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ABSTRACT 

Thefi江stgoal of Machine Interpretation is to translate spoken dialogues. Methods from Speech 

Processing, Machine Translation and Discourse Understanding have to be used in an integrated way. 

In the spirit of the blackboard technique, the paper proposes to use a layered weighted lattice as the 

coarsest representation of a unit of translation. Weights on nodes or arcs may be thought of as scores 

or activation/inhibition factors. Each node contains an object the exact structure of which depends on 

the layer of the node. It always contains a class from the repertory of its layer, and optionnally a 

representation structure, an ordered tree where in turn each node contains 1) a label, 2) a decoration 

(hierarchical and bounded attribute structure), and 3) an optional interpretation structure (complex 

typed f-structure with possible reentrancy). At each layer, nodes corresponding to the same input 

~fragment are clustered, and the ones sharing the same class are packed, thus allowing factorized 

treatment of ambiguities. Weighted connections are maintained between nodes corresponding to 

successive steps in a given analysis of some fragment, thus making the derivation structure(s) explicit 

(but hidden from other layers). It is hoped that this arrangement can provide a basis for using 

statistical techniques at higher levels of linguistic abstraction than what is currently done, and for 

paving the way for future use of the pron'lising neural network techniques, without loosing the benefit 

of well proven structural and symbolic techniques, which can not be replaced by statistical methods 

when it comes to explicit discourse understanding and planning. 

*This study was必newhile the author was staying with ATR as visiting researcher. 



INTRODUCTION 

1. The task and its constraints 

Machine Interpretation, a new field pioneered by A TR, aims at translating speech. The fi江st

application envisaged is to produce a system for interpreting Japanese-English dialogues in the context ! 

of the organization of an international conference. Here, the system must obviously be 

speaker-independent, and operate in real time. Its basic vocabulary has been a priori limited to 2/3000 

lemmas (usual缶ctionaryentries, not wordforn1s). However, the system must be prepared to handle 

unknown words, such as names of places or persons, because it is impossible to limit them to those 

contained in a dictionary (of any size). For example, a typical conversation can begin as follows: 

(E1) This is Miss Stachowski of Speech tech limited. I'm coming with Doctor Morny and Miss Lee ... 

"Stachowski", "Speechtech", "Morny" and "Lee" could hardly be all in the dictionary. They have to 

be dynamically recognized as proper names, and possibly stored for further reference. 
~ 

Because the situation is interactive, it might be easier to constrain the syntax by asking the 

participants to rephrase, or to choose betwen alternate formulations proposed by the system. 

Concerning the semantics and pragmatics of the system, a core model describing international 

conferences and the various types of discourse seen1s to be necessary in order to solve the best part of 

the numerous anaphoras and ellipses observed in such dialogues. However, much as for the lexicon, 

the system should be open, in order not to fail utterly when some participant begins to talk about 

unrelated matters such as current exhibitions and cultural events, so that the conference organizer 

answers something like: 

(£2) All right, I'll check a summer festival schedule ... ah, in Tokyo, there is the 

"Edo-Shumi-Noryo-Taikai", and then we have the very unusual [ma, ah] matsuri called "My 

Town Festival" in Yoyogi Park, and then there is the Plum festival in Fuchu. 

(...) 

Ah, if you are interested in the Yokohama and Kamakura area, there is the Kawase-matsuri 

festival in Chichibu-city in Saitama prefecture, and there are two [hana, ah] hanabl taikai's 

or fireworks, one in Yokohama and the other in Kawasaki. 

This example has been taken from (Iida&al 1987), with minor changes. 

＾ 
Another potential type of application would be to interpret during a business teleconference. 

Here, some short tuning to each speaker's voice is envisageable, although speaker-independency 

would be preferred. It is possible to use a comparable knowledge about the discourse structure, but 

the domain-specific knowledge can only be minin1al, and mainly of a lexical nature. Typically, when a 

human interpreter prepares for a meeting on biotechnologies, s/he does not learn biology, chemistry 

and medicine, but the specific technical terms, their rough semantic connotations (a method, a 

substance, a device, etc.), and their equivalents in the various languages at hand. 
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A third application would not involve dialogue at all, but monologue. We think of situations 

where the end user would dictate a letter, a report, a con1ment on some ongoing events, etc. Expert 

domain knowledge would not generally be included in the system. Rather, two main parameters of 

linguistic nature, the typology (letter, report…) and the domain (car rental, computer services…)， 

would be used to select the adequate versions of the grammars and dictionaries (or to construct them 

from available parts). Such a systen1 n1ight be speaker-dependent, and quite a bigger dose of 

interaction might be considered: the task is n1ore translation than interpretation, and there is no need 

to perform in real time (think of a businessn1an dictating in a plane and feeding the tape later to his 

computer). Also, the production of a written f onn of the input and output texts, certainly useful in the 

first two applications, is mandatory here. 

2. Possible architectures 

＾ 
2.1 Pure sequential composition of existing techniques 

~ 

To construct a Machine Interpretation system, it is obviously necessary to use methods of 

Speech Processing, Machine Translation, and Discourse Understanding -the third, at least for the 

interpretation of purpose-specific dialogues. The first idea that comes to the mind is to simply connect 

the three techniques through interface structures. To give a possible schema, one would : 

1) use speech recognition techniques to produce a written text, possibly containing special 

punctuation marks standing for pauses, stress and melody ; 

2) use a standard MT analyzer to transform the text into a suitable representation structure 

(e.g., decorated tree, Q-graph, syntaxo-semantic net) ; 

3) use domain-and discourse-related knowledge to put the text in some interpretedform (e.g., 

logical formula, frame structure, semantic net, f-structure); 

4) produce a corresponding representation structure in the target language; 

5) synthesize a corresponding surface structure, enriched with prosodic marks ; 

6) synthesize a corresponding coded phonetic string (a string of characters) ; 

7) pass it to a voice synthesizer. 

Of course, the speech recognition part would make use of some kind of linguistic knowledge, 

such as the frequencies of sequences of 2 or 3 n1orphosyntactic classes (common noun, proper noun, 

verb, adjective, particle, conjonction…)， the frequency of each word in its class(es), and possibly of a 

simplified regular or context-free gramn1ar. But there would be n~cooperation between the running 

processes of speech recognition and linguistic analysis. 

Considering the cost of developing such systen1s, and the advances in each of them, this may be 

a solution. However, it seems somewhat counterproductive. For example, if the speech recognition 

part has determined the morphosyntactic classes of the words, or even a rough syntactic tree, why 

duplicate the work during the following analysis? Also, why produce only one solution (path) and 
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hide alternate possibilities (cites/sights/sites, this man/these men…) when there is no real best 

candidate ? The analyzer would have to resynthesize phonetically similar forms if it fails to produce a 

good enough analysis with the delivered text. In the same vein, why try to translate at the 

"understanding" level if the utterance, or part of it, is not related to the task domain ? 

2.2 Total integration of each major step 

Another possibility is to eliminate the need for interfacing different processes, within each major 

step (1-2-3, 4-5-6), or at least for analysis (1-2-3), by using just one process to take care of the whole 

task. Synthesis is much easier than analysis, because the process starts with no noise and no 

ambiguities, so that a sequential approach is suited. On the contrary, previous experiments in speech 

recognition and understanding (Lea 1980, Lee 1988) have demonstrated that the various "knowledge 

sources" must interplay during processing, to lin1it the combinatorial explosion without drastically 

reducing the quality of the output. It has also been demonstrated that it is extremely difficult to let 

different processes associated to these various "knowledge sources" interact tightly during 

processing, as in the Hearsay-II system (Reddy 1980, Erman&Lesser 1980). The resulting systems 

are also slower. 

~ 

Encouraged by successes in speech-to-text transformation (according to (Lee 1988), Sphinx is 

speaker-independent and handles continuous input with a lK vocabulary -of wordforms, not 

lemmas -and a perplexity of about 30), son1e researchers in speech recognition seem to think that a 

unique (possibly enormous) Hidden Markov Model (HMM) could be the solution. In the same vein, 

some specialists of computational linguistics would like to cover all the ground with a unique 

grammar formalism coupled with an efficient LR method (Saito&Tomita 1988). Still others, more 

interested by the AI aspect of the task, have considered using symbolic, unification-based inferential 

methods to do everything (Kogure&al, 1988). 

＾ 
The above proposals amount in fact to compile the different knowledge sources which have to 

bear on the problem in a unique form (a network, an extended context-free grammar, a production or 

a dedution system). While this may be a goal for a final product, one should not forget that : 

-such a compilation is usually extren1ely computer-intensive, and difficult to perform 

incrementally, because it is essentially a global optimization technique-see the experience of 

the Harpy system (Lowerre&Reddy 1980) -13 hours on a .4 Mips machine ; 

-in Hearsay-II, Harpy and Sphinx, the result of speech recognition is a string of words, which 

is passed to the semantic routine (the sin1plicity of the grammars makes parsing cheap): in the 

most successful speech understanding systems, there is no complete integration. On the other 

hand, the very promising and well designed HWIM system ofBBN (Wolf&Woods 1980) 

integrated really everything, but, according to (Lea l 980a:385), its computation time was far 

0
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superior to that of Harpy (500/28 Mipss, or million instructions per second of speech) and its 

quality notably inferior (44/95%) ; 

-although good results have been obtained in speech understanding with statistical (extremely 

"data-driven") methods of the HMM type, more extendable, distributed methods have fared 

almost equally well (e.g., Hearsay-II, 85Mipss, 91 %) ; 

， 

-linguistic parsers of acceptable speed used or usable in MT systems (which are usually less 

constrained than speech understanding systems by two or three orders of magnitude) have 

been successfully constructed with various methods, combinatorial or heuristic : context-free 

base with attached transformations and weights (data-driven with variable instantiation, but no 

pattern-matching), as in METAL (Slocum 1984), tree transformational systems with heuristic 

control and preferences (pattern-matching), as in ARIANE (Boitet 1986a, 1987a), MU 

(Nakamura&al 1986), AS-Transac (Toshiba) or IDCA T {Hitachi), and more recently 

unification and deduction, as in LMT (McCord 1985) ; 

-no other methods than symbolic and heuristic, often based on unification (e.g., logical 

programming), have led to successful results in explicit understanding and inferencing. 

2.3 Enriched interface structures embedded in a blackboard 

Total integration and pure sequential con1position offer complementary advantages and 

inconveniencies. Why not construct a MI system by using the best of both ? To be more specific, we 

could propose to : 

＾ 
-use a unique data structure, called blackboard in reminiscence of Hearsay-II, organized in 

layers corresponding to different levels of linguistic description ; 

-specialize some of these layers as enriched interface structures ; 

-construct integrated processes for each main phase (1 ... 7), by compiling into them parts of 

various knowledge sources (phonological, lexical, grammatical, task-specific…) ; 

-run them under a central control progra,n, taking care of any interprocess communication or 

feed-back, but essentially leaving them free to use their own strategy. 

゜

For example, the linguistic parser should have access to a richer structure than a sequence of 

wordforms, namely a word lattice (or grid), where each node would contain not only the recognized 

word, but also the category used by the recognizer, if any (e.g., light(V), light(N)…), its score, its 

endpoints (with error margins), its phonetic transcription, and some prosodic parameters, such as 

pitch or energy, usable for syntactic analysis (Lea 1980b, Waibel 1986). This is of course 

reminiscent of the phonetic lattice structure of the HWIM system. 
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3. Outline 

The proposed blackboard architecture uses a layered weighted lattice as the coarsest 

representation of a unit of translation. In the spirit of neural networks, weights on nodes or arcs may 

be thought of as scores or activation/inhibition factors -each node would admittedly correspond to a 

very large group of neurons. Each node contains an object the exact.structure of which depends on the 

layer of the node. This object always contains a class from the repertory of its layer, and optionnally a 

representation structure, an ordered tree where each node contains 1) a label, 2) a decoration 

(hierarchical attribute structure), and 3) an optional interpretation structure (complex typed f-structure 

with possible reentrancy). At each layer, nodes corresponding to the same input fragment are 

clustered, and the ones sharing the same class are packed, thus allowing factorized treatment of 

ambiguities. 

The nodes and arcs above are readable by all processes. We propose to call them white. Our 

blackboard will also contain black elements, private to the processes. Auxiliary or intermediate 

information such as expectations (active arcs in a chart parser) or various m紅 kingsw出 becreated as 

black nodes or arcs by each process. Weighted connections (special nodes and links) will be 

maintained between nodes corresponding to successive steps in th~treatment of some fragment at a 

given layer, thus making the derivation structure(s) explicit (but hidden from the other layers). As 

they should be visible by the main controlling process, but invisible by the other processes, we will 

give them a grey color. For instance, a normalization rule like "ain't-> are not" would have one 

input link to the node containing "ain't" and two output nodes to the nodes containing "are" and "not". 

Each layer will have 3 dimensions, time, depth and class. The idea is that a node at position 

(ij,k) will correspond to the input segment of length j ending at time i and be of class (number) k. All 

realisations of class k corresponding to this segment will be packed in this node, and all nodes 

corresponding to approximately equal input segments will automatically be geometrically clustered. 

＾ 

＾ In the fi江stpart of this paper, the basic structure envisaged is presented in more detail. The 

nature and role of derivation, representation and interpretation structures are discussed in the second 

part. Finally, some methods and tools for computing these structures are presented in the third part. 

I. THE BASIC STRUCTURE 

1.1 Units and sizes 

First, we argue that units of translation should not be sentences, but complete utterances or 

utterance segments. We then define some phonetic and linguistic units, and conclude by some 

considerations on the dimension(s) of the blackboard. 
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1.1 Units of translation 

In the considered applications, a speaker may speak a few seconds or several minutes. We call 

this a speech period. A speech period is a sequence of one or more utterances, clearly separated by 

comparatively long silences. In a dialogue, a speech period is usually shorter than 30 words and 

consists of one utterance. In a meeting, a long speech period could be of the order of a page, or 

approximately 250 words, last about 1.5 mn (speaking relatively slowly at 2—3 words/second), and 

consist of several utterances. There is no maximum for monologues. In written texts, paragraphs, not 

sentences, correspond to utterances. It is relatively easy to determine sentence boundaries in aw出ten

text, with a slight amount of preprocessing, but this is much more difficult in a spoken utterance. 

~ 

We have no idea yet on how to perfonn simultaneous translation (where translation begins after 

a slight delay, before the end of the utterance). Hence, an MI system must rely on consecutive 

translation of units of translation. From what has been said above, the smallest unit of translation of 

an MI system should be the utterance, not the sentence. Another reason to consider units larger than 

sentences is the abundance of anaphors in dialogu~s, the majority of which is internal to the utterance. 

However, all MT systems today translate sentence by sentence, 100 words being a maximum (very 

rarely attained), with the exception of systems ARIANE -which basic software is not designed to 

cope with very noisy input, and hence not usable as is for ML 

In the case of dialogues, we will take a unit of translation to be a complete speech period 

(usually one utterance of less than 100 words) by one of the speakers. In other cases (teleconference, 

or monologue), we will limit it to a sequence ofutterances,for a maximum o/200—250 words (about 

a page). In practice, the system should warn the speaker to terminate his utterance some 50 words 

(about 15 s) away from the admitted maximum. That is done in human interpretation and should not 

be resented by the users. 

~ 
The proposed maximum is quite large and could be reduced for efficiency reasons (e.g., non 

linear computation cost), or simply because the translation delay would exceed some psychological 

limit. However, 120-150 words would be the minimax, because a system which would continuously 

interrupt the speaker would not be accepted. 

1 .. 2 Linguistic and phonetic units 

゜

We have already used the linguistic units of words and sentences. We will use word only for 

wordform (spoken or written), and le1n1na for the usual dictionary word (a simple entry, associated 

with one or several stems and a paradigm). A term n1ay be simple (a lemma) or complex (a minimal 

phrase, such as "registration form" or "yellow fever"). Note that, in many languages, such as 

Japanese, Chinese or Thar, the notion of word is not clearly defined, as there are no spaces in the 

written form and no necessary separation in speech. 
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We will not be very precise about inte皿 ediatephonetic units, because quite a variety has been 

used in speech recognition system : traditional ones such as syllables (Merialdo 1988), phonemes 

(Quinton 1980, Wolf&Woods 1980), allophones (D'Orta&al 1988), and more esoterica! ones such 

as demi-syllables, phones, diphones, triphones, context-dependent phones, or word-dependent 

phones (Lee 1988). Some speech recognition systems produce an explicit representation of the .. , 

utterance in terms of a set of such phonetic units, while others use them only for constructing the 

recognition device, which produces directly the final result in terms of wordforms. 

1.3 Dimension of the blackboard 

The most objective (and most implicit) description of the unit of translation is the signal, or 

rather its representation. In many systems, a sequence of frames is the fl江strepresentation of the 

waveform. In Sphinx, for example, frames are 20 ms long and overlap by 10 ms. Each frame is 

smoothed by multiplying it with a "Hamming window". Then, LPC coefficients are computed, and 

vector quantization finally produces discrete "phonetic codes" (or "phonetic characters"). In Sphinx, 

such a code is a byte-sized integer interpreted as the index of a "prototype vector", and 1 or 3 codes 

are associated to each frame (1 for the baseline version, 3 for the most sophisticated one). The 

difference with written input is considerable : one second of speech corresponds roughly to 15 bytes 

in a written English text, and to 100 or 300 bytes in the coded spoken Sphinx input, 7 or 20 times 

more. In the written form, a character can also be coded on more than one byte (TIS code, 

Xerox-STAR convention, …） . Hence, the number of characters of a unit of translation is not a very 

good measure of its size. 

＾ 

We will take the basic unit of length to be the time between two successive frames (10 ms). A 

node at position (i,j,k) in the basic structure will cover the intervals [t1 ,2] (0 s t1 s t2 s tmax) of the 

input such that t1ーesi—j+1 s t1+e and t2-e sis t2+e, e being some error margin associated to~ 

the node, and tmax being about 10000. 

1.2 Implicit/explicit arcs : grid or lattice 

In a grid, there are no explicit arcs. A node N covering (t1 ,t2] is implicitly connected to another 

node N'covering [t'1,t'2] iff (if and only if) [t1 ,t2] is anterior to [e1 ,t'2], that is t1 s t'1, t2 < t'2, and 

t2-e1 s e1 s t2+e2, e1 and e2 being respectively the gapping and overlapping thresholds 

(Quinton 1980). Because of the fi江stcondition, there can be no cycles. 

0
-

In a lattice, there are only explicit arcs. Cycles are forbidden, and there must be a unique fi江st

node and a unique last node. Figure 1 shows two kinds of lattices used in natural language processing 

(NLP in the following), a chart and a Q-graph. 
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Sent4 

NP6 

゜
and I ground 

''—· • 〇
NPS 

Sent1 

Sent3 

(E3) Remove filler cap and ground fuel tank 

＾ 
Figure 1 : a chart (built on a syntactically ambiguous sentence) 

N(light,N(S) I 

G(M)…） 
- I 

N(can,N(P)… 

A(light,N(S) , N(can,N(S) ...) 
~ 

G(M)…） 

N(light,N(S), 

G(M)…） 

~ 
N(light,N(S), N(can,N(S), V(sparkle, 

G(M)…） G(M) ...) P(1 t2t3pl)t. .) 

N(Paul,PN, V(can,T{P), N(sparkle, AV(slight…) 
~ 

Nb(sg),Poss) TV(mod)) 

V(light, …） N(can,N(P), 

G(M) ...) 

N(light,N(S), V(can,T(P), 
~ 

G(M)…） TV(mod)) 

-̂

(E4) Paul's light can(s) sparkle(s) slightly 

Figure 2 : a Q-graph (b瓜Iton a phonetically ambiguous sentence) 

，
 



2.1 Usage in Speech Recognition 

Both types of structures have been used in Speech Recognition. Quinton (1980) presents that of 

theK紐Isystem, where the output of the phonetic component, the "lexical spectrum", is such a grid. 

Each node contains a "detection", made of a word and a score. There are two special detections, initial 

and final, which contain special endmarkers instead of words. ATR's phoneme recognizer also 

produces a grid. On the other hand, the HWIM system used a "phonetic lattice" on which an extended 

ATN operated. 

2.2 Usage in Machine Translation 

Grids have only been used in MT to implement some working structures (like that of the Cocke 

algorithm). However, we may imagine to use them for representing an input text obtained by 

scanning a bad original, or a stenotypy tape (Merialdo 1988). 

On the other hand, lattices have been used extensively, in two varieties. First, the chart structure 

has originally been introduced by M. Kay in the MIND sytem (around 1965). In a chart, the nodes 

are arranged linearly, so that there is always a path between any two given nodes, and the arcs bear 

the information, not the nodes. This data structure is also used by many unification-based natural 

language analyzers (Schieber 1985). 

The Q-graphs of (Colmerauer 1970) and their extension (Stewart 1976) are the basic data 

structure for text representation in the METEO (Chandioux&Guerard 1981) and TAUM-Aviation 

(Isabelle&Bourbeau 1984) systems. A Q-graph is a loop-free graph with a unique entry node and a 

unique exit node. It is possible for two nodes not to be on any common path from the entry to the 

exit. The information is beared on the arcs, in the form of simply labelled trees, or, in the extension, 

of trees with labels and binary features. 

Actually, none of these structures is strictly a lattice, because two different arcs may link the 

same pair of nodes ; moreover, a Q-graph may contain two different arcs linlcing the same two nodes, 

and bearing the same tree. However, it is always possible to transform a chart or a Q-graph into an 

equivalent lattice (with the information on the nodes) by replacing arcs with nodes and creating 

appropriate arcs. 

For example, ATEF (a SLLP, or Specialized Language for Linguistic Programming, developed 

at GETA for writing morphological analyzers) produced initially Q-graphs and decorated trees 

(Chauche 1975). It was easily adapted (Boitet 1976) to also produce lattices, used as input to 

"algogrammars" (kinds of bilevel ATNs where one level describes the grammar and the other the 

heuristic control). 

~ 

＾ 

0
-
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Q-graphs and lattices are also natural structures to represent a text with alternate formulations, 

like a first draft or a rough translation. For example, the following alternate formulations : 

(ES) I it if you came 

I would like I you to I come I early I tomorrow 

! I earlier I 

I be early 

could be represented by the lattice of figure 3, or by a Q-graph (with repetition of at least one arc), 

but not by a grid or a chart. 

＾ 

Figure 3: a word lattice (representing a sentence with alter叩 teformulations) 

2.3 Neural Network analogy 

~ 
Neural networks are the future of speech recognition, and perhaps of language understanding. 

Their main advantages are processing speed, due to heavy parallelism and simplicity of mechanism, 

trainability, and robustness in presence of noise, partial destruction, etc. For phoneme recognition, 

the results are already better than with HHM (Waibel 1988). However, it is not yet proven that they 

can be scaled up to handle real-life problems, although the very fact that they are founded on 

biological analogy is encouraging. As far as language processing is concerned, researchers in neural 

networks are perhaps exaggerating the present practical potential of this technique, but they are 

certainly opening promising directions (Waltz&Pollack 1985, Touretzky 1987). 

a
 

We feel that a good design choice would be to use the analogy with neural networks wherever 

possible, to enable future use of "real" neural networks at n1ore and more levels of NLP. A fi江st

consequence of this choice is to consider lattices, not grids. No connexions will be implicit. The only 

information on an arc will be a weight, understood as an excitation or an inhibition potential, and all 

other information will be contained in the nodes. 
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To adhere strictly to the analogy, the internal structure of a node should itself be such a lattice 

(or network), and so recursively until arriving at a stage where, as in real neural networks, the nodes 

contain no specific information (all execute the same simple operation). However, we will stop at 

some larger granularity, in order to apply well-known n1ethods involving structured objects. 

Of course, a lattice can be trivially constructed from a grid and a transition condition such as that 

of Keal (given above). But a lattice is more specific, and the reverse is not true : for example, a grid 

can not represent the fact that, in a sequence of two phonemes, /o/+/i/, /a/+/i/, /a/+/e/ are possible, but 

not /o/+/e/. Figure 3 gives another example. 

1.3 Layers and classes 

3.1 Phonetic layers 

The bottommost layer is that of phonetic codes (a constant number per frame). Each node 

corresponds to a given frame, and is connected to its predecessor and successor only. Supposing that 

the phonetic alphabet contains 256 elements, as in Sphinx, with 3 phonetic codes per frame, there are 

2563 classes in this layer. 

-
0
 

~ 

If words are not recognized directly, there should be an intermediate phonetic layer. It does not 

seem necessary to plan for more than one. Classes correspond to the units chosen, whatever they may 

be (see I.1.2): if we choose the syllable, we will get from 200 (in Japanese) to 20000 (in English 

-Lee 1988) classes, if we choose the phoneme, from 20 to 50 classes, etc. 

3.2 Textual layers 

We will consider two textual layers, thought of as representing the text in its written form, with~ 

some elaboration. The first one is a tagged text lattice. Each node contains a wordform as label 

(class), and a simple decoration structure. For concreteness, let us sketch a possible declaration of the 

associated (node) data type, using an extension of Robra's syntax (Boitet&al 1978): 

label classtxt1 = string {pot maxwordforms) ; --Wordforms will be defined elsewhere. 

decor dectxt1 = nex all --Set type (nex), all attributes obligatory. 

(t1 I t2) : Integer [O .. tmax], --Endpoints. Part of speech scalar (exc): 

cat : (N, V, A, R, D, S, C), --noun, verb, adjunct, representant, 

--deictor, subordinator, coordinator. n -
val : real(0 .. 1]); --Score (valuation). 

For example, an occurrence of the verb "can" could be represented as : 

'can'[dectxt1 (t1 (195), t2 (205), cat(V), val(O .2))] 

12 



Each arc would bear a weight w of type real [minarcw .. maxarcw]. In this small example, we have 

limited ourselves to 7 morphosyntactic classes. In a real setting, we would expand to subcategories 

(such as various adjective and adverb subclasses of adjunct). "Tagging" with as many as 400 classes 

has been used successfully in speech recognition. 

0
-

The second layer, the lemmatized text lattice, corresponds to the result of morphological analysis 

in an MT system. Going from the first to the second layer implies access to dictionaries (to get the 

valency frames, the semantic features and restrictions, etc.), and use of a moxphological grammar (to 

compute information form roots, prefixes, endings, and various affixes). One node in the fi江stlayer 

can be expanded into a sublattice in the second layer. For example, "can" as a verb could be expanded 

as two alternate nodes (modal/ nonmodal), and "won't" as two successive nodes ("will"+ "not"). 

＾ 
In this layer, it may be preferred to talce as class the morphosyntactic class, and to put the 

wordfonn, the lemma, the lexical unit, and the rest of the information in the decoration. 

3.3 Linguistic layers 

VCL 

CL 

clauses 

PARTCL RELCL SCL 

verbal participial relative subordinate 

CLK~ —;I'. ~NP 

clause kernels 

~ 

PARTCLK VCLK 
participial verbal 

clause kernels 

l 

十

nominal phrase 

NPe NPs NPc 

elementary simple complex 

／ 
AP 

adjectival phrase 

A Pe APs A Pc 

elementary simple complex 

ADVP 

adverbial phrase 

ADVPe ADVPs 

elementary simple 

~ 

ヽ

CARDP 

cardinal phrase 

CARDPe CARDPs 

elementary simple 

Figure 4: simplified syntagmatic hierarchy (PP & DP omitted) 
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Following (Vauquois&Chappuy 1985), we distinguish three linguistic layers, corresponding to 

the elementary, simple, and complex syntagmas. Elementary syntagmas are usually lexical (N, A-N, 

N—N, as "Adam Smith"), and simple syntagmas (e.g., Japanese bunsetsus) don't contain embedded 

syntagmas of higher degree (in a hierarchy where clauses at the top, see figure 4 for an example): 

both types may be conveniently described by finite-state grammars or automata. 

â 

Finally, we get 6 or 7 layers to represent a unit of translation treated in analysis. We suggest to 

consider transfer (whether it involves explicit understan~ing or not) as a transcription phase creating 

the top layer of a corresponding structure for the target sequence of utterances to be generated. 

II. DERIVATION, REPRESENTATION, AND INTERPRETATION STRUCTURES 

In each linguistic layer, the nodes will root derivation trees (d-trees). The same node can root 

several such trees, in case of ambiguity. Inside each node, there will be one or several representation 

trees (r-trees), each corresponding to one or several d-trees. Each node of an r-tree will in turn (also 

optionnally) bear a representation structure (r-structure). This section presents the motivations behind 

this scheme and illustrates it 

A general idea is that, in analysis, going from one layer to the next and from d-trees to 

i-structures, one makes more and more explicit what was implicit, thereby going away from the 

"surface" expression and relating parts of the units to preexisting knowledge. 

II.I Derivation trees 

A d-tree is the direct image of the production of a string by a syntagmatic grammar, most often 

context-free (although context-sensitive gran1n1ars in normalized form and local (non-distributive) ,.-.、
adjunct grammars also naturally yield trees). By nature, ad-tree is in projective correspondence with 

the string, a homomorphic image of its frontier. 

1.1 Motivations 

Of course, there are cases of non-projective correspondences, such as : 

(E6) 且 have辿 seenthem 

where "we ... all" is a "discontinuous constituent". D-trees can not 

represent this explicitly in their geometry. Also, they can not represent explicitly elision (one should 

"restore" nodes in the tree). But good algorithms exist to compute all d-trees for a given string, with 

the axiom or any other nonterminal at the root, and this is important if we want to factorize 

ambiguities in an efficient way, and handle them explicitly, via preference rules, or implicitly, via 

scoring and heuristic search. 

＾ 

贔
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There are some other arguments in favor of d-trees. They can be used as "shallow structures", 

acting as a safety net in case of failure to reach a more abstract level. In generation, it is also necessary 

to produce projective trees. Finally, d-trees have been used successfully in systems of extremely large 

coverage (Heidorn&al, CRffiQUE system, IBM-JWRC). 

•— 1.2 Structure of a node and representation of a d-tree 

Each node has a class, such as NP, AP, CARDP, VP…and a set of decorations. Each 

decoration is associated to one or more rule instances. A rule instance is a "grey" node relating such a 

decoration to a list of other decorations (contained in other nodes of the same layer). Decorations of 

the left and right hand side of a rule are put in correspondence by an equation associated to the rule, in 

the usual manner (an example is given in II.3.3 below). 

＾ 
.
J
 

3
 

2
 

＾ 
(E7) safety valve opener 

Figure 5 : example of nodes at the simple syntagmatic layer 

^-— 

Figure 5 illustrates this concept (ANN is meant to be the name of a simple rule with context-free 

skeleton NP-> NP NP). The node at level 3 in this diagram has one decoration, corresponding to 

two different structures of the simple nominal phrase "safety valve opener". Replacing "safety" by 

"test", we would get a second node at level 3, with label VCL. 
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1.3 Decorations 

A decoration is an unordered finite tree with a symbol on each node, such that no two sister 

nodes bear the same symbol. A symbol is an identifier or the denotation of a primitive object. 

Primitive objects are characters, boolean values true and false, integers, reals, and vectors of those, 

of which character strings are a particular case. An internal node must bear an identifier, and any two 

sister nodes must bear the same type of symbol. Here is an example : 

dec1 = deceng (cat (V (fin, inf)), Im (('give'-'back']), 

val1 (K(NP), sem (thg)), val2 (K (toNP), sem (persnf))) 

Symbols on internal nodes are always understood as attribute names. The complete name of an 

attribute is obtained by concatenating the symbols on the path from the root to its node. For instance, 

deceng.val1.K is the complete name of subattribute K of (deceng.)val1. On a leave, an identifier can be 

thought of as denoting an elementary value, just as in a Pascal enumerated scalar or set type, or as 

denoting an attribute with the conventional value null. For example, we could replace "V(fin, inf)" by 

"V" in dec1, getting a decoration dec2 where we would still understand V as a potentially complex 

attribute. 

An attribute has three natural functional interpretations on the domain of decorations : boolean, 

immediate and complete. As a boolean function, an attribute is true on a decoration iff its complete 

name appears as a path in the decoration : truth is equated with presence, falsity with absence. As an 

immediate function, an attribute is undefined if false, and otherwise equal to the set of labels of its 

daughters. As a complete function, an attribute is undefined if false, and otherwise equal to the 

complete set of trees it dominates. For example : 

boolf cat (dec1) = true 

boolf fin (dec1) = true 

boolf val1.K (dec1) = true 

lmmf cat (dec1) 

boolf drv (dec1) = false lmmf drv (dec1) 

=V 

= undef compf drv (dec1) 

lmmf fin (dec1) = null 

lmmf val1.K (dec1) = NP 

compf cat (dec1) = V(fin, inf) 

= undef 

compf fin (dec1) = null 

compf val1.K (dec1) = NP 

Remark that boo If K (dec1) cannot be evaluated, because K(dec1) is undefined, as there is a 

name conflict between val1.K and val2.K. For any function f, it is natural to pose f(undef) = undef. 

Note also that undef should not be treated as a normal value. Rather, expressions involving this 

symbol should be first reduced by syntactic (rewriting) rules until it is eliminated and normal 

evaluation can take place. If convenient, any syntactic sugar can be added, such as "+fin (dec1)" for 

"fin (dec1) = true". For efficiency and engineering reasons, it is useful to declare decoration types. 

We have given a small example above and won't go into more detail here. 

・-

~ 

＾ 

a
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11.2 Representation trees 

亀
一

A simple example from computer science can show the difference between a derivation tree and 

a representation tree. Suppose we want to produce a tree associated to the following expression: 

If y = z then x := a else x:= a• (b + c) 

The context-free grammar on the left of figure 6 gives rise to derivation tree Tl, with 42 nodes, 

shown on the left of figure 7. The abstract tree T2 for the same string, with only 14 nodes, is shown 

on the right. T2 is far more simple than Tl, and more adequate for various optimization and code 

generation operations. Notice that its correspondence with the string is neither projective nor total, but 

that it can be produced by simple transformations attached to the CF-rules (on the right of figure 6). 

1<cond_expr> ．． ＝ If <CO nd> the n <assig> e Is e <assig> @0= lf_then_else (@2,@4,@6) 

~cond> ::= <expr> = <expr> @0= 
一一

(@1,@3) 

＾ 
r ass． 1g> .. = ldf : = <expr> @0= =: (@3,@1) 

~expr> ::= <expr> + <term> @0= ＋ (@1,@3) 

kteexrmpl'> > 
::= <term> @0= @1 

::= <expr> * <factor> @0= ＊ (@1,@3) 

<term> ::= <factor> @0= @1 

<factor> ．． 9』 （ <expr> ） @0= @2 

<factor> ．．． ． ， '' ldf @0= @1 

Figure 6 : a simple syntagma.tic gramma.r and associated transformations 

~ 

0
-

lf_then else ------------1~ ¥ /:=,)そ
idf ldf ldf• 
Z a X / ¥  X 

ldf + 
a 1, 

ldf ldf 
b c 

＞ 

a f 
T 1 <term> <f a~or> T 2 

I 呵or> ldf 

恩f C 

Figure 7 : a derivation tree and a representation tree for "If y = z then x := a else x:= a會 (b+c)"
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2.1 Representation trees in Machine Translation 

In MT, an r-structure for a unit of translation must at the same time represent the meaning of the 

unit and its form, because translation must preserve the meaning and also, if possible, keep some 

parallelism in the form. Not all paraphrases are translations (see example E9 below). In most 

translational situations, the domain of discourse is not closed-METEO (Chandioux&Guerard 1981) ら

is a notable exception―, even if it revolves around a formalizable domain, as in the case of 

conference registrations or business meeting arrangements. 

Hence, it makes sense to found translation on an abstract linguistic representation of the unit of 

translation. To choose between competing r-structures, it may certainly be useful to use an 

interpretation in a formalized (sub)domain ("explicit" or "expert" understanding), and even to use a 

model of the ongoing communication and situation ("pragmatic" understanding). But r-structures 

should correspond only to linguistically meaningful distinctions. Starosta (1988) gives a number of 

powerful arguments to this end. 

For example, many semantic features should be used in r-structures, because the corresponding 

distinctions are observable in many languages : human, animate, animal, plant, concrete, abstract, 

container, time, space, closed, open…But we should stop short of trying to describe a domain of 

discourse by such means, or else the resulting systems will be completely specific (as METEO). Of 

course, the line may sometimes be difficult to draw, because language reflects our apprehension of the 

world, and evolves with it : new words, and even new syntactic constructions, appear constantly 

(think of retroviruses, or of genes coding for proteins). For example, a semantic feature of "chemical 

element" may be justified, but probably not that of "metalloid" . 

An r-structure contains lexical, grammatical and relational~nformation. The lexical elements 

should not be wordfonns, but lemmas, or even better lexical units (derivational families), chosen to~ 

get identical or very similar r-structures for translational paraphrases. 

For example : 

(EB) Check that the lift works correctly I Check the correct working of the lift 

are acceptable paraphrases in translation, but not : 

(E 9) The repairman has fixed the lift I The man who (does) repairs has fixed the lift 

However, such an "unacceptable" paraphrase may be necessary, if the corresponding word does 

not exist in the target language. A good place to put information necessary to produce more general 

paraphrases is a dictionary a la Mel'cuk, containing lexical functions ("oven" is Means_of "bake", 
"far" is Antonym_of "near" ...), which are n1ore general than the derivational relations. 

t-¥ 

。
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The grammatical information is centered on the words and the phrases to which they pertain 

-be they connex or not. Morphosyntactic and syntagmatic categories, number, person, time, aspect, 

mode, semantic features, are examples of that type of information. The relational information shows 

the role of the elements in a group. It typically includes the syntactic functions (subj, objl, obj2, 

atrsuj, sujf, atrobj, compl, epit, detenn, reg ...), the logical relations (argO, argl, arg2, argOl, arg02, 

trllO, trl20…), representing the predicate-argument structure, and the semantic relations (agt, pat, 

bnf, qual, means, meas, qtf, qtfier, n1anner, local, accomp, cause, conseq, goal, orig, dest…)． 

Coreference is another example. 

＾ 

Traditionnally, r-structures are ordered trees, and there are good reasons for that. First, trees are 

understandable, because a subtree is essentially independent of the rest of the tree. Second, and much 

for the same reason, trees can be processed efficiently. Third, their inherent (left-right) ordering can 

be used to implicitly encode or remember some types of linguistic information for which there is no 

good formal description. For example, the theme/rheme/pheme statutory distinction, or the degree of 

emphasis, are difficult and sometimes impossible to compute in non-configurational languages, but 

they can still be translated by preserving the order or modifying it in a systematic way. Discourse 

coherence and good scoping of anaphoric elements also depend on a good treatment of order. Finally, 

it is possible to look at ordered trees as if they would be unordered (e.g., "unordered nodes" in 
ROBRA tree patterns), whereas the converse is clearly impossible or at best extremely awkward 

(positions must be remembered as annotations to the nodes). 

There is also a series of good arguments in favor of using decorated trees. First, this obviously 

reduces the number of nodes. Second, the geometrical view of the structure is separated from the 

algebraic view of the attached information. Trees are based on sequences and decorations on sets. 

Third, decorations are bounded in size and usually declared, which allows for compilation and 

efficient processing. This is to be contrasted with feature structures (see below). To use only "flat" 

~decorations, analogous to property lists, is of course possible, but this does not reflect the successive 

refinements in description (e.g., cat(N) with subcategories of noun SubN(CN, PN)), and it is 

awkward to ensure that, for example, there is no SubN in the absence of N. A hierarchical 

organization like that illustrated above is almost as easy to implement and far more informative. 

.... 

There is a lot of talk about multistratal versus monostratal linguistic theories and representations. 

Following linguists of Western and Central Europe, who have extensively studied natural languages, 

and not only formalisms, thereby writing real gramn1ars and dictionaries in the context of NLP, we 

adhere to a multistratal analysis of language (MeI1l!uk 1981). However, for the purpose of MT, it is 

most convenient to use a monostratal representation. This technique has been originally introduced by 

B. Vauquois in 1974, and used successfully ever since in several-MT systems. More recently, some 

modem linguistic theories such as Lexicase (Starosta 1988) or GPSG (Gazdar&al 1985) have also 

advocated a unique representational level. 
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B. Vauquois'idea is to use the same graph (a tree), on which several levels of interpretation are 

encoded. A satisfactory compromise is to use a "flat tree" (Starosta 1988 also advocates the use of 

flat trees ford-trees), where each subtree represents a syntagm and has a particular daughter, the 

"governor". The governor is the main elen1ent, which would be put at the top in a pure dependency 

representation. Most often, it is a leave, but it can sometimes root a subtree (e.g. in the case of a 

compound noun, or of a complex verbal kernel). An example is given in figure 8 below. 

*Sentence* 

Yesterda 
LU{'yesterday'), 

Cat{A{adv)), K{ADVP), 
SF{Circ),SR{Loc{time)), 

Local{ubi) ...) 

K(NP),SF(Subj), 
LR{Arg2), SR(Bnf) 

Nb(P), P(3) 

hav ee 
lven-b e *b -NP* 

LU(('give'-'back']) LU('money') K(NP),SF(Agcp), 
Cat(V(fin)), K(VK), K(NP),SF(Obj1), LR(ArgO), SR(Agt)1 
SF(Gov), Vox(psf), LR(Arg1)SR(dobj Sem(prsf, concr, 
(past), Nb(P), P(3), Det(partitive) local), Nb(S) 

Sem(Proc(xter'¥ 

皿

溢悶；贔悶腐）11~ 塁塁ぶj~bJば'P)
SF(Gov), P(3) SF(Epit), SR(qtf) 

皿
LU('the'), Nb(S) 

Cat(D{art)), K(DP), 

SF(Det}, Det(def) 

LU('hotel'), Nb(S), 
Cat(N(CN)), K(NP) 

SF(Gov), Sem(prsf, 
concr, local) 

(E1 O) Yesterday they have all been given money back by the hotel 

Figure 8: an r-tree 

Decorations have been (very partially) shown on the diagram, within boxes, and labels 

appear on top of them. Labels are usually used only for giving a condensed information about the 

decorations on graphic tree displays, which allows to show the detailed decorations separately, or, 

under a convenient tree editor, on pop-up windows. 

Note the absence of a node for "by" : in the case of an argument, the preposition is almost 

always redundant with the realized valency frame (not shown here). In the case of a circumstancial 

("outer case"), the preposition should best be put on the top node of the group (as in classical 

dependency representations), where it can con1bine with the SR (semantic relation) attribute to show 

the exact nuance of the relation. Alternatively, and almost necessarily in case of coordinated 

prepositions ("I'll stay before and after the conference"), they can be left in place, in a subtree with 

the syntactic function of "regent" ("regisseur") at the same level as the governor. Incidentally, there is 

no more reason to consider that the governor of a prepositional nominal phrase is the preposition 

rather than the main noun than there is to consider that, in a relative clause, the relative pronoun is the 

governor rather than the verb. 

•— 

~ 

＾ 
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2.2 Structure of a node and representation of an r-tree 

“-‘
 

On top of a label and a decoration, each node of an r-tree should also contain a weight (score), 

and, optionnally, an interpretation structure (i-structure). In an actual implementation, sub-r-trees will 

often be r-trees associated to sub-trees of the d-tree rooted at the considered node of the layered lattice, 

so that structure sharing should easily be implemented (perhaps again by means of "grey" nodes). A 

typical case is shown on figure 7 above. 

f1'.. 

Another use of r-trees is to represent certainり7Pesof ambiguities, polysemies or doubts. In a 

case like: 

(E 11) Which hotel runs this office? 

it is best to produce only oner-tree, indicating on the top 

node the ambiguity type (Subj-Obj1 vs Obj1-Subj) by means of attributes (e.g., "Doubt (SF), 

Ambtype (Subj0bj1)"), and assigning the most probable analysis to the daughter nodes (here, 

Subj-Obj1). The same goes for structural ambiguities of the "safety valve opener" type : choose one 

standard attachment, and again indicate the other possible choices in the dee.oration. 

This implies that oner-tree may correspond to several d-trees (associated to the same syntagm). 

The converse should be kept as rare as possible, but may happen. 

For instance : 

(E 1 2) Mr Adams and Mrs Smith will talk on Tuesday and Friday 

has only one d-tree, which shows two coordinated NPs, but the two r-trees 

corresponding to the distributive and respective interpretations cannot be represented by only one 

"ambiguous" r-tree in a natural way. The correspondences between r-trees and d-trees could also be 

represented by "grey" nodes (see figure 5). 

~ 2.3 Maintaining text-tree correspondences 

The correspondence between an r-tree and a string (a path in the tagged text lattice) is not as easy 

to describe as that between ad-tree and a string. However, it may be useful to keep it, in particular if 

some clarification dialogue is planned : if something is not clear to the system, the corresponding 

part(s) of the unit of translation should be recoverable verbatim. 

0
-

(Boitet&Zaharin 1988) have proposed to attach to each node of an r-tree two (non necessarily 

connex) substrings of the string "covered" by the entire tree, called SNODE and STREE, which are the 

substrings corresponding to the node as individual node and as root of its subtree, repectively. With 

the data structures described here, however, there is a better possibility: SNODE and STREE could 

refer to lists of d-trees, because a d-tree corresponds naturally to a partial path in each of the two text 

lattices. 
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11.3 Interpretation structures 

3.1 Understanding as producing i-structures 

By definition, understanding is a mapping from a language into a domain, both being formal or 

formalized. We see interpretation structures are the means to describe such a mapping from the unit of 

translation to the representation of the domain, the situation, and the ongoing communication. It is 

desirable to choose i-structures in such a way that the domain, the situation and the communication 

can themselves be modelled by means of i-strucures. However, for reasons of modularity and 

adaptibility, i-structures can remain clearly separated from the linguistic and phonetic descriptions. 

Following universal practice dating back to Montague, i-structures should depend on the 

r-structures in a compositional way. Hence, each node of an r-tree should bear an i-structure, 

computed from the i-structures of its daughters and from any other information, available either on the 

node (such as label, decoration, weight…) or in the representation of the discourse (identity of 

speakers, possible referents, etc.). 

3.2 Possible kinds of i-structures 

There are several possible types of i-structures. The frrst candidates are logical formulas a la 
Montague (and a la GPSG). Their main drawback is that they are rather ill-suited to represent a 

knowledge base. Remaining in the framework of logic, the next possibility is to use Prolog directly, 

an i-structure being simply a set of Horn clauses. This technique is well understood and has been 

used successfully in many applications, most notably for building natural language interfaces with 

data bases or expert systems, themselves also written in Prolog, although this is by no means 

mandatory. However, the fact that Pro log does not allow to name sub terms of terms forces to encode 

all information in a positional fashion (see Ai't-Kaci 1986 for interesting comments). ~ 

Departing from logic representation, fran1es or semantic networks are worth considering, as 

they are used extensively in AI for knowledge representation. But these structures offer no clearly 

defmed operation(s), and no standard processing mechanism(s), such as Prolog's unification and 

resolution. Art-Kaci speaks of a "glaring lack of formal semantics". 

ATR's researchers have chosen to implement i-structures asfeature structures if-structures), in 

the spirit of current "unification-based" gramn1ar formalisms. F-structures have been introduced in 

(Kay 1981) for representing functional grammars (Dik 1978) and associated linguistic structures. 

Usualf-structures are dags (directed acyclic graphs with a unique root), where labels on the arcs are 

feature names and where leaves (and leaves only) can bear atomic values. Extendedf-structures are 

allowed to contain not only reentrant arcs, but also cycles, and will be called dfgs (directed feature 

graphs). Unification applies to elf gs as well as to dags. 

ol 

~ 
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It is quite straightforward to represent logical terms or situation-theoretic types by means of 

f-structures. K. Kogure has kindly suggested the following examples. 

{
O
 

1) logical formula : 

a) love (John, Mary) -> [[predicate love) [argO John][arg1 Mary]] 

b) CV X)[man(X)⇒ love (X, Mary)]-> [[quantifier'v] 

[scope [[logical-connective⇒] 

[antecedent [predicate man] (argO X]ll 

[precedent [predicate love] [argO X][arg1 Mary)]]]]] 

~ 

2) situation-theoretic type : 

[s Is I= <<run, agent: John; 1>>] -> [[relation holding-in] 

[situation s] 

[state_of_aff airs [[relation run] 

[assignment [(agent John]]] 

(polarity 1111 

111 [polarity 

In the currently available implementations (Schieber 1985, Tomita&al 1988)), f-structure 

equations are associated to the rules of a context-free grammar, so that f-structures are associated 

directly to the nodes of ad-tree, and that there is nor-tree. It is always possible to represent an r-tree 

in an f-structure, but not in a natural way, because dags are unordered : the geometry of a tree must 

be encoded by means of special features (usually called first and rest). For the purposes of MT, we are 

simply proposing to "insert" r-trees between d-trees and i-structures, keeping d-trees for the reasons 

exposed above. 

3.3 Typed f-structures as i-dfgs 

＾ The beauty of working with f-structures is that, much like in Prolog, unification is the unique operation. However, in practice, there is a need for other operations. To give an example, the 

non-availability of addition makes it very clumsy to propagate a feature indicating the total length of 

the associated string. To see this, take the simple language {a+b+}. If we are allowed to use integer 

features, the following augmented grammar will compute the correct feature (n) on each node of the 

d-tree: 

S->AB I n{O)=n{1)+n{2) ; A->aA I n{O)=n{2)+1 ; 

8->bB / n{O)=n(2)+1 ; 

A->a I n(0)=1 ; 

B->b / n(0)=1 ; 

a-

In D-PATR (Schieber 198), on the other hand, we must encode the length in unary. If we 

choose the "successor" representation (<n s s 0> = 2), two auxiliary features must be used to 

encode the beginning and end of a "vertical" list representing the length (without a final O): 
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S->AB I (0 in)= (1 in), (2 out)=O, A->aA / (0 n s) = (2 n) ; A->a / (0 n) = (s 0), (0 ins) = (0 out) ; 

(0 out) = (2 out), (1 out)= (2 in) ; B->bB / (0 n s) = (2 n) ; B->b / (0 n} = (s O), (0 ins) = (0 out) ; 

This is reminiscent of what happened at the beginning of Lisp and Prolog. Very soon, 

predefined operators, functions and predicates had to be defined to make it possible to program real 

applications, thereby sacrificing simplicity for usability. It is very useful, and more uniform, to type 

not only elementary features (those having atomic values), but all features. Good formal semantics for 

typed f-structures have been developed (Ai't-Kaci 1986), together with a Prolog-like calculus. Several 

universal operations can be defined, such as unification, meet, and difference, on f-structures 

containing disjunctions. Type specific operations are also naturally available. Natural graphic 

representations are dags where arcs bear feature names, as before, and nodes bear type names. 

The syntax introduced by Art-Kaci immediately shows that decorations are in effect simplified 

typedf-structures, where dags reduces to trees. The pairs label⇒ type can be thought of as being on 

the nodes, with nothing on the arcs. Hence, the computation of typed /-structures from /-structures 

and decorations can be done uniformly, simply by treating decorations as f-structures. 

person (id⇒ name (last⇒ X: string); 

born⇒ date (day⇒ integer; 

month⇒ monthname; 

year⇒ integer); 

father⇒ Y: person (id⇒ name (last⇒ X); 

son⇒ person (fat her⇒ Y))) 

~ 

Figure 9 : linear and grapliical representation of aり'Pedf -structure (example from Ai't-Kaci) 

~ 

＾ 

＾ 

In short, typed f-structures, with their clear formal semantics, open character, and graphic 

expressive power, seem to be an excellent type of data structure for the interpretation level. They can °  

be used to represent knowledge extracted from the unit of translation (the i-structure) as well as 

preexisting or accumulated knowledge about the domain of reference, the discourse structure, and the 

situation. In the following, we will take i-structures to be rypedf-structures, and call them i-dfgs. 
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III. COMPUTATIONAL METHODS AND TOOLS 

111.1 General strategy 

~) 

If we want to adhere to the idea of neural networks, the various layers should be computed left 

to right and bottom up, in a parallel fashion, each process starting (from the left) as soon as the layer 

immediately below begins to be filled with results. The adequate granularity should be determined by 

the connections. For example, if there are at most 250 words for 10000 frames, word limits could be 

rounded up using 4 or 5 frame units. Moreover, the same idea should apply for the computations "in 

depth", that is going from d-trees tor-trees to i-dfgs. 

~ 

However, a considerable amount of work remains to be done before a complete neural network 

implementation of the phonetic level can be used in practice, and even more for other levels. Hence, 

control can not be ignored, or "left to the cells", and more classical methods must be used. 

Completely distributed control as in Hearsay seems to be quite difficult to debug, and very costly. 

Hence, it can be suggested to use a central scheduler to control all layer-specific processes, but to 

leave each process free to apply its own strategy. For instance, purely left-right sequential decoding 

could be used at the phonetic level, while the computation of d-trees could be some-path left-corner. 

An essential remark is that (in analysis) techniques vary from data-driven to pattern-matching to 

unification-based when going up in the layers and deep in the nodes, and that, at the same time, the 

elementary operations become increasingly complex. To make the whole process workable (recall the 

goal of real time processing), costly computations s加uldbe delayed until they become necessary. 

1.1 Interplay of various knowledge sources and overall control 

＾ 
For reasons of modularity, the various knowledge sources should be developed separately, and 

in a "static" way, that is without reference to a particular way of use. This is true for the phonetic, 

lexical, grammatical, and domain-specific data bases. Then, as has been advocated by the CMU group 

(Tomita&Carbonell 1986), knowledge necessary for each process should be extracted and compiled 

into an integrated representation suitable for the process. This ensures that different computational 

strategies can be experimented with without having to rewrite the basic knowledge. 

0
-

This kind of integration of various knowledge sources is essentially static. By interplay, we 

mean the dynamic interactions between the running processes attached to each layer. As said before, 

no process should directly call another, communication between two processes occurring only 

through the data passed from one to the other (i.e., the lattice between them). However, there are 

cases where some real interplay seems necessary. 
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Suppose for example that the linguistic parser, using the syntaxo-semantic valency frame of a 

verb, is able to create the expectation of a nominal phrase with certain semantic properties (substance, 

means of transportation, location, container, document…), at some distance from the verb (and 

possibly before it, in languages lilce Japanese). This might help the speech recognition part. But, even 

if the expected phrase occurs after the verb, it is hard to see how the phonetic process, probably based 

on a Markovian model using digrams or trigrams, could incorporate it, because the distance to the 

verb may be quite longer than 2 or 3. Another situation, often experimented by humans, is that a part 

of the message "does not mak:e sense". In such a case, it seems necessary to recall the phonetic form 

of the message and to reanalyze it in a more detailed way, maybe with some set of expectations. 

Take for example : 

(E 1 3) I'll be flying on the 40th with Mr Johnson and running by JAL from L.A. to Narita 

Could it have been "14th" and not "40th", could "running" be not a verb, but 

a proper noun ("Mr Running") ? 

In our view, such communication should be handled by the overall control program, which, 

receiving a message from a process, and having access to part of its working structure (the white and 

grey parts), would send an appropriate message to another process, acting as an intelligent scheduler. 

Note that this permits to distribute processing on physically different machines, which would be 

impossible with a more interleaved control. As it is, some specialized hardware may be necessary to 

achieve real time (such as the Beam hardware used by Sphinx), while not being suited to run all 

processes. 

1.2 Bilevel translation ? 

It has been advocated by (Tsujii 1987) to translate at two levels of quality. "Important" parts 

should be translated fluently, in a "content-bound" way, while "not important" parts could be 

translated not so well, in a "structure-bound" way. Tsujii gives the following example: ~ 

(E 1 4) Tomodachi to disuko ni ikitai no de, Roppongi no chisaku no hoteru ga ii no desu ga. 

(1) I prefer to stay at a hotel near Roppongi, because I would like to go to discos with friends. 

(2) Because I want to go to a disco with friends, a hotel near Roppongi is good. 

While (1) is "content-bound", (2) is "structure-bound". Actually, a purely linguistic translation, which 

can not use the information that the sentence is a wish (this comes from the dialog structure and the 

description of the current situation), can be quite better than (2) : 

(3) A hotel near Roppongi would be good, because I would like to go to discos with friends. 

Remark also that it is not clear whether one or several hotels, discos and friends are considered 

(because number is usually not marked in Japanese), and whether the speaker speaks for himself or 

for a group ("we" should then replace "I"). 

"! 

•— 

＾ 

゜
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This idea can be made somewhat more precise. First, the clarification dialogue, if any, could 

dispense with the "unimportant" things. In the example, the number of discos and friends is not 

important, but the number of hotels certainly is. How can the system血owwhat is important or not ? 

_• 
0
-

A very simple criterion could be the following: by definition, important things are denoted by 

words which have an interpretation in the description of the domain. Obviously, the important parts 

will be better translated than the unimportant ones, if they are better analyzed, due to interactive 

disambiguation. 

A second aspect of the idea is to translate the "meaning" of the important parts, and only the 

"expression" of the rest. How to do this in practice seems difficult, and no solution has yet been 

proposed. In the framework presented here, however, we can propose a method : 

~ 
-decompose the result of analysis in smaller i-dfg(s) and r-tree(s) ,・ 

-perform content-bound translation on i-dfgs ,・ 

-perform structure-bound translation on r-trees ; 

-recompose the results to get a complete target r-tree, passed to generation. 

Having obtained a complete r-tree for the unit of translation, one would compute the i-df g of 

each node, and its weight, in such a way that the weight reflects the "importance" of the 

corresponding subtree (e.g., the proportion of nodes which lexical units have been unified with 

domain-specific concepts of the knowledge base). The important and not important parts would then 

be separated, translated at the appropriate level, and recombined to get a target r-tree, to be passed to 

the generator (see III.3 for more details). 

1.3 Computational tools as adaptors and constructors 

~ 

The computational tools are envisaged as specialized languages for linguistic programming 

(SLLPs) adapted to different kinds of computations on linguistically motivated data structures. 

GRADE, ROBRA, the Q-systems, D-PATR…are well known examples. Each static lmowledge base 

and each dynamic process should be written in an appropriate SLLP. 

ct 

In MT systems, it is usual to call processes phases. Typically, lexical phases (morphological 

analysis, lexical transfer, morphological generation) incur for less than 10% of the overall cost, while 

structural phases are heavy (for example, 50% for structural analysis, 10% for structural transfer -if 

adequate r-trees are used―, and 30% for syntactic generation). In Ariane-85 (Boitet&al 1985), to 

provide added modularity, we have also introduced intermediate phases used to map whole structures 

from one decoration type to another, or to perform "lexical expansion" by simple dictionary look-up 

(lexical transfer is a special kind of lexical expansion). Their cost is negligible. 
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We propose to call the processes which don't involve extensive search adaptors, and the others 

constructors. Running adaptors involves only simple computations and (possibly) access to 

dictionaries, so that it is relatively straightforward to optimize them, by choosing good representations 

(hash-tables, B-trees…) . Another difference is that, because of the risk of combinatorial explosion, 

constructors are often equipped with a search strategy designed to avoid exhaustive search, thereby 

producing only one or a few of the possible solutions. 

•J 

゜
As a general rule, any two independent constructors should be separated by at least one adaptor, 

so that a modification in one does not necessitate a modification in the other (certain, like those of the 

syntagmatic layers, are naturally interdependent). 

Let us now study the computational methods and tools usable for the two main parts of the 

interpretation process, namely the extraction part, analysis, made of recognition, structuration and 

understanding, and a the production part, made of transfer, generation, and synthesis (of speech and 

text). 

111.2 Analysis : recognition, structuration and understanding 

~ 

Recognition is the passage from the signal or the coded phonetic string to the tagged text lattice 

or to the lemmatized text lattice, depending on whether morphological analysis is complex, or simple 

enough to be integrated in the phonetic recognition. Structuration is the computation of the complex 

syntagmatic lattice, with a final adaptor extracting the "best sublattice" (ideally, one arc with one 

r-tree). Understanding is the computation of i-dfgs attached to the r-tree nodes. 

2.1 Recognition 

It is now possible to obtain impressive results in speech recognition with very large dictionaries~ 

(Merialdo 1988) of the order of 45000 lemmas (200000 words). The results are better than with 

dictionaries of 2000 lemmas (10000 words), already quite large by speech recognition standards, 

because the problem of unknown words disappears. In an application such as conference registration, 

using a very large dictionary would permit to include a lot of proper names, and to be almost sure that 

any unknown word is a proper name. It must be said that these results have been obtained on French, 

the speakers being asked to pause slightly between syllables, which is acceptable in this language. It 

is however claimed that this limitation will soon be removed, by suppressing the silence part 

contained in the Markov machine representing a syllable, in order to process continuous speech. 

•) 

-
0
 

The language model is based on trigrams of morphosyntactic classes, because, with such a large 

dictionary, it is impossible to train directly on words. The probability that word Wi of class Ci follows 

W卜2Wi-1 of classes C卜2and Ci-1 is taken to be p(Wi IWi-2 Wi-1) = p(Wi I Ci)* p(Ci I Ci-2 Ci-1). 

O'-
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The use of order 2 (trigrams) rather than higher orders reflects the concern with space (with 200 

classes, there are 8M trigrams and 1.6G quadrigrams) and with trainability (as it is, corpuses of 

dozens of millions of running words are required to get meaningful estimates of trigram probabilities). 

0-

For the purpose of further structure and content analysis, the recognition system should deliver 

a tagged or lemmatized word lattice rather than a string of wordf orms. Homophone paths (this man 

I these men) can be disambiguated later. If the written text produced by the recognizer is to be 

corrected interactively before translation, it makes sense to propose some choices to the user (e.g., by 

presenting the text as in figure 3), so thats/he has only to tick the correct one, and not to retype. 

~ 

We talce morphological analysis to be a part of recognition. For highly inflected languages, this 

phase may involve search, but its computational complexity is low. Convenient SLLPs for writing 

morphological analyzers may_ be based on finite-state non-deterministic transducers, as A TEF 

(Chauche 1975), or on simple context-free analyzers as in SALAT (Hauenschild&al 1979). 

2.2 Structuration 

Construction of d-trees 

The next two layers to be computed are those of elementary and simple syntagms. Several 

groups working on texts have already developed very efficient methods based on statistics to compute 

them (Debili 1982, Garside&al 1987). They go further than morphosyntactic tagging. For example, 

Debili, Fluhr and their colleagues have developed SPIRIT, a complete textual data base system 

(accessible through the Minitel network), which retrieves documents on the basis of elementary 

syntagmas represented as dependency structures extracted from the questions and matched against the 

similarly preprocessed documents. 

＾ 
To construct these two layers, there is a choice between : 

-adapting statistical methods from speech recognition, by developing a simple SLLP with rules 

of the form "<sequence of nodes>-> <Small tree>"; 

-using the same formalism and algorithmic method as for the complex syntagma.tic layer. 

゜

For the complex syntagmatic layer, we may turn again to some augmented context-free 

formalism, and use Quinton's algorithm, specifically designed to handle word lattices in the context of 

the Keal speech recognition system (Quinton 1980). 

公



Rather than to implement a unique algorithm, Quinton defmes a class of algorithms obtained by 

specifying separately 

-the general framework : a bottom-up adaptation of Earley's technique, involving the use of 

dotted rules ("configurations"), a set of "situations", and three basic operations (read, predict, 

concatenate) ; 

-the strategy : using 3 standard lists of situations and simple operations on them, Quinton has 

effectively implemented and tested detem血isticand nondeterministic variants of various 

strategies (best-fi正st,backtrack search, beam search, beam search with backtrack, sequential 

stack decoding) . 

• 
J
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Figure 10 : the syntagmatic layer with a representation of structures used by the Quinton algoritm 
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A situation is made of a path in the lattice (called "sequence of detections") and of a stack of 

configurations. A situation can be simply coded as S = (n, c, p, v), where n is the last node of the 

path, c the topmost configuration of the stack, p a pointer to the situation containing the preceding 

configuration, and v the valuation of S. This amounts to encode the set of situations in a factorized 

way. The algorithms are all bottom-up, and behave like shift-reduce parsers (of which the LR parsers 

are a well-known subclass), augmented with a prediction operation. 

Quinton's method has several interesting properties : 

-no heavy compilation is needed, as the relations between grammar symbol and rules used by 

the elementary operations can be computed incrementally ; 

-elementary operations involve at most two stack symbols (in effect, a transformation to 

Chomsky's binary normal form is performed dynamically and transparently) ; 

~ 

• the prediction operation, which replaces the topmost configuration of a stack, is inspired by 

that of Earley, but is much more efficient, prediction of useless configurations being avoided 

by examining the next possible nodes in the lattice and the preceding configuration to ensure 

that reduction will indeed be possible. 

Figure 10 above illustrates how the working structure of this algorithm can be represented in 

one of the layers. The white nodes constitute the lattice, constructed here from a very simple initial 

linear path representing "a+ a", the black nodes encode Quinton's "situations", and the grey nodes 

and arcs, showing the derivational history, implement the d-trees. 

Construction of r-trees 

＾ 

、11

The construction r-trees from d-trees is not always as simple as what has been shown in II.2 

above. Sometimes, it necessitates the power of a tree-transformational mechanism like that of ROBRA 

(Boitet&al 1978) or GRADE (Nakamura&al 1984). Suppose for example that we want to model 

distributive (and nonprojective) natural language constructs, such as: 

Linguists, lexicographers and engineers 
describe, index and implement 
grammars, dictionaries and NLP-systems. 

We can abstract them by considering the strictly context-sensitive formal language L = { anbncn I 

n~1}. At least two structural descriptors seem "natural" for a string wn = a叩ncn,namely: 

(T1) S(A(a1 ,A(a2, …A(an) ...)), B(b1 ,B(b2, ... B(bn), ..)), C(c1 ,C(c2, ... C(cn) ...))) 

(T2) S(a1,b1 ,c1, S(a2,b2,c2, ... S(an,bn,Cn) ...)) 
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Tree Tl gives rise to a projective correspondence, but does not imply any particular relation 

between ai, bi, and Ci . If we want to consider the triples a;, b;, c; directly as discontinuous constituents, 

T2 is better. 

●
ツ

Tl can obviously be produced by attaching adequate translations to the rules of the grammar 

S-> ABC A-> aA I a B -> bB I b 

in the following manner : 

S-> ABC / n(O) = n(1) = n(2) = n(3}./@0 = S (@1,@2, @3} 

--@0, @1, @2, @3 denote the r-trees associated to S, A, B, C, respectively. 

-In the following rules, @1 denotes the r-tree associated to a terminal element (a, b, or c), that 

-is, by convention, the r-tree made of one node containing the element as label, and any 

--other information coming from a dictionary in the decorations. 

A-> a I n(O) = 1 / @〇：：：：A (@1} A-> a A / n(O} = n(2)+1 /@0 = A (@1, @2) 

B-> b / n(O) = 1 /@0 = B (@1) 

C->C /n(0)=1 /@0=C(@1) 

B -> b B / n(O) = n(2)+ 1 / @0 = B (@1, @2) 

C-> c C I n(O) = n(2)+1 /@0 = C (@1, @2) 

To generate T2 is a problem, because it is necessary to wait until the three groups (A, B, C) have been 

constructed to begin the construction of T2. This requires the ability to "decompose" trees. Here is an 

example, using a tree-transformational grammar with just two rules. 

S->ABC 

A-> aA I a 

C -> cc IC 

I n(O} = n(1} = n(2} = n(3} / @O = G (S (@1, @2, @3}} 

C -> cc I c --Same equations as above. 

--G is a tree-transformational grammar, where R2 

G = {R1, R2 (G, S.2)} --recursively calls G itself on the subtree of its 

R1 : S (A (a), B(b}, C(c)) —:> S {a, b, c) --image rooted at S.2. 

R2: S .1(A (a, @1), B{b, @2), C(c, @3))-> S.1 {a, b, C, S.2 (@1, @2, @3)) 

B -> bB I b 

2.3 Understanding 

●ヽ

~ 

＾ 
In II.3.1, understanding has been equated with producing the i-dfgs attached to the nodes of an 

r-tree. Their computation has been described. A remark is in order at this point: the lowest cost 

to-date (Kasper 1987) of unification of two f-structures f and g containing n symbols and d disjuncts 

is in 0(2d n 1092 n). On top of this, the size of i-dfgs grows from the leaves to the roots of the 

supporting d-trees or r-trees (unlike that of decorations), because unification never removes and~ 

usually adds information. Hence, a combinatorial use~f unification is to be avoided at all costs. 

However, once one or a few d-trees have been produced, there will be an upper limit on the cost of 11 

constructing the i-dfgs, and linear speed-ups are always possible. 
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One should not forget that the final lattice extracted from the last_ syntagmatic layer will contain 

exactly one node and oner-tree only in exceptional cases. Often, there will be several complete 

analyses, represented in one node (covering the entire unit of translation) by competing r-trees, or, 

even worse, there will be no complete analysis, so that a lattice of several nodes, corresponding to 

partial analyses, will be produced. In this case, a simple adaptor should transform this structure into a 

uniquer-tree (where the "top" mirrors the geometry of the lattice) -or the discourse-level process 

would be designed to accept a lattice of i-df gs. 

111.3 Transfer, generation and synthesis 

The complete architecture envisaged is shown on figure 11. In the text below, we have often 

simplified by speaking of trees instead of lattices of trees. In the diagram, we have tried to make up 

for that by picturing lattices wherever they could appear. 

＾ 
3.1 Bilevel transfer 

Having computed the i-dfgs attached to the nodes of the resulting r-tree(s), there seem to be 

essentially two main methods of separating the "important" and "unimportant" parts. The first method 

gives priority to the r-tree : "prune" the r-tree by erasing every forest dominated by a node having an 

i-df g weight exceeding a certain threshold, getting a top r-tree, or t-r-tree. The pruning operation 

should store in each leave the identifier of its i-df g, for later recombination. 

As said before, the t-r-tree itself (without i-dfgs) would then be passed to a classical transfer 

component, while the i-dfgs of the leaves of the t-r-tree would be translated by a "deep transfer", at 

the "explicit understanding" level. 

r--., The "deep" transfer will involve two steps. First, athough i-dfgs should be language 

independent, it is unavoidable that they reflect some characteristics of the expression from which they 

are computed, so that a restructuring step, or conceptual transfer, will be needed to take care of 

differences between languages. For example, proper names and appropriate honorifics have to be 

introduced when translating from English to Japanese, and the.same goes for determinacy (a hotel, the 

hotel, hotels, the hotels) in the reverse direction. Second, a conceptual generator of the target language 

will transform the i-dfgs into as many translated "bottom" r-trees, or tb-r-trees. 

贔

The last transfer operation consists in recombining the translated t-r-tree (tt-r-tree) and the 

tb-r-trees to produce a complete r-tree representing the unit of translation in the target language. A 

simple way is to submit the forest made of the tt-r-tree and the tb-r-trees to a tree-transformational 

system written in the same formalism as all other tree transformations performed elsewhere in the 

system (production of r-trees in analysis, structural transfer, structural generation). This eliminates the 

need of any special conventions. 
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The second method for separating content-bound and structure-bound parts would give priority 

to the i-df g. Remember that the unit of translation is represented by the i-df g associated to the root of 

an r-tree. Because the computation is largely compositional, this i-structure will contain substructures 

identical to some i-structures associated to lower nodes of the r-tree. If, during the construction of 

each i-structure, a special feature is attached to its root, with the identifier of the node as value, it will 

be possible to traverse the i-structure (from its root) and to prune it of "unimportant" parts marked as 

associated to sub-r-trees, replacing them with the identifiers of these tree~, again called b-r-trees. 

Then, everything would happen as before, with the only difference that the decomposition would be 

in one i-df g and several r-trees instead of one r-tree and several i-dfgs. 

Which method to choose should be decided on experimentally. The second method seems 

intuitively more appealing, because the topmost level is used fi江st.Decomposition may be more 

difficult to perform, because i-dfgs are not trees, but it may be argued that deep generation, required 

in both methods, involves a similar decomposition operation anyway. 

~ 

3.2 Generation 

Generation transforms the (lattices of) r-trees delivered by transfer into (lattices of) d-trees 

representing the target text in a projective and complete manner. The natural computational tools for 

this are tree-transformational systems, possibly augmented to handle lattices -as REZO 

(Stewart 1976) or the Q-systems (Colmerauer 1970). 

~ 

One should actually distinguish two steps in generation. First, deep generation consists in 

choosing a paraphrase from the set of possible expressions associated to the target r-tree (see Il.2.1, 

examples ES and E9). This usually involves the recomput_ation of the syntactic functions, syntagmatic 

classes and morphosyntactic classes from the highest levels of interpretation, namely logical and 

semantic relations, as well as the determination of the surf ace ordering. At this stage, the use of lexical 

units rather than lemmas avoids a potentially costly consultation of dictionaries from within rules. In 

practice, one writes a transformational system which starts from the root and performs these 

operations in a recursive top-down fashion, the initial goal being to generate the syntagmatic class 

predicted on the root 

The second step consists in generating a surface tree (d-tree), by producing all missing nodes 

(articles, valency-bound prepositions, auxiliaries…), suppressing parts to be elided, and computing 

all surface attributes, thereby ensuring correct agreement where needed. In a SLLP like ROBRA, this 

can be done by a relatively simple tree-transformational system, working in totally parallel mode. 
国
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3.3 Text and speech synthesis 

The synthesis of a written text from a d-tree is very simple : the frontier (left-right sequence of 

leaves) is passed to a morphological generator. Using the information contained in the decorations 

(lexical unit, morphosyntactic class, gender, person, number, tense, mode…) and a bounded context, 

a simple grammar controls the assembly of morphs (roots, affixes, punctuations…) found in 

dictionaries and takes care of all particular cases (e.g., elision in French). 

To give an idea, GET A's morphological generation grammar of French is exhaustive, and only 

2 pages long (in SYGMOR), while the morphological analysis grammar of Russian, also exhaustive, 

is about 40 pages long (in ATEF). 

The synthesis of a spoken text is somewhat more complex. Its goal is to produce a coded 

plwnetic target text, to be passed to a physical (programmed) device producing speech. The phonetic 

coding for synthesis is obviously different from the phonetic coding from which recognition starts. 

We suppose that, as in some existing text-to-speech systems, it consists in a string of symbols 

representing: 

-the phonetic units to be generated; 

-the speech parameters (stress, melody, intensity, voice type…)． 

_＿
 

＾ 
Starting from the same d-tree as text synthesis, speech synthesis would then begin by a process 

of phonetic expansion in which the d-tree would be transformed, essentially by the addition of new 

leaves containing the desired speech parameters in their decorations. 

The designers of text-to-speech systems have all encountered the necessity of performing a 

syntactic analysis to produce a natural prosody. However, resource limitations have forced them to 

rely only on very shallow analyses. In the case of MI, not only a complete syntactic and semantic~ 

analysis will be available, but it will even be possible to transmit from the situation and discourse 

understanding level some information useful for speech synthesis, like theme, emphasis, or speech 

act type. 

The resulting d-tree would then be passed to phonetic generation, a straightforward adaptation 

of morphological generation. The last process, of course, is speech generation from the resulting 

phonetic target text. 
『．

G' 
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CONCLUSION AND PERSPECTIVES 

｀ 

As Machine Translation, Machine Interpretation is an engineering entreprise. Involving speech 

recognition and synthesis, it is even more complex. The architecture presented above may also seem 

complex. In a sense, this is unavoidable. However, we have tried to keep it as simple as possible, by 

proposing a unique type of data structure, compatible with all algorithmic methods which have been 

successfully applied in Speech Recognition, Machine Translation and Language Understanding, and 

also compatible with future developments in Neural Networks. 

We hope that work in this direction will provide a sound basis for developing operational MI 

systems and for improving the robustness of MT systems. From a more speculative point of view, 

this type of architecture may also. be seen as a framework for using statistical techniques at higher 

levels of linguistic abstraction than what is currently done, and for paving the way for future use of 

the promising neural network techniques, without loosing the benefit of well proven symbolic 

f'&¥, techniques, which in our opinion can not be replaced by statistical methods when it comes to explicit 

discourse understanding and planning. 
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