
TR-1-0054

Pragmatic Extensions
to

Unification-Based Formalisms.

単一化に基づく形式化の実用的な拡張

Yves NICOLAS
イブ・ニコラ

November, 1988

Abstract

Internal Use Only

A type system for feature structure has been developed in terms of initial
algebra theory of abstract data types. In this system, there are essentially two
kinds of feature strucLure types: atomic and complex types. Usual simple types
such as boolean, numbers or strings are used as atomic types. Complex types are
defined recursively by means of the set of feature/value pairs. Operations defined
on atomic types enable us to avoid unification when it is unnecessary and hence to
reduce computational cost. As an application of this type system to grammatical
formalisms, an Earley-like parser using this system has been developed and
integrated inside a small environment including trace and step functions.

ATR Interpreting Telephony Research Laboratories
ATR自動翻訳霊話研究所

Pragmatic Extensions to Unification-Based Formalisms

Pragmatic Extensions
to

Unification-Based Formalisms

•—

Yves NICOLAS*

A TR Interpreting Telephony Research Laboratories
Twin 21 MID Tower

2-1-61 Shiromi
Higashi-ku
Osaka 540
Japan

＾ ABSTRACT. A type system for-feature structures has been developed in
terms of initial algebra theory of abstract data types. In this system,
there are essentially two kinds of feature structure types: atomic and
complex types. Usual simple types such as boolean, numbers or strings
are used as atomic types. Complex types are defined recursively by
means of the set of feature/value pairs. Operations defined on atomic
types enable us to avoid unification when it is unnecessary and hence to
reduce computational cost. As an application of this type system to
grammatical formalisms, an Earley-like parser using this system has
been developed and integrated inside a small envirorunent including trace
and step functions.

＾
：：：

RESUME Nouf avons developpe uffsysteme de-feature structures
typees dans l'optique de la theorie algebrique des types abstraits. Dans
ce systeme coexistent deux sortes de types de feature structures: les
types atomiques et les types complexes. Comme types atomiques, nous
utilisons des types simples usuels, tels que booleen, nombre ou chaine
de caracteres. Les types complexes sont definis recursivement par leurs
attributs. Les operations definies sur les types atomiques permettent
d'eviter !'unification quand elle n'est pas necessaire et de Ii俎uireainsi le
temps de calcul. Comme application de ce systeme a la linguistique
computationnelle, nous avons implante un analyseur inspire de celui
d'Earley et qui construit une feature structure typee representant la
phrase au cours de !'analyse. Cet analyseur a ete integre au sein d'un
petit environnement comprenant des fonctions de trace et permettant le
debosagede即ammaires.

* Intern student from the ENST (Ecole Nationale Superieure des
Telecommunications), Paris, France.

ー

Pragmatic Extensions to Unification-Based Formalisms

Table of contents

INTRODUCTION .•••.••...••...••••••...•• …• • • …........ …............ 4

F-STR U CTURES ..•........••••••...•..• …................................ 5

I. Presentation ….. 5
lヽ

II.Classical definitions…………•…• ……….. ….... ……..... …• ….... …... 8

--
III The f-structure type system …………………• •• ……………... ………13

THE PARSER •..••.•.•••••••.••••.•..•••.•........•....•.••.•••.•••.•••.•... 28

I. Barley's algorithm ………............... …• ………•• …........... 28
~

II. The interface evaluators…………………………………………•• ……32

III The grammar f ormal1sm……... …….............. …………………•• …34

IV. The algoritlun…... 36

THE PAULINE SYSTEM………………………………………... 45
I. Introduction ... 45

II. The top level menu …• ….... …………..... ….... …•• …..... …............ 45
ill. Structures ... 48

IV. Evaluators ... 51
~

V.G • rammar rules and
.

parsmg ... 53

VI. the tracer ... 5 5

CONCLUSION •.•••••••••••.••••.•..•..•...•..•.•..•••••••••••••.•••••.••••. 61

APPENDIX: A PURE UNIFICATION GRAMMAR……………62 富

RE FE REN CES .•.••.•.••.....••.••••...•..................••.•.....•.•.•••.. 65

2

Pragmatic Extensions to Unification-Based Formalisms

ACKNOWLEDGEMENTS

-＿

~

I would like to thank Dr. Akira Kurematsu, President of ATR

Interpreting Telephony Research Laboratories, for inviting me to his

laboratory.

I would also like to thank Mr. Teruaki Aizawa, Head of the Natural

Language Understanding Department, who welcomed me in his

department and supported my research.

I am also very grateful to Kyoshi Kogure, who directed my

research and gave me constant support and advice, and to Remi Zajac,

visiting researcher from the Groupe d'Etudes pour la Traduction

Automatique (Grenoble, France), with whom I had many fruitful

discussions.

~

I would also I恥eto thank Dr. Hisao Kuwahara for t~ing care of all
administrative formalities before and during our stay in Japan, and also

Mr Isao Ito, who took・ ~are of all our material problems.

I would also like to thank Frank Giacobbi who corrected the

English text. I am responsible for all remaining mistakes, due to last

呻 utechanges.

I would also like to extend this acknowledgment to all the

employees of A TR who, through their constant kindness, helped me to

rapidly acquaint me with the Japanese way of life.

-

)

3

Pragmatic Extensions to Unification-Based Formalisms

INTRODUCTION

Unification-grammars are now widespread in natural-language processing and
computational linguistics. Their success is partly due to a simple intuitive encoding of
lexical and grammatical inf onnation inside feature structures and to a very powerful
mechanism used to combine this information, that is unification. Unification 1s used in
several domains of computer science such as theorem proving, logic programming, and
artificial intelligence. It is one of the basic operations of the PROLOG language. Its
application to computational linguistics enables us to handle complex phenomena, either
semantic or syntactic, in a simple homogeneous way. However, one can wonder why
there is not at this time any real-size natural language processing system using pure
unification as the basic operation. In fact, unification-based f onnalisms raise two major
problems:

• Unification algorithms are expensive. [BAR 87] showed for example
that the recognition problem for GPSG is NP-complete, solvable in
exponential time.

• H unification can solve simply complex problems, it often fails in
performing simple operations, or requires encoding them using
complex, non intuitive mechanisms. Performing arithmetic operations
with pure unification can be done only by redefining integers from the
constant zero and the predecessor and successor operations.

Therefore, real-size natural language processing systems should include both
unification and some less powerful mechanisms to handle simple operations in the most
efficient way.

These facts were our basic assumptions while beginning this work. The
solution we chose to integrate operations other than unification was to develop a type
system for feature structures in which two kinds of types occur:

• Atomic types. They are the usual simple types such as numbers,
boolean or strings of characters. Their specification is imported in the
formalism and thus we are able to pe迂ormon them their specific
operations such as arithmetic, concatenation, etc. Toward unification,
objects of these atomic types behave just like atomic values do in the
usual approaches to feature structures and unification.

• Complex types. They handle feature/value pairs. Such types are
defined by a set of valid features, considered operations on the type.

The type system has been developed using the algebra approach to data types as it can
be found in [GOG 78). The fi匹 tchapter of this work is devoted to its description.

After designing this type system, we had to integrate it inside a pars!ng
algorithm. We modified Earley's parsing algorithm so that it can build representation
structures for the parsed sentence. This algorithm has been developed with the feature
structure t~e system in mind but it is in fact independent of the particular chosen
representation structures. Thus, it can handle pure unification grammars, but also
grammars written to represent sentences by trees, fores ts or other kinds of structures.
The communication between the structures module and the parsing algorithm is made
through three well specified interface evaluators. The second chapter of this work
presents the specification of these evaluators, the underlying grammar f onnalism and a
description and proof of our algorithm.

We finally went to an implementation work and integrated both the feature
structure切）e system and the parsing algorithm in an environment which includes some
trace funcnons. The program has been called PAULINE, which stands for Parsing
Augmented Unification-grammars: a Linguistic INteractive Environment. The third and
last chapter of this work is devoted t<;> the reference manual of this program.

i,,

＾

~

4

Pragmatic Extensions to Unification-Based Formalisms

Chapter I
F-STRUCTURES

-
<

，

~

I. PRESENTATION

1.1 UNIFICATION GRAMMARS

Unification grammars come from parallel research in theoretical linguistics,
computational linguistics and logic programming. Among the major works in the realm,
are the Lexical Functional Gramma.r (LFG) from Bresnan and Kaplan, [KAP 83], and
the Functional Unification Grammar from Kay, [KAY 83]. Later, Gazdar originated
the Generalized Phrase Structure Grammar (GPSG), [GAZ 85]. Implementation works
on GPSG led to the Head-driven Phrase Structure Grammar (HPSG), [POL 87]. Other
such works led to prototypes like D-PA TR. Independently, Colmerauer's work on Q-
systems, metamorphosis grammars and PROLOG led to other fonnalisms such as the
Definite Clause Grammars (DCG), [PER 80].

The common characteristic of all those formalisms is a model for representing
and combining information, which is encoded inside feature structures, or f-structures,
on which a unique operation is performed, namely unification, which corresponds
roughly to the merging of information found in the two arguments.

1.2 F-STRUCTURES

F-structures are a generalization of record structures usual in computer
languages (structure types in C or COMMON-LISP, record types in Pascal or ADA).
They can be defined as a set of feature/value pairs. For example, the agreement
information for a noun can be encoded in the following structure:

gender masculine
81 [number plural]

Two points make f-structures different from the classical attribute structures
used in computational linguistics:

• Composition
The value of a feature in an f-structure can itself be an f-structure. For example,

the lexical information for John in a dictionary could be encoded in the following
structure:

~

cat N

82 [agreement [悶盟~~;:戸］ ］
This leads to the notion of path as a list of features. For example, the value of the path
<agreement number> in s2 is plural. Since it is not a composed f-structure, we speak in
this case of an atomic f-structure. Composed f-structures will be referred to as complex
!-structures. We will clarify these ideas later.

• Reentrancy
Two paths can share a same value inside a !-structure. This phenomenon, called

reentrancy, is noted by boxed indices. The subject-verb agreement rule can, for
example, be encoded in the following structure 1:

1 The linguistic examples are derived from [SHI 86] and HPSG.

5

Pragmatic Extensions・to Unification-Based Formalisms

ct

e
a
d
b
j
e

e
a
t
h
.
S
U

-
＿
-
―
_
-

z
m
]

m]p
ct に門

l

It is necessary to distinguish between reentrant equality, or identity, and simple
structure equality. Let us consider:

sa [: g I l] and Sb [: 薗[~ ~]]
The values of paths <a> and <d> are identical in Sb but not in sa. In both cases, they are
equal 1.

We have always represented f-structures as matrices. Another representation is
perhaps more adequate for reentrancy: an !-structure can be seen as a node of a directed
acyclic graph (DAG), with each feature/value pair corresponding to an outcoming edge
of this node. For example, the above sa and Sb can be represented by the following
graphs: ＾

Sa Sb

C f

c

f

c

f

Two structures are then identical if and only if they are represented by the same
node in the graph, and equal if the labels of the outcoming edges are the same, their
ends being also equal. The graph leaves (nodes without any outcom呻 edge)are atomic
f-structures. They are called variables if they have no value. If the structure does not
include any reentrancy, its graph representation is a tree.

1.3 UNIFICATION

Unification allows combining information found in two structures wh!le
checking its consistency. We merely present examples here, before giving a precise
definition in section II.

Roughly, unification is defined as follows: a variable f-structure can be unified
with any, the result of the operation being the non-variable f-structure. Two atomic f-
structures unify if and only if they are equal, the result being either of the two
arguments. In the unification of two complex f-structures, the features set of the result
is the union of the two features sets, the value of a feature in the result being the
unification of the values of this feature in the two argument structures.

~

a-

1 The difference between identity and equality can be compared to the one between eql and
equal functions in LISP. ・

6

Pragmatic Extensions to Unification-Based Formalisms

EXAMPLE 1

ミ

c

f

＾
EXAMPLE 2

~

e

a

a

c

C f

and

a

e

c

f

・1

can not unify since the values of path <a b> in the two structures are not compatible.

Fin辿y,we present a sample unification grammar which handles subject-verb
agreement m sentences. The example is derived from [S印 86].

We consider the following grammar rule:

(R) S→ NPVP
<S head> = <VP head>
<S head subject> = <NP head>
<S subject> = <NP>

7

Pragmatic Extensions to Unification-Based Formalisms

where equal signs stand for unification. Let us first parse the French sentence Les
chiens aboient. (The dogs bark). We assume that other grammar rules build the
following structures:

cat NP
Les chiens [head [gender masculine

number plural

cat VP

aboient [head 『::;:tpresent indicative
[number plural
person 3

―

-

］

］

］

］

At the reduction of rule R, the structure for S is void (variable). The fi江st
unification leads to

[[ense p~e!~: 温~~alive]]
head subject [person p3 lural]

~

the second to

[[ense present indicative]]

head subject [:~ ば『 ~lural]
gender masculine

and the last to

唸:品~~]]
[pgeernsdoen r tmascural uline]

While parsing the incorrect sentence Les chiens aboit (The dogs barks), we would have
had:

＾
cat VP

aboit [head [::;ct p「三~Ci!芦ar]]]

and the second unification would have failed. The sentence would not have been
accepted.

II. CLASSICAL DEFINITIONS

The definitions and the algorithm presented in this section are derived from
works such as [SID 86], [PER 86] and [POL 87].

11.1 FORMAL DEFINITIONS

Let A and F be two possibly infinite sets.

8

Pragmatic Extensions to Unification-Based Formalisms

A is the atomic values set.
F is the feature set.

Let J. and T be two objects, both of them neither in A, nor in F.

The f-structures set is defined by

00

・‘
S= U sk

ki::O

~

~

一

where sets Skare defined recursively as follows:

So=Au{T}

if k~1, Sk is the set of mappings s from F to Sk-1 such that

{f e FI s(f)¢T} is finite.

Elements of A are called atomic f-structures. Elements of S豆ork~1 are called
complex f-structures. The constant Top (T) is also called variable f-structure.

We define a path as a string of features, that is, an element of F*. For the sake

of simplicity, if p = < f 1, ... , f n> is a path, and for s e Sk with k~n, we shall note:
s(p) = (... (s(f1))(f2)) ...)(fn)

We can now define unification as the commutative operation LJ from S x S to S

u { l.} such that

'v'se S sl」T=s

'v's1 e A'v's2 e A ¥(T, si}

s1 LJ s2 = l.

'v'seA sl」s=s
'v's 1, s2 e S ¥ S。

if ヨfe F / s1 (f) LJ s2(f) = l.

then s1 L」s2=l.
else'v'f e F (s1 LJ s2)(f) = s1 (f)L」s2(f)

11.2 A UNIFICATION ALGORITHM

We assume here that f-structures are represented as directed acyclic graphs
(DAG, see section I). To take reentrancy into account, we need to define forwarding of
nodes. If a node n 1 is forwarded to a node n2, the first one becomes invisible and each
access to n1 is actually an access to n2. Because of possible successive forwardings,
there can be some sequences of invisible nodes. If one wants to consult a node, one has
to find the last non-forwarded node of such a sequence. This operation is called
deref erenciation.

Let G be the graph of the two structures to be unified. Its edges are represented
by 3-tuples (nd,f,na). Such an edge goes from node nd to node na, f being its label. If
the node has no outcoming edge, it can have a value v. In that case, it represents the
atomic f-structure v. If the node has no value, it represents the variable f-structure T.

We can now present the unification algorithm, talcen from [PER 85]

，

Pragmatic Extensions to Unification-Based Formalisms

UNIFY
INPUT: 2 nodes n 1 and n2

OUIPUT: a node or l.

dereference n 1 and n2

if n1 and n2 are identic
return n1

else

if n1 = T
forward n 1 to n2

else

if n2 = T
forward nがon1

else
If n 1 and n2 are atomic and equal

forwardnがon1
else

If n 1 and n2 are complex

SHARED = { (n2,f,nr) e G /ヨ (n1,f,n'r)e G}

COMPLEMENTS = { (n2,f,nr) e G} ¥ SHARED
forwardnがon1

for each edge(n1,f,nr) e G

ifヨ(n2,f,n'r)e SHARED
n = UNIFY(nr,n'r)
if n= l. return J_

else G = (G¥{(n1,f,nr)}) u {(n1,f,n)}

for each edge (n2,f,nr) e COMPLEMENTS

G =Gu {(n1,f,nr)}

，

else

return .L

return n1

＾ EXAMPLE. As an example, we apply this algorithm to example 1 of paragraph 1.3. In
the following diagrams, forwardings are noted by means of arrows. The two structures
to be unified are

a

..

c

f

c

10

Pragmatic_ Extensions to Unification-Based Formalisms

The algorithm acts as follows:

UNIFY(国回）
SHARED= ((回，a図），（回，d,12)))

COMPLEMENTS = { (回，g,回））
→ UNIFY (回,[l)=回

and the graph becomes:

，

＾
→ UNIFY (回図）

dereference回→回
SHARED=0

COMPLEMENTS = ((回，b回））

＝回
and the graph becomes:

＾
-・
 d

11

Pragmatic Extensions to Unification-Based Formalisms

In the unification of IT] and回， thereonly remains adding the edge from
co畑 LEMENTS.The final graph is then:

d

~

The returned result is目Ifwe consider forwardings, this is equivalent to:

a

C f

which is the result we are looking for.

11.3 COMMENTS

This approach to f-structures and unification lacks precision. First of all, the
formal definitions given in paragraph II.1 do not take reentrancy into account.
Representing f-structures as graphs allows a proper definition of reentrancy but, in that
case, unification is defined by means of an algorithm which operates on a particular
data-structure, that is, graphs. Besides, the algorithm described above is destructive. It
irreversibly alters its argument, and it is thus necessary to work on copies. Doing these
copies can be costly and redundant. Many solutions have been proposed to solve such
problems: include in each node an updatings slot, which records the modifications to
the initial structure, which is not modified itself (see [PER 85]); include in each node a
copy slot so that a structure is altered if and only if it is already a copy (see [WRO 87]).
The algorithm that will be presented in section III and where reentrancy is described by
means of node indexing, is similar to Wroblewski's algorithm. It thus performs a non
destructive unificationl.

On the other hand, this classical point of view on f-structures is rather simple
and very homogeneous, since there is only one data type, namely f-structures and one
operation, namely unification. This is, in fact, a very powerful operation which enables
it to do complex things in a very simple and elegant way. But it is costly and it often

，

●
}

1 Non destructive unification is sometimes called conjunction. The definition of conjunction
given in [ZAJ 88] is formaUy equivalent to unification, the difference being that it is
considered an operation and not a procedure with side effects on its arguments.

12

Pragmatic Extensions to Unification-Based Formalisms

-`

fails in performing simple operations. For example, it is not easy, nor obviously
intuitive, to describe arithmetic operations on integers by means off-structures and
unification. In any event, it is much more complex than the usual implementations of
integer data type. One of our purposes was to study how to design a framework where
both unificauon and classical implementation of simple operations could take place.
This was done by means of the f-structure type system that will be described below.

There are many other approaches to f-structures and unification. [KAS 86]
presents, for example, an equational formalism. It is mathematically very elegant but
looses the intuitive description off-structures as feature/value pairs, which is much
more convenient for a grammar writer. [ZAJ 88] presents f-structures as hierarchical
sets and defme a complete framework of operations on complex f-structures. [AIT 86]
presents a good approach to reentrancy by means of index function. We will describe it
later.

＾

~

~

III THE F-STRUCTURE TYPE SYSTEM

In this section, we present a specification for an f-structure type system. An
abstract data type is defined by its objects, the operations that can be performed on them
and the equations binding these operations. We define two kinds of f-structure types:
atomic types and complex types .. The fl江stare the usual simple types such as boolean,
number or string. Their specifican.on is incorporated in the formalism sp that we can use
their operations. The others are defined recursively by the set of their valid features,
considered as operations on the type. Reentrancy is described by means of index
functions as in [AIT 86]. On these complex types, we define the subsumption ordering.
The unification of two f-structures will then be their greatest lower bound according to
this order.

After outlining the algebraic theory of abstract data types, we described fi江stthe
modifications to the imported specification for atomic types, then the way to define
complex types and finally present a unification algorithm.

lli.l THE ABSTRACT DATA TYPES THEORY

This paragraph recalls the notion of abstract data type specification as it is
presented in [GOG 78]. Its purpose is to give the definition of a specification and to
~ve th~major points of the reasoning that shows that a specification can define a type
1n a unique way. The notations are taken from [GOG 78] and will be used throughout
all of section m.

111.1.1 Presentation

An abstract data type possibly involves many sorts of objects. Let S be the set
of these sorts. For s in S, the set of objects of sort s will be denoted As and called the
carrier of sort s.

We define an S-signatureエoroperator domain on Sas a family of sets Lw,s

where w is a string of S* ands is in S. An element ofふ，sis called the operation
汀mbolof rank (w,s), of ar切 wand of sort s.

A];algebra A contains:

• the family (As)seS

•'r:/ s1, ... ,sn e S,'r:/ s e S,'r:/ a e屯...Sn,S

a function cr A: As1 x ... xASn→ As (CJ'A is the operation of A named

a; if n=O, it is the constant of A named cr).

13

Pragmatic Extensions to Unification-Based Formalisms

The definition of :E-homomorphisms between two algebras A and B as

functions from A to B that preserve the operations of :E enables us to speak of algebra
categories and to defme an initial algebra in category C as an element of C such that:

'r/ Be C, ヨ!h:A→B, h homorphism.

It is shown that, if two algebras are initial in the same category, they are
isomorphic. An abstract data type is then defined as the isomorphic class of an initial

algebra in a~algebra category.

Equations on~algebras are then defined as pairs (L,R), or L=R, where each

of the two constituents L and R are expressions composed of variables from uA8 and

operations from :E. One shows that, if E is a set of equations, there exists an initial

algebra in the category of all l:--algebras satisfying the equations of E.

It is possible to conclude at this point that an abstract data type is defined

uniquely by its specification, the 3-tuple (S,:E,E).

111.1.2 Examples

In these examples, S and :E are represented graphically. The ovals are objects

sorts and the arrows the operations of工．

EXAMPLE 1: THE BOOLEAN TYPE. It is the simplest of all classical data types. It
contains only two constants:

~

EXAMPLE 2: THE INTEGER TYPE. It can be specified by means of the constant 0
and the two operations, predecessor (PRED) and successor (SUCC), and the reciprocity
axioms that bind them:

＾ 戸い
゜I•'''''"'

，

succ

PRED (SUCC (X)) = X
SUCC (PRED (X)) = X

14

Pragmatic Extensions to Unification-Based Formalisms

EXAMPLE 3: THE ORDERED INTEGER TYPE. We add the predicate~to the above
defined integer type. This specification involves two object sorts. The equations on
PRED and succ have not been rew出ten.

〇
．

□

いTRUE

＾

VI

succ

~

一

S(X,X) = TRUE

S(X,SUCC(X)) = TRUE

S(X, Y) = TRUE et S(Y ,Z) =TRUE⇒ S(X,Z) = TRUE

S(Y,X) = TRUE et X¢Y⇒ S(X,Y) = FALSE

New specifications can be built from existing ones. For example, from the
integer type we defined above, we could build a specification for the stack of integers
type. The preexisting type will be said to be protected in the new specification if it is not
modified by the new constants and operations. A classical example of non-protection
would be the equality between TRUE and FALSE in an extension of type boolean.

The notation s of a sort will now also design the carrier As of sort s.

III.2 ATOMIC TYPES

Atomic f-structures are objects of preexisting types. The specification of these
types is imported in the formalism and is used as a ground on which we build the whole

f-structure type system. We shall denote it as (Sもら上3).However, we have to make
some slight modifications to this existing spec1ficanon. This is the purpose of this
section.

EXAMPLE. Typical atomic types would be boolean, integer and string. In that case,

the specification (Saふ，Ea)would be the followingl:

1 Operations take their usual meaning. The equations have not been written.

15

Pragmatic Extensions to Unification-Based Formalisms

血

，

To each sort s in Sa, we add two constants, that is we put two new elements in

La t,s・These constants are:
•Atop or null value T8. Its purpose is to be the value of all paths which
result should be of type s but have not yet been instantiated inside
complex f-structures.

• A unification fail value l.8. This constant is also meant to play the role
of an error valuel.

These two constants are meant to be used only inside complex f-structures.
Hence, we do not need to perf onn existing operations on them. Therefore, we add to Ea
the following equations:

'r:/ (j E l:a s1 ... sn,s
'r:/ 1 S i S n・cr(X 1, …，Xi-1,l.si,Xi+l, …Xn) = l.s

cr(X1, …, Xi-1,T SjtXi+l, …Xn) = l.s

We could have chosen another behavior of the existing operations on the top
value. But, in the parser we will describe below, evaluations occur only once for each
structure, and so there was no need to define a more complex behavior. Nevertheless,
enabling evaluations on the top value would be very dependent on the particular
specification used for atomic types and these evaluations should be described according
to this specification.

We must finally define unification of atomic f-structures, that is, for each sin Sa

we add its symbol Us to I:a ss,s and we add to Ea the f ollow1ng equanons:

＾
•-

In fact, the mechanism used to add these two constants to the existing specification is very
close to the one used by [GOG 78) to put error values in his formalism.

16

~

＾

Pragmatic Extensions to Unification-Based Formalisms

L」s(X,X) = X

L」s(X,J.)=.L

X :¢: .L⇒L」8(X,T)= X

Y :¢: X et Y :¢: T⇒ UsCX,Y) =.L
lJs(X,Y) = L」8(Y,X)

The specification we obtain at this point, which is a modification of (Saふ，E吐

shall be denoted as (So工o,Eo).

Unification has been defined by means of equations added to the specification.
In fact, it could also be defined as for complex f-structures by means of subsumption
ordering, as seen in the next paragraph.

111.3 COMPLEX TYPES

Ill.3.1 Attribute structures

Let F be a set of features, possibly infmite.

From the atomic f-structures type specification (So,!,。,Eo) that we have just
described, we define recursively a specification including n sorts of attribute structures

(Snふ，En)by the following inductive mechanism:

• Sk+l is the union of Sk and the singleton made of the new sort Sk+l•
• We define the two constants T k+ 1 and J.k+ 1, respectively top or null

value and unification fail value.

• !,k+l = !,k u {p, Ip, p e Fk+ll, where Fk+l is a finite subset of F
wi出

p: Sk+l→ Sp, feature operation
Ip: Sk+l X Sp→ Sk+ 1, corresponding instantiation.

• Ek+l = Ek U E1k+l U E.1k+l
where

• the equations in E1ktl describe the relationship between a
feature operation and its corresponding instantiation. They are:

tip e Fk+l,'v a e Sk+l, ti v e Sp,'t;/ p'e Fk+1¥{p)
p(lf(a,v))=v
p'(p(a,v))=p'(a).

• the equations in E如 1describe the behavior of feature and

instantiation operations on the constants T k+ 1 and .Lk+ 1. They are:

't;/ p e Fk+l,'t;/ a e Sk+l,'t;/ VE Sp,

p(.Lk+ 1)=.Lや

p(Tk+t)=Tや

I炉k+t,V)=.Lや

The structures we get at this time are called attribute structures since reentrancy
is not talcen into account The major point is that the attribute structure types are defined
by means of their features, which are considered operations.

17

Pragmatic Extensions to Unification-Based Formalisms

EXAMPLE. In a dictionary, we can represent the lexical information associated with
numbers by such f-structures:

[writing "thousand"
value 1000]

To define this attribute structure typ~, we use the atomic sorts integer and string.
The new sort, lexical number, is then specified by its two features, value and writing.

The complete specification is 1:

• E is valid in s

• Pl•:•Pn is valid in s⇔

1) Pn is a feature of type s.
ii) Pl•••Pn-1 is a valid path in the result type of operation Pn•

Each valid path in a type s can be considered an operation on this type if we
associate string concatenation on path names and composition on path operations. We
will assume that:

::t

，

The above mentioned structure is then:

Iwriting(Ivalue(T, 1000), "thousand").

111.3.2 Reentrancy

Reentrancy can be described as an equivalence relation on paths (see [ZAJ 88]).
We will treat it by means of index functions as in [AIT 86]. The two points of view are
exactly the same, and if f is an index function, the equivalence relation on paths is
exactly the Rrrelation that will be defmed below.

We def me a path as a string off eatures, that is an element of F*. The null path~
is denoted as E. A valid path in an attribute structure type s is defined recursively as
follows:

●
}

Yae Sk E(a) = a.

For each attribute structure type Sk, let紐 bethe set of all valid paths in this

1 In the following picture, and for the sake of simplicity, we did not represent the operations
on atomic sorts.

18

＾

＾

Pragmatic Extensions to Unification-Based Formalisms

type. △ k corresponds roughly to the term domain defined in [AIT 86] and can be

infinite. For each a in Sk, we define a function fa from△ k to N, the set of natural
integers. This function is a way to index the paths of the structure, and is called the

index function of a. Two paths of△ k are said to be identical if and only if fa takes the
same value on both. We will now consider pairs (a,f8). Such pairs are called indexed

structures. The index function fa induces an equivalence relation Rr on△ k, which is
defined by:

p Rep'⇔ f(p) = f(p').

Two indexed structures (a,f) and (a',f) can be equivalent providing the indices

are renamed. This is formally described by the equivalence relation司 definedby:

(a,f)三N(a',f)⇔ a = a'et Rr = Rr

The f-stru~ture sort corresponding to Sk is then:

Sk* = Sk~/三N

where sk ~ = { (a,f), ae Sk, f: △K→ N /'vp,p'e△K

f(p)=f(p')⇒
p(a)=p'(a) et

'r:/w/pwe△ k f(pw)=f(p'w)).

The conditions on the elements of Sk ~ ensure that inside a complex f-structure,
the underlying attribute structure and the index function are consistent. This is to keep
only well-formed terms in the meaning of [AIT 86].

On Sk *, for each p in Fk, we define the new feature operation p* by:

p*: Sk*→ Sk'*
p*((a,f)) =(p(a),f)

where'r:/ q e△ k', f(q) = f(pq).

We also redefine the corresponding instantiation operation Ip• by:

lp•((a,f),(v,g)) = (a',f)
where a'= Ip(a,v)
皿d

'v q, f (pq) = g(q)

'v WE△ k, f(w) = f(w) if p is not a prefix of w.

This construction of complex f-structure sorts does not modify atomic sorts

because, in their case, the only valid path is E and the index function is always
degenerate (that is s* = s).

Such complex f-structures can be cyclic. We shall only consider those that are
acyclic, but without formally defining the conditions that would eliminate those that are
cyclic.

On Sk*, we now define the subsumption ordering, denoted≫, by:
ifsぜisatomic:

(a1,f 1)≫(a2,f2)⇔

a1 =Tor a2 =.Lor a1 = a2

19

Pragmatic Extensions to Unification-Based Formalisms

if Sk* is complex:

(a1,f 1)≫(a2,f2)⇔

a1 =Tor a2 =上or

Rr2 :J Rf 1 and

'r:/pe△K

p(a1,f 1) atomic⇒
p(a山） ≫p(a2,f2).

This definition is almost the same as that of [AIT 86], the only difference being
the handling of atomic types. For this order, Sk* is a lattice. The unification of two
structures is then defined as their greatest lower bound (~lb) in this lattice. For atomic
types, this definition is consistent with the equations given at the end of paragraph
III.2.

In this type system, the type lattice defined in [AIT 86] is a flat one. The type
notion defined here is a bit different than the one introduced in [AIT 86] since
reentrancy patterns are not part of the type definition. For example, the two structures:

a合

＾
~

are of the same type in our system but not in Ait-Kaci's. The proper handling of atomic
types and the possibility of using already existing operations on them is one of the
major interesting points of the type system described above. It is then possible to define
operations other than unification on complex f-structures, as in [ZAJ 88].

III.3.3 A Unification Algorithm

The algorithm that we present here is non-destructive: it does not alter its
arguments but creates a new f-structure while unifying them. In that way, it is similar to
Wroblewski's algorithm (see [WRO 87]). This algorithm has been implemented and is
used in the PAULINE system that will be described in chapter ID.

F-structures are r~presented by record structures of the following type:
node = record

type
index
value

end
The index slot is the value of the index function on the void path. The type slot is the
type of the f-structure (that is its sort in the specification). If the f-structure is atomic,
the value slot contains its value, NIL representing the null value of the type. If the f-
structure is complex, the value slot is a set of feature/value pairs, each value being itself
a node as defmed above.

Forwardings between nodes must not affect the original structures which are to
be unified. Therefore, they are made inside a unification environment. This one can be
seen as a set of inverted trees so that having the same deref erenciation is an equivalence
relation on the set・of indices. We assume the existence of the two functions:

FORWARD (i1,i2)
DEREFERENCE (i)

To keep the unification environment coherent, the two operations FORWARD (it ,i2) and
FORWARD (DEREFERENCE(i1), i2) must be equivalent. The two functions FORWARD
and DEREFERENCE are very close to the UNION and FIND functions described in [NAS
86].

＾
•—

20

Pragmatic Extensions to Unification-Based Formalisms

UNIFICATION ENVIRONMENT EXAMPLE.

＞

＾

FORWARD(国回）→
For an index i, there is at most one node structure which index slot is equal to i.

The function NODE(i) returns this structure. The function CREA TE-NODE returns a node
where the index slot has been initialized to an integer which has not yet been used as an

index. The constant .L will be used as a generic unification failure value. We assume
also the existence of the global variable NEW-INDICES, which is a set containing all
indices of nodes created during unification. This variable is necessary because indices
created during unification can be irreversibly altered which is not the case for indices
found in the initial arguments of the UNIFY function. We assume also that the sets of
indices of structures to unify are disjoint.

The UNIFY function is the top level one. It initializes the unification
environment, calls UNIFY-INDICES which applies recursively the algorithm and finally
performs a garbage collection, that is in the result of the unific.ation replaces all
forwarded indices by their dereferenciation. This is done by means of the PURGE
function which will be described below.

~

UNIFY
INPUT: 2 nodes n 1 and n2

OUIPlIT: a node or J.

Initialize the unification environment

result= UNJFY-INDICES (n1.index,n2.index)

if result = J.

return J.
otherwise return PURGE(result)

The UNIFY-INDICES function first checks the equality of the types of the
structures to unify, then calls TARGET which computes the index of the result and
finally makes the values unification by calling UNIFY-VALUES.

ONrF-Y-=-IN-011::-E

INPUT: 2 indices i1 and i2

OlITPUT: an index or .L

i'1 = DEREFERENCE(i1)
i'2 = DEREFERENCE(i2)

21

Pragmatic Extensions to Unirication-Based Formalisms

if i't = i'2
return it

else

if NODE(i'1).type¢NODE(i'2).type

return l.

else
VI = NODE(i'1).value
v2 = NODE(i'2).value
result= TARGET(i'1,i'2)
v = UNIFIER-VALUES(v1,v2,NODE(i¥).type)

if V = l.

retuml.
else

result.type= NODE(i'1).type
result value = v
return result.index

，

The UNIFY-VALUES function checks the equality of the structures if they are
atomic and performs the unification of all features if they are complex. The two
functions UNIFY-INDICES and UNIFY-VALUES, by calling themselves each-other,
perform the recursive unification.

u
 INPUT: 2 values v1 and v2

a type t

OurPur: a value or .L

if t is atomic

if v 1 = NIL return v2
ifv2 = NIL or v1 = v2 return v1

else return l.

else

result= 0
for each feature p oft

n = UNIFY-INDICES(p(v1),p(v2))

if n=.L return l.
else

result = result u { (p,n.index)}
return result.

~

‘

The TAR GET function computes the index of the result of a unification. If its
arguments are not in NEW-INDICES, it creates a new index. As a side effect, it perfonns
all necessary forwardings. Previously, its arguments have always been dereferenced.

22

＾

＾

Pragmatic Extensions to Unification-Based Formalisms

TARG-ET

INPUT:
OUTPUT:

2 indices ii and i2
anode

if {i1,i2} ti NEW-INDICES = 0
result= CREA TE-NODE

NEW-INDICES =NEW-INDICES U (result.index}
FORW ARD(i 1,result.index)
FORW ARD(i2,result.index)
return result

else

if i1 E NEW-INDICES
return TARGET(i2,i1)

else
FORWARD(i幼）
return NODE(i1)

PURGE functions as a garbage collector: it dereferences in the result structures all
indices that have been created during unification.

PURG-E

INPUT: an index i
OUTPUT: an index

i=DERE匹 RENCE(i)

ifNODE(i).type is complex

v=0
for each (p,i') in NODE(i).value

V = vu((p,NODE(PURGE{i')))}
NODE(i).value =v

retumi

EXAMPLE.

In the following example, f-structures・are represented as graphs. The value of
the index function is put on each node inside a box. We use the integer atomic type and
two complex types, adg and be, according to the following specification where only
feature operations have been mentioned:

23

Pragmatic Extensions to Uni『ication-IlasedFormalisms

a

We want to unify the two following structures: =-

゜
団
。

，

T

回
T

The unification performs itself as follows:

FUNCTION
CALLS

GRAPH
MODIFICATIONS

ENVIRONMENT
MODIFICATIONS

unify(口回）

＾
unify(回'{2])

、..

unify(回匝])

24

Pragmatic Extensions to Unification-Based Formalisms

FUNCTION
CALLS

GRAPH
MODIFICATIONS

ENVIRONMENT
MODIFICATIONS

←匝l
unify(回四）

回
。

＾
←回

回
T

回回
←区l

unify(回匡］）
゜

T

＾
unify(回匡))

←匝］

unify(図回）

回
T

25

Pragmatic Extensions to Unification-Based Formalisms

FUNCTION
CALLS

GRAPH
MODIFICATIONS

ENVIRONMENT
MODIFICATIONS

←巴l
回
1

二

←匝l
回
。

回
T

回
T

回
1 ＾

unify(回回）

unify(四),回）＇

←区］

unify(四四］）
←巴］

＾

26

Pragmatic Extensions to Unification-Based Formalisms

FUNCTION
CALLS

GRAPH
MODIFICATIONS

ENVIRONMENT
MODIFICATIONS

回
。

←匡］

←匝l
At the end of the algorithm, the unification envirorunent is as follows:

回
T

回
T

回
1

＾ ＞

＾
The PURGE function gets rid of the forwarded nodes. Hence, the fmal graph is:

回
T

回
。

27

Pragmatic Extensions to Unification-Based Formalisms

Chapter II
THE PARSER

The purpose of this chapter is to describe the parsing algorithm we have
implemented. We modified Earley's algorithm 1 so that it can build representation
structures during the parsing stage. We made it independent of the particular structures
chosen to represent information. In the PAULINE system, we used t~ped f-structures
as described in chapter I. Therefore, most of the examples found in this work use such
structures. However, the p_arser can work with other kinds of structures such as trees,
forests or graphs, assuming the existence of some interface evaluators on these
structures. In fact, besides its use in the PAULINE system, this parser has also been
combined with the structures and evaluators described in [ZAJ 88).

In the first section of this chapter, we present the usual version of Earley's
algorithm. In the second section, we expose the specification of the interface evaluators
used by the parser to manipulate structures. In the third section, we describe the
underlying grammar formalism. The last section is devoted to a description and proof of
the algorithm.

I. EARLEY'S ALGORITHM

1.1 NOTATIONS

The notations d~fmed in this paragraph will be used throughout the chapter.

We consider context-free grammars, that is 4-tuples G=(:E, N, P, S) where
• I, is an alphabet, that is, a finite set of objects cailed words2.

The language described by G is a subset of I,* that will be defined later.

We shall call sentence each element of l:*.

• N is a finite set whose intersection with I, is empty. Its
elements are the non-terminal symbols of the grammar.

•Pis the set of grammar productions or rules, that is objects

A→ X1 ... Xk
where A e N and X1, ... ,Xk e~u N.

• S is an element of N called initial symbol of the grammar.

Elements of~u N are called grammar symbols.

We define derivation as a relation→ on (I, u N)* by:

u→V ⇔ ヨx,w,z E (I, u N)*
ヨAeN/

u=wAz,v=wxz

A→ XE P.

．，

＾

，

1 See [EAR 68].
2 We will not make any assumption of the particular fonn of words, which will be considered
more or less as generic objects. The only fonnal definition that could be given for words in
our forn1alism is "elements of l:".

28

＾

~

こ

Pragmatic Extensions to Unification-Based Formalisms

The reflexive and transitive closure of this relation is noted→ *.

The language described by such a grammar is finally defined as the subset of :E*
such that:

XE LQ⇔ S→ *x

One can also define a grammar with pretenninal symbols. It is a 5-tuple (:E, P,

N, T, S, D) where Tis a set disjoint with both :E and N, D is a subset of :ExT, and the
other constituents have the same meaning as above except that, in the definition of

productions and derivation, :E should be replaced by T. The language described by such
a grammar is defined by:

a1 ... an e切⇔ヨ t1,…，tn e T /

S→ * t1 ... tn

and'v i, (ai,li) e D.

We shall not use preterminal symbols in the description of the usual Barley's
algorithm that follows. However, we use them in the algorithm we implemented, and
the relation defined between words and pretenninals by the dictionary D is comparable
to the lexical evaluator that w出 bedefined later and is one of the interface evaluators
used by our parser.

1.2 DESCRIPTION OF THE ALGORITHM

In this paragraph, we present the usual version of Barley's algorithm as it can be
found in [AHO 72]. This algorithm takes a sentence a1…an as argument and builds a

parse list Io, ... ,In where each Ii is a set of items. An item is a pair (A→ a• ~, i) where

A→ a~is a production of P
i is an integer between O and n-1.

At the end of the execution of the algorithm, if such an item is in Ij, we have the
following derivations:

S→ *1A6
a→ * ai+l··•aj
Y→ * a1 ... ai

'Y and 6 being strings of grammar symbols.

In an item (A→ a• ~'i), a is the recognized part of the rule, ~the
unrecognized one. The parsed sentence is in the language described by the grammar if

and only if there is at least one item (S→ a• , 0) in In after the execution of the
algorithm.

The inner loop of the algorithm processes items one after another, which leads
to the addition of new items in the parse list. The top-level function, PARSE, initializes
the parse list and, for each item to process, calls the proper procedure according to the
unrecognized part of the rule.

29

Pragmatic Extensions to Unification-Based Formalisms

PARSE
INPur: a sentence a 1…an
OlTI'PlIT: the parse list

For i = 0 ton

Ii=0

For each production S→ a

Io= Io u {(S→ •a, 0))

Fori = 0 ton

For each item X = (A→ a• ~j) in Ii

if~= e COMPLETER(X,i)

if~=恥with B e N PREDICTOR (X,i)

if~= a y with a E l: SCANNER (X,i)

return I。,…，~l!

Items are processed according to their unrecognized part by one of the three
procedures PREDICTOR, SCANNER and COMPLETER. As side effects, these procedures
can add new items to the parse list.

The PREDICTOR processes items whose first unrecognized symbol is a non

terminal B. It creates new items with an empty recogni牢 dpart, one for each rule B→'Y
of P.

・~

＾
PREUI-C-TUR

INPUT: an item X = (A→ a• B~, j) where B e N

an integer i such that X e Ii

For each production B→'Y

Ii= Ii u {(B→ .'Y'i) }

The SCANNER processes items (A→ ex• a~'j) in Ii where a is in I.. It checks

whether a = ai+ 1. If yes, a is recognized and the procedure adds the item (A→ cxa•~, j)
to li+I・

，

SCAN-NER

JNPUT: an item X = (A→ a• a~, j) where a e :E

an integer i such that X e Ii

ifa=ai+l

li+l = Ii+l u { (A→ a a• ~'j) }

The COMPLElER processes items (A→ a• , j) in Ii. Such items mean that rule
A→ a has been recognized between aj+l and ai. Hence, for each item (B→ ~ • A-y, k)
in Ij, the procedure adds item (B→ ~A ・ -y, k) to Ii.

30

Pragmatic Extensions to Unification-Based Formalisms

COMPLETER

INPUT: an itemX = (A→ (X, • , j)

an integer i such that X e Ii

For each item (B→ ~ • A'Y, k) in Ij
Ii= Ii u ((B→ ~A ・ 'Y'k))

.)

1.3 COMMENTS

Earley's algorithm is interesting because its complexity is O(G2n3), where G is
the grammar size, that is the number of productions in P, and n is the length of the
sentence to parse. However, the only structure we get for the parsed sentence is the
derivation tree that can be built from the parse list Derivation .trees are highly dependent
on the particular grammar chosen to describe the language. One will often prefer to
build other representation structures.

＾
EXAMPLE. Let us consider the grammar:

G = ((a,b,x,+,(,)),P,(E,T,F),E)
where P is the set of following productions:

E→ T T→F

T→ FxT

F→a

F→b

F→ (E)
This grammar describes multiplicative and additive expressions on variables a and b.
The derivation tree built from the parse list after the execution of Barley's algorithm on

sentence (a + b) x a is the following:

E→ T+E

~

―-

¥
l
i

E
・・・ーー；＇・

1・・
1-1:

‘,'

＼

＼

F

・
＿
・
・
・
—
▼E
I
-
•
I
-
1
▼

／
 I

I

(

T

_

！▼

F
↓
▼

＋ a

a

E•

•

T
••

F
••

b

To this rather complex tree, one will pref er the representation tree:

31

Pragmatic Extensions to Unification-Based Formalisms

;+(x"'•
a b

which has to be computed from the derivation tree by some transduction.

The grammar formalism and the parsing algorithm that we will now present
enable us to build a representation structure for the sentence during the execution of
Earley's algorithm.

II. THE INTERFACE EVALUATORS

The algorithm we implemented is independent of the kind of representation
structures we want to associate with sentences. It only assumes the existence of some
interface evaluators that enable it to manipulate structures. The basic idea is the

following one: in a production A→ X1 ... Xk, we want to assign a representation
structure to each grammar symbol. When recognizing the right-hand side of the rule,
we will progressively assign structures to Xi, provided that these structures verify some
constraints specific to Xi in the rule. Once the whole right-hand side of the rule has
been recognized, we will assign a structure to A from the ones associated to Xi and an
expression specific to the gram.mar rule. Therefore, the parser must be able to perform
three kinds of operations on structures:

• associate representation structures with words. This can be compared
to morphological analysis, that is, the computation of the lexical
information needed by the parser.

• evaluate constraints, so that the assignment of structures to rhs-
symbols of a rule can be controlled by the grammar writer.

• build a new structure from a list of existing structures and some
expression. This enables us to assign a structure to the left-hand side of
a rule once the right-hand side has been fully recognized.

Each of these three tasks will be performed by an interface evaluator.

S will denote the set of all representation structures.

II.l THE LEXICAL EVALUATOR

The grammar formalism underlying our algorithm uses preterminal symbols.
When such a symbol is found in a grammar rule, the algorithm has to check whether the
corresponding word in the sentence matches this symbol or not. In addition, it must
assign a structure to the symbol. These two tasks are preformed by the lexical
evaluator. Formally, it is a function

E1: L X T→ (A / A finite subset of S) .

If a. e :E, t e T. E1(a.,t) is the set of all representation structures for word a. that match

pretenninal t. The result is a set allowing us to handle lexical ambiguities.

EXAMPLE. We suppose that preterminals are grammatical categories. Applications of

32

’

＾

，

Pragmatic Extensions to Unification-Based Formalisms

the lexical evaluator to the french word programmes and various preterminals would be
for example:

E1("programmes" ,noun) = {[三麿；r ; ミline]}

E1("programmes", verb) =

［『~~ぶ ~::!~ent indicative].[『;:On~~!ent subjunctive]}

"-

＾

~

E1("programmes" ,adjective) = 0.

The parser is independent of the exact operations performed by the lexical
evaluator. The latter can simply find structures associated with the word in some
word/structures dictionary, or perform a real morphological analysis, that is, compute
the structures from the word and a low-level dictionary. It can also look in a structures
table built by a previous morphological analysis.

11.2 THE CONTEXTUAL EVALUATOR

This evaluator builds new structures from a context, that is, a list of already
existing structures, and a contextual expression. The parser is independent of the
particular syntax chosen for those contextual expressions. They will typically consult
the structures of the context and perform some operations on them. Formally, the
contextual evaluator is a function

氏： ExC→ (A / A finite subset of S}

where E is the set of contextual expressions and C the set of contexts. The result of the
contextual evaluator is a set of structures, once again so that we can handle ambiguities
and disjunctions.

EXAMPLE. We consider the complex type lexical number specified in chapter I,
paragraph m.3.1, and the three following structures:

A [writing "thousand"
value 1000 ］

B [wnttng "two"
value 2]

C [writing "hundred"
value 100]

If we want to be able to add the values of two numbers, we could use such a contextual
expression as

and we would have
e = (+ (0 value) (1 value))

こ

Ec(e , (A,B)) = (1002}
Ec(e, (A,C)) = (1100}.

There is no disjunction here and the result of these_ contextual evaluations is thus a
singleton.

Il.3 THE PREDICATIVE EVALUATOR

The last evaluator handles constraints on structures. This allows the selective

assignment of structures to right-hand side symbols of grammar rules. Let P be a set of
predicates. The predicative evaluator is a function

Ep: p X s→ (TRUE, FALSE}
As for the contextual evaluator, the parser is independent of the syntax chosen

for predicates. In fact, these can be particular contextual expressions (they must refer to

33

Pragmatic Extensions to Unification-Based Formalisms

only one structure). In that case, the predicative evaluator is defmed from the contextual
evaluator by:

Ep(p,s) = TRUE⇔ Ec(p,(s))出O

III THE GRAMMAR FORMALISM

111.1 PRESENTATION

We use an augmented context-free grammar with pretenninal~ymbols, defined
as a 5-tuple G = (l:,P ,N,T,S), where l:,N,T and S have the same meaning as in section
I. P is the set of grammar rules whose form is the following:

(A,e)→ (X1,p1) ... (Xk,Pk)
where

AeN

X1, …， Xke NuT
e is a contextual expression
Pl, ... , Pk are predicates.

We defme the context-free grammar underlying G as G'= (l:,P',N,T,S) where

for A e N, X 1, ... , Xk e N u T,

A→ X1…Xke P'

⇔ ヨ(A,e)→(X1,P1)…(X紐 k)E P.

An instantiation of length r of the grammar rule (A,e)→ (X1,p1) ... (Xk,P0 is a
r

r-tuple (s1, ... ,sr) of S such that

'v 1~i S r Ep(Pi,Si) = TRUE

We defme two distinct derivation relations:

• The context-free one→ defined from G'as in section I.
• The augmented derivation => defined on strings of ((N u T) x S)* by:

u⇒v

⇔ ヨ(A,s)e N x S

ヨ(X1,s1)... (Xk,Sk) e ((Nu T) x S)*

ヨw,ze((NuT) x S)*

ヨR= (A,e)→ (X1,.p1) ... OCk,Pk) E P
such that

u =w (A,s) z
v=w (Xい1)... (Xk,Sk) z
(s1, …，Sk) is an instantiation of R

s e Ee (e, (s1, ... ,Sk))
The reflexive and transitive closures of these two relations will be respectively denoted

as→ * and⇒ *.

We finally defme the language切 describedby such a grammar:

Let a1…an e l:*

a1 ... an e Lo

⇔ ヨ(tt,…，tn) e Tn

•)

，

＾
二

34

Pragmatic Extensions to Uni『ication-BasedFormalisms

•-

~

n+l
ヨ(s,s1,…，Sn) E S

such that

(S,s) =>* (t1,s1) ... (tn,Sn)

'r/ 1 S i S n Si e E1(ai,ti)

In this last derivation, the structure s will be called a parse structure of sentence
a1 ... a0. There can be many such structures.

lll.2 EXAMPLE

We present a grammar for the formal language a叩 inthe formalism that has
just been described.

We use an f-structure type system including応woatomic types: integer and the
scalar type of extension { a, b). This type system includes a unique complex type
~peci~ed by the two features letter, whose value is in {a, b), and counter whose value
1s an integer. F-structures of this type handle sequences of letters. For example, the
sequence aaa will be represented by the f o,lowing structure:

[letter a
counter 3]

~

R2
鱈
》

Let :E = {a,b}
N = {S,A}
T = {lex)

The lexical evaluator is defmed on :E x T by:
E1(a,lex) = { a}
E1(b,lex) = (b)

In the syntax used for contextual expressions and predicates, accesses to
structures in the context are represented by LISP lists whose CAR is the rank of the
structure in the context and whose CDR is the path in the structure. For example, the
list (2 letter) refers to the value of feature letter in the second structure of the context.
Lists with equal signs as second element are pa_th assignments inside structures. If and
functional expressions use the same syntax as 1n LISP. SEQ evaluates expressions in
sequence.

Grammar rules are then the following:

R1 (S,es)→ (A,pa) (A,pb)
with

es : (if (= (1 counter) (2 counter))
(1 counter))

Pa: (= (I letter) a)
Pb: (= (2 letter) b)

(A,eA)→ (lex,true)
with

eが (seq((0 counter) = 1))
((0 letter) = (1))
(0))

R3 (A,e'心→ (lex, true) (A, true)
with

e'A: (if (= (1) (2 letter))
(seq ((0 counter)= (+ 1 (2 counter)))

35

Pragmatic Extensions to Unification-Based Formalisms

((0 letter)= (1))
(0)))

The sentence aabb is in the language since we have the fallowing derivations:

(Do) (S,2) ⇒ (A, [は言;ter ;]) (A, [は~~~ter ~])

(D1) (A, [尽。:ter~]) => (lex,a) (A, [悶ばter!])

(02) (A, [は:ter1])⇒ (lex,a)

and the derivations equivalent to the two last for sequence bb.

We can see in this example that, if predicates associated to right-hand side
symbols of grammar rules encode constraints specific to these symbols, crossed
constraints involving many right-hand side symbols can be encoded inside contextual
expressions, provided an adequate syntax has been defined. This is used here to check
the equality of numbers of letters in the two sequences (counter features). If these are
not equal, the contextual evaluation of es does not return any value.

IV. THE ALGORITHM

Two characteristics make our algorithm different from the standard Barley's
parser that has been described in section I.

• Each item includes a lookahead symbol. It is a preterminaI・that must be
found after the whole recognition of the rule to which the item
corresponds. It is a. classical extension to Barley's algorithm. It can be
found as an exercise in [AHO 72] and in the version presented in [TOM

86]. Formally, items become 3-tuple (A→ a. • ~'i, t) where the two
f江stconstituents keep the same meaning as in section I and t is an

element of T u { $ } • An item (A→ a. •, j, t) in Ij will be completed if
and only if

E1(aj+1,t) ;t 0
The symbol $ stands for the end of the sentence. If j=n, the above
condition is replaced by t=$.

• The second characteristic is the building of structures during parsing.
For this purpose, we need two operations: when a rule is completed, the
parser must evaluate the associated contextual expression on the
structures that have been assigned to the right-hand side symbols of the
rule; in each item, when the dot is moving right, we must assign a
structure to the corresponding symbol and thus evaluate the
corresponding predicate on all candidate structures which come from the
lexical evaluator if the symbol is a preterminal, or from the contextual
evaluator if it is a non tern血al.

IV.l DESCRIPTION OF THE ALGORITHM

The items we use are 4-tuples

((A,e)→ (X1,p1) ... (Xk,Pk),(s1, ... , Sr), i, t)

where (A,e)→ (X1,p1) ... CXk,P0 is a grammar rule.
i is the position of the item in the sentence.

36

．

~

，

Pragmatic Extensions to Unification-Based Formalisms

t e T u { $) is the lookahead symbol.
r~k and (s1, ... , Sr) is an instantiation of the rule.

In items, the production is not dotted. However, the length of the grammar rule
instantiation has exactly the same meaning as the position of the dot in items described
in section I.

To determine the lookahead symbol of items created by rule predictions, we
need a function FIRST. Its argument is a string of grammar symbols, and its result the
set of all pretenninal symbols that can begin rewritings of this string, according to the
underlying context-free grammar. This function is as follows:

•—

＾

FIRS-T

INPUT: a string A 1 ... An of (N u T)*
OtJIPUT: a set of preterminal symbols

ifn=O
return { $}

else if A1 e T
return {A1}

else

result=0

For each rule.Ai→ X1 ... Xk
result= result u FIRST (X1)

return result -—
The basic principles of the algorithm are the same as in section I. The SCANNER

and the COMPLETER, while recognizing one more symbol inside grammar rules, call an
auxiliary function, MOVE-DOT, which evaluates the corresponding predicate on
candidate structures and, if possible, builds the new item.

＾
こ

PAR-SE
INPUT: a sentence a 1 ... an
OUIPUT: the parse structures of this sentence.

For each rule which lbs is S

Io = Io u { (R,(),0,$))
Fori =Oto n

For each item Y = ((A,e)→ (X団 1)…(Xk,Pk), (s1 , ... ,sr) , j, t)
in Ii

ifr = k--> COMPLETER (Y,i)

if Xr+l e N --> PREDICTOR (Y,i)
else--> SCANNER (Y,i)

For each item ((S,e)→ (X1,p1) ... (Xk,Pk) , (s1, ... ,Sk) , 0 , $)
in In

compute Ec(e,(s1, ... ,sic))
Return the union of these evaluations.

In this algorithm, the PREDICTOR has to take into account the lookahead symbol
that must be put inside items.

37

Pragmatic Extensions to Unification-Based Formalisms

PREDICTOR

INPUT: an item ((A,e)→ (X団 1)... (Xk,Pk) , (s1, …，sr) j , t)

where Xr+l e N
a position i

For each rule R'which lhs is Xr+l
ifr+l =k

Ii = Ii u { (R',(),i,t) }
else

for each t'in FIRST(Xr+2)

Ii= Ii u { (R',(),i,t') }

The COMPLETER first evaluates the contextual expression of the rule on the
structures that have been assigned to right-hand side symbols of the rule, then finds the
items which could be completed and calls MOVE-DOT which tries to integrate the results
of the contextual evaluation inside the items to complete. These operations occur if and
only if the next word in the sentence is compatible with the lookahead symbol in the
item, that is if the result of the lexical evaluator on both of them is not empty.

•—

,--..,

COMPLETER

INPUT: an item ((A,e)→ (X1,P1) ... (Xk,Pk) , (s1, …, Sk) , j , t)
a pos1tton 1

If (E1(ai+1,t) :,,!: 0) or (i = n et t = $)
For each sin氏(e,(s1,... ,sk))

For each item

Y'=((B,e')→ (X'1,p'1) ... (X'k,P1k), (s'1, …，$If') t j't t')
such that X'r'+ 1 = A

Ii = Ii U MOVE-DOT(Y',s)

The SCANNER calls the lexical evaluator on the next word in the sentence and
the fi江stnon recognized symbol. Its result is the set of candidate structures. These are
sent to MOVE-DOT to see whether they can be associated to the symbol or not

SCANNER

INPUT: an item Y=((A,e)→ (X1 ,p1) ... (Xk,Pk) , (s1 , ... ,Sr) , j , t)

where Xr+ 1 e T
a position i

For each sin E1(ai+1,Xr+1)

Ii+I= li+l U MOVE-DOT(Y,s)

，

MOVE-DOT takes two arguments, a structure and an item. It evaluates the
predicate corresponding to the first non-recognized symbol of the item on the argument
structure. If it is false, the function returns the empty set. Otherwise, it builds a new
item which is a copy of the argument item except that the structure has been added to the
rule instantiation, and returns a singleton made of this new item.

•—

38

Pragmatic Extensions to Unification-Based Formalisms

MOVE--=-noT
INPUT: an item ((A,e)→ (X1,p1)…(Xk,Pk) , (s 1, …, Sr) , j , t)

a structure s
OUlPlIT: a set of items.

if馬(Pr+1,s)= TRUE

return { ((A,e)→ (X1,p1) ... (Xk,Pk) , (s1, …, Sr,S) , j , t) }
else

retum0

•-
IV.2 PROOF OF THE ALGORITHM

This proof is derived from [AHO 72). We first show that each element in the
result of the PARSE function is a parse structure of the sentence, according to the
definition given at the end of paragraph ill.1. We then show that every parse structure
of the sentence is in the result of the PARSE function.

~

lemma 1.-lf an item

((A,e)→ (X1,p1)…(Xk,Pk),(s1, ... , Sr), i, t)
is in Ij after parsing sentence a1 ... an, then

i. ヨr,6/ s→ *'YA 6 and t e FIRST(6)

ii. r⇒ * (t証 1)... (ti,O'i)

iii. (X1,s1) ... (Xr,sr)⇒ * (ti+l,O'i+t) ... (~ 坪j)
with

'v 1~h~j O'h e E1(a叫h)

＾
疇
一

Proof. The proof is an induction on the number of items in the parse list. Let no be the
number of items put in lo by the first step of the PARSE function. These items are all of
the following form:

((S,e)→ (X1,p1) ... (X研 k),(),0, $)
They clearly verify the three conditions of the lemma. Let us now assume that the parse

list contains m items, such that no S m, each of them verifying the conditions of the
lemma. Let us consider the (m+ l)th item built by the algorithm. Three cases are
possible:

• The item is put in Ii by the PREDICTOR. This item is:

I= ((A,e)→ (X1,p1) ... CXk,P註(),i, t)
The PREDICTOR builds it while processing item

I'=(B→ Y 1 ... Yr-1A Y r+l•••Yk•,(s1, …, Sr-1), j, t')
which is already in Ii. Thus, by inductive hypothesis:

ヨ'Y,0/ S→ *'YB o and t e FIRST(O)

'Y⇒ * (t証 1)... (~ 坪))

(Y 1,s1) ... cYr-1,sr-1)⇒ * (tj+l ,O'j+l) ... (ti,Oi)
The first condition of the lemma is hence true for item I, because, if

"(= yY l··•Yr-1
0 = Yr+l…Yk•O

we have S→ *"(Ao'
and t e FIRST (o'), because that is the way the PREDICTOR
finds the new lookahead symbol.

39

Pragmatic Extensions to Unification-Based Formalisms

By combining conditions ii. and iii. of the lemma on item I', we prove
condition ii. on item I. Condition iii. is then clearly verified on item I
since its recognized part is empty.

• The item is put in Ij+l by the SCANNER. This item is

I = ((A,e)→ (X1,p1) ... CXk,Pk),(s1, ... , sr), i, t)

where Xr is a pretenninal. The scanner is processing item

I'= ((A,e)→ (X1,p1) ... CXk,Pk),(s1, …, Sr-I), i, t)

which is already in Ij. Conditions i. and ii. are true on I since they are
the same as on I'. By inductive hypothesis (condition iii.) we have the
following derivation:

(X1,s1) ... (Xr-1,Sr-I)⇒ * (ti+ 1,0"i+ 1) ... (~ 坪j)

Since Xr is a preterminal,

(X1,s1) ... (Xr,Sr)⇒ * (ti+ 1 ,O"i+ 1) ... (tj,O"j)(Xr,Sr)

Since item I has been put in Ij+h necessarily

Sr e E1(aj+1,Xr)
which, combined with the previous derivation, shows condition iii. on
item I. Let us notice that we have besides

, Ep(pr,Sr) = true
since the result of MOVE-DOT is not empty. This shows that in all items
put in the parse list, the list of structures (second constituent) remains an
instantiation of the grammar rule 1.

.. • The item is put in Ij by the co畑 LE冗 R.This item is

I = ((A,e)→ (X1,p1) ... (Xk,Pk),(s1, ... , Sr), h, t)

where Xr e N. The CO畑 LETERbuilds it while processing item

I'= ((Xr,e')→ (Y 1 ,p'1) ... <Yk1,P1k'),(s'1, …, S1k'), i, t)
which is already in Ij. We know also that there is an item

I" = ((A,e)→ (X1,P1) ... (Xk,Pk),(s1, ... , Sr-I), h, t)
in Ii. Conditions i. et ii. are true on I since they are the same as on I ".
We have also:

CD1) (X1,s1)…<Xr-1,Sr-l)⇒ * (th+l,O"h+l) ... (t印 i)

CD2) (Y1,s'1) ... (Yk',S1k') =>* (ti+l,O"i+1) …(~ 坪j)

Since I has been put in the parse list, necessarily:

Sr e Ec(e',(s'1, …, S1k1))
and hence

CD3) (Xr,sr)⇒ (Y 1,s'1) ... cYk',S1k')

•—

＾

，

・q

1 We could have put it in the inductive hypothesis but did not, for the sake of simplicity.

40

Pragmatic Extensions to Uni『ication-BasedFormalisms

Combining derivations D1, D2 and D3, one shows that condition iii is

true for item I, which fmally ends the proof of the lemma. •

Theorem 1. If the result of function PARSE is notempty, the sentence
is in the language切.In that case, each element in the result is a parse
structure of the sentence.

•—

＾

~

a-

Proof. Let s be an element of the result off unction PARSE. Then there is an item

I= ((S,e)→ (X1,p1)…(Xk,Pk),(s1, …， Sk), 0, $)
in In such that

s e Ec(e,(s1, ... , Sk)).
From condition i. of lemma 1, we have:

ヨ'Y,6/ S→ *'Y S o et $ e FIRST(o)

And hence 6 = e. Moreover, since the position of the item is 0, from condition ii. of the

lemma, we have also'Y = e. Because of condition iii. we have the following derivation:

(X1,s1) ... CXk疎）⇒* (t位 1)…(t研 n)
where

'v 1 Sh S n Ob e E1(a叫b)

Then, since s e Ec(e,(s1, ... , Sk)),

(S,s)⇒ (X1,s1)…(Xk,Sk)
and thus

(S,s)⇒ * (t1,a~) ... (t研 n)

where'v 1 Sh S n叫 eE1(a屈b)

which finally proves the theorem. •

We now have to show that, ifs is a parse structure of the sentence, it is in the
output of the PARSE function.

If s is a parse structure of the sentence, there is a derivation

(D) (S,s)⇒ * (t証1)•··Ctn,On)

where'v 1 S h S n Ob e E1(a屈h)

Let (A,e)→ (X1,p1) ... (Xk,Pk) be a rule which applies at some point in this
derivation. Then

(S,s)⇒ *'Y (A,SA) 6 ⇒'Y (X 1 ,s 1) ... (Xk,Sk) O

⇒ * (t1,cr1) ... (tn,On)
and, splitting these derivations

ヨii'Y⇒* (t1 ,01) ... (t印 i)

and'vrSkヨj/ (X1 ,s 1) ... (Xr,sr)⇒ * (ti+l,Oi+l) ... (~ 坪j)

The grammar rule, its instantiation, strings'Y and 6, and integer i are uniquely defined
by the subderivation of (D)

(S,s)⇒ *'Y (A,SA) O
Integer j is uniquely defmed once we know r. For the demonstration, we shall consider
instances

'L = ((S,s)⇒ *'Y (A,s A) o , r)

41

Pragmatic Extensions to Unification-Based Formalisms

The first constituent is a subderivation of (D).lt defines an instantiated grammar rule

(A,SA)⇒ (X1,s1) ... (Xk,Sk) and an integer i such that'Y⇒ * (t証 1)…(ti,O'i).The
second constituent r is an integer r lower than k. It def mes an integer j such that

(X1,s1)…(Xr,sr)⇒ * (ti+l,O'i+l) ... (~ 坪j).

Since integer i and j are defined by the instance, we shall denote them as i('L) and j('L)
any time confusion might be possible.

lemma 2. Acco池 ngto the notations def血 daoove, for eacli-instance

((S,s)⇒ *'Y (A,SA) 0 , r)

and for each tin FIRST(O), the item

((A,e)→ (X1,P1)…(Xk,Pk),(s1, ... , Sr), i, t)
is in Ij at the end of the execution of the algorithm.

Proof. Let 1, = ((S,s) =>*'Y (A,sA) a, r) be an instance. We define the following
quantities:

t1('L) is the length of derivation (S,s)⇒ *'Y (A,SA) 6.
t2('L) is the length of the shortest derivation

Y⇒ * (t1 ,cr1) ... (ti,O'i)

巧('L)is the length of the shortest derivation

(X1,s1) ... (Xr,sr) =>* (ti+l,O'i+I) …(~ 屈j)

訊）= t1('L) + 2(t2('L) +'t3('L) + j('L))

The proof of the lemma is an induction on t('L), called rank of instance'L.

If t('L) = 0 then necessarily't 1 ('L) = t2('L) =巧('L)= j = 0, and the items
described in the lemma must have the following form:

((S,e)→ (X1,p1) ... (Xk,Pk), (), 0, $)

These items are put in Io by the first step of the PARSE function.

Let'L = ((S,s) =>*'Y (A,sA) B ,) r be an instance. We assume that the lemma 1s

true for each instance whose rank is less than t('L) -1.

• if r = 0. Then necessarily't3('L) = 0 and j = i. Decomposing the last derivation

oft, we get:

(S,s)⇒ *'Y'(B,SB) 6'⇒ yY1…Yq-1AYq+l…Y拉'

with r= 1 Y 1 ... Yq-l et 6 = Yq+l••·y凶'. Let us then consider instance

'L'= ((S,s) =>*'Y'(B,sB) 6', q-1)
We have:

't1('L') ='t1(1,) -1

j(1,') = i(1,) = j(1,)

't2(1,') +巧('L')is the length of the shortest derivation from y'Y1 ... Yq-l to

(t証 1)... (~ 屈j).

Since y=y'Y1…Yq-1,
't2('L') +'t3(1,') ='t2('L) +巧(1,)=て2('L)

andfmally

't(1,') ='t(1,) -1.

＾

，

0
-

42

Pragmatic Extensions to Unification-Based Formalisms

e》

＾

＾
・》

By inductive hypothesis, items described by the lemma and corresponding to'L'are in
Ij-They have the following form:

(B→ Y1 ... Yq-1AYq+l•••Yk1, (s'1, …，s'q-1), i('L'), t')
These items are processed by the PREDICTOR which put in Ij all items corresponding to

instance'L required by the lemma.

• if r =r': 0 and X e T. Let us consider instance

'L'= ((S,s)⇒ *'Y (A,SA) o , r -1)
We have

't1(1,') ='tt('L)

't2('L') ='t2('L)
In addition,

j ('L') = j ('L) -1 since Xr is a pre terminal.

't3(1,') ='t3('L)

That is because巧('L')is the length of the shortest derivation

(X1,s1) ... (Xr-1,Sr-1)⇒ * (ti+l,<fi+l)…(tj-1,<fj-1)

and't3(1,) the one of derivation

(X1,s1) ... (Xr,sr)⇒ * (ti+l,<fi+l) …(~ 坪j)
Since Xr is a preterminal,

tj = Xr and <fj = Sr
and the two derivations have the same length. Finally:

't('L') ='t('L) -2.

By inductive hypothesis, for each tin FIRST(o), the item

((A,e)→ (X1,p1) ... (Xk,Pk),(s1, ... , Sr-1), i, t)
is in Ijー l• Since Xr is a preterminal, the SCANNER processed this item. Since

(A,SA)⇒ (X1,s1) ... CXk,Sk)
necessarily

Sr e E1(aj,Xr)
and Pr(Sr) = TRUE

and the SCANNER put in Ij the required items.

• if r =r': 0 and Xr e N. Provided a change in the order of the derivations
composing (D), there is a rule

(Xr ,er)→ (Y 1,p'1) ... (Yk',P1k')
such that

(S,s) ⇒ *'Y (A,s心8

⇒'Y (X1,s1)…(Xk,Sk) 6

⇒ y(X凶） .•• (Xr-l,Sr-I)(Y1,s'1) ... (Yk1,S1k1)(Xr+l,Sr+l) ... (Xk,Sk) 6

In the same way as above, for each t in FIRST(o), the item

((A,e)→ (X1,p1)…CXk,P0, (s 1, ... , Sr-1), i, t)

is in lj', for some j'S j -1 and for each t in FIRST(o). Let us write

1 ='Y (X1,s1)…CXr-l ,Sr-1)

6'= <Xr+ I ,Sr+ 1) ... (X砂） 8

and consider instance

'L'= ((S,s)⇒ * y'(Xr,Sr) o''k')

43

Pragmatic Extensions to Unification-Based Formalisms

We have

'tJ('L') = t1('L) + 1
Let n 1 be the length of the shortest derivation

(X1,s1) ... (Xr-1,Sr-I)⇒ * (ti+ 1,0i+ 1) …(~ 焚 j')
and n2 the one of

(Xr,Sr)⇒ * (tj'+泣 j'+l)…(tj,O'j)

't3(1.) = n1 + n2

-r3('L') = n2 -1

-r2('L') = -r2('L') + n1

j('L') = j('L)
and thus

't('L') ='t('L) -1.
Since the sentence is in the language, there is a preterminal t'in FIRST(Xr+l) such that

E1(aj+1,t')¢0. By inductive hypothesis, the item

((Xr ,er)→ (YI ,p'1) ... (Yk1,P1k1), (s'1, …, S1k'), j', t')
is hence in Ij. Because of the derivations

(S,s) ⇒ *'Y (A,SA) 6

⇒'Y (X1,s1)…(Xk,Sk) 0
⇒'Y (X1,s1) ... (Xr-l,Sr-1)(Y 1,s'1) ... (Yk1,S1k')(Xr+l,Sr+l) ... (Xk,Sk) O

the COMPLETER, while processing the above item, put in Ij the required items from

items in lj'mentioned above. This finally ends the proof of the lemma. •

Theorem-2. Let s be a parse -structure of sentence a1…a0; s is in the
output of the PARSE function.

Proof. Since s is a parse structure, there exists

(D) (S,s)⇒ (X1,s1) ... (Xk,Sk)⇒ * (t1向） ... (t研 n)

where't/ 1 S h S n O'h e E1(a屈h).Let us consider the instance

((S,s)⇒ (X向） ••• (X砂）， k)
The lemma shows that, at the end of the algorithm, there is an item

((S,e)→ (X叩） ••• (Xk,Pk),(s1, ... , Sk), 0, $)
in 10.Moreover, from derivation (D), we get

s e Ec(e,(s1, ... , Sk))

s is hence in the result returned by PARSE, which proves the theorem. •

From theorem 1 and 2, we finally get

Theorem -3. A sentence a1 ... a0 is in language Lo if and only if the
execution of PARSE function with this sentence as input returns a non
empty result. In that case, the output of the function is the set of all parse
structures for this sentence.

0
-

＾

~

•-

44

Pragmatic Extensions to Unification-Based Formalisms

Chapter III
THE PAULINE SYSTEM

o,

＾

I. INTRODUCTION

This chapter is the reference manual of the PAULINE system which has been
developed as an appli叫ationof the f-structure type system and the parsing algorithm that
have been described 1n the two first chapters of this work. The acronym PAULINE
stands for Parsing Augmented Unification-grammars: a Linguistic /Nteractive
Environment.

The PAULINE system enables the user to

• use and define atomic and complex f-structures types.

• write grammars and dictionaries 1.

• parse sentences.

• trace and step the analysis of a sentence.

All these tasks are performed through a limited user interface. Except the
functions related to this user interface, that is, some input and output functions, the

whole system has been written in pure COMMON-LISP2.

’

●

)

II. THE TOP LEVEL MENU

The PAULINE user interface is menu oriented. Most of the times, the system
queries the user by prompting him to select one of several choices. In the rest of the
chapter, a menu will be a list of choices (commands, grammars, or anything else). The
configuration of such a menu will be the sublist of the menu that is actually accessible to

the user at some point3.

When calling PAULINE, the user first sees on the screen the content of a
welcoming ftle while the system is being loaded. Then, a configuration of the top level
menu is displayed, and he is prompted to choose a command. Here is how the screen
looks like at this point:

PAULINE top level menu.

Menu:
Edit Grammar
Load Grammar
Switch Grammar
Edit Dictionary
Load Dictionary
Switch Dictionary
Change Directory
Exit Pauline

Move among the menu by typing SPACE.

1 The exact meaning given here to the word dictionary will be defined later.
2 PAULINE has been developed using V AXLISP, under UNIX system.
3 Some commands can sometimes be disabled. Hence, a command menu can have several
configurations.

45

Pragmatic Extensions to Unification-Based Formalisms

Once you have made up your mind, type RETURN.

Selected choice {Help= "H) ? Edit Grammar

When asking the user to select a choice, PAULINE always displays the first
possible choice (here Edit Grammar). Typing SPACE causes this first choice to be
replaced by the next one, and so on.

In this section, we will describe the commands from this configuration, except
Exit Pauline, which returns command to the UNIX system. They are the basic
commands that appear in every configuration of the top level menu. The latter has two
other configurations than the one previously displayed: when a grammar and a
dictionary have been loaded, the parse commands (Parse and Parse and Time)
are added to the menu; when a sentence has been parsed, the Trace Menu command
is added. These commands will be described in sections V and VI, respectively.

11.1 THE CHANGE DI証 CTORYCOMMAND

If the user selects this command from the top level menu, the program fi江sttell
him what the current directory is at this point, then displays the directories that could
become the new current one, and finally prompts the user to select one of these. The
selection mechanism is the same as in the top level menu. The choices proposed to the
user inside the Change Directory command are the following ones:

• CANCEL returns to PAULINE top level menu without doing anything.
When the user has selected a command from the top level menu and is
prompted for a choice, this possibility is always offered to him. It will
not be described again in the remaining paragraphs of this section.

• UP sets the current directory to be the father of the previous one in the
directory tree of the UNIX system.

• The other possibilities are all the subdirectories of the current directory
to which the user can move by selecting them.

Here is an example of the execution of the Change Directory command:

PAULエNEtop level menu.

Menu:
Edit Grammar
Load Grammar
Switch Grammar
Edit Dictionary
Load Dictionary
Switch Dictionary
Change Directory
Exit Pauline

Move among the menu by typing SPACE.
Once you have made up your mind, type RETURN.

Selected choice (Help= "H) ? Change Directory

Current directory is /usr7/yves/lisp/fstypees/PAULINE
Choose a new one from the menu.

0
)

＾

，

46

Pragmatic Extensions to Unification-Based Formalisms

0
-

~

Menu:
CANCEL
UP
COMPエL
GRAMMAIRES

Move among the menu by typing SPACE.
Once you have made up your mind, type RETURN.

Selected choice (Help= "H) ? CANCEL

II.2 GRAMMAR ORIENTED COMMANDS

• Edit Grammar searches for grammar files in the current directory, that is,
files whose type slot in the pathname is the string II gram 11. The program then asks the
user to choose among these files the one to edit and calls the GNUEMACS editor on it.
Apart from the already existing grammar files, the user can edit a new one by selecting
NEW or get back to the top level menu by CANCEL. Here is an example of an execution
of this command:

Choose the grammar to edit from the menu:

Menu:
CANCEL
NEW
anbn
anbncn
lex
lex2
shieber

I
 -

•
,
7
ん
'
r
9
.
”
.

~

Move among the menu by typing SPACE.
Once you have made up your mind, type RETURN.

Selected choice (Help= "H) ? CANCEL

• Load Grammar searches for grammar ftles in the current directory in the
same way as Edit Grammar does, and asks the user which grammar to load in the
system. After the execution of this command, the loaded grammar becomes the cUITent
one, that is, the one that will be used to parse sentences. Here is what happens after
selecting this command from the top level menu:

It)

Choose the grammar to load from the menu:

Menu:
CANCEL
ANBN
ANBNCN
LEX
LEX2
SHIEBER

Move among the menu by typing SPACE.
Once you have made up your mind, type RETURN.

47

Pragmatic Extensions to Unification-Based Formalisms

Selected choice (Help= "H) ? CANCEL

• Switch Grammar enables the user to change the current grammar. It first
tells the user what the current grammar is at this point and prompts him to choose one
of the previously loaded grammars. If we had previously loaded the grammars ANBN
and SHIEBER, choosing this command from the top level menu would display on the
screen the following:

Current grammar is SHIEBER
Choose new current grammar from the menu:

Menu:
CANCEL
SHIEBER
ANBN

Move among the menu by typing SPACE.
Once you have made up your mind, type RETURN.

Selected choice (Help= "H) ? CANCEL

II.3 DICTIONARY ORIENTED COMMANDS

These commands (Edit Dictionary, Load Dictionary and Switch Dictionary)
behave exactly lilce the corresponding grammar oriented command, except that
dictionary files will be presumed to be of the "lex" type.

N.B In the actual implementation (and it is one of its weaknesses!), dictionaries
must be loaded after grammars. Further, if a grammar is reloaded after some
modification, the corresponding dictionary should also be reloaded even if no
modification was undertaken.

III. STRUCTURES

This section describe the representation structures used in PAULINE. These
structures are typed f-structures as described in the first chapter of this work. We will
first present the type system used for PAULINE, then the syntax used to read and write
structures.

111.1 TYPES IN PAULINE

PAULINE provides the possibility of defining atomic and complex f-structure
types.

111.1.1 Atomic Types

Some basic atomic types are predefined They are:

• boolean

• integer

• character
• strings

The last three are equivalent to the corresponding COMMON-LISP data type.
The first one can be seen as a scalar type whose extension would be { true ,
fa 1 s e } . Usual operations on these types are also predefined. We will describe them in
the next section.

0
-

~

，

•—

48

Pragmatic Extensions to Unification-Based Formalisms

＾

＾
ー）

Besides these predefined atomic types, the user can define scalar types, which
are considered atomic types. This is done from their extension by means of the
define-scalar-type LISP function. To define such a type, one has to put a call
to this function in the grammar file, according to the following syntax:

(define-scalar-type <name> <extension>)
<name> should be a LISP symbol which becomes the name of the

new type.
<extension> is a list of symbols which become the objects of the

new type.

Since define-scalar-type is a LISP function, its arguments are evalu~ted
before computation and hence, in every call to this function, the name and the extension
of the type should be quoted.

EXAMPLE. One can defme a number type by the following call:
(define-scalar-type'number'(singular plural))

A call to define-scalar-type automatically defines some functions on the
new type. They will be described in the section III.

III.1.2 Complex types

There is no predefined complex f-structure type in PAULINE. The user defines
such types by means of the def ine-cornplex-type LISP function. As for
define-scalar-type, a call to this function has to be put inside the grammar file
to defme the type. The syntax of the function is as follows:

(define-complex-type <name> <feature descriptions>)
<feature description> is a list of dotted pairs whose CAR is

a feature and whose CDR is the result type of
this feature in the new type.

As for define-scalar-type, the name and the feature descriptions have to
be quoted when defining a complex type.

EXAMPLE. One can define an agreement type by the following call:
(define-complex-type

'agreement
'((number. number) (person . integer)))

In the fi江stfeature description of this call, one must be aware that the two symbols
number are interpreted quite differently. The first one defines a feature number in the
new type. The second one is supposed to be a type name, even if the type number can
be defined after the type agreement.

Ill.1.3 The Top Type

PAULINE also includes a predefined top type. It contains only one object, that
is, t. All other types defined in PAULINE, either predefined or user defined, are
considered subtypes of the top type. Its only object, t, will unify with any other
object of any type. The top type can be useful when one does not want to specify the
result type of some feature m the definition of a complex type.

111.2 F-STRUCTURES SYNTAX

111.2.1 The Syntax

The syntax described here is used by the user to write f-structures and by
PAULINE to output f-structures.

49

Pragmatic Extensions to Unification-Based Formalisms

Objects of atomic types are written according to their LISP syntax. This is
usually their intuitive form. Atomic null value are written as the name of their type in
square brackets. It is in fact very seldom that one has to write atomic null values.
PAULINE has to output them sometimes especially in case of interactive evaluation of
expressions (see sections III and V).

The syntax for f-structures is as follows:
£-structure : :=

atomic f-structure
index I
令type-name{

(feature-narne:f-structure)*}
index : := @itag [@=£-structure]

Tags for indices can be any LISP symbol; however, PAULINE always outputs
numbers for these tags. If the @= part of the index is present the following f-structure
is assigned to the previous index.

EXAMPLE. As an example, we show the two structures that are unified in chapter I,
paragraph ID.3.3 according to Pauline syntax. These two structures are as follows:

゜
岡
゜

:!,

~

T

回
T

The two complex types are defined .by the following calls to define-complex-
type:

(define-complex-type
'be
'((b . integer) (e . integer)))

(define-complex-type
'adg
'((a . be) (d . be) (g . be)))

The syntax for the first structure is:
%adg { a : @il @= %be {b : 0}

d : %be { e : 1}
g : @il}

The syntax for the second one is:
%adg { a : %be { b : 0

e : @i2}
d : @i3 @=%be{e : @i2}
g : @i3}

11.2.2 Templates

PAULINE enables the user to define and use templates. The system refers to
them by means of an identification number. Templates are defmed inside grammar files
according to the following syntax:

#nt£-structure

＾

50

Pragmatic Extensions to Unification-Based Formalisms

n is a natural integer that becomes the identification number of the template, and f-
structure is written according to the above described syntax and becomes the value
of the new template. The definition of templates has to be enclosed between the two
following LISP function calls: ・

(enable-template-definition)
(disable-template-definition)

Inside f-structures, templates are referred to by the syntax
#nt

~

＾
●
r

IV. EVALUATORS

IV.1 PREDICATES AND EXPRESSIONS

Predicates and expressions are put in grammar rules to be evaluated on
structures assigned to grammar symbols. In this paragraph, we describe the syntax of
simple contextual expressions. These are used both for rule expressions and predicates
attached to right-hand side symbols in a way that will be described in section V.

Simple contextual expressions, or simply expressions, are always evaluated
according to a context, that is, a list of structures (see chapter II). Their syntax can be
described as follows:

expression : := NIL I
atomic£-structure
template I
access I
assignment I
control form I
functional form

Atomic f-structures and templates keep the syntax defined in the previous
section. NIL is the inconsistent object. It evaluates to itself. The evaluation of atomic f-
structures is also the structure itself. Templates evaluate themselves to a copy of their
value.

Accesses enable us to consult the context. An access is a list whose CAR is a
number and CDR a path. They evaluate themselves to the value of this path in the
structure which rank in the context is the CAR of the access.

Assignments enable us to modify structures of the context. Their syntax is as
follows:

assignment : := access (== I =) expression I
access&= access

• In the== assignment, the path of the access must be void. The
expression is evaluated and the structure referred to by the access is
replaced by the value without any type checking.

• The = assignment is a simple path assignment. The expression is
evaluated and the value is assigned to the path referred to by the access.
If the type of the value does not match the type of the access, the
assignment is not done and the returned result is NIL. Otherwise, the
evaluation of the assignment returns the value of the expression, that is,
the new value of the access.

• The & = assignment destructively unifies the two accesses; the
returned value is the value of the unification. If the latter fails, the two
involved structures, that is the two structures ref erred to by the CARs of
the accesses become NIL.

51

Pragmatic Extensions to Unification-Based Formalisms

Three control forms are provided:

control form::= (SEQ expression+) I
(cond (test-expression expression)*)
(if test then-expression else-

expression)

• COND and IF constructions have the same syntax as in LISP. The
user should remember however that tests will be verified if and only if
they evaluate themselves to the boolean value true.

• SEQ evaluates in sequence the expressions that follow and returns the
value of the last one. There is however one exception to this rule: if one
of the expressions evaluates itself to NIL, SEQ also returns NIL.

The functional forms also have the same kind of syntax as in LISP, that is, a list
whose CAR is the operation symbol and the CDR a list of expressions which are
evaluated before. However, PAULINE checks the types of arguments. The operator
has to be defmed in the grammar ftle by means of the following LISP function:

(define-intern-function <operation symbol>
<args types>
<result type>
<computation method>)

• <args type> is a list of types names. If one of these names is
enclosed in brackets, there can be several arguments of this type.

• <computation method> is a LISP lambda expression.

• <result type> is unimportant since PAULINE does not actually
use 1t.

EXAMPLE. Addition on integers can be defined as follows:
(define-intern-function'+'((integer))'integer#'+)

Function symbols can be overloaded. PAULINE chooses the right computation
method from the types of the arguments. If there is no previously defined function that
matches the types of the arguments, the result of the evaluation is NエL.

Some functions are predefined as follows:

• on boolean type:
+ : logical or

・logical and
negatton

=・: equality predicate
& : non destructive unification

•)

＾

，

• on integer type:
+ : addition

soustraction
multiplication
division
modulo
equality predicate
order
non destructive unification

＊

／

％

•)
＝
V

&

 • on type character type:
< : lexicographic order
=・weak equality predicate

52

Pragmatic Extensions to Unification-Based Formalisms

＾

~

== : strong equality predicatel
& : non destructive unification

• on string type:
< : lexicographic order
+ : concatenation
=~weak equality predicate
== : strong equality predicate2
& : non destructive unification

In addition, the definition of a scalar type automatically defines the following
functions:

= : equality predicate
< : ordered, defmed as the one of the extension given as an

argument to define-scalar-type.
& : non destructive unification

and the definition of a complex type automatically defines the non destructive
unification operation & on this type.

IV.2 THE LEXICAL EVALUATOR

In this paragraph, we describe dictionaries in PAULINE and the way how the
lexical evaluator (see chapter Il) has been implemented.

Dictionary files are sequences of entries, where the syntax of an entry is as
follows:

entry : : = word : f-structure

The word is simply written as a sequence of characters (all comparisons will be
case independent). The f-structure is written acco:cling to the syntax described in
paragraph ill.2. There can, of course, be several entnes for the same word.

The lexical evaluator called on a word w and a pretenninal symbol t acts as
follows: it first finds the list 1 of all structures associated with w in the current
dictionary. If t is a string equal tow, it returns the whole list. That enables us to put
words directly in grammar rules. Otherwise, it returns the list of all structures s in 1
verifying on~of the two conditions:

• The type of s is equal to t

• The value of the CAT feature in s is equal to t.

一

V. GRAMMAR RULES AND PARSING

V.l GRAMMAR RULES

Grammar rules are defined in grammar files by means of the def rule LISP
macro, which syntax is the following:

(defrule <production>
<rule expression>
<list of predicates>)

1 The two latter operations correspond respectively to COMMON-LISP functions char-
equal and charc:. Hence:

a = A 1strue
but a == A 1s false.
2 The two latter operations correspond respectively to CO:rvIMON-LISP functions string-
equal and string=. See the preceding footnote.

53

Pragmatic Extensions to Unification-Based Formalisms

• The second symbol of the <production> is ignored by PAULINE
and is meant to represent the arrow.

• <rule expression> is a list of simple contextual expressions as
defined in previous section. The result of the contextual evaluation will
be the list of these expressions where inconsistent objects (that is NIL)
have been deleted.

• <list of predicates> contains in the order of production the
predicates associated with right-hand side symbols of the rule, as simple
contextual expressions. They will be verified if and only if they evaluate
to true. Only the structure attached to the corresponding symbol is
passed in the contexL The other structures of the rule can neither be
consulted, nor be modified by predicates.

EXAMPLE. The rule R 1 described in chapter II, paragraph III.2 would be defined by

(defrule S ==>AA
((if {= (1 counter) (2 counter))

(1 counter)))
((= (1 letter) a) {= (2 letter) b)))

V.2 PARSING

Once a grammar and a dictionary have been loaded, the top level menu enters
the following configuration:

Menu:
Parse
Parse and Time
Edit Grammar
Load Grammar
Switch Grammar
Edit Dictionary
Load Dictionary
Switch Dictionary
Change Directory
Exit Pauline

Move among the menu by typing SPACE.
Once you have made up your mind, type RETURN.

Selected choice (Help= "H) ? Parse

Selecting the Parse command, the user is prompted to enter a sentence. Th~
program assumes that this sentence ends with a dot. While parsing the sentence, 1t
displays on the screen the words of the sentence, one by one, to show what point it has
reached in the parse. After parsing, PAULINE displays the results, that is all structures
that have been assigned to symbol s in rules recognizing the whole sentence. Besides
doing the same things, the Parse and Time command also displays some time
inf onnation.

EXAMPLE. Using the Parse and Time command, here is what appears on the
screen while parsing sentence aaabbb with the grammar described in chapter II,
paragraph ID.2. The sentence input by the user appears in bold faced type.

54

~

，

・"':

＾

~

Pragmatic Extensions to Unification-Based Formalisms

Parser> a a a b b b.
Parsing . . .

a a a b b b
Result(s):
3

Parsing time: CPU: 4.89s
Garbage collection: CPU: 1.41s

VI. THE TRACER

Elapsed: 12.28s.
Elapsed: 4.95s.

Once a sentence has been parsed, a last command is added to the top level menu:
the Trace Menu command. Selecting this command brings to the screen the
following menu:

Menu:
Display trees
Node Structure
Node Trace
Symbol stepper
Exit Tracer

Move among the menu by typing SPACE.
Once you have made up your mind, type RETURN.

Selected choice (Help= "H) ? Display trees

In this section, we describe the commands available in this menu.

VI.1 DERIVATION TREES

The fi江stcommand of the tracer menu, Display Trees, displays on the
screen all derivation trees for the previously parsed sentence. Leafs of these trees are
labelled by the corresponding word and not by the preterminal symbol.

It is possible to look at the structure assigned to a node of these trees by means
of the Node Structure command in the tracer menu. After selecting this command,
the user is prompted to select a node. For this purpose, he should enter a list of
numbers. The fl江stis the rank of the derivation tree (beginning at 0), and then, at each
level, the rank of the selected son should be put in the list

EXAMPLE. The unique derivation tree for the sentence parsed in the previous section
is:

A/S~A

/'/' a A b A

a/~b/~

l ↓

55

Pragmatic Extensions to Unification-Based Formalisms

The node corresponding to sequence bb in the sentence (which has been put in bold
faced type in the above picture) would be selected by the list (O 1 1).

Once the node has been selected, PAULINE displays the structures assigned to
this node.

EXAMPLE. After parsing sentence aaabbb, the execution of these two commands
proceeds as follows. (Once again, what has been entered by the user has been put in
bold faced type.)

Menu:
Display trees
Node Structure
Node Trace
Symbol stepper
Exit Tracer

Move among the menu by typing SPACE.
Once you have made up your mind, type RETURN.

Selected choice (Help= "'H) ? Display trees

s

A

A

a

A

b

A

a

A

b

A

a

b

Menu:
Display trees
Node Structure
Node Trace
Symbol stepper
Exit Tracer

Move among the menu by typing SPACE.
Once you have made up your mind, type RETURN.

Selected choice (Help_= "H) ? Node Structure

Node? (0 1 1)
%SEQUENCE {LETTER: B

COUNTER: 2}

Vl.2 THE TRACER

The tracer enables us to move inside the recognition of a symbol in a derivation
tree. It corresponds to the Node Trace command of the tracer menu. After selecting
this command, the user is prompted for a node, which should be entered according to
the format described in previous paragraph. Then, PAULINE displays information
about the rule corresponding to the node: its identification number, a dotted production,
and the lookahead symbol. The command available at this point are the following:

• LEFT Moves the dot in the production one symbol left.

＾

＾

56

~

＾

Pragmatic Extensions to Unification-Based Formalisms

• RIGHT Moves the dot in the production one symbol right.

• DOWN Traces the recognition of the symbol preceding the dot in
the production.

• UP. Moves back where the previous DOWN command was
executed.

• EVAL Calls a read-eval-print loop of simple contextual
expressions. The context is set to structures assigned to symbols
preceding the dot in the production.

• EXIT Goes back to the tracer menu.

EXAMPLE. Here is a sample session of the tracer.

Menu:
Display trees
Node Structure
Node Trace
Symbol stepper
Exit Tracer

Move among the menu by typing SPACE.
Once you have made up your_ mind, type RETURN.

Selected choice (Help= "H) ? Node口race

Node? (0)
tO: rule:O S ==>.AA Lookahead symbol: NIL

Selected choice (Help= "H) ? RIGHT

春0: rule:O S ==>A. A Lookahead symbol: NIL

Selected choice (Help== "H) ? DO畑

ー一春1: rule:2
LETTER

A==>. LETTER A Lookahead symbol:

Selected choice (Help= ""H) ? RIGHで

--#1: rule:2
LETTER

A==> LETTER. A Lookahead symbol:

Selected choice (Help= "H) ? RエGHT

--tl: rule:2
LETTER

A=> LETTER A. Lookahead symbol:

Selected choice (Help= "H) ? EVAL

You enter the evaluation loop.
Edition commands of EDLIN are available.

To exit, eval () .

Eval> (2)
%SEQUENCE {LETTER: A

COUNTER: 2}

57

Pragmatic Extensions to Uni『ication-BasedFormalisms

Eval> ()
--#1: rule:2
LETTER

A==> LETTER A. Lookahead symbol:

Selected choice (Help= "H) ? UP

春0: rule:0 S ==>A. A Lookahead symbol: NIL

Selected choice (Help= "H) ? LEFT

春0: rule:O S ==>.AA Lookahead symbol: NIL

Selected choice (Help= "'H) ? EXIT

Vl.3 THE SYMBOL STEPPER

The symbol stepper is certainly the most interesting feature of the tracer menu. It
enables the user to simulate the actual parsing of the sentence. It is not a real step-by-
step analysis, since the stepper uses structures built during the analysis without actually
redoing it

After this command has been selected, the user is prompted to enter a non-
terminal symbol and a position in the sentence (the beginning of the sentence is
assumed to be 0). Then, PAULINE displays the predictions made on this symbol at this
position. If there are several such predictions, the user is asked to make a choice. Each
of the possible choices _is displayed with information on the part of the sequence this
choice will be able to recognize. This information will always be displayed by the
stepper when the user is prompted for a choice. Afterwards, the stepper displays
inf onnation on the selected rule, exactly as the tracer does. The commands that can be
selected at this point are the following (some of them can be disabled according to the
configuration of the rule).

• RIGHT Moves the dot one symbol right. In that case, there can be
several possible structures to assign to the fi江stnon recognized symbol.
The us~r is then asked to choose one of them.
• BACK Is equivalent to the LEFT command inside the tracer.

• EVAL ls th e same as 1n the tracer.

• EXIT Goes back to the tracer menu.

• BRAN CH Goes back to the previous prediction.

• PROCEED Simulates the analysis. The behavior depends on the
position of the dot in the production being stepped. ff the dot is at the
end of the production, the stepper displays information about the
completion of the rule, that is, the evaluation of the rule expression,
recalls the rules in which the completed rule was predicted then goes up
to this rule and moves the dot one point right if the candidate structure
built from the rule expression matches the corresponding predicate. In
the other cases, either the PROCEED command makes a prediction and
goes down to the stepping of the predicted rule, or it displays
information on the scanning that takes place at this point

EXAMPLE. We show only the behavior of the PROCEED and RエGHTcommands since
the other ones are not very different from their equivalents in the tracer.

PAULINE Stepper.

Parsed sentence: a a ab b b.

l̀

~

，

~

58

~

＾

Pragmatic Extensions to Unification-Based Formalisms

Symbol to step? S
Stepping position? 0
iO: rule:O S ==>.AA Lookahead symbol: NIL

Selected choice (Help= "'H) ? RIGHT

CHOICE BETWEEN:
- 1. %SEQUENCE {LETTER: A

COUNTER: 3}
leads to complete recognition of:

a a a b b b
leads to incomplete recognition of:

a a a b
a a a b b

- 2. %SEQUENCE {LETTER: A
COUNTER: 2}

leads to incomplete recognition of:
a a

- 3. 告SEQUENCE {LETTER: A
COUNTER: 1}

leads to incomplete recognition of:
a

Choice? (1 .. 3)1

A-->屠SEQUENCE{LETTER: A
COUNTER: 3}

春0: rule:O S ==>A. A Lookahead symbol: NIL

Selected choice (Help= "'H) ? PROCEED

PREDICTION on symbol A at position 4.
CHOICE BETWEEN:
- 1. rule:2 A=>. LETTER A Lookahead symbol:

NIL
leads to complete recognition of:

b b
b b b

- 2. rule:1 A=>. LETTER Lookahead symbol: NIL
leads to complete recognition of:

b
Choice? (1 .. 2)1

--il: rule:2
NIL

A==>. LETTER A Lookahead symbol:

Selected choice (Help= AH) ? PROCEED

SCANNER:
Symbol: LETTER
Word: b

Result(s) of the lexical evaluation:
B

Rhs-predicate: TRUE
LETTER--> B

--#1: rule:2 A==> LETTER. A Lookahead symbol:
NIL

59

Pragmatic Extensions to Unification-Based Formalisms

Selected choice (Help= "H) ? RIGHT

CHOICE BETWEEN:
- 1. %SEQUENCE {LETTER: B

COUNTER: 2}
leads to complete recognition of:

b b b
- 2. %SEQUENCE {LETTER: B

COUNTER: 1}
leads to complete recognition of:

b b
Choice? (1 •• 2)1

A--> %SEQUENCE {LETTER: B
COUNTER: 2}

--#1: rule:2 A==> LETTER A. Lookahead symbol:
NIL

Selected choice (Help= "H) ? PROCEED

COMPLETION of rule A==> LETTER A.
---->" b b b"
Rhs structures:
LETTER--> B
A--> %SEQUENCE {LETTER: B

COUNTER: 2}
Rule expression: ((IF (= (1) (2 LETTER)) (SEQ ((0)

== (@ 1)) ((0 LETTER) = (1)) ((0 COUNTER) = (+ 1 (2
COUNTER))) (0))))

Result of the contextual evaluation:
%SEQUENCE {LETTER: B

COUNTER: 3}
Wants to fit into:

春0: rule:O S ==>A. A Lookahead symbol: NIL
Rhs-predicate: (= (2 LETTER) B)
A--> 令SEQUENCE {LETTER: B

COUNTER: 3}
#0: rule:0 S =>AA. Lookahead symbol: NIL

Selected choice (Help= "H) ? PROCEED

COMPLETION of rule S ==>AA.
---->" a a ab b b"
Rhs structures:
A--> 令SEQUENCE {LETTER:

COUNTER:
A--> %SEQUENCE {LETTER:

COUNTER:
Rule expression: ((IF (=

COUNTER)))
Result of the contextual

3

A
3}

B
3}

(1 COUNTER) (2 COUNTER)) (1

evaluation:

60

~

＾

，

~

＾

Pragmatic Extensions to Unification-Based Formalisms

CONCLUSION

In this work, we first presented a feature structure type system where two kinds
of types are defmed: atomic and complex types. Atomic types are usual simple types
such as boolean, numbers or strings whose specification is incorporated in the
formalism. Operations defined on these typ~s such as arithmetic, concatenation, etc.
enable us to avoid the unification cost for simple operations needed by any real-size
Natural Language Processing system. Complex types are defined by a set of valid
features considered operations, and reentrancy is treated by means of index functions.

We then described a parsing algorithm derived from Earley's algorithm which
builds representation structures during parsing but assumes only the. existence of three
interface evaluators to handle structures, no matter what, exactly, these structures are
(trees, graphs, f-structures ...).

Finally, we presented the PAULINE system, which is a prototype environment
including both the type system described in chapter I and the parsing algorithm
described in chapter Il.

Further research extending this work could be:

• Define subtypes in the type system to be able to handle the power of
inheritance mechanisms (see [AIT 86]).

• Enable the parsing algorithm and the grammar formalism to follow
user defined parsing strategies.

• Study the cost of this algorithm (this depends on the operations the
interface evaluators perform).

• Improve the treatment of dictionaries and lexical items in PAULINE,
and add a morphological analyzer to the program.

In its current implementation, the PAULINE system is only a prototype.
However, since it can handle both unification and simpler operations like arithmetic, it
can be a step toward practical use of unification grammars in actual Natural Language
Processing systems.

61

Pragmatic Extensions to Unification-Based Formalisms

APPENDIX
A Pure Unification Grammar

This appendix presents the sample grammar 1 of [Slil 86] written in PAULINE
system.

GRAMMAR FILE

; Types definition. There are two scalar types, the first one for grammatical
; categories the second for grammatical number. There is two complex types:
; s yntagm, to represent structures associated with phrases and sentences, and
; agreement, to represent agreement informations.

{define-scalar-type'cat'{s np vp v))
(define-scalar-type'number'(plural singular))

(define-complex-type'syntagm'((cat . cat) (head .
head) (subject . head)))

(define-complex-type'head'((agreement . agreement)
{subject .
head)))

{define-complex-type'agreement'{ (number . number)
{person.
integer)))

; Template definition. Two templates are defined, to initialize the structures for
; sentences and verbal phrase. (Nominal phrases are treated here as preterminal
; symbols.).

(enable-template-definition)

春lt%syntagm{cat:s}
寺2t%syntagm{cat:vp}

(disable-template-definition)

; Grammar rules:
{defrule S ==> NP VP

; rul e expression:
{ (seq ((0) == #lt)

; unifications:
((0 head) &= (2 head))
((0 head subject) &= (1 head))
((0 subject) &= (0 head subject))
; result:
{ 0)))

; rhs predicates:
{true true))

(defrule VP=> V
((seq ((0) == #2t)

((0 head) &= (1 head))
(0)))

(true))

d

~

＾
．．

62

~

＾
．

Pragmatic Extensions to Unification-Based Formalisms

DICTIONARY FILE

Uther:%syntagm
{cat:np
head:%head

{agreement:%agreement
{number:singular
person:3}}}

Sleeps:%syntagm
{cat:v
head浅 head

{subject: 令head

Sleep:%syntagm
{cat:v
head:%head

{agreement:
%agreement

{number:singular
person:3}}}}

{subject: 姐head
{agreement:

SAMPLE PAULINE SESSION

号agreement
{number:plurall}}}

In this section, we show the parsing of the sentence Uther sleeps. We assume
that the grammar and the clictionnary described above have previously been loaded.
Here is the execution of Parse command:

Menu:
Parse
Parse and Time
Edit Grammar
Load Grammar
Switch Grammar
Edit Dictionnary
Load Dictionnary
Switch Dictionnary
Change Directory
Exit Pauline

Move among the menu by typing SPACE.
Once you have made up your mind, type RETURN.

Selected choice (Help= "H) ? Parse

Parser> Other sleeps.
Parsing.

Other sleeps

63

Pragmatic Ex•tensions to Unification-Based Formalisms

Result(s):

%SYNTAGM {CAT:
HEAD:

s
%HEAD
{SUBJECT :@il

@= %HEAD
{AGREEMENT:

令AGREEMENT
{NUMBER: SINGULAR
P・ERSON: 3}

SUBJECT: 令HEAD {}}} ．
SUBJECT: @il}

＾

＾
•3

▲

64

Pragmatic Extensions to Unification-Based Formalisms

REFERENCES

[AHO 72]

[AIT 86]

[BAR 87]

[EAR68]

口』 [GAZ 85]

[GOG 78]

[KAP 83]

u [KAS 86]

[KAY 83]

[NAS 86]

[PER 80]

A.V. AHO, J.D. ULLMAN. The Theory of Parsing, Translation

and C01npiling. Prentice Hall 1972.

H. AIT-KACI. An Algebraic Semantics to the Effective Resolution of

Type Equations. In Theoretical Computer Science 45 p 293-351. 1986.

G.E. BARTON Jr, R.C. BERWICK, E.S. RISTAD.

Computational Complexity and Natural Language. M汀 Press.1987.

J. EARLEY. An Efficient Context-free Parsing Algorithm. PhD

Thesis, Computer Science Dpt, Carnegie Mellon University. 1968.

G. GAZDAR, G.E. KLEIN, G.K. PULLUM, I.A. SAG.

Generalized Phrase Structure Grammar. Harvard University Press.

1985.

J.A. GOGUEN, J.W. THATCHER, E.G. WAGNER. An

Initial Algebra Approach to the Specification, Correctness and

Implementation of Abstract Data Types. In Current Trends in

Programming Methodology, Vol 4. Prentice Hall 1978.

R. KAPLAN, J. BRESNAN. Lexical-functionnal Grammar: A

Formal System for Grammatical Representation. In The Mental

Representation of Grammatical Relations. M汀 Press.1983.

R.T. KASPER, W.C. ROUNDS. A Logical Semantics for Feature

Structures. In The Proceedings of the 24th Annual Meeting of the ACL.

New York. 1986.

M. KAY. Unification Grammar. Technical Report, Xerox Palo Alto

Research Center. 1983.

H. AIT-KACI, R. NASR. LOGIN: a Logic Programming

Language with Built-in Inheritance. In Journal of Logic Programming

1986:3.

F.C.N. PEREIRA, D.H.D. WARREN. Definite Clause

Grammars for Language Analysis. In Artificial Intelligence. 13:231-

278. 1980.

65

[PER 85]

[PER 86]

[POL 87]

[SHI 86]

[TOM86]

[WRO 87]

[ZAJ 88]

Pragmatic Extensions to Unification-Based Formalisms

F.C.N. PEREIRA. A Structure-sharing Representation for

Unification-based Grammar Formalisms. In The Proceedings of the

23rd Annual Meeting of the ACL. Chicago. 1985.

F.C.N. PEREIRA. Grammars and Logic of Partial Information. In

The Proceedings of the International Conference of Logic Programming.

Melbourne. 1986.

C. POLLARD, I.A. SAG. Information-based Syntax and

Semantics, Volume 1: Fundamentals. CSLI Lecture Notes 13. 1987.

S.M. SHIEBER. An Introduction to Unification-based Approaches to

Grammar. CSLI Lecture Notes 4. 1986.

M. TOMITA. Efficient Parsing for Natural Language. Kluwer

Academic Press. 1986.

D. WROBLEWSKI. Nondestructive Graph Unification. In The

Proceedings of the 6th National Conference on Artificial Intelligence.

Seattle. 19 87.

R. ZAJAC. Operations on Typed Feature Structures: Motivations and

Definitions. ATR Technical Report. TR-I-0045, 1988.

66

	cont
	0054cv

