
Internal Use Only

TR-1-0045

Operations on Typed Feature Structures:
Motivations and Definitions

タイプ付き素性構造に対する操作：

動槻および諸定義

Remi Zajac
レ ミ・ ザジャック

October, 1988

Abstract

In the spirit of functional programming (a la LISP), we propose a systematic
framework for introducing a variety of extensions to unification-based grammar
formalisms. Feature-structures are interpreted as objects which have a set
structure, and not as denotation of sets. We introduce associated functions
derived from set theory. For example, union is defined as a weak form of
unification. We have developed an experimental interpreter to test these ideas.
The basic data structure of the language is a Typed Feature Structure, as the list
is the basic data structure of LISP.

This report presents the motivations of this approach, and describes the
formal framework used for the language, which integrate functions and equations

on Typed Feature Structures. The interpreter of the language and the granrmar
formalism will described in a forthcoming report.

ATR Interpreting Telephony Research Laboratories
ATR自動翻訳電話研究所

operations on typed feature structures

Operations on Typed Feature Structures :

Motivations and Definitions

RemiZq胆＊

ATR Interpreting Telephony Research Lahoratories

Twin 21, MID Tower

2-1-61 Shiromi, Higashi-ku, Osaka, 540 Japan

[zajac%atr-ln.atr junet@uunet.uu.net J

Abstract: A Machine Interpretation system will presumably use various specialized linguistic programming
languages. At some point, there will probably be a transition from an attributed tree to a feature
structure, and vice versa. A common point between attribute structures and feature structures is that
attribute structures can be considered degenerated feature structures.

On the other hand, most g皿皿皿 formalismsusing unification of feature structures introduce a
variety of augmentations that hamper the declarativeness of the formalism and monotonicity of
computation of these equational formalisms.

In the spirit of functional programming (a la LISP), we propose a framework for such
augmentations based on the interpretation of feature structures as objects (not as denotations). We
introduce the associated functions derived from set theory. For example, union is defined as a wealc
form of unification.

We have developed an experimental functional interpreter to test these ideas. The basic data structure
of the language is a typed feature structure. Operations avaible include conditional instructions and
sequence of instructions, boolean expressions, assignment, unification, and various functional
operations on typed feature structures. Defmitions include type definitions, template definition and
(recursive) function defmitions. This interpreter has been integrated in an Earley parser. The grammar
form両 moffers the grammar writer en証needexpressive power and allows a more modular approach to
grammar development.

This report gives the motivations of this approach, and describes the formal framework used for the
language. The interpreter of the language and the grammar formalism will be described in a

forthcoming report.

Key Words: Equational formalisms, unification, functionnal formalisms, feature structures, attribute structures,

grammar formalisms.

* Visiting researcher from GETA, UJF-CNRS, 38041 Grenoble, cedex 53X, France.

ー

I
—·---······-- ----------·-ー.~•--・― -I

operations on typedfeature structures

TABLE

1. Introduction

1.1 Motivations

1.2 Equational and functional operations

1.4 Feature structures as hierarchical sets of attributes

2. Operations

2.1 Preliminaries

2.2 Equivalence and equality

2.3 Subsumption and inclusion orderings

2.4 GLBs : conjunction and union

2.5 LUBs : generalisation and intersection

2.6 Difference

＼

(_‘

3. Conclusion

Appendix: recursive definitions of operations on h-sets

References
／
ー
＼

2

oper叫 onson typedf. 匹 turestructures

1. INTRODUCTION

1.1 Motivations

A . Integration of different computational models for computational linguistics

As argued in [Boitet 88], a Machine Interpretation system is likely to usedザferentSpecialized

Languages for Linguistic Programming (SLLP), and may be more than text Machine Translation

systems. For analysis, we have to differentiate between at least four layers of input representation.

Each layer uses a different representation which has its own computationnal model.

layer computational model Input ouput

UNDERSTANDING logic formalism syntactic structures semantic formula

SYNTAX CF grammar lemmatized words syntactic structures

MORPHOLOGY Finite State Automata word form lemmatized word

PHONOLOGY Hidden Markov Model acoustic frames word forms

Figure 1 : layers of representation of a spoken utterance

If we make the (reasonable) assumption that each task is programmed usmg the fitted formalism,

we have at least three different formalisms (not counting the speech recognition part). Morphology

performs the segmentation of word forms and accesses the dictionnary: the basic formalism would

be an (augmented) regular grammar. The syntactic part performs the recognition of syntagms and

computes associated syntactic functions: the associated formalism would be an attributed context-free

grammar, possibly augmented with tree transformations. The understanding part computes a

≪semantic mterpretation≫of the mput, that is, a mappmg from a syntactic structure to a formula of a

semiふformalizeddomain. This domain would include (not exhaustively) linguistic semantics,

pragmatics and domain knowledge. The associated formalism would be a logic programming

language based on feature structures.

There are already formalisms used to compute each layer from the others, but there are none to

compute the mapping of an attributed tree ro a feature structure. Such a taskおnecessaryat the end of

a (successful) analysis, for transfer and maybe for generation steps. We see two possibilities for

such a computation. One is to use a rewriting system that creates a feature s血 cturefrom an

attributed tree (and conversely for the generation part). Another is to imbed the computation of

feature stnlctures in the context-free grammar formalism, and at some point to treat the attribute

3

operations on typedfeature structures

structure as a (degenerated) feature structure. In any case, we have to relate attributes and feature

structures.

Attribute systems are widely used in augmented context free grammars, particularly for writing

compilers, but also in MT systems (e.g., METAL [Slocum 84, Bennet and Slocum 85]). They are

also used in SLLPs designed to write the grammars of a MT system: ROBRA, GRADE, Q-systems,

etc. [Boitet et al. 80, Nakamura et al. 84, Colrnerauer 71]. Attributes are generaly associated to

nodes of a tree structure. In the simplest case, an attribute structure is a set of variable-value p血s.A

variable has one value and is possibly typed (string, integer, …） . A slight extension allows a variable

to have a set of (symbolic) values. The type of each variable is generally declared, in order to check

consistency during compilation, and to allow efficient internal representations (ROBRA, GRADE).

Another extension is to use a tree of attributes (in Q-systems, for example), where an attribute

CATEGORY may have a ADJUNCT value which, in turn, has an ADJECTNE value. If complex

attribute structures are generaly depicted as trees, they might also be depicted as graphs with symbols

on arcs, as shown in Figure 2.
‘ヽ

＼

attribute structure feature structure

/『＼
p『rs gen num

I I
ー masc plur ー masc plur

Figure 2: an attribute structure and an equivalent feature structure.

Putting this analogy forward, we want to see how operanons on attribute structures, e.g.

inclusion (-DANS-predicate of Q-systems) or union of two attribute structures could be related to

operations on feature structures (e.g. subsumption and unification).

（

B. Toward a practicalformalismfor building large systems

If we consider feature structures to be the basic data structure for computational linguistic, there

are various operations that could be used with this data structure in clifferent frameworks :

- unification in a logic programming language, LOGIN [紅t-Kaciand Nasr 86];

- function application in a functional programming language, KL-ONE [Brachman and

Schmolze 85]。

4

operations on typed feature structures

So far, unification is the only operation used in formalisms for computational linguistics. We

argue that the use of a functional paradigm imbedding descriptions of typed feature structures will

offer more expressive power to the user, making descriptions more concise. Futhermore, a grammar

formalism adapted to use this functional framework would enhance grammar writing, grammar

modifying, and grammar debugging. And last but not least, a more concise grammar (with fewer

rules) will run faster than an equivalent grammar written ma pure unification formalism.

Our functional framework offers:

conditional constructions: they can be used to factor in one rule slightly different cases that, using

unification only, must be expressed in several rules having the same production part. This makes

descriptions more concise as the same part is only written once. Modifications are also easier,

because they are done only at one place, not repeated with all similar rules. And as there is only one

rule which have a production A→ B C, it is easier to point out an error in debugging.

user defined functions: the grammar writer can define his own functions as a composition of other

functions (recursive definitions are allowed). For example, for expressing some agreement condition

that is frequently used, instead of repeating the same code all over the grammar, one need only define

this condition as a function and call the function where the agreement must hold. The gain in

concision and ease of debugging is clear.

string and number types: these types are treated as atomic types. The usual functions associated with

these types are defmed.

equational operations: unification and generalisation are implemented; complement and disjunction

are planned.

5

operations on typedfeature structures

1.2 Equational and functional operations

Grammar formalisms based on unification of feature structures (hereafter f-structures which are,

most generally directed acyclic graphs) are equational formalisms. In the following, we shall take as

a representative example, the D-PATR formalism [Shieber 86]). A so-called≪unification grammar≫

is an augmented context-free grammar. A f-structure is associated with each symbol of a rule. The

output of a parser is the f-structure associated with the initial symbol of the grammar (one for each

successful parse) for a given input string. To defme the f-structure that corresponds with a given

input string, the linguist writes equalities between sub-parts of the f-structures associated with each

symbol of a rule; the order in which the equations are written is not important. During computation,

for a given parse, grammar rules add these constraints on the f-structures which are computed. As

the equalities are added, they are irnmediatly interpreted using unification. At the end of the process

(recognition of the initial symbol of the grammar), the smallest f-structure that verifies all the

accumulated constraints is output.
I
,

＼

At first, this kind of grammar formalism was used by theoretical linguists to formalize

such-and-such linguistic/semantic phenomena But these formalisms were not used to implement real

size parsers. As far as we know, there is no such parser for English. On the other hand, actual real

size parsers based on context-free grammars (such as the one used in the EPISTLE system

developed at IBM [Heidorn et al. 82, Jensen and Heidorn 83)) use generally simple attributes, with

possibly attached transformations (as in the METAL system [Slocum 84]).

The subject of this paper is to investigate to what extend the basic qualities of both kinds of

formalisms・can be retained in a single grammar formalism. One possible way of doing this is to

devise a single framework that could account for f-structures and for hierarchical attributes of the

kind used in practical systems such as Q-systems [Colmerauer 71]. We hope this might possibly lead

to a fonnalism that could be used for developing both practical systems and more speculative formal

models.

Let us take an example (from [Shieber 86]) and consider the gramm虹 rulein Figure 3. The

application of this rule on a string of two f-structures (Figure 4) builds a new f-structure (Figure 5)

by≪merging≫the two previous ones and adding some new elements to it; the two previous

f-structures紅enot recoverable. Outside the scope of the rule, the f-structure cannot be accessed

using NP and VP≪entry points≫, thus some parts of this f-structure紅e≪hidden≫.

6

operations on typed feature structures

S -> NP VP

<Scat>= s
<NP cat>= np
<VP cat>= vp
<S head> = <VP head>
<S head subject> = <NP head>

Figure 3: a grammar rule using unification.

VP

NP

↓

↓

cat

3

gen

sing masc

cat

3

sing

Figure 4 : a string of two feature structures.

7

operations on typed feature structures

cat

3

sing masc
／
．
＼
、

Figure 5 : the result of an application of a rule using unification on /-structures.

The same rule can be written with an attribute grammar using conditional assignment and boolean

functions. Let us assume that the attribute system of the grammar is hierarchical and can be

represented as an f-structure without sharing. The rule could then be written as in Figure 6. Applied

on the same string off-structures (Figure 4), it builds a new attribute structure without any explicit

link with the two structures associated with NP and VP. The if part checks if the rule can be applied
using boolean operators (AND) and boolean functions(=, $agr). The third line of the then part is an

assignment of the union of the values of <Shead subject> and< NP head> to <Shead subject>.

Note that we have a sequence of operations. Thus, the order in which the operations are written is

important. The application of the rule builds a cornpletly new attribute structure (Figure 7), with no

(explicit) links to the others. As the structures of NP and VP could be withdrawn, the resulting

attribute structure is smaller than the f-structure of Figure 5 (no≪hidden≫parts).

(
¥

S -> NP VP
if (<NP cat>:np and <VP cat>:vp and $agr(<NP>, <VP>))
then

<Scat>:= s;
<S head> := <VP head> ;
<S head subject> := <S head subject> + <NP head>

end if;

Figure 6 : a grammar rule using conditional assignment.

8

oper叫 onson typed feature structures

s

VP

↓

p

z
ー
▼

cat

3

gen

sing masc

cat
cat

gen

3 sing masc

↓

3

sing

Figure 7 : the result of an application of a rule using conditional assignment

in attribute structures.

We have two different computational frameworks that use the same kind of data structure. In the

unification framework, the computation is expressed by a set of equations attached to each rule; in

the second framework, the computation is expressed by a sequence of conditional assignments. The

right hand side of an assignment is a functional expression that uses a variety of operations on

f-structures. We can draw an analogy with PROLOG computational behavior for unification

based-formalisms, and with LISP for the second one. The spirit of the integration of those two

frameworks -equational and functional—is quite similar to the integration of LISP and PROLOG

[Robinson and Sibert 82].

，

oper, 叫 onson typedfeaiure structures

1.3 Feature structures as hierachical sets of attributes

We want to view attribute structures as a special case of feature structures. As attribute structures

are always interpreted as objects and not as denotations of sets, we also have to interpret feature

structures as objects standing for themselves. On the contrary, the logical approach of feature

structures leads to interpreting them as denotation of sets, and not as sets themselves. In the

following, we shall speak of feature structures with the object interpretation in mind, that is, feature

structures as hierarchical sets of attributes.

The main differences with the denotative interpretation are:

1. The ordering used in the denotative interpretation (subsumption) is the reverse of the ordering on

hierarchical sets of attributes (inclusion);

2. As feature structures are viewed as objects standing for themselves (similar to record data (

structures in programming languages), one can directly manipulate these objects, without

worrying about the semantics of these manipulation on the denotated sets.

We use the interpretation of an f-structure as a hierarchical set of attributes (hereafter h-sets). A

path is interpreted as the name of a set, the elements of this set being the values of the path. This

interpretation is valid at all levels down to the bottom of the f-structure where atomic features are

interpreted as features whose sets of values are bound to be empty. This interpretation is made

possible by the fact that an f-structure is non ordered (but directed) and without repetition (for the

successors of any given feature). Let's talce an exemple (as adequate meaningful linguistic examples

are very difficult to build for all interesting cases, we shall mainly use formal examples).

（＼

10

operations onヽypedfeaturestructures

C e

Figure 8: a feature structure.

Interpreting the graph of Figure 8 as a hierarchical set of attributes level by level gives

1 {a, f, h}

2 a={b, d} f={b, d} ; h={g, i}

3 b= { c} ; d= { e} ; g= { e} ; i = { } = 0 ;

4 c={} ; e={}

The whole structure is written { a { b { c} , d { e } } , f { b { c} , d { e } } , h { g { e } , i } } .

Recall that an attribute structure does not involve sharing, thus it is not represented here.

In order to be able to introduce other types than set and atomic types, we define explicitly the

type of features: in each node of the graph, we put the name of the type and each value on an arc. An

atomic value will have the null (bearing the null type) as a successor. We add in each node an index

which is used to represent sharing, and we shall speak of co-indexing of paths and of sub-structures.

In the following, such a structure will be called a Typed Feature Structure or tfs.

In the traditionnal view of attribute structures as trees, (see for exemple [Colmerauer 71, Boitet,

Bachut et al. 88]), types, indexes, and values are put in nodes. Figure 10 gives the dual view of the

tfs as a tree-like attribute structure.

11

operations on typed feature structures

a

・0 atomic type

0 set type
① null type

(
,
＼

Figure 9: anf-structure with representation of types.

0 atomic type
0 set type
① null type

(
¥

Figure 10: anf-structure with values on nodes.

12

operations on typed feature structures

If we write an h-set邸{a { b { c } , d { e } } , f { b { c } , d { e } } , h { g { e } , i } } , the union

operation used in the rule in Figure 6 h邸 avery simple recursive definition. Let us first define the

ordinary union of two sets of symbols. In the following definitions, ex will represent a feature, lx a

list of features, and f.x a feature-value structure (either atomic or complex). Parentheses have their

usual meaning. When a set is written between angle brackets, the elements of the set are treated邸 a

list of elements: < {切＞→lx.

Definition 1: union of sets

1 { } + {12} → {12}

2 {11} + {}→ {11}

3 {el, 11} + {el}→ {el, 11}

4 {el, 11} + {e2}→ {el, <{ll}+{e2}>}

5 {11} + {e2, 12}→ ({11} + {e2}) + {12}

The usual properties of ordinary sets for union (idempotency, commutativity, associativity and

null element) follow directly from this definition. For dealing with hierarchies of sets, we modify

this definition slightly to get:

Definition 2: union of h-sets

1 {} + { 12}→ {12}

2 { 11} + {}→ {11}

3 {el{ll}, 12} + {e1{13}}→ { el{<{l1}+{13}>} } + {12}

4 {fl, 11} + {f2}→ {fl, <{ll}+{f2}>}

5

{11} + {f2, 12}→ {11} + {f2} + { 12}

From the exemples of rules given in section 1.2 (figures 1 and 4), one can guess that the

algebraic operation involved in unification, that is, conjunction [Rounds and Kasper 86] or join

[A'it-Kaci 86] bears some similarities with union of two h-sets. This is the fact which is stressed in

this paper and we shall see that the main difference lies, as one can again guess, in the treatement of

sharing. To account for this, we have to give a more precise definition of a typed feature structure.

As the main goal of this paper is not to provide a comprehensive theoretical account but rather to

introduce some new practical operations, we ask the reader to refer to [A'it-Kaci 86] for a sound

mathematical account. We follow the main points of his presentation.

13

operations on typedfeature structures

2. OPERA TIO NS

2.1 Preliminaries

The example in Figure 9 is written { a { b { c } , d { e } } , f { b { c } , d { e } } , h { g { e } , i } } as an

h-set. Representing sh血ngis done with indexes直ndco-indexed sub-structures are represented only

shall also omit indexes that occur only once in the once; we

{ a . 1 { b { c } , d. 4 { e } } , f. 1 , h { g . 4 , i } } . The complete developed representation has three

components: the set of paths, associated indexes, and associated types:

Indexes Types

e O S
a 1 S
ab 2 A

言 i 閃
戸『怠
fb 2 S
fbc .3 A
fd 4 S

茫 ~t
ho-

と9
4 A

間e~ 翌
Figure 11 : a developed representation of a TFS.

Paths

Let us now introduce some formal notations before defining some operations on TFS.

The graph skeleton: TFS-graph

structure:

Let L be a set of label symbols, and I a set of indexes included in N, the set of natural integers.

A set of paths P is a sub-set of L * and has the following connexity property:

(pl) V x, y e L *, xy e P⇒ XE P.

A TFS is a finite data structure: a node of a graph has a finite number of successors and the

number of sub-graphs is finite. A node has a finite number of successors:

／

＼

ー＇

ヽ

｝（，．＼

(p2) 'ifxe P {xae P/ae L} isfmite.

14

operations on typed feature structures

A TFS may contain cycles, and therefore the set of paths of the graph is infinite but regular. It

means that the number of sub-graphs is fmite. A sub-TFS is恥 ={y/ xy e P}. A regular graph P

has the property

(p3) . V x e P, {P¥x} is finite.

and we shall call a TFS-graph a connex regular graph.

The co-indexing relation

If two nodes have the same index, it means that their successors are identical (and not only

equal). Practically, it means that there are two ways (paths) for accessing the sub-structure

dominated by the two nodes. This could be used to achieve side-effects, for example to enforce

constraints linking sub-parts of TFSs using unification. A co-reference relation defines an

equivalence 三 relationbetween paths: x.i三 y.j⇔ i=j. This relation has the following

right-invariance property:

(p4) V X, y, z E P : x三 y⇔ XZ三 yz.

As each TFS defines a particular equivalence relation between paths, the equivalence relation in a

TFS x will be written三x(and its set of paths, Px), The number of nodes in a TFS is finite, as are

the number of indexes: the equivalence relation is said to be of finite index. The equivalence relation

does not impose a particular indexing, and to avoid re-indexing on graphs, we shall only compare

the relations defined by an indexing and not the indexing itself. We shall call such a relation, a

co-indexing relation.

Types

In the graph, each path is typed. Let T be a partially ordered signature of type symbols with a top

element T, and bottom element l.. In our formalism, without type refinement, Tis a flat signature

where the ordering is T < SET< l., T< ATOMIC< l., and T < NULL< l.. It could be pictured as

15

operations on typed feature structures

丁

SET ATOMIC NULL

ー一

Figure 12: lattice of types.

Thus, the type calculus which is involved is very simple. The motivation is that we have been

primarily interested in combining the attribute approach and the feature structure approach, and not in (

the logic of feature terms: we needed only a mean of defining domains and sub-domains for feature

structures: each value of a feature must belong to the domain of the feature. For example, in the

prototype implementation of the interpreter, string and number types are introduced as refinements of

atomic type. As the defmition of domains is purely syntactical, it is not described here. It does not

seem too difficult to add type inheritance to this approach.

We define the type associated with each path of a graph Px as a (total) type function'Cx from L *

to T where¥;/ we L * -P, 校(w)=T.

Typed Feature Structure

A TFS x is then a triple <Px, =x,'tx> where Px is TFS-graph labelled on L *, =x is a

co-indexing relation on Px, andてxisa type function from L * to T.

（｝

16

operations on typed feature structures

Well-Formed Typed Feature Structure

A well-formed TFS is a TFS where the properties of each type are respected: a sub-TFS having a

set type can be anything, a sub-TFS having an atomic type is reduced to a node at most and a

sub-TFS having the null type is null. We have only to state the last two properties:

(p5) 1)'r/ X E P /'t(x)=A,'r/ y E P / X三 y,'r/a E L, there exists at most one ya e P

andて(ya)=0.

2)'rf XE p /て(x)=0,'r/a e L, xa e P.

Consistent Typed Feature Structure

The type T denotes the whole universe, and is associated with the *undefined* value. The type .l

denotes overdefined (i.e. inconsistent) information and its associated value is by convention the

empty set. A TFS that containts the l. type or does not respect (p5) should then be intrepreted itself

as inconsistent. A consistent TFS is a well-formed TFS where no l. type appears and if ..L does occur

in a TFS or if (p5) does not hold, then the TFS belongs to the class of ..L. This is achieved by

defining a relation .U.: called bottom-smashing, where tl .U. t2 if and only if ..L occurs in tl or tl does

not have (p5), and ..L occurs in t2 or t2 does not have (p5), and all equivalence classes are singletons

except [..L]. We shall now use TFS in place of≪the quotient set of well-formed TFSs modulo the

bottom-smashing relation≫.

2.2 TFS equivalence and TFS equality

As attribute structures and feature structures can be seen as a dual representation of each other, in

the traditional attribute framework, there is no notion of co-indexing, or≪sharing≫of values. This is

the main difference of feature structures. In that sense, feature structures can encode more

information: not only the information represented as a hierarchy of features and values but also the

information that two features share the same set of values. If two features, say fl and f2, are

co-indexed their values are not only equal, but more: identical. Operations on attribute structures do

not take identities into account and operations on feature structures do. As we work on only one kind

of structure, typed feature structures, we can nevertheless define two kinds of operations: those

taking identities into account (written with a doubling of the operator sign), and those ignoring

identities.

17

operations on typed feature structures

Two TFSs are equivalent if they have the same structure, co-indexing, and types:

(dl) S==T⇔ Ps = PT A 三s=可 /¥'ts='tT

a

a

X==Y
• same features and values

• same indentities ／
ー
＼
、

Figure 13: equivalence between ifs.

Two TFSs are equal if they have the same structure and the same types, but not necessarily the

same co-indexing:

(d2) S=T⇔ Ps = PT /¥'Cs =てT

c

a

（～

X:Y
• same features and values
• not the same indentities

Figure 14: equality between ifs.

r.,1
It is easy to see that

(p7) == :2ー・

18

operations on typed feature structures

As the difference lies in co-in-dexing, when there is no sharing, those two defmitions are reduced

to the definition of equality on hierarchical attribute structures:

aパ＼ 一
aバ八c

•一_,_
・---

X:Y • same features and values
and

• no identity
X==Y

Figure 15: equality and equivalence hold.

2.3 Subsumption and inclusion orderings

A TFS Tis strongly included in a TFS T if T contains less information than S:

(d3) S>>T⇔ Ps ;;;;J Py "唸二野＾叶二唸

<< a

X << y
• features and values of X are in Y

• indentities of X are in Y

Figure 16: strong inclusion.

One should notice that strong inclusion is nothing more than the reverse of subsumption. In the

same manner, we shall call wealc subsumption the reverse of inclusion. In our approach, we

19

operations on typed feature structures

consider that TFS stand as objects rather than denotations. This is coherent with the interpretation of
attribute structures. One can also notice that the duality object/denotation is sinrilar to the distinction

made by [Kaplan and Bresnan 82] between feature structures and feature descriptions.

A TFS T is included in a TFS S if, except for the co-indexing, T contains less information than J

S:

(d4) S>T⇔ Ps :=2 PT /¥'Cs :=2叶

< a
／
ー
＼

X<Y
• features and values of X are in Y

• forget indentities

Figure 17: inclusion.

In this exemple, strong inclusion does not hold. And as for equivalence and equality, we have:

(p8) >>~>. /’,＼

brr ＜

＜＜
I

X<Y

and

X<<Y

• features and values of X are in Y

.. no indentities, only equalities

Figure 18: strong inclusion and inclusion hold.

20

oper叫 onson typedfeature structures

The reverse of these orderings, that is subsumption and weak subsumption, which are

extensions of the ordering on T to TFSs, can be used to define least upper bounds (lub) and greatest

lower bounds (glb) on TFSs, which then have a lattice structure derived from the structure of T.

We now extend the parallelism between equivalence and equality to other operations.

2.4 GLBs : conjunction and union

We f辻stintroduce union of two f-s血ctures.The union of two f-structures is the union of

features at the f辻stlevel and, recursively, the union of the values of two features having the same

name. Let's take as an example the following f-structures:

a
 ＋

Figure 19: union of feature and values.

As for the union of h-sets, the union X + Y = Z level by level gives (empty values are not written)

1. {a, b}

2 . a= { c} ; b= { c, d}

and the whole resulting structure is:

21

operat.ions on typedfeat.ure structures

a

) ＼ I
→ ＋ ／ ／ ヽ ｝

Figure 20: union of feature and values X+Y=Z: do not take identities into account.

and not ／
ー
＼

Figure 21: conjunction of feature structures X++Y=Z'

If we consistently use the h-set interpretation, <X a>={ c} and there is no path <Ya>. Therefore,

<Z a> must have the same value { c}. It would be quite an unexpected side effect for <Z a> to get a

different value when there is no H-set of the same name in Y! In fact, the structure Z'is the

conjunction of X and Y, where <X a> is bound to have the same value as <X b>, and all operations

that affect one must also affect the other.

(＼

As we shall see, the same two interpretations will also appear for intersection. These two kinds

of operations are perfectly legitimate. The frrst is quite natural, interpreting£-structures as h-sets of

attributes with a local view restricted to two arcs (variable→ value). The second is quite natural
reasoning on£-structures as graphs, with a global view of the structure. A consequence is that, under

the equational interpretation, a path is a means to access a part of the graph, that is, a path is a

pointer. Under the functional interpretation, a path is a variable that returns a value and can be

assigned a value. Of course, if there are no identities at all, the two operations are equivalent. This

suggests introducing a run-time parameter for a grammar to take or not to take sharing into account.

7

ー
＇

22

operations on typedfeature structures

If sharing is not taken into account, unification is reduced to a≪pseudo-unification≫, similar to the

pseudo-unification used in the default mode of the Universal Parser developed at Carnegie-Mellon's

Machine Translation Center [Tomita 88].

＋

c'
I ++~ →

Figure 22: conjunction or union of feature structures without co-indexing.

We shall first define the greatest lower bound for the subsumption ordering, which we shall call

conjunction, and write S++ T=L. One should notice that, for strong inclusion ordering, conjunction

will be a least upper bound: we prefer to use subsumption to make comparisons easier with other

works. For S++ T, we have to put in the set of paths all paths of S and T, and to take as the

co-indexing relation, the transitive closure of the union of三5and弓,.This is not enough, and we

have also to preserve the right-invariance property and add to any class of the partition of P s u PT,

all paths xz such that yz belongs to the class and x三Ly.All these paths are also added in PL. The

limit of this construction is called the right-invariant transitive closure and written [*J. The type of

each path is the meet on T of the types of the paths of the class to which the path belongs.

(d5) L = S++T⇔

1) PL= (Ps u Pザ＊］；

2) 7, = (三su sr)[*J;

3) V x e PLべL(x)= A {'ts(Y)べT(y)IX可、 y},

and the result is taken modulo bottom-smashing.

23

operations on typed feature structures

The glb for the weak subsumption ordering, which we shall call union, and write S+ T=L, is a bit

simpler, because we don't have to take the closure of the co-indexing relation:

(d6) L = S+T⇔

1) PL= Ps u PT;

2) V x, y e P s n PT, x =s y " x三rY ⇔ X三LY,

V x, y e Ps -PT, x三sY⇔ X弓-y,

Vx,ye PT -Ps, X=rY⇔ X弓、y;

3) v'x E PL, 在(x)= /¥ {'ts(Y),'ty(Y) Ix可、 y},

and again, the result is taken modulo bottom-smashing.

2.5 LUBs : generalisation and intersection

The lub for the subsumption ordering is called generalisation, and written S*T=U. We simply

have to take the intersection for the sets of paths and for the co-indexing relations, and the join of the

types for each path in the intersection.

(d7) U = S*T⇔

1) Pu= Ps ri Py;

2) =u =三s("¥弓；

3)'ef x e Pu,'tu(x) ='ts(x) v平x)

As Sand Tare well-formed consistant TFSs, 1) and 2) preserve the well-formedness, and 3)

preserves the consistency.

1’
ー

/
¥

（

In the graphic view, the application of the definition is as follows: if an arc is not in both H-sets,

remove it. Apply this operation from top to bottom. At the bottom, if an atomic element is not in ¥i
both, remove it.

24

operations on typed feature structures

b

＊
 →

b

c

f

c

c

Figure 23: generalisation oJTFS.

The lub for the inclusion ordering, which we shall call intersection, and write S**T=U, is

included in the lub for subsumption. As for generalisation, we take the intersection of paths, but for

the co-indexing relation we take the union of co-indexing relations, and not the intersection. To

preserve the right-invariance property, we have to take in fact the right-invariant transitive closure, as

for conjunction.

(d8) U = S**T⇔

1) Pu= (Ps n Pザ＊］；

2) 野＝（三疋弓）［＊］；

3) V x E Pひ和(x)= V {てsCY),'C祁y)/x三uy},

and the result is taken modulo bottom-smashing.

Reasoning on the graphic view, the intersection takes the largest common sub-graph, respecting

identities when they exist. In fact, this means that taking the union of co-indexing relation, some

identities may be added.

25

oper叫 onson typedf, 匹 turestructures

b

＊＊ → ？
ー

c

f

c

c

Figure 24: intersection of TFS.

Finally, we have a scale of operations on TFS (where~denotes the subsumption ordering): (

(p9) ** :2 * and ++ :2十

We can think of conjunction and intersection as operations that preserve identities (i.e.

co-indexing) whenever they exist, the first one taking the union of graphs and the second one the

intersection of graphs. Similarily, we can think of generalisation and union as operations that

preserve only equality, the first one taking recursively the intersection of values and the second one,

the recursive union of values; the co-indexing relation is preserved for sub-parts which are not

directly involved in the recursive intersection or union.

、~

/.＼‘、

•\'

26

operations on typed feature structures

2.6 Difference

The difference of two TFS is frrst the difference of the sets of paths. But in general, the resulting

set does not describe a connex graph: we have to remove all non connex sub-graphs that do not have

the same root as the first operand.

(d9) D = S—T •

1) 恥=Ps -{xy E Ps / x E Py },

2) V x, y E P0, x三nY⇔ X三sy,

3) V x E Pか 'to(x)='ts(x) ;

b

e

b

a

→

c

f

c

f

Figure 25: difference of TFS.

The application of the definition is straightforward: from top to bottom, remove all arcs which are

in both. Take as a result the connex graph which has the same top as operand_!. Note that there

could be another interpretation of H-set difference where only the leaves of operand_2 are removed

in operand_!.

27

operations on typedf. 匹 turestructures

3. CONCLUSION

From a logical point of view, feature structures are interpreted as denotations of sets (feature

descriptions). But the dual view (interpretation as objects) is equally valid and is the most natural for

many linguists. Using this interpretation皿 dthe anlaogy that can be drawn with attribute structures,

we have proposed a single framework in which an attribute structure is defined as a kind of a

degenerated feature structure (it cannot represent sharing of information). This framework makes

possible to extend classical and powerful operations on attribute structures to feature structures.

Introduction of predefmed types such as string and number types (with their associated operations)

are derived from the traditional use of these types in attribute structures, and are defined as

refinements of the atomic type.

When there is no sharing at all, feature structures behave exactly like hierarchical attribute

structures. We can use this property to parametrize the interpreter: using an attribute interpretation

(≪no-share≫mode), all sharing is removed, and all operations are reduced to attribute operations that (

do not take indentities into account. With a graph interpretation (≪share≫mode), all operations are

avaible (see叩seudo-unification≫in[Tomita 88]).

This report has given the motivations of this approach, and described the formal framework used

for the language. We have developed an experimental functional interpreter to test these ideas. The

basic data structure of the language is a typed feature structure. Operations available include

conditional instructions and sequence of instructions, boolean expressions, assignment, unification,

and various functional operations on typed features structures. Definitions include type definitions,

template definition and (recursive) function definitions. This interpreter has been integrated in an

Earley parser developed by Yves Nicolas [Nicolas 88]. The grammar formalism offers the grammar

writer enhanced expressive power and allows use of a more modular approach to grammar

developement. The interpreter of the language and grammar formalism will be described in a

forthcoming report.

Acknowledgements

9ー

As a reference on attribute structures, I have used the work done during the French MT National

Project on the specifications of a new software factory for MT [Boitet, Bachut et alii 88]. I am very

grateful to Yves Nicolas, Christian Boitet and Kiyoshi Kogure for numerous and encouraging

discussions.

•
~j_~

28

operations on typedfeat.ure structures

ANNEX: Recursive definitions of operations on h-sets

We give the recursive definitions of operations on h-sets. They do not take indexing and typing

into account. They could be used as a first level of specifications for implementing the actual

operations involving indexing and type calculus. In fact, in the actual prototype implementation, the

various algorithms were derived directly from these specifications, which made implementation,

debugging and modification very simple.

In the following defmitions, ex will represent a feature, Ix a list of features, and fx a

feature-value structure (either atomic or complex). Parentheses have their usual meanmg. When a set

is written between angle brackets, the elements of the set are treated as a list of elements:

<{lx}>→ Ix. The boolean value TRUE is noted T and the boolean value FALSE is noted F.

Definition 1: union of H-sets

1 {} + {12}→ {12}
2 {11} + {}→ {11}

3 {el{ll}, 12} + {el{l3}}→ { el{ [{11}+{13}]} } + {12}

4 {fl, 11} + {£2}→ {fl, [{ll}+{f2}] ｝

5 {11} + {f2, 12}→ ({ 11} + { f2}) + { 12 }

Definition 2: intersection of H-sets

1 {} * {12}→ {}
2 {11} * {}→ ｛｝

3 { el{ll}, 12 } * { el{l3} }→ { el{ [{11}*{13}]} }

4 {fl, 11} * {f2}→ {11} * {f2}

5 {11} * {f2, 12}→ ({ll}*{f2} + ({11}*{12}

Definition 3: difference of H-sets

1 {} - {12}→ ｛｝
2 {11} - {}→ {11}

3 {el{ll}, 12} - { e1{13} }→ {12}

4 {fl, 11} - {f2}→ {fl} + ({ 11} - { f2}

5 {11} - {f2, 12}→ ({ 11} - { f2}) - {12}

29

operations on typed feature structures

Definition 4: membership in H-sets

1 f E {}→ F

2 e{l} E {e{ll}, 12} → 1 = 11 .QJ: e{l} E {12}

3 f E {fl, 11} → f E { 11}

Definition 5: equality of H-sets

1 { 11} = { 12} → ¥;;/XE {11}, XE {12} fill旦 ¥;;/XE {12}, XE {11}

Definition 6: inclusion of H-sets

1 {} < { 12} → T

2 { 11} < {}→ F

3

4

{el{ll}} < {e1{12}, 13} → {11} < {12} Q£{el{ll}} < {13}

{fl} < { f2, 12} → {fl} < {12}

/
~
、
，
\

5 {fl, 11} < {12} → {fl} < {12} @旦 {11} < {12}

/,＇ー＼

l̀

30

()

い）

operations on typedfeature structures

REFERENCES

Hassan AH-Kaci, 1984, A Lattice Theoretic Approach to Computation Based on a Calculus of
Partially Ordered Type Structures, PhD. Dissertation, University of Pennsylvania.

Hassan AH-Kaci, 1986, An Algebraic Semantics Approach to the effective Resolution of Type
Equations, Theoretical Computer Science 45, pp 293-351.

Hassan AH-Kaci and Roger Nasr, 1986, LOGIN: a Logic Programming Language with
Built-in Inheritance, J. of Logic Programming, 3, pp 185-215.

W. Bennett and J. Slocum, 1985, The LRC Machine Translation System, Computational
Linguistics 11/2-3, April-September.

Ch. Boitet, P. Guillaume and M. Quezel-Ambrunaz, 1980, Manipulation d'arborescences
et parallelisme: le syst初meROBRA , COLING-80.

Ch. Boitet, D. Bachut, N. Verastegui and R. Gerber, 1988, ARIANE portable, Dossier
des Specifications Externes, Le langage TETHYS, GETA-ADI.

R.J. Brachman and J.G. Schmolze, 1985, An Overview of the KL-ONE Knowledge
Representation System, Cognitive Science 9/2, pp 171-216.

Alain Colmerauer, 1971, Les SYSTEMES-Q, un formalisme pour analyser et synthetiser des
phrases sur ordinateur, Groupe TAUM, Universite de Montreal.

Marc Dymetman, 1987, RATP: un nouveauformalisme de la classe des grammaires d'unification,
Unpublished paper, April 1987.

G.E. Heidorn, K. Jensen, L.A. Miller, R.J. Byrd and M.S. Chodorow,1982 , The
EPISTLE text-critiquing system, IBM Syst. Journal, 21/3.

K. Jensen and G.E. Heidorn, 1983, The fitted parse : 100% parsing capability in a syntactic
grammar of English, Proc. of the Conf. on Applied Natural Language Processing, pp 93-98,
Santa-Monica, California, Febru町•

Ron Kaplan and J. Bresnan, 1982, Lexical Functional Grammar, a Formal System for
Grammatical Representation. In J. Bresnan (ed.), The Mental Representation of Grammatical
Relations, The MIT Press, 1982, pp 173-381.

Robert T. Kasper and William C. Rounds, 1986, A Logical Semantics for Feature
Structures, Proc. of the 24th Annual Meeting of the ACL, 10-13 June, Columbia University,
New-York, pp 257-266.

Martin Kay, 1984, Functional Unification Grammar: a Formalism for Machine Translation,
COLING-84.

J. Nakamura, J. Tsujii and M. Nagao, 1984, Grammar Writing System (GRADE) of
Mu-Machine Translation Project and its Characteristics, COLING-84.

Yves Nicolas, 1988, Pragmatic Extensions to Unification Based Formalisms, ATR Interpreting
Telephony Research Laboratories.

Carl Pollard and Ivan A. Sag, 1987, Information-based Syntax and Semantics, CSLI, Lectures
Notes Number 13.

J. A. Robinson and E. E. Sibert, 1982, LOGLISP: an alternative to PROLOG, in Machine
Intelligence, volume 10, J.E. Hayes, D. Michie and Y-H. Pao eds., Ellis Horwood Limited,
pp 399-419.

31

oper叫 onson typedjeature structures

Stuart M. Shieber, 1986, An Introduction to Unification-based Approaches to Grammar, CSLI,
Lecture Notes Number 4.

Jonathan Slocum, 1984, METAL: the LRC machine translation system, ISSCO Tutorial on
Machine Translation, Lugano, Switzerland, April 2-6.

Gert Smolka, A Feature Logic with Subsorts, LILOG-REPORT 33, IBM Deutschland GmbH,
Stuttgart, May 1988.

Masaru Tomita (ed.), 1988, The Generalized LR Parser/Compiler Version 8.1: User's Guide,
CMU-CMT-88-MEMO, 26 January 1988.

-o-o-o-o-o-o-o-o-o-o-o-o-

32

