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Abstract 

Scaling connect1omst models to larger connectionist systems is difficult, because larger networks require 
mcreasmg amounts of training time and data and the complexity of the optimization task quickly reaches 
computationally unmanageable proportions. In this paper, we train several small Time-Delay Neural 
Networks aimed at all phonemic subcategories (nasals, fricatives, etc.) and report excellent fine phone-
mic discrimination performance for all cases. Exploiting the hidden structure of these smaller phonemic 
subcategory networks, we then propose several techniques that allow us to "grow" larger nets in an incre-
mental and modular fashion without loss in recognition performance and without the need for excessive 
training time or additional data. These techniques include class discriminatory learning, connectionist 
glue, selective/partial learning and all-net fine tuning. A set of experiments shows that stop consonant 
networks (BDGPTK) constructed from subcomponent BDG-and PTK-nets achieved up to 98.6% correct 
recognition compared to 98.3% and 98.7% correct for the component BDG-and PTK-nets. Similarly, 
an incrementally trained network aimed at all consonants achieved recognition scores of about 95.9% 
correct. These result were found to be comparable to the performance of the subcomponent networks 
and significantly better than several alternative speech recognition methods. 
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l Introduction 

A number of studies have recently demonstrated [1,2,3] that connectionist architectures capable of captur-
ing some critical aspects of the dynamic nature of speech, can achieve superior recognition performance 
for small but difficult phonemic discrimination tasks. Encouraged by these results we would like to ex-
plore the question, how we might expand on these models to make them useful for the design of speech 
recognition systems. A problem that emerges, however, as we attempt to apply neural network models 
to the full speech recognition problem is the problem of scaling. Simply extending our networks to ever 
larger structures and retraining them soon exceeds the capabilities of even the fastest and largest of 
today's supercomputers. Moreover, the search complexity of finding an optimal solution in a huge space 
of possible network configurations quickly assumes unmanageable proportions. In an effort to extend our 
models from small recognition tasks to large scale speech recognition systems, we must therefore explore 
modularity and incremental learning as design strategies to break up a large learning task into smaller 
subtasks. Breaking up large tasks into subtasks to be tackled by individual black boxes interconnected 
in ad hoc arrangements, on the other hand, would mean to abandon one of the most attractive aspects 
of connectionism: the ability to perform complex constraint satisfaction tasks in a massively parallel and 
interconnected fashion, in view of an overall optimal performance goal. In this paper we demonstrate 
based on a set of experiments aimed at phoneme recognition that it is indeed possible to construct large 
neural networks by exploiting the hidden structure of smaller trained subcomponent networks. A set of 
successful techniques is developed that bring the design of practical large scale connectionist recognition 
systems within the reach of today's technology. 
The present paper has five parts: In the next section .we review Time-Delay Neural Networks as 
a technique to achieve accurate, reliable classification of phonemes in small but ambiguous phonemic 
subcategories (e.g., BDG, PTK, etc.). E.xcellent performance results are reported for all phonemic coarse 
classes found in a Japanese large vocabulary word database. In section 3, we then explore techniques for 
the modular extension of small networks to larger "connectionist systems". In section 4, we then apply 
these techniques and present a large network, that was designed to recognize all the consonants in our 
database. We summarize our results in the last section of this paper. 

2 Small Phonemic Classes by Time-Delay Neural Networks 

To be useful for the proper classification of speech signals, a neural network must have a number of 
properties. First, it should have multiple layers and sufficient interconnections between units in each of 
these layers. This is to ensure that the network will have the ability to learn complex non-linear decision 
surfaces[4]. Second, the network should have the ability to represent relationships between events in time. 
These events could be spectral coefficients, but might also be the output of higher level feature detectors. 
Thi:d, the actual features or abstractions learned by the network should be invariant under translation 
in time. Fourth, the learning procedure should not require precise temporal alignment of the labels that 
are to be learned. Fifth, the number of weights in the network should be small compared to the amount 
of training data so. that the. network is forced to encode the training data by extracting regularity. In the 
following, we review Time-Delay Neural Networks (TDNNs) as an architecture that satisfies all of these 
criteria and. was designed explicitly for the classification of phonemes within small phonemic classes such 
as the voiced stops, "B", "D", "G", the voiceless stops "P", "T", "K", etc. 
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2.1 Review of a Time-Delay Neural Network's Architecture 

The basic unit used in many neural networks computes the weighted sum of its inputs and then passes 
this sum through a non-linear function, most commonly a threshold or sigmoid function[4,5]. In our 
TDNN, this basic unit is modified by introducing delays D1 through DN as shown in Fig.I. The J inputs 
of such a unit now will be multiplied by several weights, one for each delay and one for the undelayed 
input. For N = 2, and J = 16, for example, 48 weights will be needed to compute the weighted sum of 
the 16 inputs, with each input now measured at three different points in time. In this way a TDNN unit 
has the ability to relate and compare current input with the past history of events. The sigmoid function 
was chosen as the non-linear output function F due to its convenient mathematical properties[5,6]. 
For the recognition of phonemes, a three layer net is constructed. Its overall architecture and a typical 
set of activities in the units are shown in Fig.2 based on one of the phonemic subcategory tasks (BDG). 
At the lowest level, 16 melscale spectral coefficients serve as input to the network. Input speech, 
sampled at 12 kHz, was hamming windowed and a 256-point FFT computed every 5 msec. Melscale 
coefficients were computed from the power spectrum[l,2] and adjacent coefficients in time collapsed 
resulting in an overall 10 msec frame rate. The coefficients of an input token (in this case 15 frames of 
speech centered around the hand labeled vowel onset) were then normalized to lie between -1.0 and +1.0 
with the average at 0.0. Fig.2 shows the resulting coefficients for the speech token "BA" as input to the 
network, where positive values are shown as black and negative values as grey squares. 
This input layer is then fully interconnected to a layer of 8 time delay hidden units, where J = 16 
and N = 2 (i.e., 16 coefficients over three frames with time delay 0, 1 and 2). An alternative way of 
seeing this is depicted in Fig.2. It shows the inputs to these time delay units expanded out spatially into 
a 3 frame window, which is passed over the input spectrogram. Each unit in the first hidden layer now 
receives input (via 48 weighted connections) from the coefficients in the 3 frame window. The particular 
delay choices were motivated by earlier studies[7,1,2,8,9,10,11]. 
In the second hidden layer, each of 3 TDNN units looks at a 5 frame window of activity levels in 
hidden layer 1 (i.e., J = 8, N = 4). The choice of a larger 5 frame window in this layer was motivated by 
the intuition that higher level units should learn to make decisions over a wider range in time based on 
more local abstractions at lower levels. 
Finally, the output is obtained by integrating (summing) the evidence from each of the 3 units in 
hidden layer 2 over time and connecting it to its pertinent output unit (shown in Fig.2 over 9 frames for 
the "B" output unit). In practice, this summation is implemented simply as another TDNN unit which 
has fixed equal weights to a row of unit firings over time in hidden layer 2. While the network shown 
in Fig.2 was designed for a 3 class problem (e.g., BDG or PTK), variations to accommodate 2, 4 or 5 
classes are easily implemented by allowing for 2, 4 or 5 units in hidden layer 2 and in the output layer. 
When the TDNN has learned its internal representation, it performs recognition by passing input 
speech over the TDNN units. In terms of the illustration of Fig.2 this is equivalent to passing the time 
delay windows over the lower level units'firing patterns. At the lowest level, these firing patterns simply 
consist of the sensory input, i.e., the spectral coefficients. 
Each TDNN unit outlined in this section has the ability to encode temporal relationships within the 
range of the N delays. Higher layers can attend to larger time spans, so local short duration features will 
be formed at the lower layer and more complex longer duration features at the higher layer. The learning 
procedure ensures that each of the units in each layer has its weights adjusted in a way that improves 
the network's overall performance. 
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The network described is trained using the Back-propagation Learning Procedure[5,6]. This procedure 
iteratively adjusts all the weights in the network so as to decrease the error obtained at its output units. 
For translation invariance, we need to ensure during learning that the network is exposed to sequences 
of patterns and that it is allowed (or encouraged) to learn about the most powerful cues and sequences 
of cues among them. Conceptually, the back-propagation procedure is applied to speech patterns that 
are stepped through in time. An equivalent way of achieving this result is to use a spatially expanded 
input pattern, i.e., a spectrogram plus some constraints on the weights. Each collection of TDNN-units 
described above is duplicated for each one frame shift in time. In this way the whole history of activities 
is available at once. Since the shifted copies of the TDNN-units are mere duplicates and are to look for 
the same acoustic event, the weights of the corresponding connections in the time shifted copies must 
be constrained to be the same. To realize this, we first apply the regular back-propagation forward 
and backward pass to all time shifted copies as if they were separate events. This yields different error 
derivatives for corresponding (time shifted) connections. Rather than changing the weights on time-
shifted connections separately, however, we actually update each weight on corresponding connections by 
the same value, namely by the average of all corresponding time-delayed weight changes1. Fig.2 illustrates 
this by showing in each layer only two connections that are linked to (constrained to have the same value 
as) their time shifted neighbors. Of course, this applies to all connections and all time shifts. In this way, 
the network is forced to discover useful acoustic-phonetic features in the input, regardless of when in time 
they actually occurred. This is an important property, as it makes the network independent of errorprone 
preprocessing algorithms, that otherwise would be needed for time alignment and/or segmentation. 

Experimental Conditions, Database For performance evaluation, we have used a large vocabulary 
database of 5240 common Japanese words[l,2]. The data used in this paper was uttered in isolation 
by one male native Japanese speaker (MAU). All utterances were recorded in a sound proof booth and 
digitized at a 12 kHz sampling rate. The database was then split into a training set and a testing set of 
2620 utterances each, from which the actual phonetic tokens were extracted. The training tokens (up to 
600 tokens per phoneme2) were randomized within each phoneme class. For a given training run they 
were then presented, alternating between each class to be learned. If a phoneme class was represented by 
an insufficient number of available training tokens, random tokens from its set were repeated, in order to 
preserve the alternating sequence of presentations among all training tokens. For performance evaluation, 
we have run all experiments on the testing tokens only, i.e., on tokens not included during training. 
The entire database was phonetically handlabeled[12]. These labels were used in the experiments 
reported below to center a given phoneme in the input range used for learning and evaluation. No 
attempt was made to correct for improper handlabels. Since all networks described here were trained 
in a translation invariant fashion, possible misalignments at the input are of no serious concern as long 
as all・the critical features needed for discrimination are present somewhere in the input range. For 
consistency among our networks and efficiency of learning, we continued to employ a 150 msec input 
range. Note, however, that longer input ranges are possible and might in fact be preferable to extract all 
useful features of a given phoneme. All tokens in the database were included in the test set or the training 

1 Note that weight changes were carried out after presentation of all training筵 mples[6].
2Note, that for some phoneme categories an unnecessarily large number of tokens was found in the database (e.g., 
vowels), while for some others (e.g., "P") only few tokens were extracted. W届leexcessive tokens are simply discarded at 
random to reduce the dataset size, a lack of tokens leads to poor generalization. The low recognition scores for "P" are 
therefore a result of the limited training data. 
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set, respectively, and no preselection was done. The resulting data included a considerable amount of 
variability (see [1,2] for examples) due to its position within an utterance or phonetic context. 

2.2・Discrimination Performance in Phonemic Subclasses 

To evaluate our TDNNs on all phoneme classes (see [1,2) for in depth discussion for voiced stops), 
recognition experiments have been carried out for seven phonemic subclasses found in the database. For 
each of these classes, TDNN s with an architecture similar to the one shown in Fig.2 were trained. A total 
of seven nets aimed at the major coarse phonetic classes in Japanese were trained, including voiced stops 
B, D, G, voiceless stops P,T,K, the nasals M, N and syllabic nasals, fricatives S, SH, H and Z, affricates 
CH, TS, liquids and glides R, W, Y and finally th~set of vowels A, I, U, E and O. Each of these nets was 
given between two and five phoneme classes to distinguish and the pertinent input data was presented ( 
for learning. Note, that each net was trained only within each respective coarse class and has no notion 
of phonemes from other classes yet. Table 1 shows the recognition results for each of these major coarse 
classes. 

3 Scaling TDNNs to Larger Phonemic Classes 

¥Ve have seen in the previous section that TDNNs achieve superior recognition performance on difficult 
but small recognition tasks. To train these networks, however, substantial computational resources were 
needed. This raises the question of how our good but admittedly limited networks could be extended to 
encompass all phonemes or handle speech recognition in general. To shed light on this question of scaling, 
we consider first the problem of extending our networks from the task of voiced stop consonant recognition 
(hence the BDG-task) to the task of distinguishing among all stop consonants (the BDGPTK-task). 

3.1 The Problem of Training Time 

For a network aimed at the discrimination of the voiced stops (a BDG-net), approximately 6000 connec-
tions had to be trained over about 800 training tokens. An identical net (also with approximately 6000 
ci:mnections to be trained3) can achieve discrimination among the voiceless stops ("P", "T" and "K"). To 
extend our networks to the recognition of all stops, i.e., the voiced and the unvoiced stops (B,D,G,P,T,K), "' 
a larger net is required. We have trained. such a network for experimental purposes. To allow for the 
necessary number of features to develop we have given this net 20 units in the first hidden layer, 6 units 
in hidden layer 2 and 6 output units. Fig.3 shows this net in actual operation with a "G" presented at its 
input. Eventually a high performance network was obtained that achieves 98.3% correct recognition over 
a 1613-token BDGPTK-test database, but it took inordinate amounts of learning to arrive at the trained 
net (several weeks on a 4 processor Alliant!). Although going from voiced stops to all stops is only a 
modest increase in task size, about 18,000 connections had to be trained. To make matters worse, not 
only the number of connections has to be increased with task size, but in general the amount of training 
data required for good generalization of a larger net has to be increased as well. Naturally, there are prac-
tical limits to the size of a training database and more training data translates into even more learning 

3 Note, that these are connections over which a back-propagation pass is performed during each iteration. Since many of 
them share the same weights, only a small fraction (about 500) of them are actually free parameters. 
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TDNN 

phoneme 
#errors/ 
#tokens 

%correct total% 

b 5/227 97.8 

d 2/179 98.9 98.6 

g 誓 2/252 99.2 

p 6/15 60.0. 

t 6/440 98.6 98.7 

k 0/500 100.0 

m 14/481 97.1 

n 16/265 94.0 96.6 

N 12/488 97.5 

s 6/538 98.9 
.、、

sh 0/316 100.0 99.3 

h 1/207 99.5 

z 1/115 99.1 

ch 0/123 100.0 100 

ts 0/177 100.0 

r 0/722 100.0 

w 0/78 100.0 99.9 

y 1/174 99.4 

a 0/600 100.0 

i 1/600 99.8 

u 25/600 95.8 98.6 

e 8/600 98.7 

゜
7/600 98.8 

Table 1: Recognition Results for 7 Phoneme Classes 

12 



ヽ
ヽヽ

＼
 

-．ヽ
ー」

K
T
P
G
D
B
 

Output Layer 

ヽヽ ＼ 

ヽヽ, .... ロ....1~•·····.. '■■■■■■■■ ....• 
•••••••• ••••••••• 

Hidden Layer 2 

．．．．．，． Hidden Layer 1 

/
|
＼
 

• • • ■ I● ● ● ・・・・・1・ ■ •••••• ・・・・・・・・・・; ・・．．．．．．．．．．．． 

→ 
I ヽ
I ヽ
I ヽ

~ 

ヽ

嘩早眸罪症華：罪描•" = • • • • • 
華罪罪ii圭臣圭細罪茸罪ii誰圭声匡！罪
＝声匪罪罪掴i華 i田"= = "" = =• =• iF. 
=目i匪臣i臣血'. . . . . . 

.'" •• -■ ■ ■ ••• ■ •• 

. " ; 臣臣証む ・ー・・・・・
■ "号ii;国王辛" . . . . . . - . 

王巨目匪罪匪華証--•······
罪固封匪罪罪匡罪 Eli ■ ■■■■■■ 
証華罪群 EE;;;; 

' ．．． ··•····· l!E匪罪i='5五-■■■■■■■■

"罪郡 ,a,芦 5·••······I "• • ■ ■ ■ ■ ■ •• ■ ■ ■ ■ 
•·········· ー・ー・••••••••••••••• 

Input Layer 
（＼ 

Figure 3: TDNN activation patterns for a BDGPTK-net 

13 



time. Learning is further complicated by the increased complexity of the higher dimensional weightspace 
in large nets as well as the limited precision of our simulators. Despite progress towards faster learning 
algorithnぉ[13,14),it is clear that we cannot hope for one single monolithic network to be trained within 
reasonable time as we increase task size and eventually aim for continuous, speaker-independent speech 
recognition. Moreover, requiring that all classes be considered and samples of each class be presented 
during training, is undesirable for practical reasons as we contemplate the design of large neural systems. 
Alternative ways to modularly construct and incremental train such large neural systems must therefore 
be explored. 

3.2 Experiments with Modularity 

Four experiments were. performed to explore methodologies for constructing phonetic neural nets from 
smaller component subnets. As a task we used again stop consonant recognition although other tasks 
have recently been explored with similar success (BDG and MNsN). As in the previous section we used 
a large database of 5240 common Japanese words spoken in isolation. Half ofthese utterances were used 
as training database, and the other half for testing. The two component phoneme classes that make up 
the set of stops are given by the voiced stops B,D and G (the BDG-set) and the voiceless stops P,T and 
K (the PTK-set). 

A First Attempt Two separate TDNN s have been trained for the two sets based on training data from 
their own set only. On testing data the BDG-net used here performed 98.3% correct for the BDG-set 
and the PTK-net achieved 98.7% correct recognition for the PTK-set 4. As a first naive attempt we 
have now simply run a speech token from either set (i.e., B,D,G,P,T or K) through both a BDG-net and 
a PTK~net and selected the class with the highest activation from either net as the recognition result. 
As might have been expected (the component nets had only been trained for their respective classes), 
poor recognition performance (60.5%) resulted from the 6 class experiment. This is partially due to the 
inhibitory property of the TDNN that we have observed elsewhere[l,2]. While this property results in 
high confidence and reliability at the output decisions for a token from a class the network was trained 
for, it also produces erroneous activations for classes that had not been part of its world. To combine the 
two networks more effectively, therefore, portions of the net have to be retrained. 

Exploiting the Hidden Structure of Subcomponent Nets We start by assuming that the first 
hidden layer in either net already contains all the lower level acoustic phonetic features we need for proper 
identification of the stops and freeze the connections from the input layer (the speech data) to the first 
hidden layer's 8 units in the BDG-net and the 8 units in the PTK-net. Back-propagation learning is then 
performed only on the connections between these 16 (= 2 X 8) units in hidden layer 1 and hidden layer 
2 and between hidden layer 2 and the combined BDGPTK-net's output. This network is shown in Fig.4 
with a "G" token presented as input. Only about 4,400 new connections had to be trained in this case and 
the resulting network achieved a recognition performance of 98.1 % over the testing data. Combination of 
the two subnets has therefore yielded a promising combined net although a slight performance degradation 
compared to the subnets was observed. This degradation could be explained by the increased complexity 

4 The connection weights used in these experiments stem from a shorter learning run than the one reported in the previous 
section and elsewhere[l], hence the slightly different recognition scores. 
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Figure 4: BDGPTK-net trained from hidden units from a BDG-and a PTK-net. 
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of the task, but also by the inability of this net to develop lower level acoustic-phonetic features in hidden 
layer 1. Such features may in fact be needed for discrimination between the two stop classes, in addition 
to the within-class features. 

Class Distinctive Features In a third experiment, we therefore first train a separate TDNN to 
perform the voiced/unvoiced (V /UV) distinction between the BDG-and the PTK-task. The network 
has a very similar structure as our BDG-nets, except that only four hidden units were used in hidden layer 
1 and two in hidden layer 2 and at the output. This V /UV-net achieved better than 99% voiced/unvoiced 
classification on the test data and its hidden units developed in the process are now used as additional 
features for the BDGPTK-task. Fig.5 shows the resulting network. As can be seen the connections from 
the input to the first hidden layer of the BDG-, the PTK-and the V /UV nets are frozen and only the 
connections that combine the 20 units in hidden layer 1 to the higher layers are retrained. The resulting 
net was evaluated as before on our testing database and achieved a recognition score of..98.4% correct. 

Incremental Learning by Way of''Connectionist Glue" In the previous experiment, good results 
could be ob~ained by'adding units that we believed to be the useful class distinctive ,features that were 
missing-in dut・second experiment. In a: fourth experiment, we have now examined an approach that 
allows for the network to be free to discover any additional features that might be useful to merge the 
two component networks. In stead of previously training a class distinctive network, we now add four units 
to hidden layer 1, whose connections to the input are free to learn any missing discriminatory features 
to supplement the 16 frozen BDG and PTK features. We call these units the "connectionist glue" that 
we apply to merge two distinct networks into a new combined net. This network is shown in Fig.6. The 
hidden units of hidden layer 1 from the BDG-net are shown on the left and those from the PTK-net on 
the right. The connections from the moving input window to these units have been trained individually 
on BDG-and PTK-data, respectively and -as before-remain fixed during combination learning. In the 
middle on hidden layer 1 we show the 4 free "Glue" units. Combination learning now finds an optimal 
combination of the existing BDG-and PTK-features and also supplements these by learning additional 
interclass discriminatory features. In doing so we have raised the number of connections to be trained 
to 8,000, which is only a small increase in number of connections (and learning time) over the original 
component nets. Performance evaluation of this network over the BDGPTK test database yielded a 
recognition rate of 98.4%. 

All-Net Tuning In addition to the techniques described so far, it may be useful to free all connections 
in a large modularly constructed network for an additional small amount of fine tuning. This has been 
done for the BDGPTK-net shown in Fig.6 yielding some additional performance improvements. The 
resulting network finally achieved (over testing data) a recognition score of 98.6%. 

3.3 Steps for the Design of Large Scale Neural Nets 

Table 2 summarizes the major results from our experiments. In the first row it shows the recognition 
performance of the two initial TDNNs trained individually to perform the BDG-and the PTK-tasks, 
respectively. Underneath, we show the results from the Hidden Markov Model, as discussed in the 
previous section. The third row shows that simply adding TDNNs and selecting the unit with the largest 

16 



K
T
P
G
D
B
 

Output Layer 

Hidden Layer 2 

BDG 

（
＼
 

-;;;:: ニ:-_-+-一\~===-一
疇疇恥mjm;出...l ..... 
声声匪頃；臣阻i細匪阻且＇罪且罪匪匪；麒匪 i
巨匿匪罪固靡匪9証".,., 田口釦., " 
日匡苗！阻；ro,'"I―.. ・1・. . . -
• -.••• ■ ••••• ■ •• 
.. -即即'"'庄.•I・・・・・.. " "田 ll!!I• • • I• • • • • 

Input Layer 

•••••• •••••• •••••• •••••• •••••• 
.
.
.
.
.
 p
 

．．．．．． -．．．． 
•
証

9
9

.

.

 

即
即
i
m
i
即
“
•

悶

[
[
I

匡

回

国

国

庶

声

饂

声

戸

臣

・

E

芦

臣

匡

E

・
● ー・・・・i-··~----·•••••••••••••• 

（
＼
 

Figure 5: Combination of a BDG-net, a PTK-net and a class distinctive Voiced/Unvoiced-net. 
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Method bdg ptk bdgptk 

Individual TDNNs 98.3 % 98.7 % 

TDNN:Max. Activation 60.5 % 

Retrain BDGPTK 98.3 % 

Retrain Combined 

Higher Layers 98.1 % 

Retrain with V/UV-units 98.4 % 

Retrain with Glue 98.4 % 

All-Net Fine Tuning 98.6 % 

／
ー
＼

Table 2: From BDG to BDGPTK; Modular Scaling Methods. 

output activation does not lead to acceptable performance (only 60.5% correct). We have observed before 
that this is in part a negative consequence of inhibition in these networks. While inhibition of incorrect 
output categories leads to good, robust and confident performance, it creates erroneous results when 
additional networks are simply added without consideration of the interaction between them. We have 
then retrained a complete BDGPTK-net which achieves good recognition performance (98.3% correct), 
but found that it requires excessive amounts of training time. As an alternative, we have then explored 
three methods that exploit the hidden structure of previously learned subcomponent networks, e.g., the 
BDG-and PTK-networks. With small additional training at the higher layers these networks could be 
merged and achieve good recognition performance (98:1_%). When additional hidden units from a class'" 
distinctive voiced/unvoiced TDNN were added, recogmt1on results improve to 98.4%. Similarly, through 
the application of "connectionist glue", a 98.4% performance score is achieved. Finally, when all the 
connections in the latter network are freed to perform small additional adjustments over a few additional 
training iterations, recognition results improve further to 98.6%. 
The results indicate, that larger TDNNs can indeed be trained incrementally, without requiring 
excessive amounts of training and without loss in performance. In fact, the resulting incrementally trained 
networks appear to perform slightly better than the monolithically trained BDGPTK-net. Moreover, 
they achieve performance as high as the subcomponent BDG-and PTK-nets alone. As a strategy for the 
efficient construction of larger networks we have found the following concepts to be extremely effective: 
modular, incremental learning, class distinctive learning, connectionist glue, partial and selective learning 
and all-net fine tuning. 
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4 Consonant Recognition by Modular TDNN Design 

The techniques described in the previous section were applied to the task of recognizing all consonants 
in our database. In the following we describe only our first attempts at building such a larger net and 
note that numerous alternative solutions remain to be explored. 

4.1 Consonant Network Architecture 

Our consonant TDNN (shown in Fig.7) w邸 constructedmodularly from networks aimed at the consonant 
subcategories described in section 2, i.e., the BDG-, PTK-, MNsN-, SShHZ-, TsCh-and the RWY-tasks. 
Each of these nets had been trained before to discriminate between the consonants within each_ class. 
Hidden layers・1 and 2 were then extracted from these nets, i.e. their weights copied and frozen in a new 
combined consonant TDNN. In addition, an intercl邸 sdiscrimination net was trained・that distinguishes 
between the consonant subcl邸 sesand thus hopefully provides missing featural information for interclass 
discrimination much like the V /UV network described in the previous section. The structure of this 
network w邸 verysimilar to other subcategory TDNNs, except that we have allowed for 20 units in 
hidden_ layer 1 and 6 hidded units (one for each coarse consonant class) in hidden layer 2. The weights 
leading;・into hidden layers 1 and 2 were then also copied from this interclass discrimination net into the 
consonant network and frozen. Three connections were then established to each of the 18 consonant 
output categories (B,D,G,P,T,K,M,N,sN,S, Sh,H,Z,Ch,Ts,R,W and Y): one to connect an output unit 
with the appropriate interclass discrimination unit in hidden layer 2, one with the appropriate intraclass 
discrimination unit from hidden layer 2 of the corresponding subcategory yet and ofie with the always 
activated threshold unit (not shown in Fig. 7)5. The overall network architecture is illustrated in Fig.7 for 
the case of an incoming test token (e.g., a "G"). For simplicity, Fig.7 shows only the hidden layers from 
the I:mG-,PTK,SShHZ-and th -• e mterclass d1scnmmat1on neta. At the output, only th e two connections 
leading to the correctly activated "G"-output unit are shown. Units and connections pertaining to the 
other subcategories as well as connections leading to the 17 other output units are omitted for clarity 
in Fig.7. All free weights were initialized with small random weights and then trained by the back-

6 propagat10n learning procedure . 

4.2 Results 

After completion of the learning run the・entire net was evaluated over 3061 consonant test tokens, 
and achieved a 95.0% recognition accuracy. All-net fine tuning was then performed by freeing up all 
connections in the network to allow all connections to make small additional adjustments in the interest 
of better overall performance. After completion of all-net fine tuning, the performance of the network 
then yielded 95.9% correct consonant recognition over the test data. Table 3 summarizes the our results 
for the consonant recognition task. In the first 6 rows the recognition results (measured over the available 
test data in their respective sublasses) are given. The entry "cons.class" shows the performance of the 
interclass discrimination net in identifying the coarse phonemic subclass of an unknown token. 96.7% 

5Note, that as before, the time shifted activations of the units in hidden layer 2 are simply integrated and do not receive 
a separate weight. This was done in the interest of shift-invariance, in order to force the network to learn consonantal 
features of speech independent of the time alignment implicit in the extraction of the phoneme training tokens. 
6Since only the top layer was trained in this case, this is equivalent to perceptron learning. 
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Figure 7: Modular Construction of an All Consonant Network 
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Consonants 

Task Recognition Rate(%) 

bdg 98.6 

ptk 98.7 

mnN 96.6 

sshhz 99.3 

chts 100.0 

rwy 99.9 

cons. class 96.7 

All consonant TDNN 95.0 

All-Net Fine Tuning 95.9 

HMM(standard) 83.6 

HMM(improved) 92.7 

Table 3: Consonant Recognition Performance Results. 
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of all tokens were correctly categorized into one of the six consonant subclasses. After combination 
learning and all-net fine tuning our consonant net then yielded consonant recognition scores of 95.0% 
and 95.9%, respectively. To put these recognition results into perspective, we have also compared these 
results with several implementations of a Hidden Markov Model trained to perform the same task. Two 
entries are shown in table 3. The first (83.6%) shows the recognition performance of a relatively standard 
(although optirnized[l5,16,l]) HMM. Recently, a set of additional techniques (shown here as "improved 
HMM") yielded substantial gains in performance[l 7]. They include use of three separate codebooks 
based on Weighted Likelihood Ratio (WLR), Differential Cepstral Coefficients and Power[l 7] in order to 
better represent the dynamic properties of speech events (such as transitions, bursts, etc.). In addition, 
noticeable performance improvements resulted from the use of separate models for phonemes from word 
initial and word middle positions. These separate models required additional labels in the training data 
(indicating position within the utterance), that were not given to the TDNNs. Substantial differences ¥ 
therefore exist between the input representations used by the two methods, However, as they were both 
developed in good faith by two separate research groups attempting to optimize either model, we believe 
they still provide an insightful comparison. Our results indicate that the TDNN yields significantly lower 
error rates (significant at p < 0.01 when compared to the best of our HMMs over an all consonant 
recognition task. 

5 Conclusion 

We summarize the major technical results from this work: 

• We have reported further experimental results from the use of Time Delay Neural Networks 
(TDNNs) for recognition in all major phonemic categories in a large vocabulary speech datab邸 eand
have measured excellent recognition performance. We believe, that the good performance results are 
due to the key properties of TDNNs, including: shift invariance, the proper representation of the 
dynamic time-varying properties of speech and the automatic discovery of alternate, complementary 
internal features of speech. These properties have been extensively documented elsewhere[l,2]. 

• The serious problems associated with scaling smaller phonemic subcomponent networks to larger 
phonemic tasks are overcome by careful modular design. Modular design is achieved by several 
important strategies: selective and incremental learning of subcomponent tasks, exploitation of 
previously learned hidden structure, the application of connectionist glue or class distinctive features 
to allow for separate networks to "grow" together, partial training of portions of a larger net and 
finally, all-net fine tuning for making small additional adjustment in a large net. 

• Our techniques have been applied to the construction of a large TDNN aimed at the recognition of 
all consonants. While a number of alternate strategies remain to be explored, our best recognition 
result so far indicates that the consonants extracted from a large vocabulary database of isolated 
words can be recognized at a rate of 95.9 % or better using an incrementally trained net. We have 
compared this performance result with several Hidden Markov Models developed (and improved) 
in our laboratory and found that the TDNN yielded significantly lower error rates7. The results 

7We would like to caution the reader again, that numerous alternative HMM designs as well as alternative input data 
representations have not been tried in this comparison. These could lead to further performance improvements. Also while 
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indicate that a high performing large neural network could indeed be constructed without loss in 

recognition performance and with only little additional training from smaller networks aimed at 

smaller subtasks. 

Our findings suggest, that judicious application of a number of connectionist design techniques could 

lead to successful large scale connectionist speech recognition systems. 

significantly better recognition performance was achieved by the TDNN for phoneme recognition, word level integration 
and good word level performance have not been attempted yet. Such integration has been shown successfully using HMMs. 
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