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Abstract 

In this paper we present a Time Delay Neural Network (TDNN) approach to 
phoneme recognition which is characterized by two important properties: 1.) 
Using a 3 layer arrangement of simple computing units, a hierarchy can be 
constructed that allows for the formation of arbitrary nonlinear decision sur-
faces. The TDNN learns these decision surfaces automatically using error back-
propagation[!]. 2.) The time-delay arrangement enables the network to discover 
acoustic-phonetic features and the temporal relationships between them inde-
pendent of position in time and hence not blurred by temporal shifts in the 
mput. 

As a recognition task, the speaker-dependent recognition of the phonemes 
"B" "D" , and "G" in varying phonetic contexts was chosen. For comparison, 
several discrete Hidden Markov Models (HMM) were trained to perform the 
same task. Performance evaluation over 1946 testing tokens from three speak-
ers showed that the TDNN achieves a recognition rate of 98.5 % correct while 
the rate obtained by the best of our HMMs was only 93.7 %. Closer inspection 
reveals that the network "invented" well-known acoustic-phonetic features (e.g., 
F2-rise, F2-fall, vowel-onset) as useful abstractions. It also developed alternate 
internal representations to link different acoustic realizations to the same con-
cept. 
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Abstract 

In this paper we present a Time Delay Neural Network (TDNN) approach to 
phoneme recognition which is characterized by two important properties: 1.) 
Using a 3 layer arrangement of simple computing units, a hierarchy can be 
constructed that allows for the formation of arbitrary nonlinear decision sur-
faces. The TDNN learns these decision surfaces automatically using error back-
propagation[l]. 2.) The time-delay arrangement enables the network to discover 
acoustic-phonetic features and the temporal relationships between them inde-
pendent of position in time and hence not blurred by temporal shifts in the 
input. 

As a recognition task, the speaker-dependent recognition of the phonemes 
"B" "D", and "G" . 111 varying phonetic contexts was chosen. For comparison, 
several discrete Hidden Markov Models (HMM) were trained to perform the 
same task. Performance evaluation over 1946 testing tokens from three speak-
ers showed that the TDNN achieves a recognition rate of 98.5 % correct while 
the rate obtained by the best of our HMMs was only 93.7 %. Closer inspection 
reveals that the network "invented" well-known acoustic-phonetic features (e.g., 
F2-rise, F2-fall, vowel-onset) as useful abstractions. It also developed alternate 
internal representations to link different acoustic realizations to the same con-
cept. 
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1 Introduction 

In recent years, the advent of new learning procedures and the availability of 
high speed parallel supercomputers have given rise to a renewed interest in con-
nectionist models of intelligence[l). These models are particularly interesting 
for cognitive tasks that require massive constraint satisfaction, i.e., the parallel 
evaluation of many clues and facts and their interpretation in the light ofnumer-
ous interrelated constraints. Cognitive tasks, such as vision, speech, language 
processin・g and motor control are also characterized by a high degree of uncer-
tainty and variability and it has proved difficult to achieve good performance 
for these tasks using standard serial programming methods. Complex networks 
composed of simple computing units are attractive for these tasks not only be-
cause of their "brain-like" appeal, but because they offer ways for automatically 
designing systenぉ thatcan make use of multiple interacting constraints. In gen-
eral, such constraints are too complex to be easily programmed and require the 
use of automatic learning strategies. Such learning algorithms now exist (For an 
excellent review, see Lippman[2]) and have been demonstrated to discover inter-
esting internal abstractions, in their attempts to solve a given problem[l,3,4,5). 
Learning is most effective when used in an architecture that is appropriate for 
the task. Indeed, the experiments reported in this paper suggest that as much 
prior knowledge as possible should be built into the network. 

Naturally, these techniques will have far-reaching implications for the design 
of automatic speech recognition systems, if proven successful in comparison to 
already existing techniques. Lippmann[6) has compared several kinds of neural 
networks with other classifiers and evaluated their ability to create complex 
decision surfa.ces. Other studies have investigated actual speech recognition 
tasks ai1d compared them to psychological evidence in speech perception[7) or 
to existing speech recognition techniques[S,9), Speech recognition experiments 
using neural nets have so far mostly been aimed at isolated word recognition 
(mostly the digit recognition tasl~) [10,11,12,13) or phonetic recognition with 
predefined constant[14,15] or variable phonetic contexts[16,14,17). 

A number of these studies report very encouraging recognition performance[16), 
but only few comparisons to existing recognition methods exist. Some of these 
comparisons found performance similar to existing methods[9,11), but others 
found that networks perform worse than other techniques[S). One might argue 
that this state of affairs is encouraging considering the amount of fine-tuning 
that has gone into optimizing the more popular, established techniques. Nev-
ertheless, better comparative performance figures are needed before neural net-
w•rks can be considered as a viable alternative for speech recognition systems. 

One possible explanation for the mixed performance results obtained so far 
may be limitations in computing resources leading to short-cuts that limit per-
formance. Another more serious limitation, however, is the inability of most 
neural network architectures to deal properly with the dynamic nature of speech. 
Two important aspects of this are for a network to represent temporal relation-
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ships between acoustic events, while at the same time providing for invariance 
under translation in time. The specific movement of a formant in time, for 
example, is an important cue to determining the identity of a voiced stop, but 
it is irrelevant whether the same set of events occurs a little sooner or later in 
the course of time. Without translation invariance a neural net requires precise 
segmentation, to align the input pattern properly. Since this is not always pos-
sible in practice, learned features tend to get blurred (in order to accommodate 
slight misalignments) and their performance deteriorates. 

In the present paper, we describe a Time Delay Neural Network (TDNN), 
which addresses both of these aspects and demonstrate through extensive per-
formance evaluation that superior recognition results can be achieved using this 
approach. In the following section, we begin by introducing the architecture 
and learning strategy of a TDNN aimed at phoneme recognition .. Next, we 
compare the performance of our TDNNs with one of the more popular cur-
rent recognition techniques. In section 3, we therefore describe several Hidden 
Markov Models (HMM), under development at ATR[18]. Both techniques are 
then evaluated over a testing database. We report the results in section 4 of this 
paper and show that substantially higher recognition performance is achieved 
by the TDNN than by the best of our HMMs. We also take a close look at 
the internal representation that the TDNN learns for this task. It discovers a 
number of interesting linguistic abstractions which we show by way of examples. 
The implications of these results are then discussed and summarized in the final 
section of this paper. 

2 Time Delay Neural Networks (TDNN) 

To be useful for speech recognition, a layered feed forward neural network must 
have a number of properties. First, it should have multiple layers and sufficient 
interconnections between units in each of these layers. This is to ensure that the 
network will have the ability to learn complex non-linear decision surfaces[2,6). 
Second, the network should have the ability to represent relationships between 
events in time. These events could be spectral coefficients, but might also be the 
output of higher level feature detectors. Third, the actual features or abstrac-
tions learned by the network should be invariant under translation in time1. 
Fourth, the learning procedure should not require precise temporal alignment 
of the labels that are to be learned. Fifth, the number of weights iri the network 
should be small compared to the amount of training data so that the network is 
forced to encode the training data by extracting regularity. In the following, we 
describe a TDNN architecture that satisfies all of these criteria and is designed 
explicitly for the recognition of phonemes, in particular, the voiced stops "B", 
"D" and "G". 

1 In vision, solutions to the similar problem of shift-invariance have been proposed by use 
of a "Neocognitron"(19). 
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2.1 A TDNN Architecture for Phoneme Recognition 

The basic unit used in many neural networks computes the weighted sum of its 
inputs and then passes this sum through a non-linear function, most commonly 
a threshold or sigmoid function[2,l]. In our TDNN, this basic unit is modified 
by introducing delays D1 through D N as shown in Fig.l. The J inputs of such a 
unit now will be multiplied by several weights, one for each delay and one for the 
undelayed input. For N = 2, and J = 16, for example, 48 weights will be needed 
to compute the weighted sum of the 16 inputs, with each input now measured 
at three different points in time. In this way a TDNN unit has the ability to 
relate and compare current input with the past history of events. The sigmoid 
function was chosen as the non-linear output function F due to its convenient 
mathematical properties[20 ,5]. 

For the recognition of phonemes, a three layer net is constructed互Itsoverall 
architecture and a typical set of activities in the units are shown in Fig.2. 

At the lowest level, 16 melscale spectral coefficients serve as input to the 
network. Input speech, sampled at 12 kHz, was hamming windowed and a 256-
point FFT computed every 5 msec. Melscale coefficients were computed from 
the power spectrum as in[21] and adjacent coefficients in time collapsed resulting 
in an overall 10 msec frame rate. The coefficients of an input token (in this case 
15 frames of speech centered around the hand labeled vowel onset) were then 
normalized to lie between -1.0 and +1.0 with the average at 0.0. Fig.2 shows 
the resulting coefficients for the speech token "BA" as input to the network, 
where positive values are shown as black and negative values as grey squares. 

This input layer is then fully interconnected to a layer of 8 time delay hidden 
units, where J = 16 and N = 2 (i.e., 16 coefficients over three frames with time 
delay 0, 1 and 2). An alternative way of seeing this is depicted in Fig.2. It 

shows the inputs to these time delay units expanded out spatially into a 3 
frame window, which is passed over the input spectrogram. Each unit in the 
first hidden layer now receives input (via 48 weighted connections) from the 
coefficients in the 3 frame window. The particular choice of 3 frames (30 msec) 
was motivated by earlier studies[22], that suggested that a 30 rr1Sec window 
might be sufficient to represent low level acoustic-phonetic events for phoneme 
recognition、 Itwas also the optimal choice among a number of alternative 
designs evaluated by Lang[23] on a similar task. 

In the second hidden layer, each of 3 TDNN units looks at a 5 frame window 
of activity levels in hidden layer 1 (i.e., J = 8, N = 4). The choice of a larger 
5 frame window in this layer was motivated by the intuition that higher level 
units should learn to make decisions over a wider range in time based on more 
local abstractions at lower levels. 

Finally, the output is obtained by integrating (summing) the evidence from 
each of the 3 units in hidden layer 2 over time and connecting it to its pertinent 
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2Lippma皿 [2,6)demonstrated recently that three layers can encode arbitrary pattern recog-
nition decision surfaces 
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Figure 1: A Time Delay Neural Network (TDNN) unit 
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output unit (shown in Fig.2 over 9 frames for the "B" output unit). In practice, 
this summation is implemented simply as another TDNN unit which has fixed 
equal weights to a row of unit firings over time in hidden layer 23. 

When the TDNN has learned its internal representation, it performs recog-
nition by passing input speech over the TDNN units. In terms of the illustration 
of Fig.2 this is equivalent to passing the time delay windows over the lower level 
units'firing patterns. At the lowest level, these firing patterns simply consist of 
the sensory input, i.e., the spectral coefficients. 

Each TDNN unit outliiied in this section has the ability to encode temporal 
relationships within the range of the N delays. Higher layers can attend to larger 
time spans, so local short duration features will be formed at the lower layer 
and more complex longer duration features at the higher layer. The learning 
procedure ensures that each of the units in each layer has its weights adjusted 
in a way that improves the network's overall performance. 

｛
 

2.2 Learning in a TDNN 

Several learning techniques exist for optimization of neural networks[l,2,24). For 
the present network we adopt the Back-propagation Learning Procedure[20,5). 
This procedure performs two passes through ,the network. During the forward 
pass, an input pattern is applied to the network with its current connection 
strengths (initially small random weights). The outputs of all the units at 
each level are computed starting at the input layer and working forward to the 
output layer. The output is then compared with the desired output and its 
error calculated. During the backward pass, the derivative of this error is then 
propagated back through the network, and all the weights are adjusted so as to 
decrease the error[20,5]. This is repeated many times for all the training tokens 
until the network converges to producing the desired output. 

In the previous section we described a method of expressing temporal struc-
ture in a TDNN and contrasted this method to training a network on a static 
input pattern (spectrogram), which results in shift sensitive networks (i.e., poor 
performance for slightly misaligned input patterns) as well as less crisp deci-
sion making in the units of the network (caused by misaligned tokens during 
training). 

To achieve the desired learning behavior, we need to ensure that the net-
work is exposed to sequences of patterns and that it is allowed (or encouraged) 
to learn about the most powerful cues and sequences of cues among them. Con-
ceptually, the back-propagation procedure is applied to speech patterns that are 
stepped through in time. An equivalent way of achieving this result is to use a 
spatially expanded input pattern, i.e., a spectrogram plus some constraints on 

3Note, however, that as for all units in tlus network (except the input units), the output 
units are also connected to a permanently active threshold unit. In this way, the de-bias of 
each output unit can still be adjusted for optimal classification. 
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the weights. Each collection of TDNN-units described above is duplicated for 
each one frame shift in time. In this way the whole history of activities is avail-
able at once. Since the shifted copies of the TDNN-units are mere duplicates 
and are to look for the same acoustic event, the weights of the corresponding 
connections in the time shifted copies must be constrained to be the same. To 
realize this, we first apply the regular back-propagation forward and backward 
pass to all time shifted copies as if they were separate events. This yields dif-

ferent error derivatives for corresponding (time shifted) connections. Rather 
than changing the weights on time-shifted connections separately, however, we 
actually update each weight on corresponding connections by the same value, 
namely by the average of all corresponding time-delayed weight changes4. Fig.2 
illustrates this by showing in each layer only two connections that are linked to 

(constrained to have the same value as) their time shifted neighbors. Of course, 
this applies to all connections and all time shifts. In this way, the network is 
forced to discover useful acoustic-phonetic features in the input, regardless of 
when in time they actually occurred. This is an important property, as it makes 

the network independent of errorprone preprocessing algorithms, that otherwise 

would be needed for time alignment and/or segmentation. In section 4.3, we 
will show examples of grossly misaligned patterns that are properly recognized, 

due to this property. 
Th.e procedure described here is computationally rather expensive, due to the 

many iterations necessary for learning a complex multidimensional weight space 
and the number of learning samples. In our case, about 800 learning samples 
were used and between 20,000 and 50,000 iterations of the back-propagation loop 
were run over all training samples. Two steps were taken, to perform learning 
within reasonable time. First, we have implemented our learning procedure in C 
and FORTRAN on a 4 processor Alliant supercomputer. The speed of learning 

can be improved considerably by computing the forward and backward sweeps 
for several different training samples in parallel on different processors. Further 

improvements can be gained by vectorizing operations and possibly assembly 
coding the innermost loop. Our present implementation achieves about a factor 
of 9 speedup over a VAX 8600, but still leaves room for further improvements 

(Lang[23] for example reports a speedup of a factor of 120 over a VAXll/780 
for an implementation running on a Convex supercomputer). The second step 
taken towards improving learning time is given by a staged learning strategy. 
In this approach we start optimizing the network based on 3 prototypical train-
ing tokens only5. In this case convergence is achieved rapidly, but the network 

will have learned a representation that generalizes poorly to new and different 
patterns. Once convergence is achieved, the network is presented with approx-

imately twice the number of tokens and learning continues until convergence. 

4 Note that in the experiments reported below these weight changes were actually carried 
out each time the error derivatives from all training samples had been computed[5]. 

5Note that for optimal learning, the training data is presented by always alternating tokens 
for ea.ch class. Hence we start the network off by presenting 3 tokens, one for each class, 
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Fig.3 shows the progress during a typical learning run. The measured error is 
1/2 the squared error of all the output units, normalized for the number of train-
ing tokens. In this run the number of training tokens used were 3,6,9,24,99,249 
and 780. As can be seen from Fig.3, the error briefly jumps up every time more 
variability is introduced by way of more training data. The network is then 
forced to improve its representation to discover clues that generalize better and 
to deemphasize those that turn out to be merely irrelevant ideosyncracies of a 
limited sample set. Using the full training set of 780 tokens this particular run 
was continued until iteration 35,000 (Fig.3 shows the learning curve only up to 
15,000 iterations). With this full training set small learning steps have to be 
taken and learning progresses slowly. In this case a step size of 0.002 and a 
momentum[5]-of 0.1 was used. The staged learning approach was found to be 
useful to move the weights of the network rapidly into the neighborhood of a 
reasonable solution, before the rather slow fine tuning over all training tokens 
begins. 

Despite these speedups, learning runs still take in the order of several days. 
A number of programming tricks(23] as well as modifications to the learning 
procedure[25] are not implemented yet and could yield another factor of 10 
or more in learning time reduction. It is important to note, however, that the 
amount of computation considered here is necessary only for learning of a TDNN 
and not for recognition. Recognition can easily be performed in better than 
real time on a workstation or personal computer. The simple structure makes 
TDNNs also well suited for standardized VLSI-implementation. The detailed 
knowledge could be learned≫off-line" using substa11tial computing power and 
then downloaded in the form of weights onto a real-time production network. 

3 Hidden Markov Models (HMM) 

As an alternative recognition approach we have implemented several Hidden 
Markov Models (HMM) aimed at phoneme recognition. HMMs are currently the 
most successful and promising approach [26,27,28] in speech recognition as they 
have been successfully applied to the whole spectrum of recognition tasks. Excel-
lent performance was achieved at all levels from the phonemic level(29,30,31,32] 
to word recognition[33,28) and to continuous speech recognition[34). HMMs' 
success is partially due to their ability to cope with the variability in speech 
by means of stochastic modeling. In the following sections, we describe the 
HMMs developed in our laboratory. They were aimed at phoneme recognition, 
more specifically the voiced stops "B", "D" and "G". Several experiments with 
variations on these models are described elsewhere[l8). 
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Figure 4: Hidden Markov Model 

3.1 An HMM for Phoneme Recognition 

The acoustic front end for Hidden Markov Modeling is typically a vector quan-
tizer that classifies sequences of short-time spectra. Such a representation was 
chosen as it is highly effective for HMM-based recognizers[34). 

Input speech was sampled at 12kHz, preemphasized by (1 -0.97 z-1) and 
windowed using a 256-point Hamming window every 3 msec. Then a 12-order 
LPC analysis was carried out. A codebook of 256 LPC spectrum envelopes 
was generated from 216 phonetically balanced words. The Weighted Likelihood 
恥 io[35,36)augmented with power values (PWLR)[37,36) was used as LPC 
distance measure for vector quantization. 

A typical HMM was adopted in this paper as shown in Fig.4. It has four 
states and six transitions. 

3. 2 Learning in an HMM 

The HMM probability values were trained using vector sequences of phonemes 
according to the forward-backward algorithm[26]. The vector sequences for "B", 
"D" and "G" include a consonant part and five frames of the following vowel. 
This is to model important transient informations, such as formant movement 
and has lead to improvements over context insensitive models [18]. 

The HMM was trained using about 250 phoneme tokens of vector sequences 
per speaker and phoneme (see details of the training database below). Fig.5 
shows for a typical training run the average log probability normalized by the 
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Figure 5: Learning in a Hidden Markov Model 

number of frames. Training was continued until the increase of the average log 
probability between iterations became less than 2 * 10-3. 

Typically, about 10 to 20 learning iterations are required for 256 tokens. A 
training run takes about one hour on a VAX 8700. Floor values were set on 
the output probabilities to avoid errors caused by zero-probabilities. We have 
experimented with composite models, which were trained using a combination of 
context-independent and context-dependent probability values as suggested by 
Schwartz et al.[29,30]. In our case, no significant improvements were attained. 

4 Recognition Experiments 

.i.terる;;1ons

We now turn to an experimental evaluation of the two techniques described 
in the previous sections. To provide a good framework for comparison, the 
same experimental conditions were given to both methods. For both, the same 
training data was used and both were tested on the same testing database as 
described below. 

/\~ 

，， 

（
 

4.1 Experimental Conditions 

For performance evaluation, we have used a large vocabulary database of 5240 
common Japanese words (38]. These words were uttered in isolation by three 
ma.le native Japanese speakers (MAU, MHT and MNM, all professional an-
nouncers). All utterances were recorded in a sound proof booth and digitized 
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at a 12 kHz sampling rate. The database was then split into a training set 
(the even numbered files) and a testing set (the odd numbered files). Both the 
training and the testing data, therefore, consisted of 2620 utterances each, from 
which the actual phonetic tokens were extracted. 

The phoneme recognition task chosen for this experiment was the recognition 
of the voiced stops, i.e., the phonemes "B", "D" and "G". The actual tokens 
were extracted from the utterances using manually selected acoustic-phonetic 
labels provided with the database[38). For speaker MAU, for example, a total 
of 219 "B"s, 203 "D"s and 260 "G"s were extracted from the training and 227 
"B"s, 179 "D"s and 252 "G"s from the testing data. Both recognition schemes, 
the TDNNs and the HMMs, were trained and tested speaker-dependently. Thus 
in both cases, separate networks were trained for each speaker. 

In our database, no preselection of tokens was performed. All tokens labeled 
as one of the three voiced stops were included. It is important to note, that 
since the consonant tokens were extracted from entire utterances and not read 
in isolation, a significant amount of phonetic variability exists. Foremost, there 
is the variability introduced by the phonetic context out of which a token is 
extracted. The actual signal of a "BA" will therefore look significantly different 
from a "BI" and so on. Second, the position of a phonemic token within the 
utterance introduces additional variability. In Japanese, for example, a "G" is 
nasalized, when it occurs embedded in an utterance, but not in utterance ini-
tial position. Both of our recognition algorithms are only given the phonemic 
identity of a token and must find their own ways of representing the fine vari-
ations of speech. Since recognition results based on the training data are not 
meaningful6, we report in the following only the results from open testing, i.e., 
from performance evaluation over the separate testing data set. 

4.2 Results 

Tablel shows the results from the recognition experiments described above. As 
can be seen, for all three speakers, the TDNN yields considerable performance 
improvements over our HMM. Averaged over all three speakers, the error rate 
is reduced from 6.3% to 1.5%, a more than four fold reduction in error. 

Fig.6 through Fig.11 show scatter plots of the recognition outcome for the 
test data for speaker MAU, using the HMM and the TDNN. For the HMM (see 
Fig.6 through Fig.8), the log probability of the next best matching inco汀 ect
token is plotted against the log probability7 of the correct token, e.g., "B", 
"D" and "G". In Fig.9 through Fig.11, the activation levels from the TDNN's 
output units are plotted in the same fashion. We should caution the reader 
that these plots are not easily comparable, as the two recognition methods have 

6Particularly, for neural networks such results would be grossly misleading since good 
performance could in principle be acltleved by memori叫 ionof the training patterns, rather 
than by generalization, 

7 normalized by n皿 berof frames 
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speaker 
number number recognition 

TDNN 
number recognition 

HMM of tokens of errors rate of errors rate 

b(227) 4 98.2 18 92.1 
MAU d(l 79) 3 98.3 98.8 6 96.7 92.9 

g(252) 1 99.6 23 90.9 

b(208) 2 99.0 8 96.2 
11HT d(l 70) 

゜
100 99.1 3 98.2 97.2 

g(254) 4 I 98.4 7 97.2 

b(216) 11 94.9 27 87.5 
l¥1:NM d(l 78) 1 99.4 97.5 13 92.7 90.9 

g(256) 4 98.4 19 92.6 

（
 

Table 1: Recognition results for three speakers over test data using TDNN and 
HMM 

been trained in quite different ways. We present this result here to show some 
interesting properties of the two techniques. The most striking observation that 
can be made from these plots is that the output units of a TDNN have a tendency 
to fire with high confidence as can be seen from the cluster of dots in the lower 
right hand corner of the scatter plots. Most output units tend to fire strongly 
for the correct phonemic class and not at all for any other, a property that is 
encouraged by the learning procedure. One possible consequence of this is that 
rejection thresholds could be introduced to improve recognition performance. 
If one were to eliminate among speaker MAU's tokens all those whose highest 
activation level is less than 0.5 and those which result in two or more closely 
competing activations (i.e., are near the diagonal in the scatter plots), 2.6% of 
all tokens would be rejected, while the remaining substitution error rate would 
be less than 0.46%. 

4.3 The Learned Internal Representations of a TDNN 

Given the encouraging performance of our TDNNs, a closer look at the learned 
internal representation of the network is warranted. What are the properties or 

（＼ 
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abstractions that the network has learned that appear to yield a very powerful 
description of voiced stops ? Fig.13 and Fig.12 show two typical instances of 
a "D" out of two different phonetic contexts ("DA" and "DO", respectively). 
In both ca.'les, only the correct unit, the "D-output unit" fires strongly, despite 
the fact that the two input spectrograms differ considerably from each other. If 
we study the internal firings in these two cases we can see that the network has 
learned to use alternate internal representations to link variations in the sensory 
input to the same higher level concepts. A good example is given by the firings 
of the third and fourth hidden unit in the first layer above the input layer. As 
can be seen from Fig.13, the fourth hidden unit fires particularly strongly after 
vowel onset in the case of "DO", while the third unit shows stronger activation 
after vowel onset in the case of "DA". 

Fig.14 shows the significance of these different firing patterns. Here the con-
nection strengths for the eight moving TDNN units are shown, where white and 
black blobs represent positive and negative weights, respectively, and the mag-
nitude of a weight is indicated by the size of the blob. In this figure, the time 
delays are displayed spatially as a 3 frame window of 16 spectral coefficients. 
Conceptually, the weights in this window form a moving acoustic-phonetic fea-
ture detector, that fires when the pattern for which it is specialized is encoun-
tered in the input speech. In our example, we can see that hidden unit number 
4 (which was activated for "DO") has learned to fire when a falling (or rising) 
second formant starting at around 1600 Hz is found in the input (see filled arrow 
in Fig.14). As can be seen in Fig.13, this is the case for "DO" and hence the 
firing of hidden unit 4 after voicing onset (see row pointed to by the filled arrow 
in Fig.13). In the case of "DN'(see Fig.12) in turn, the second formant does 
not fall significantly, and hidden unit 3 (pointed to by the filled arrow) fires 
instead. From Fig.14 we can verify that TDNN-unit 3 has learned to look for a 
steady (or only slightly falling) second formant starting at about 1800 Hz. The 
connections in the second and third layer then link the different firing patterns 
observed in the first hidden layer into one and the same decision. 

Another interesting feature can be seen in the bottom hidden unit in hidden 
layer number 1 (see Fig.12, Fig.13 and compare with the weights of hidden unit 
1 displayed in Fig.14). This unit has learned to take on the role of finding 
the segment boundary of the voiced stop. It does so in reverse polarity, i.e., 
it is always on except when the vowel onset of the voiced stop is encountered 
(see unfilled arrow in Fig.13 and Fig.12). Indeed, the higher layer TDNN-units 
subsequently use this "segmenter" to base the final decision on the occurrence 
of the right lower features at the right point in time. 

In the previous example, we have seen that the TDNN can account for varia-
tions in phonetic context. Fig.15 and Fig.16 show examples of variability caused 
by the relative position of a phoneme within a. word. In Japanese, a "G" em-
bedded in a word tends to be nasalized as seen in the spectrum of a "GA" 
in Fig.15. Fig.16 shows a word initial "GA". Despite the striking differences 
between these two input spectrograms, the network's internal alternate repre-
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sentations manage to produce in both cases crisp output firings for the right 
category. 

Fig.17 and Fig.18, finally, demonstrate the shift-invariance of the network. 
They show the same token "DO" of Fig.13, misaligned by +30 msec and -
30 msec, respectively. Despite the gross misalignment, (note that significant 
transitional information is lost by the misalignment in Fig.18) the correct result 
was obtained reliably. A close look at the internal activation patterns reveals 
that the hidden units'feature detectors do indeed fire according to the events 
in the input speech, and are not negatively affected by the relative shift with 
respect to the input units. 

Three important properties of the TDNNs have therefore been observed. 
First, our TDNN was able to learn without human interference meaningful 
linguistic abstractions such as formant tracking and segmentation. Second, we 
have demonstrated that it has learned to form alternate representations linking 
different acoustic events with the same higher level concept. In this fashion 
it can implement trading relations between lower level acoustic events leadin_g 
to robust recognition performance. Third, we have seen that the network 1s 
shift-invariant and does not rely on precise alignment or segmentation of the 
input. 

（
 

5 Conclusion and Summary 

In this paper we have presented a Time Delay Neural Network (TDNN) ap-
proa.cl1 to phoneme recognition. We have shown that this TDNN has two desir-
able properties related to the dynamic structure of speech. First, it can learn the 
temporal structure'of acoustic events and the temporal relationships between 
such events. Second, it is translation invariant, that is, the features learned by 
the network are insensitive to shifts in time. Examples demonstrate that the 
network was indeed able to learn acoustic phonetic features, such as formant 
movements and segmentation, and use them effectively as internal abstractions 
of speech. 

The TDNN. presented here has two hidden layers and has the ability to learn 
coi:nplex non-linear decision surfaces. This could be seen from the networlぐs
ability to use alternate internal representations and trading relations among 
lower level acoustic-phonetic features, in order to arrive robustly at the correct 
final decision. Such alternate representations have been particularly useful for 
representing tokens that vary considerably from each other due to their different 
phonetic environment or their position within the original speech utterance. 

Finally, we have evaluated the TDNN on the recognition of three acoustically 
similar phonemes, the voiced stops "B" ,"D" and "G". In extensive performance 
evaluation over testing data from three speakers, the TDNN achieved an average 
recognition score of 98.5 %. For comparison, we have applied various Hidden 
Markov Models to the same task and only been able to reach recognize 93.7 % 

（～ 
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of the tokens correctly. We would like to note, that many variations of HMMs 
have been attempted and many more variations of both HMMs and TDNNs 
are conceivable. Some of these variations could potentially lead to significant 
improvements over the results reported in this study. Our goal here is to present 
TDNNs as a new and successful approach for speech recognition. Their power 
lies in their ability to develop shift-invariant internal abstractions of speech 
and use them in trading relations for making optimal decisions. This holds 
significant pro血sefor speech recognition in general, as it could overcome the 
representational weaknesses of existing techniques when faced with uncertainty 
and variability in real life signals. 

（
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Figure 15: TDNN Activation patterns for "GA" embedded in an utterance 
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Figure 18: TDNN Activation patterns for "DO" misaligned by -30 msec 
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