per: 1,

num: sュn,
gen: mas},

case: nom,
maj: n})

TFS> *x <- {category: {vfo_rm: fin), predicate: category, subject}
> {category: {vform: fin),

predicate: category,
subject)

TFS> *y <- {predicate: {object, category, verb: {category: {aux: y)J)}
> {predicate: {object,

category,
verb: {category: {aux: y}))}

TFS> *x.category >< *x.predicate.category
> {vform: fin}

TFS *x
> {category.#4: {vform: fin},

predicate: {category. #4},
subject}

TFS> *y.predicate.category >< *y.predicate.verb.category
> {aux: y}

TFS> *y
> {predicate: {object,

category. #5: {aux: y},
verb: {category.#5}}}

｀

／
ー

TFS> *x >< *y
> {category.#6: {vform: fin,

aux: y},
predicate: {category.#6,

object,
verb: {category.#6}},

subject}

TFS> &load("fact.tfs")
> FUNCTION fact.
File fact. tfs loaded.
> NIL

35

typed feature structures: the language

TFS> &objects(functions)

(I &fact I . #S (FUNC-DECL :ARGS (I *x I)
: BODY (COND ((= (I &pathvalue I I *x I)

> NIL

TFS> &fact(5)

> 120

TFS> 2/3 + 5/3
> 7/3

TFS> "abc" + "DEF"
> "abcDEF"

> "abed"

> "abed"

> 1111

TFS> "abed"*/ "abde"

> "ab"

TFS>

Call (tfs) to return to TFS .••
NIL

Lisp> (exit)

#S (H-ATOM :NAME O : INDEX -1))

(SEQ #S (H-ATOM :NAME 1 : INDEX -1)))

((> (I &pathvalue I I *x I)
#S (H-ATOM :NAME O : INDEX -1))

(SEQ

(* (I &pathvalue I I *x I)
(I &fact I
（一

(I &pathvalue I I *x I)
#S(H-ATOM :NAME 1 :INDEX -1)))))))))

36

typed feature structures: the language

Appendix 3: syntax of TFS

The syntax is described using BNF notation extended with the following notations:

square brackets [] are used to note optional parts

braces {} are used to note iteration parts (Kleene star).

<types> ::= :TYPES <list-type-decl>

<type>::= :TYPE <type-declaration>

<templates> ::= :TEMPLATES <list-template-dee!>

<template> ::= :TEMPLATE <template-declaration>

<functions> ::= :FUNCTIONS <list-func-decl>

<function> ::= :FUNCTION <function-declaration>

鳥

/

＼

9

9

<list-type-decl> ::= { <type-declaration> }

<list-template-decl> ::= { <template-declaration> }

<list-function-decl> ::= { <funct1on-declarat1on> }

<type-dee!> : := <type-idf> = [:CARD <integer>]

<attr-idb [: <type-idf>] { , <attr-idf> [: <type-idf>] } ;

<template-dee!> ::= <template-idf> = <constant-structure> ;

<function-dee!> ::= <function-idf> [(<Structure-variable> { , <Structure-variable> })J

= <expression> ;

<expression> ::= :COND <cond-exp> :ECOND

: BEGIN <Seq-exp> :END

<boolean-exp>

<Cond-exp> ::= <Clause> { ; <Clause> }

<Clause> ::= <boolean-exp> :: <expression> { , <expression> }

l
l
』

<Seq> ::= <expression> { ; <expression> }

<boolean-exp> ::= <boolean-term> ['I'<boolean-exp>]

37

typed feature structures: the language

<boolean-term> ::= ["] <boolean-fact> [& <boolean-term>]

-::boolean-fact> ::= (-::boolean-exp>) I -::relational-exp>

<relational-exp> ::= <functional-exp> [<rel-op> <functional-exp>]

<functional-exp> ::= <functional-term> [<OP2> <functional-exp>]

<functional-term> ::= <functional-fact> [<Op3> <functional-term>]

<functional-fact> ::= (<functiona卜exp>)I

<number> I <String> I <fs> I <path> I

<template-idf> I <function-call>

<Constant-structure> ::= <number> I <String> I <fs>

dS> ::='{'[<1fS> { , <1fS>}]'}'

<1fS> ::= <idf> [ds>]

dune-call> ::= dunc-idf> [(<functional-exp> { , <functional-exp> })]

<path> ::= <V-idf>[.<idf>]*

<v-idf> ::= *<idf>

<func-idf> ::= &<idf>

<template-idf> ::= % <idf>

<idf> ::= <alpha-num-string>

<rel-op> ::= = I /= I < I <= I > I >= I <> I >< I ?>< I ><?

@ I @< I @>< I <-

くop2>::= + I ++ I - I /-I -/

くop3>::= * I ** I / I /* I */

38

typed feature structures: the language

REFERENCES

Hassan AH-Kaci, 1984, A Lattice Theoretic Approach to Computation Based on a Calculus of

Partially Ordered Type Structures, PhD. Dissertation, University of Pennsylvania.

Hassan A'it-Kaci, 1986, An Algebraic Semantics Approach to the effective Resolution of Type

Equations, Theoretical Computer Science 45, pp 293-351.

H

＊

Hassan A'it-Kaci and Roger Nasr, 1986, LOGIN: a Logic Programming Language with

Built-in Inheritance, J. of Logic Programming, 3, pp 185-215.

W. Bennett and J. Slocum, 1985, The LRC Machine Translation System, Computational

Linguistics 11/2-3, April-September.
／
ー
＼

Ch. Boitet, P. Guillaume and M. Quezel-Ambrunaz, 1980, Manipulation d'arborescences

et parallelisme: le systeme RO BRA, COLING-80.

Ch. Boitet, D. Bachut, N. Verastegui and R. Gerber, 1988, ARIANE portable, Dossier

des Specifications Externes, Le langage TETHYS, GETA-ADI.

R.J. Brachman and J.G. Schmolze, 1985, An Overview of the KL-ONE Knowledge

Representation System, Cognitive Science 9/2, pp 171-216.

Alain Colmerauer, 1971, Les SYSTEMES-Q, un formalisme pour analyser et synthetiser des

phrases sur ordinateur, Groupe TAUM, Universite de Montreal.

Marc Dymetman, 1987, RATP: un nouveauformalisme de la classe des grammaires d'un第cation,

Unpublished paper, April 1987.

G.E. Heidorn, K. Jensen, L.A. Miller, R.J. Byrd and M.S. Chodorow,1982 , The

EPISTLE text-critiquing system, IBM Syst. Journal, 21/3.

K. Jensen and G.E. Heidorn, 1983, The fitted parse : 100% parsing capability in a syntactic

grammar of English, Proc. of the Conf. on Applied Natural Language Processing, pp 93-98,

Santa-Monica, California, February.

1
'、い

Ron Kaplan and J. Bresnan, 1982, Lexical Functional Grammar, a Formal System for

Grammatical Representation. In J. Bresnan (ed.), The Mental Representation of Grammatical

Relations, The MIT Press, 1982, pp 173-381.

39

L
|
i，
ハ
~
＇
ー

J
"
C
i
i
1
1

い
，
＇

yヽpedfeaturestructures: the language

Robert T. Kasper and William C. Rounds, 1986, A Logical Semantics for Feature

Structures, Proc. of the 24th Annual Meeting of the ACL, 10-13 June, Columbia University,

New痒 rk,pp 257-266.

Martin Kay, 1984, Functional Unification Grammar: a Formalism for Machine Translation,

COLING-84.

J. Nakamura, J. Tsujii and M. Nagao, 1984, Grammar Writing System (GRADE) of

Mu四MachineTranslation Project a叫 itsCharacteristics, COLING-84.

Yves Nicolas, 1988, Pragmatic Extensions to Unification Based Formalisms, ATR Interpreting

Telephony Research Laboratories.

□

Carl Pollard and Ivan A. Sag, 1987, Information-based Syntax and Semantics, CSLI, Lectures

Notes Number 13.

J. A. Robinson and E. E. Sibert, 1982, LOGLISP: an alternative to PROLOG, in Machine

Intelligence, volume 10, J.E. Hayes, D. Michie and Y-H. Pao eds., Ellis Horwood Limited, pp

399-419.

Stuart M. Shieber, 1986, An Introduction to Unification-based Approaches to Grammar, CSLI,

Lecture Notes Number 4.

Jonathan Slocum, 1984, METAL: the LRC machine translation system, ISSCO Tutorial on

Machine Translation, Lugano, Switzerland, April 2-6.

（］

Gert Smolka, A Feature Logic with Subsorts, LILOG-REPORT 33, IBM Deutschland GmbH,

Stuttgart, May 1988.

Masaru Tomita (ed.), 1988, The Generalized LR Parser/Compiler Version 8.1: User's Guide,

CMU-CMT-88-MEMO, 26 January 1988.

Remi Zajac, 1988, Operations on Typed Feature Structures: Motivations and Definitions, ATR

Interpreting Telephony Research Laboratories, Technical Report TR-I-0045, October 1988.

-o-o-o-o-o-o-o-o-o-o-o-o-

40

