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Abstract 

In the spirit of functional programming (a la LISP), we propose a systematic 
framework for introducing a variety of extensions to unification-based grammar 
formalisms. Feature-structures are interpreted as objects which have a set 
structure, and not as denotation of sets. We introduce associated functions 
derived from set theory. For example, union is defined as a weak form of 
unification. We have developed an experimental interpreter to test these ideas. 
The basic data structure of the language is a Typed Feature Structure, as the list 
is the basic data structure of LISP. 

This report presents the motivations of this approach, and describes the 
formal framework used for the language, which integrate functions and equations 

on Typed Feature Structures. The interpreter of the language and the granrmar 
formalism will described in a forthcoming report. 
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Abstract: A Machine Interpretation system will presumably use various specialized linguistic programming 
languages. At some point, there will probably be a transition from an attributed tree to a feature 
structure, and vice versa. A common point between attribute structures and feature structures is that 
attribute structures can be considered degenerated feature structures. 

On the other hand, most g皿皿皿 formalismsusing unification of feature structures introduce a 
variety of augmentations that hamper the declarativeness of the formalism and monotonicity of 
computation of these equational formalisms. 

In the spirit of functional programming (a la LISP), we propose a framework for such 
augmentations based on the interpretation of feature structures as objects (not as denotations). We 
introduce the associated functions derived from set theory. For example, union is defined as a wealc 
form of unification. 

We have developed an experimental functional interpreter to test these ideas. The basic data structure 
of the language is a typed feature structure. Operations avaible include conditional instructions and 
sequence of instructions, boolean expressions, assignment, unification, and various functional 
operations on typed feature structures. Defmitions include type definitions, template definition and 
(recursive) function defmitions. This interpreter has been integrated in an Earley parser. The grammar 
form両 moffers the grammar writer en証needexpressive power and allows a more modular approach to 
grammar development. 

This report gives the motivations of this approach, and describes the formal framework used for the 
language. The interpreter of the language and the grammar formalism will be described in a 

forthcoming report. 

Key Words: Equational formalisms, unification, functionnal formalisms, feature structures, attribute structures, 

grammar formalisms. 
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1. INTRODUCTION 

1.1 Motivations 

A . Integration of different computational models for computational linguistics 

As argued in [Boitet 88], a Machine Interpretation system is likely to usedザferentSpecialized 

Languages for Linguistic Programming (SLLP), and may be more than text Machine Translation 

systems. For analysis, we have to differentiate between at least four layers of input representation. 

Each layer uses a different representation which has its own computationnal model. 

layer computational model Input ouput 

UNDERSTANDING logic formalism syntactic structures semantic formula 

SYNTAX CF grammar lemmatized words syntactic structures 

MORPHOLOGY Finite State Automata word form lemmatized word 

PHONOLOGY Hidden Markov Model acoustic frames word forms 

Figure 1 : layers of representation of a spoken utterance 

If we make the (reasonable) assumption that each task is programmed usmg the fitted formalism, 

we have at least three different formalisms (not counting the speech recognition part). Morphology 

performs the segmentation of word forms and accesses the dictionnary: the basic formalism would 

be an (augmented) regular grammar. The syntactic part performs the recognition of syntagms and 

computes associated syntactic functions: the associated formalism would be an attributed context-free 

grammar, possibly augmented with tree transformations. The understanding part computes a 

≪semantic mterpretation≫of the mput, that is, a mappmg from a syntactic structure to a formula of a 

semiふformalizeddomain. This domain would include (not exhaustively) linguistic semantics, 

pragmatics and domain knowledge. The associated formalism would be a logic programming 

language based on feature structures. 

There are already formalisms used to compute each layer from the others, but there are none to 

compute the mapping of an attributed tree ro a feature structure. Such a taskおnecessaryat the end of 

a (successful) analysis, for transfer and maybe for generation steps. We see two possibilities for 

such a computation. One is to use a rewriting system that creates a feature s血 cturefrom an 

attributed tree (and conversely for the generation part). Another is to imbed the computation of 

feature stnlctures in the context-free grammar formalism, and at some point to treat the attribute 
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structure as a (degenerated) feature structure. In any case, we have to relate attributes and feature 

structures. 

Attribute systems are widely used in augmented context free grammars, particularly for writing 

compilers, but also in MT systems (e.g., METAL [Slocum 84, Bennet and Slocum 85]). They are 

also used in SLLPs designed to write the grammars of a MT system: ROBRA, GRADE, Q-systems, 

etc. [Boitet et al. 80, Nakamura et al. 84, Colrnerauer 71]. Attributes are generaly associated to 

nodes of a tree structure. In the simplest case, an attribute structure is a set of variable-value p血s.A

variable has one value and is possibly typed (string, integer, …） . A slight extension allows a variable 

to have a set of (symbolic) values. The type of each variable is generally declared, in order to check 

consistency during compilation, and to allow efficient internal representations (ROBRA, GRADE). 

Another extension is to use a tree of attributes (in Q-systems, for example), where an attribute 

CATEGORY may have a ADJUNCT value which, in turn, has an ADJECTNE value. If complex 

attribute structures are generaly depicted as trees, they might also be depicted as graphs with symbols 

on arcs, as shown in Figure 2. 
‘ヽ

＼
 

attribute structure feature structure 

/『＼
p『rs gen num 

I I 
ー masc plur ー masc plur 

Figure 2: an attribute structure and an equivalent feature structure. 

Putting this analogy forward, we want to see how operanons on attribute structures, e.g. 

inclusion (-DANS-predicate of Q-systems) or union of two attribute structures could be related to 

operations on feature structures (e.g. subsumption and unification). 

（
 

B. Toward a practicalformalismfor building large systems 

If we consider feature structures to be the basic data structure for computational linguistic, there 

are various operations that could be used with this data structure in clifferent frameworks : 

- unification in a logic programming language, LOGIN [紅t-Kaciand Nasr 86]; 

- function application in a functional programming language, KL-ONE [Brachman and 

Schmolze 85]。
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So far, unification is the only operation used in formalisms for computational linguistics. We 

argue that the use of a functional paradigm imbedding descriptions of typed feature structures will 

offer more expressive power to the user, making descriptions more concise. Futhermore, a grammar 

formalism adapted to use this functional framework would enhance grammar writing, grammar 

modifying, and grammar debugging. And last but not least, a more concise grammar (with fewer 

rules) will run faster than an equivalent grammar written ma pure unification formalism. 

Our functional framework offers: 

conditional constructions: they can be used to factor in one rule slightly different cases that, using 

unification only, must be expressed in several rules having the same production part. This makes 

descriptions more concise as the same part is only written once. Modifications are also easier, 

because they are done only at one place, not repeated with all similar rules. And as there is only one 

rule which have a production A→ B C, it is easier to point out an error in debugging. 

user defined functions: the grammar writer can define his own functions as a composition of other 

functions (recursive definitions are allowed). For example, for expressing some agreement condition 

that is frequently used, instead of repeating the same code all over the grammar, one need only define 

this condition as a function and call the function where the agreement must hold. The gain in 

concision and ease of debugging is clear. 

string and number types: these types are treated as atomic types. The usual functions associated with 

these types are defmed. 

equational operations: unification and generalisation are implemented; complement and disjunction 

are planned. 
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1.2 Equational and functional operations 

Grammar formalisms based on unification of feature structures (hereafter f-structures which are, 

most generally directed acyclic graphs) are equational formalisms. In the following, we shall take as 

a representative example, the D-PATR formalism [Shieber 86]). A so-called≪unification grammar≫ 

is an augmented context-free grammar. A f-structure is associated with each symbol of a rule. The 

output of a parser is the f-structure associated with the initial symbol of the grammar (one for each 

successful parse) for a given input string. To defme the f-structure that corresponds with a given 

input string, the linguist writes equalities between sub-parts of the f-structures associated with each 

symbol of a rule; the order in which the equations are written is not important. During computation, 

for a given parse, grammar rules add these constraints on the f-structures which are computed. As 

the equalities are added, they are irnmediatly interpreted using unification. At the end of the process 

(recognition of the initial symbol of the grammar), the smallest f-structure that verifies all the 

accumulated constraints is output. 
I
,

＼
 

At first, this kind of grammar formalism was used by theoretical linguists to formalize 

such-and-such linguistic/semantic phenomena But these formalisms were not used to implement real 

size parsers. As far as we know, there is no such parser for English. On the other hand, actual real 

size parsers based on context-free grammars (such as the one used in the EPISTLE system 

developed at IBM [Heidorn et al. 82, Jensen and Heidorn 83)) use generally simple attributes, with 

possibly attached transformations (as in the METAL system [Slocum 84]). 

The subject of this paper is to investigate to what extend the basic qualities of both kinds of 

formalisms・can be retained in a single grammar formalism. One possible way of doing this is to 

devise a single framework that could account for f-structures and for hierarchical attributes of the 

kind used in practical systems such as Q-systems [Colmerauer 71]. We hope this might possibly lead 

to a fonnalism that could be used for developing both practical systems and more speculative formal 

models. 

Let us take an example (from [Shieber 86]) and consider the gramm虹 rulein Figure 3. The 

application of this rule on a string of two f-structures (Figure 4) builds a new f-structure (Figure 5) 

by≪merging≫the two previous ones and adding some new elements to it; the two previous 

f-structures紅enot recoverable. Outside the scope of the rule, the f-structure cannot be accessed 

using NP and VP≪entry points≫, thus some parts of this f-structure紅e≪hidden≫.
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S -> NP VP 

<Scat>= s 
<NP cat>= np 
<VP cat>= vp 
<S head> = <VP head> 
<S head subject> = <NP head> 

Figure 3: a grammar rule using unification. 

VP 

NP

↓
 

↓
 

cat 

3
 

gen 

sing masc 

cat 

3
 

sing 

Figure 4 : a string of two feature structures. 
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cat 

3
 

sing masc 
／
．
＼
、

Figure 5 : the result of an application of a rule using unification on /-structures. 

The same rule can be written with an attribute grammar using conditional assignment and boolean 

functions. Let us assume that the attribute system of the grammar is hierarchical and can be 

represented as an f-structure without sharing. The rule could then be written as in Figure 6. Applied 

on the same string off-structures (Figure 4), it builds a new attribute structure without any explicit 

link with the two structures associated with NP and VP. The if part checks if the rule can be applied 
using boolean operators (AND) and boolean functions(=, $agr). The third line of the then part is an 

assignment of the union of the values of <Shead subject> and< NP head> to <Shead subject>. 

Note that we have a sequence of operations. Thus, the order in which the operations are written is 

important. The application of the rule builds a cornpletly new attribute structure (Figure 7), with no 

(explicit) links to the others. As the structures of NP and VP could be withdrawn, the resulting 

attribute structure is smaller than the f-structure of Figure 5 (no≪hidden≫parts). 

(
¥
 

S -> NP VP 
if (<NP cat>:np and <VP cat>:vp and $agr(<NP>, <VP>)) 
then 

<Scat>:= s; 
<S head> := <VP head> ; 
<S head subject> := <S head subject> + <NP head> 

end if; 

Figure 6 : a grammar rule using conditional assignment. 
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s
 

VP 

↓
 

p
 

z
ー
▼

cat 

3
 

gen 

sing masc 

cat 
cat 

gen 

3 sing masc 

↓
 

3
 

sing 

Figure 7 : the result of an application of a rule using conditional assignment 

in attribute structures. 

We have two different computational frameworks that use the same kind of data structure. In the 

unification framework, the computation is expressed by a set of equations attached to each rule; in 

the second framework, the computation is expressed by a sequence of conditional assignments. The 

right hand side of an assignment is a functional expression that uses a variety of operations on 

f-structures. We can draw an analogy with PROLOG computational behavior for unification 

based-formalisms, and with LISP for the second one. The spirit of the integration of those two 

frameworks -equational and functional—is quite similar to the integration of LISP and PROLOG 

[Robinson and Sibert 82]. 
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1.3 Feature structures as hierachical sets of attributes 

We want to view attribute structures as a special case of feature structures. As attribute structures 

are always interpreted as objects and not as denotations of sets, we also have to interpret feature 

structures as objects standing for themselves. On the contrary, the logical approach of feature 

structures leads to interpreting them as denotation of sets, and not as sets themselves. In the 

following, we shall speak of feature structures with the object interpretation in mind, that is, feature 

structures as hierarchical sets of attributes. 

The main differences with the denotative interpretation are: 

1. The ordering used in the denotative interpretation (subsumption) is the reverse of the ordering on 

hierarchical sets of attributes (inclusion); 

2. As feature structures are viewed as objects standing for themselves (similar to record data ( 

structures in programming languages), one can directly manipulate these objects, without 

worrying about the semantics of these manipulation on the denotated sets. 

We use the interpretation of an f-structure as a hierarchical set of attributes (hereafter h-sets). A 

path is interpreted as the name of a set, the elements of this set being the values of the path. This 

interpretation is valid at all levels down to the bottom of the f-structure where atomic features are 

interpreted as features whose sets of values are bound to be empty. This interpretation is made 

possible by the fact that an f-structure is non ordered (but directed) and without repetition (for the 

successors of any given feature). Let's talce an exemple (as adequate meaningful linguistic examples 

are very difficult to build for all interesting cases, we shall mainly use formal examples). 

（＼ 
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C e 

Figure 8: a feature structure. 

Interpreting the graph of Figure 8 as a hierarchical set of attributes level by level gives 

1 {a, f, h} 

2 a={b, d} f={b, d} ; h={g, i} 

3 b= { c} ; d= { e} ; g= { e} ; i = { } = 0 ; 

4 c={} ; e={} 

The whole structure is written { a { b { c} , d { e } } , f { b { c} , d { e } } , h { g { e } , i } } . 

Recall that an attribute structure does not involve sharing, thus it is not represented here. 

In order to be able to introduce other types than set and atomic types, we define explicitly the 

type of features: in each node of the graph, we put the name of the type and each value on an arc. An 

atomic value will have the null (bearing the null type) as a successor. We add in each node an index 

which is used to represent sharing, and we shall speak of co-indexing of paths and of sub-structures. 

In the following, such a structure will be called a Typed Feature Structure or tfs. 

In the traditionnal view of attribute structures as trees, (see for exemple [Colmerauer 71, Boitet, 

Bachut et al. 88]), types, indexes, and values are put in nodes. Figure 10 gives the dual view of the 

tfs as a tree-like attribute structure. 
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a
 

・0 atomic type 

0 set type 
① null type 

(
,
＼
 

Figure 9: anf-structure with representation of types. 

0 atomic type 
0 set type 
① null type 

(
¥
 

Figure 10: anf-structure with values on nodes. 
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If we write an h-set邸{a { b { c } , d { e } } , f { b { c } , d { e } } , h { g { e } , i } } , the union 

operation used in the rule in Figure 6 h邸 avery simple recursive definition. Let us first define the 

ordinary union of two sets of symbols. In the following definitions, ex will represent a feature, lx a 

list of features, and f.x a feature-value structure (either atomic or complex). Parentheses have their 

usual meaning. When a set is written between angle brackets, the elements of the set are treated邸 a

list of elements: < {切＞→lx. 

Definition 1: union of sets 

1 { } + {12} → {12} 

2 {11} + {}→ {11} 

3 {el, 11} + {el}→ {el, 11} 

4 {el, 11} + {e2}→ {el, <{ll}+{e2}>} 

5 {11} + {e2, 12}→ ({11} + {e2}) + {12} 

The usual properties of ordinary sets for union (idempotency, commutativity, associativity and 

null element) follow directly from this definition. For dealing with hierarchies of sets, we modify 

this definition slightly to get: 

Definition 2: union of h-sets 

1 {} + { 12}→ {12} 

2 { 11} + {}→ {11} 

3 {el{ll}, 12} + {e1{13}}→ { el{<{l1}+{13}>} } + {12} 

4 {fl, 11} + {f2}→ {fl, <{ll}+{f2}>} 

5
 

{11} + {f2, 12}→ {11} + {f2} + { 12} 

From the exemples of rules given in section 1.2 (figures 1 and 4), one can guess that the 

algebraic operation involved in unification, that is, conjunction [Rounds and Kasper 86] or join 

[A'it-Kaci 86] bears some similarities with union of two h-sets. This is the fact which is stressed in 

this paper and we shall see that the main difference lies, as one can again guess, in the treatement of 

sharing. To account for this, we have to give a more precise definition of a typed feature structure. 

As the main goal of this paper is not to provide a comprehensive theoretical account but rather to 

introduce some new practical operations, we ask the reader to refer to [A'it-Kaci 86] for a sound 

mathematical account. We follow the main points of his presentation. 
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2. OPERA TIO NS 

2.1 Preliminaries 

The example in Figure 9 is written { a { b { c } , d { e } } , f { b { c } , d { e } } , h { g { e } , i } } as an 

h-set. Representing sh血ngis done with indexes直ndco-indexed sub-structures are represented only 

shall also omit indexes that occur only once in the once; we 

{ a . 1 { b { c } , d. 4 { e } } , f. 1 , h { g . 4 , i } } . The complete developed representation has three 

components: the set of paths, associated indexes, and associated types: 

Indexes Types 

e O S 
a 1 S 
ab 2 A 

言 i 閃
戸『怠
fb 2 S 
fbc .3 A 
fd 4 S 

茫 ~t
ho-

と9
4 A 

間e~ 翌
Figure 11 : a developed representation of a TFS. 

Paths 

Let us now introduce some formal notations before defining some operations on TFS. 

The graph skeleton: TFS-graph 

structure: 

Let L be a set of label symbols, and I a set of indexes included in N, the set of natural integers. 

A set of paths P is a sub-set of L * and has the following connexity property: 

(pl) V x, y e L *, xy e P⇒ XE  P. 

A TFS is a finite data structure: a node of a graph has a finite number of successors and the 

number of sub-graphs is finite. A node has a finite number of successors: 

／

＼

 

ー＇

ヽ

｝（，．＼ 

(p2) 'ifxe P {xae P/ae L} isfmite. 
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A TFS may contain cycles, and therefore the set of paths of the graph is infinite but regular. It 

means that the number of sub-graphs is fmite. A sub-TFS is恥 ={y/ xy e P}. A regular graph P 

has the property 

(p3) . V x e P, {P¥x} is finite. 

and we shall call a TFS-graph a connex regular graph. 

The co-indexing relation 

If two nodes have the same index, it means that their successors are identical (and not only 

equal). Practically, it means that there are two ways (paths) for accessing the sub-structure 

dominated by the two nodes. This could be used to achieve side-effects, for example to enforce 

constraints linking sub-parts of TFSs using unification. A co-reference relation defines an 

equivalence 三 relationbetween paths: x.i三 y.j⇔ i=j. This relation has the following 

right-invariance property: 

(p4) V X, y, z E P : x三 y⇔ XZ三 yz.

As each TFS defines a particular equivalence relation between paths, the equivalence relation in a 

TFS x will be written三x(and its set of paths, Px), The number of nodes in a TFS is finite, as are 

the number of indexes: the equivalence relation is said to be of finite index. The equivalence relation 

does not impose a particular indexing, and to avoid re-indexing on graphs, we shall only compare 

the relations defined by an indexing and not the indexing itself. We shall call such a relation, a 

co-indexing relation. 

Types 

In the graph, each path is typed. Let T be a partially ordered signature of type symbols with a top 

element T, and bottom element l.. In our formalism, without type refinement, Tis a flat signature 

where the ordering is T < SET< l., T< ATOMIC< l., and T < NULL< l.. It could be pictured as 

15 
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丁

SET ATOMIC NULL 

ー一

Figure 12: lattice of types. 

Thus, the type calculus which is involved is very simple. The motivation is that we have been 

primarily interested in combining the attribute approach and the feature structure approach, and not in ( 

the logic of feature terms: we needed only a mean of defining domains and sub-domains for feature 

structures: each value of a feature must belong to the domain of the feature. For example, in the 

prototype implementation of the interpreter, string and number types are introduced as refinements of 

atomic type. As the defmition of domains is purely syntactical, it is not described here. It does not 

seem too difficult to add type inheritance to this approach. 

We define the type associated with each path of a graph Px as a (total) type function'Cx from L * 

to T where¥;/ we L * -P, 校(w)=T.

Typed Feature Structure 

A TFS x is then a triple <Px, =x,'tx> where Px is TFS-graph labelled on L *, =x is a 

co-indexing relation on Px, andてxisa type function from L * to T. 

（｝ 
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Well-Formed Typed Feature Structure 

A well-formed TFS is a TFS where the properties of each type are respected: a sub-TFS having a 

set type can be anything, a sub-TFS having an atomic type is reduced to a node at most and a 

sub-TFS having the null type is null. We have only to state the last two properties: 

(p5) 1)'r/ X E P /'t(x)=A,'r/ y E P / X三 y,'r/a E L, there exists at most one ya e P 

andて(ya)=0.

2)'rf XE  p /て(x)=0,'r/a e L, xa e P. 

Consistent Typed Feature Structure 

The type T denotes the whole universe, and is associated with the *undefined* value. The type .l 

denotes overdefined (i.e. inconsistent) information and its associated value is by convention the 

empty set. A TFS that containts the l. type or does not respect (p5) should then be intrepreted itself 

as inconsistent. A consistent TFS is a well-formed TFS where no l. type appears and if ..L does occur 

in a TFS or if (p5) does not hold, then the TFS belongs to the class of ..L. This is achieved by 

defining a relation .U.: called bottom-smashing, where tl .U. t2 if and only if ..L occurs in tl or tl does 

not have (p5), and ..L occurs in t2 or t2 does not have (p5), and all equivalence classes are singletons 

except [..L]. We shall now use TFS in place of≪the quotient set of well-formed TFSs modulo the 

bottom-smashing relation≫. 

2.2 TFS equivalence and TFS equality 

As attribute structures and feature structures can be seen as a dual representation of each other, in 

the traditional attribute framework, there is no notion of co-indexing, or≪sharing≫of values. This is 

the main difference of feature structures. In that sense, feature structures can encode more 

information: not only the information represented as a hierarchy of features and values but also the 

information that two features share the same set of values. If two features, say fl and f2, are 

co-indexed their values are not only equal, but more: identical. Operations on attribute structures do 

not take identities into account and operations on feature structures do. As we work on only one kind 

of structure, typed feature structures, we can nevertheless define two kinds of operations: those 

taking identities into account (written with a doubling of the operator sign), and those ignoring 

identities. 
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Two TFSs are equivalent if they have the same structure, co-indexing, and types: 

(dl) S==T⇔ Ps = PT A 三s=可 /¥'ts='tT

a
 

a
 

X==Y 
• same features and values 

• same indentities ／
ー
＼
、

Figure 13: equivalence between ifs. 

Two TFSs are equal if they have the same structure and the same types, but not necessarily the 

same co-indexing: 

(d2) S=T⇔ Ps = PT /¥'Cs =てT

c
 

a
 

（～ 

X:Y 
• same features and values 
• not the same indentities 

Figure 14: equality between ifs. 

r.,1 
It is easy to see that 

(p7) == :2ー・
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As the difference lies in co-in-dexing, when there is no sharing, those two defmitions are reduced 

to the definition of equality on hierarchical attribute structures: 

aパ＼ 一
aバ八c

•一_,_ 
・---

X:Y • same features and values 
and 

• no identity 
X==Y 

Figure 15: equality and equivalence hold. 

2.3 Subsumption and inclusion orderings 

A TFS Tis strongly included in a TFS T if T contains less information than S: 

(d3) S>>T⇔ Ps ;;;;J Py "唸二野＾叶二唸

<< a 

X << y 
• features and values of X are in Y 

• indentities of X are in Y 

Figure 16: strong inclusion. 

One should notice that strong inclusion is nothing more than the reverse of subsumption. In the 

same manner, we shall call wealc subsumption the reverse of inclusion. In our approach, we 
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consider that TFS stand as objects rather than denotations. This is coherent with the interpretation of 
attribute structures. One can also notice that the duality object/denotation is sinrilar to the distinction 

made by [Kaplan and Bresnan 82] between feature structures and feature descriptions. 

A TFS T is included in a TFS S if, except for the co-indexing, T contains less information than J 

S: 

(d4) S>T⇔ Ps :=2 PT /¥'Cs :=2叶

< a 
／
ー
＼

X<Y  
• features and values of X are in Y 

• forget indentities 

Figure 17: inclusion. 

In this exemple, strong inclusion does not hold. And as for equivalence and equality, we have: 

(p8) >>~>. /’,＼ 

brr ＜ 

＜＜ 
I
 

X<Y 

and 

X<<Y 

• features and values of X are in Y 

.. no indentities, only equalities 

Figure 18: strong inclusion and inclusion hold. 
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The reverse of these orderings, that is subsumption and weak subsumption, which are 

extensions of the ordering on T to TFSs, can be used to define least upper bounds (lub) and greatest 

lower bounds (glb) on TFSs, which then have a lattice structure derived from the structure of T. 

We now extend the parallelism between equivalence and equality to other operations. 

2.4 GLBs : conjunction and union 

We f辻stintroduce union of two f-s血ctures.The union of two f-structures is the union of 

features at the f辻stlevel and, recursively, the union of the values of two features having the same 

name. Let's take as an example the following f-structures: 

a
 ＋ 

Figure 19: union of feature and values. 

As for the union of h-sets, the union X + Y = Z level by level gives (empty values are not written) 

1. {a, b} 

2 . a= { c} ; b= { c, d} 

and the whole resulting structure is: 
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a 

) ＼ I 
→ ＋ ／ ／ ヽ ｝ 

Figure 20: union of feature and values X+Y=Z: do not take identities into account. 

and not ／
ー
＼

Figure 21: conjunction of feature structures X++Y=Z' 

If we consistently use the h-set interpretation, <X a>={ c} and there is no path <Ya>. Therefore, 

<Z a> must have the same value { c}. It would be quite an unexpected side effect for <Z a> to get a 

different value when there is no H-set of the same name in Y! In fact, the structure Z'is the 

conjunction of X and Y, where <X a> is bound to have the same value as <X b>, and all operations 

that affect one must also affect the other. 

(＼ 

As we shall see, the same two interpretations will also appear for intersection. These two kinds 

of operations are perfectly legitimate. The frrst is quite natural, interpreting£-structures as h-sets of 

attributes with a local view restricted to two arcs (variable→ value). The second is quite natural 
reasoning on£-structures as graphs, with a global view of the structure. A consequence is that, under 

the equational interpretation, a path is a means to access a part of the graph, that is, a path is a 

pointer. Under the functional interpretation, a path is a variable that returns a value and can be 

assigned a value. Of course, if there are no identities at all, the two operations are equivalent. This 

suggests introducing a run-time parameter for a grammar to take or not to take sharing into account. 

7
 

ー
＇
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If sharing is not taken into account, unification is reduced to a≪pseudo-unification≫, similar to the 

pseudo-unification used in the default mode of the Universal Parser developed at Carnegie-Mellon's 

Machine Translation Center [Tomita 88]. 

＋ 

c' 
I ++~ → 

Figure 22: conjunction or union of feature structures without co-indexing. 

We shall first define the greatest lower bound for the subsumption ordering, which we shall call 

conjunction, and write S++ T=L. One should notice that, for strong inclusion ordering, conjunction 

will be a least upper bound: we prefer to use subsumption to make comparisons easier with other 

works. For S++ T, we have to put in the set of paths all paths of S and T, and to take as the 

co-indexing relation, the transitive closure of the union of三5and弓,.This is not enough, and we 

have also to preserve the right-invariance property and add to any class of the partition of P s u PT, 

all paths xz such that yz belongs to the class and x三Ly.All these paths are also added in PL. The 

limit of this construction is called the right-invariant transitive closure and written [*J. The type of 

each path is the meet on T of the types of the paths of the class to which the path belongs. 

(d5) L = S++T⇔ 

1) PL= (Ps u Pザ＊］；

2) 7, = (三su sr)[*J; 

3) V x e PLべL(x)= A {'ts(Y)べT(y)IX可、 y},

and the result is taken modulo bottom-smashing. 
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The glb for the weak subsumption ordering, which we shall call union, and write S+ T=L, is a bit 

simpler, because we don't have to take the closure of the co-indexing relation: 

(d6) L = S+T⇔ 

1) PL= Ps u PT; 

2) V x, y e P s n PT, x =s y " x三rY ⇔ X三LY,

V x, y e Ps -PT, x三sY⇔ X弓-y, 

Vx,ye PT -Ps, X=rY⇔ X弓、y; 

3) v'x E PL, 在(x)= /¥ {'ts(Y),'ty(Y) Ix可、 y},

and again, the result is taken modulo bottom-smashing. 

2.5 LUBs : generalisation and intersection 

The lub for the subsumption ordering is called generalisation, and written S*T=U. We simply 

have to take the intersection for the sets of paths and for the co-indexing relations, and the join of the 

types for each path in the intersection. 

(d7) U = S*T⇔ 

1) Pu= Ps ri Py; 

2) =u =三s("¥弓；

3)'ef x e Pu,'tu(x) ='ts(x) v平x)

As Sand Tare well-formed consistant TFSs, 1) and 2) preserve the well-formedness, and 3) 

preserves the consistency. 

1’
ー

/
¥
 

（
 

In the graphic view, the application of the definition is as follows: if an arc is not in both H-sets, 

remove it. Apply this operation from top to bottom. At the bottom, if an atomic element is not in ¥i 
both, remove it. 
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b
 

＊
 → 

b
 

c
 

f
 

c
 

c
 

Figure 23: generalisation oJTFS. 

The lub for the inclusion ordering, which we shall call intersection, and write S**T=U, is 

included in the lub for subsumption. As for generalisation, we take the intersection of paths, but for 

the co-indexing relation we take the union of co-indexing relations, and not the intersection. To 

preserve the right-invariance property, we have to take in fact the right-invariant transitive closure, as 

for conjunction. 

(d8) U = S**T⇔ 

1) Pu= (Ps n Pザ＊］；

2) 野＝（三疋弓）［＊］；

3) V x E Pひ和(x)= V {てsCY),'C祁y)/x三uy}, 

and the result is taken modulo bottom-smashing. 

Reasoning on the graphic view, the intersection takes the largest common sub-graph, respecting 

identities when they exist. In fact, this means that taking the union of co-indexing relation, some 

identities may be added. 
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b
 

＊＊ → ？
ー

c
 

f
 

c
 

c
 

Figure 24: intersection of TFS. 

Finally, we have a scale of operations on TFS (where~denotes the subsumption ordering): ( 

(p9) ** :2 * and ++ :2十

We can think of conjunction and intersection as operations that preserve identities (i.e. 

co-indexing) whenever they exist, the first one taking the union of graphs and the second one the 

intersection of graphs. Similarily, we can think of generalisation and union as operations that 

preserve only equality, the first one taking recursively the intersection of values and the second one, 

the recursive union of values; the co-indexing relation is preserved for sub-parts which are not 

directly involved in the recursive intersection or union. 

、~

/.＼‘、

•\' 
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2.6 Difference 

The difference of two TFS is frrst the difference of the sets of paths. But in general, the resulting 

set does not describe a connex graph: we have to remove all non connex sub-graphs that do not have 

the same root as the first operand. 

(d9) D = S—T • 

1) 恥=Ps -{xy E Ps / x E Py }, 

2) V x, y E P0, x三nY⇔ X三sy, 

3) V x E Pか 'to(x)='ts(x) ; 

b
 

e
 

b
 

a
 

→ 

c
 

f
 

c
 

f
 

Figure 25: difference of TFS. 

The application of the definition is straightforward: from top to bottom, remove all arcs which are 

in both. Take as a result the connex graph which has the same top as operand_!. Note that there 

could be another interpretation of H-set difference where only the leaves of operand_2 are removed 

in operand_!. 
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3. CONCLUSION 

From a logical point of view, feature structures are interpreted as denotations of sets (feature 

descriptions). But the dual view (interpretation as objects) is equally valid and is the most natural for 

many linguists. Using this interpretation皿 dthe anlaogy that can be drawn with attribute structures, 

we have proposed a single framework in which an attribute structure is defined as a kind of a 

degenerated feature structure (it cannot represent sharing of information). This framework makes 

possible to extend classical and powerful operations on attribute structures to feature structures. 

Introduction of predefmed types such as string and number types (with their associated operations) 

are derived from the traditional use of these types in attribute structures, and are defined as 

refinements of the atomic type. 

When there is no sharing at all, feature structures behave exactly like hierarchical attribute 

structures. We can use this property to parametrize the interpreter: using an attribute interpretation 

(≪no-share≫mode), all sharing is removed, and all operations are reduced to attribute operations that ( 

do not take indentities into account. With a graph interpretation (≪share≫mode), all operations are 

avaible (see叩seudo-unification≫in[Tomita 88]). 

This report has given the motivations of this approach, and described the formal framework used 

for the language. We have developed an experimental functional interpreter to test these ideas. The 

basic data structure of the language is a typed feature structure. Operations available include 

conditional instructions and sequence of instructions, boolean expressions, assignment, unification, 

and various functional operations on typed features structures. Definitions include type definitions, 

template definition and (recursive) function definitions. This interpreter has been integrated in an 

Earley parser developed by Yves Nicolas [Nicolas 88]. The grammar formalism offers the grammar 

writer enhanced expressive power and allows use of a more modular approach to grammar 

developement. The interpreter of the language and grammar formalism will be described in a 

forthcoming report. 
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ANNEX: Recursive definitions of operations on h-sets 

We give the recursive definitions of operations on h-sets. They do not take indexing and typing 

into account. They could be used as a first level of specifications for implementing the actual 

operations involving indexing and type calculus. In fact, in the actual prototype implementation, the 

various algorithms were derived directly from these specifications, which made implementation, 

debugging and modification very simple. 

In the following defmitions, ex will represent a feature, Ix a list of features, and fx a 

feature-value structure (either atomic or complex). Parentheses have their usual meanmg. When a set 

is written between angle brackets, the elements of the set are treated as a list of elements: 

<{lx}>→ Ix. The boolean value TRUE is noted T and the boolean value FALSE is noted F. 

Definition 1: union of H-sets 

1 {} + {12}→ {12} 
2 {11} + {}→ {11} 

3 {el{ll}, 12} + {el{l3}}→ { el{ [{11}+{13}]} } + {12} 

4 {fl, 11} + {£2}→ {fl, [{ll}+{f2}] ｝ 

5 {11} + {f2, 12}→ ({ 11} + { f2}) + { 12 } 

Definition 2: intersection of H-sets 

1 {} * {12}→ {} 
2 {11} * {}→ ｛｝ 

3 { el{ll}, 12 } * { el{l3} }→ { el{ [{11}*{13}]} } 

4 {fl, 11} * {f2}→ {11} * {f2} 

5 {11} * {f2, 12}→ ({ll}*{f2} + ({11}*{12} 

Definition 3: difference of H-sets 

1 {} - {12}→ ｛｝ 
2 {11} - {}→ {11} 

3 {el{ll}, 12} - { e1{13} }→ {12} 

4 {fl, 11} - {f2}→ {fl} + ({ 11} - { f2} 

5 {11} - {f2, 12}→ ({ 11} - { f2}) - {12} 
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Definition 4: membership in H-sets 

1 f E {}→ F 

2 e{l} E {e{ll}, 12} → 1 = 11 .QJ: e{l} E {12} 

3 f E {fl, 11} → f E { 11} 

Definition 5: equality of H-sets 

1 { 11} = { 12} → ¥;;/XE {11}, XE  {12} fill旦 ¥;;/XE {12}, XE  {11} 

Definition 6: inclusion of H-sets 

1 {} < { 12} → T 

2 { 11} < {}→ F 

3

4

 

{el{ll}} < {e1{12}, 13} → {11} < {12} Q£{el{ll}} < {13} 

{fl} < { f2, 12} → {fl} < {12} 

/
~
、
，
\

5 {fl, 11} < {12} → {fl} < {12} @旦 {11} < {12} 

/,＇ー＼

l̀ 
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