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Abstract. This article introduces ATR's "CAl¥I-Brain Machine" {CI3:M), 
an FPGA based piece of hardware which implements a genetic algorithni 
(GA) to evolve a cellular automata (CA) based neural network circuit 
module (of approximately 1000 neurons) in about a second (i.e. a corn-
plcte run of a GA, with 10,000s of circuit growths and performance eval-
uations). Up to 32000 of these modules (each of which is evolved with a 
humanly specified function) can be downloaded into a large RAM space, 
and interconnected according to humanly specified artificial brain archi-
tecturcs. This RAM, cont.aining an artificial brain with up to 40 million 
neurons, is then updated by the CBl¥1 at a rate of 150 Billion CA cells 
per second. Such speeds should enable real time control of robots and 
hopefully the birth of a new research field that we call "brain building". 
The first such artificial brain (to be built by ATR in 1999)、,・illb c used 
to control the behaviors of a life sized robot kitten called "Robokoueko". 

1 Introduction 

This article introduces ATR's "CAM-Brain 1fachine" (CBM) [5], a Xilinx XC6264 

FPGA based piece of hardware that is used to evolve 3D cellular automata based 

neural network circuit modules at electronic speeds, i.e. in about a second per 

module. 32000 of these modules can then be assembled into a large RAM space 

according to humanly specified artificial brain architectures. This RAM is up-

dated by the CBM fast enough (150 Billion CA cell updates/sec) for real time 

control of robots. ATR's CBM should be built and deliYered by the first quarter 

of 1999. 
The C_BM is the essential tool in ATR's "Artificial Drain (CAM-Brain) 

Project" [2, 3], which at the time of writing (December 1998), has been run-



ning for nearly (3 years. Although the focus of this article is on the functional 
principles and design of the CBM, a certain background needs to be proYi<led so 
that the motiYation for its construction is understood. 

The basic (and rather ambitious) aim of the CAM-Drain Project as first 
stated in 1993 was to build an artificial brain containing a billion artificial neu-
rons by the year 2001. The actual figure in 1999 will be maximum 40 million, 
but the billion figure is still reachable if we really want. The ATR Brain Builder 
team is hoping that the CI3M will.revolutionize the field of neural networks (by 
creating neural systems ¥Yith tens of millions of artificial neurons, rather thari. 
just・the conventional tens to hundreds), and will create a new research field 
called "Drain Building". The CI3M will make practical the creation of artificial 
brains, which are defined to be assemblages of tens of thousands (and higher 
magnitudes) of evolved neural net modules into humanly defined artificial brain 
architectures. An artificial brain will consist of a large RAI¥1 memory space, into 
which individual CA modules are downloaded once they ha,・e been eYolwd. The 
CA cells in this RAM will be updated by the CTIM fast enough for real time 
control of a robot kitten "Robokoncko" (.lapancse for "robot, child, cat"). 

Since the neural net model used to fit into state-of-the-art evoh-able electron-
ics has to be simple, the signaling states of the neural net were chosen to be 1 
bit binary. We label this model "CoDi-lBit" (4) (CoDi = Collect & Distribute). 
This article will summarize the principles of this 1 bit neural signaling model, 
since the Cl3M is an electronic implementation of it. ¥¥'e realize that limiting 
ourselves to only 1 bit per neural signal (to fit into the :Xilinx :XCG2G4 chips), 
is rather severe (although nature uses a 1 bit signal scheme with its evoked po-
tcntials, i.e. the spikes in the axons), so it is possible that future Yersions of the 
Cl3M may use multibit neural signaling to obtain higher" eYolvability" of neural 
module functionality. 

The remainder of this article is structured as follows. Section 2 giYes an 
explanation of the "CoDi-ll3it" neural net model that is implemented by the 
CAM-Drain Machine (CBM). Section 3 discusses briefly the representation that 
our team has chosen to interpret the 1 bit signals which are input to and output 
from the CoDi modules (we call this representation "SIIC" = Spike Inten・al In-
formation Coding). This representation is important because the CBM measures 
the "fitness" (i.e. the performance measure of the evolving circuit) using analog 
output values obtained by convoluting the binary outputs of the module with a 
digitized com・olution function. Section 4 shows how analog time0dependent sig-
nals can be com・erted into spike trains (bit strings of Os and ls) to be input into 
CoDi modules using the so-called "HSA" (Hough Spiker Algorithm). The SIIC 
(spiketra:in to analog signal conversion) and the HSA (analog signal to spike-
train conyersion) allow users (~Es= evolutionary engineers) to think entirely in 
analog terms、"henspecifying mput signals and target (desired) output signals, 
which is much easier than thinking in terms of spike inten・als (the number of Os 
between the ls). This analog thinking for EEs simplifies the eYolution of mod-
ulcs, and overcomes the limitation to some extent of the 1 bit binary signaling 
of the CoDi modules (and hence the Cl3J¥I). Section 5, the heart of this article, 



proYides a detailed summary of CBM design and functionality, using the ideas 
already discussed in the earlier sections. Since an artificial brain without a body 
(such as a robot) seems rather pointless, section 6 introduces early ~ヽ•ork on the 
behavioral repertoire and mechanical design of the kitten robot "Robokoncko" 
that our artificial brain will control. Section 7 presents a (softヽrnresimulated) 
sample of what evolved CoDi modules will be able to do, once the CBM is com-
pJete and delivered. Our Brain Builder team will then be evoh・ing thousands 
of such modules. Section 8 discusses ideas for interesting future modules and 
multi-module systems to be evolved. Section 9 concludes. 

2 The CoDi-lBit Neural Network Model 

The CBM implements the so called "CoDi" (i.e. Collect and Distribute) (4] 
cellular automata based neural network model. It is a simplified form of an earlier 
model developed at ATR (Kyoto, Japan) in the summer of 1996, with two goals 
in mind. One was to make neural network functioning much simpler and more 
compact compared to the original ATR model, so as to achieve considerably 
faster evolution runs on the CAM-8 (Cellular Automata Machine), a dedicated 
hardware tool cle,・eloped at Massachusetts Institute of Technology in 1989. 
In order to evolve one neural module, a population of 30-100 modules is run 
through a genetic algorithm for 200-600 generations, resulting in up to 60,000 dif-
forcnt module evaluations. Each module evaluation consists of -firstly, growing a 
new set of axonic and dendritic trees, guided by the module's chromosome (which 
provide the growth instructions for the trees). These trees interconnect several 
hundred neurons in the 3D cellular automata space of 13,824 cells (24*24*24). 
Evaluation is continued by sending spiketrains to the module through its efferent 
axons (external connections) to evaluate its performance (fitness) by looking at 
the out.going spiketrains. This typically requires up to 1000 update cycles for all 
the cells in the module. 
On the i¥IIT CA:i¥I-8 machine, it takes up to 69 minutes to go through 829 
billion cell updates needed to evolve a single neural module, as described above. 
A simple "insect-like" artificial brain has hundreds of thousands of neurons ar-
ranged into ten thousand modules. It would take 500 days (running 24 hours a 
day) to finish the computations. 
Another limitation was apparent in the full brain simulation mode, involving 
thousands of modules interconnected together. For a 10,000-module brain, the 
CAM-8 is capable of updating every module at the rate of one update cycle 1.4 
times a second. HoweYer, for real time control of a robotic device, an update 
rate of 50-100 cycles per module, 10-20 times a second is needed. So, the second 
goalvヽasto have a modelvヽhichwould be portable into electronic hardヽvareto 
eventually design a machine capable of accelerating both brain evolution and 
brain simulation by a factor of 500 compared to CAM-8. 
The CoDi model operates as a 3D cellular automata (CA). Each cell is a 
cube which has six neighbor cells, one for each of its faces. By loading a different 
phenotype code into a cell, it can be reconfigured to function as a neuron, an 



axon, or a dendrite. Neurons arc configurable on a coarser grid, namely one per 
block of 2*2*3 CA cells. Cells are interconnected with bidirectional 1-bit buses 
and assembled into 3D modules of 13,824 cells {24*24*24). 

J¥lodules are further interconnected with 92 1-bit connect.ions to function to-
gethcr as an artificial brain. Each module can receive sig叫 sfrom up to 92 other 
modules and send its out.put signals to up to 32,iG8 modules. These intermoclu-
lar connections arc virtual and impiemcnted as a cross-reference list in.a module 
iutcrcoru.iection memory (see below). 

Ip a neuron cell, five (of its six) connections arc <lcndritic iuputs, and one 
is an axonic output. A 4-bit accumulator sums incoming signals and fires an 
output signal when a threshold is exceeded. Each of the inputs can perform an 
inhibitory or an excitatory function (depending on the neuron's chromosome) 
and either adds to or subtracts from the accumulator. The neuron cell's o叫 JUt
can be oriented in G different ways iu the 3D space. A dendrite cell also has 
five inputs and one output, to collect signals from other cells. The incoming 
signals are passed to the o叫 mtwith an 5-bit XOR function. An axon℃ ell is 
the opposite of a dendrite. It has 1 input. and 5 out.puts, and distributes signals 
to its neighbors. The "Collect and Distribute" mechauisrn of this neural moclcl 
is rcflc1cted in its name "Co Di". Blank cells perform 110 function in an cvoh・ed 
neural network. They arc used to grow new sets of clendritic and axonic trees 
during the evolution mode. 

Defore the growth begins, the module :=,pace consists of blank cells. Each cell is 
:=,eccled with a G-bit chromosome. The chromosome will guide the local direction 
of the dcndritic and axonic tree gro¥¥'th. Six bits serve as a mask to encode 
different growth instructions, such as grow straight, turn left, split into three 
liranchc:=;, block growth, T-split up and down etc. Before the growth phase starts, 
some cells are seeded as neurons at random locations. As the growth starts, 
each neuron c< ntinuously sends gro¥¥'th signals to the surrounding blank cells, 
alternating between "grow dendrite" (sent in the direction of future clendritic 
inputs) and "grow axon" (sent towards the future axonic output). A blank cell 
which receives a growth signal becomes a dendrite cell, or an axon cell, and 
further propagates the growth signal, being continuously sent by the root neuron, 
to other blank cells. The direction of the propagation is guided by the G-bit 
growth instruction, described above. This mechanism grows a complex 3D system 
of branching dendritic and axonic trees, with each tree having one neuron cell 
associated with it. The trees can conduct signals between the neurons to perform 
complex spatio-temporal functions. The end-product of the growth phase is a 
phenotype bitstring which encodes the type and spatial orientation of each cell. 

Thus there are two main phases -neural net growth and neural net signaling. 
In the CoDi-lDit model, the signal states contain only 1 bit, so an interpretation 
problem arises. With an 8 bit signal for example (as ¥Yas the case in the old CAl¥'1-
Drain Project model) one simply looks at the signal state to see the signal value. 
"¥Vith 1 bit signaling, one needs to choose an interpretation of the signals, e.g. 
frequency based (count the number of spikes (ls) in a given time), or interpret the 
spacing bet,¥・een the spikes as containing information etc. These interpretation 



issues will be taken up in the next section. 

3 The Spike Interval Information Coding Representation, 
"SIIC" 

3.1 Choosing a Repres(lntation for the CoDi-lBit Signaling 

The constraints・imposed by state-of-the-art programmable (evolrnblc) FPGAs 
in 1998 are such that the CA based model (the CoDi model) had to be very 
simple in order to be implementable within those constraints. Consequently, the 
signaling states in the model were made to contain only 1 bit of information 
(as happens in nature's "binary" spike trains). The problem then arose as to 
interpretation. How were we to assign meaning to the binary pulse streams (i.e. 
the clocked sequences of Os and ls which are a neural net module's inputs and 
outputs? ,ve tried Yarious ideas such as a frequency based interpretation, i.e. 
count the number of pulses (i.e. ls) in a given time window (of N clock cycles). 
Dut this was thought to be too slow. In an artificial brain with tens of thousands 
of modules which may be vertically nested to a depth of 20 or more (i.e. the 
outputs of a module in layer n get fed into a module in layer n + l, where n 
may be as large as 20 or 30) then the cumulative delays may end up in a total 
response time of the robot kitten being too slow (e.g. if you wave your finger in 
front of its eye, it might react many seconds later). "'e wanted a representation 
that would deliver an integer or real valued number at each clock tick, i.e. the 
ultimate in speed. The first such representation we looked at we called "uuary" 
i.e. if N neurons on an output surface are firing at a giYen clock tick, then the 
firing pattern represented the integer N, independently of where the outputs 
were coming from. ,ve found this representation to be too stochastic, too jerky. 
Ultimately we chose a representation which conYolYes the binary pulse string 
with the convolution function shown in Fig. 1. "'e call this representation "SIIC" 
(Spike Interval Information Coding) which was inspired by [7]. 
This representation delivers a real valued output at each clock tick, thus con-
verting a binary pulse string into an analog time dependent signal. Our team has 
already published several papers on the results of this convolution representa-
tion work [6]. Fig. 2 shows the result of deconvoluting an arbitrary analog curve 
(i.e. converting an analog signal into a spike train (binary string) as explained in 
section 4, and then convoluting it back (i.e. converting a spike train into an ana— 
log signal) to the original analog curve. The smooth curve is the original curve, 
and the spikey curve is the result of the two conversions. The percentage errors 
obtained between teh original curve and the result of the two conYersions were 
only about 2%, so we thought these two conversions were very useful. Of course, 
it is one thing to have accurate conversions from analog signals to spike trains 
and Yice versa. It is another that a CoDi-lBit neural net module can evolve 
a spike train that when coI1Yoluted can produce a desired analog output. Fig. 
3 sho、:¥'Sjust such an example (of a target 3 period sine curye)、d1ichevolved 
quite successfully, showing that the basic idea is sound. (The solid curve is the 



target curve, and the dashed cun・e is the eYoh・cd and convoluted result. The 
actual spikes (i.e. the ls in the binary string output from the CoDi module) are 
shown beneath the curves). Fig. 4 shmvs two outputs of a "halvcr" circuit which 
was evolved to take a constant analog input (e.g. GOO or 400) and to output 
half its value (300 or 200). This case is a good example of how a eYolutionary 
engineer can think entirely in analog terms when evolving modules. The analog 
input is automatically converted to a spike train, which enters the neural net 
module, and the spike train output of the module get automatically converted 
to an analog f:iignal whose ¥'alucs are compared 、~·ith a target curve to eYaluate 
the fitness (perormance) of the cYolving circuit. Further examples of evolved 
modules (although using only binary I/0), are to be found in section 7. 
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Fig.1. The rom・olution function used in the "SIIC" representation 

3.2 The SIIC Convolution Algorithm 

The convolution algorithm we use takes the output spiketrain (a bit string of Os 
and ls), and runs the pulses (i.e. the ls) by the convolution function sho、¥'Ilin 
the simplified example below. The output at any given time t is defined as the 
sum of those samples of the convolution filter that have a 1 in the corresponding 
spikctrain positions. The example below should clarify what is meant by this. 

Simplified Example Convoh・e the spikctrain 1101001 (where the left most bit 
is the earliest, the right most bit, the latest) using the convolution filter values 
{ l 4 9 5 -2 }. The spiketrain in this diagram mo¥'es from left to right across the 
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Fig. 2. An analog (smooth) curYc and its dcconrnlutcd/convolutcd approximation 
(jerky) curYc. 

c011Yolution filter. Alternatively, one can view the com・olution filter (window) 

moving across the spiketraiI1. The number to the right of the colon shows the 

ya!ue of the convolution sum、1teach time t. 

time-shifted spike train: 1 0 0 1 0 1 1 ---> (moves left to right) 
convolution filter : 1 4 9 5 -2 
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Fig. 3. A 3 pcriocl sine curve resulting from com・olution of an evo¥yccl CoDi-ll3it. The 
lo、¥'Crfigure shoヽ~·s the actual spikes that generated the ヽ~·ayeform.
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Hence, the .time-dependent output of the convolution filter takes the rnlues 

(0, 1, 5, 13, 15, 7, 7, 6, 2, 9, 5, -2). This is a time yarying analog signal, which 
is the desired result. 
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Fig. 4. Outputs of a halnr circuit (with inputs GOO and 400) using fully analog I/0. 

4 The "Hough Spiker Algorithm" (HSA) for 
Deconvolution 

Section 3 above explained the use of the SIIC (Spike Interval Information Cod-
ing) Representation which provides an efficient transformation of a spike train 
(i.e. string of bits) into a-(clocked) time varying" analog" signal. We need this in-
tcrpretation iu order to interpret the spike train output from the CoDi modules 
to evaluate their fitness values (e.g. by comparing the actual converted ana-
log output waveforms with user specified target waveforms). HoweYer, we also 
need the inYerse process, i.e. an algorithm which takes as input, a clocked (digi-
tised, i.e. binary numbered) time varying "analog" signal, and outputs a spike 
train. This conversion is needed as an interface between the motors/sensors of 
the robot bodies (e.g. a kitten robot) that the artificial brain controls, and the 
brain's CoDi modules. However, it is also very useful to users, i.e. EEs (evolution-
ary engineers) to be able to think entirely in terms of analog signals (at both the 
inputs and outputs) rather than in abstract, visually unintelligible spiketrains. 
This will make their task of evolving many CoDi modules much easier. We there-
fore present next an algorithm which is the opposite of the SIIC, namely one 
which takes as input, a time varying analog signal, and outputs a spike train, 
which if later is convoluted with the SIIC convolution filter, should result in the 
original analog signal. 
A brief description of the algorithm used to generate a spiketrain from a time 
varying analog signal is now presented. It is called the "Hough Spiker Algorithm" 
(HSA) and can be viewed as the inverse of tlie convolution algorithm described 
above in sectimi 3. 



To give an intuitive feel for this decmwolution algorithm, consider a spikctrain 
consisting of a single pulse (i.e. all Os with one 1). When this pulse passes through 
the c01wolution function window, it adds each Yaluc of the convolution function 
to the output in turn. 

A single pulse: (100000 ... → t = +oo) ¥¥"ill be convoluted with the convolu-
tion function expressed as a function of time. At t = O its value will be the first 
rnlue of the convolution filter, at t = l its ,・aluc will be the second value of the . 
convolution filter, etc. Just as a particular spiketrain is a series of spikes with 
time delays between them, so too the com・olvecl spiketrain will be the sum of 
the convolution filters, with (possibly) time delays between them. At each clock 
tick when there is a spike, add the conYolution filter to the output. If there is no 
spike, just shift the time offset and repeat. 
The same example. 

spike train 1 1 0 1 0 0 1 

convolution filter 1 4 9 5 -2 

t -> 0 1 2 3 4 5 6 7 8 9 10 
out: 
1 1 4 9 5 -2 

1 1 4 9 5 -2 

0 0 0 0 0 0 

1 1 4 9 5 -2 

0 0 0 0 0 0 

0 0 0 0 0 0 

1 1 4 9 5 -2 
----------------------
1 5 13 15 7 7 6 2 9 5 -2 

In the HSA deconvolution algorithm, we take ach-antago of this summation, 
and in effect do the roycrse, i.e. a kind of progrcssiYc subtraction of the convo-
lution function. If at a given clock tick, the ,・alucs of the convolution function 
are less than the analog rnluos at tho corresponding positions, then subtract the 
convolution function values from the analog values. The justification for this is 
that for the analog values to be greater than the comolution values, implies that 
to generate the analog signal values at that clock tick, the CoDi module must 
have fired at that moment, and this firing contributed the set of convolution 
Yalues to the analog output. Once one has determined that at that clock tick, 
there should be a spike, one subtracts the convolution function's values, so that 
a similar process can be undertaken at the next clock tick. For example, to de-
conYoh・e the convolved output (using the same vlauc of the convolution function 
as in the simple example of the previous section. 

1・5 13 15 7 7 6 2 9 5 -2 

compare: ・1 4 9 5 -2 conv.vals<analog s1g vals, so spike: 1 
0 1 4 10 9 7 6 2 9 5 -2 subtract (time++) 
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5 -2 less, so spike: 11 

4 9 6 2 9 5 -2 subtract (time++) 
9 5 -2 not less, so no spike: 110 
4 9 6 2 9 5 -2 (time++) 

4 9 5 -2 less, so spike: 1101 
0 0 1 4 9 5 -2 subtract (time++) 
1 4 9 5 -2 not. less: 11010 
0 0 1 -4- 9 5 -2 (time++) 

1 4 9 5 -2 not less: 110100 
0 1 4 9 5 -2 (time++) 

1 4 9 5 -2 less, so spike: 1101001 
0 0 0 0 0 subtract (time++) ゜
゜゚

It is assumccl that spiking will irrcYcrsibly raise the rnluc of the comolvccl 
output. If the c:om・olution filter n1lue at a given clock tick is less t.han that of 
the target waycform, spiking will bring the two Yalucs closer together. If the 
wm・eform value is still too low after a spike has occurrccl, a near future spike 
will bring the two closer together. 

Fig. 5 shows an example of an HSA spiketrain output. It is the spike train 
corresponding to Fig. 2 in fact. The original input analog signal is the solid 
line in Fig. 2. The spikctrain resulting from each analog input is sent into the 
SIIC convolutor (shown in Fig. 1). The resulting analog output (the jerky curve) 
should be very close to the original solid line as Fig. 2 shows it to be. The HSA 
seems to work wel~when the n1lues of the wm・cforms are large and do not take 
rnlues close to zero, and do not change too quickly relative to the time wiclth of 
the com・olution filter winclow. It may be possible to simply add a constant value 
to incoming analog signals before spiking them aud to ensure that the analog 
signal docs not change too rapidly. 

(time --->) 

111100010001101111110100010111110110100010101110100100010011010100 

100010101010100101001010110001101010011001101011010101011101110101101 

Fig.5. The spiketrain output of Fig. 2, as generated by the Hough Spiker 
Algorithm (HSA). 

Note however, that the BSA deconvolution algorithm was only discovered 
fairly recently, so the neural net module eYolution that is discussed in section 
7 below, does not use it. The I/Os to these modules as specified Ly the EE 
(evolutionary engineer) were in binary, not analog. 



5 The CAM-Brain Machine (CBM) 

5.1 CBM Overview 

The CAM-Brain :t¥fachinc (CAM stands for Cellular Automata Machine) is a 
research tool for the simulation of artificial brains. An original set of ideas for 
the CAM-Brain project was developed by Dr. Hugo de Garis at the Evolutionary 
Systems Department of ATR HIP (Kyoto, Japan), and is currently being im-
plcmented as a dedicated research tool by Genobyte, Inc. (Boulder, Colorado). 
Gcnobytc is licensed by ATR International and Japan's Key Technologies Center 
to manufaeture and sell CBMs to third parties. 

An artificial brain, supported by the CI3M, consists of up to 32,768 neural 
modules, each module populated with up to 1,152 neurons, a total of 37.7 million 
neurons.'¥Vithin each neural mo<lul~, neurons arc densely interconnected with 
branching dendritic and axonic trees m a three-dimensional space, forming an ar-
bitrarily complex i11tcrc:01111cctio11 topology. A neural module can rccci¥'c afferent 
axons from up to 180 other modules of the brain, with each axon being capable 
of multiple branching in three dimensions, forming hundreds of connections with 
clendritic branches inside the module. Each module sends efferent axon branches 
lo up to'32,7G8 other modules. 

A critical part of the CTIM approach is that neural modules are not "manually 
designed" or "engineered" to perform a specific brain function, but rather e¥'olvcd 
directly in hardware, using genetic algorithms. 
Genetic algorithms operate on a population of chromosomes, which represent 
neural networks of different topologies and functionalities. Better performers for 
a particular function arc selected and further reproduced using chromosome 
recombination and mutation. After hundreds of gencrat.ions, this approach pro-
duccs ycry complex neural networks with a desired functionality. The evolution-
ary appi'oach can create a complex functionalityヽ,・it.boutany a priori knoヽdc<lge
about how to achieye it, as long as the desired input/output function is known. 

5.2 CBM Architecture 

The CBM consists of the following six major blocks: 

1. Cellular Automata Module 

2. Genotype/Phenotype 1¥Iemory 

3. Fitness Ernluation Unit 

4. Genetic Algorithm Unit 

5. 1Iodulc Interconnection Memory 

6. External Interface 

Each of these blocks is discussed in detail below, followed by some further 
architectural points in section 5.3, and a summary of CBM capacities in section 

5.4. 



Cellular Automata Module The cellular automata module is the hardware 
core of the CI3M. It is intended to accelerate the speed of brain eyoJution through 
a highly parallel execution of cellular state updates. The CA module consists of 
an array of identical hardware logic circuits or cells arranged as a 3D structure of 
24*24*24 cells (a total of 13,824 cells). Cells forming the top layer of the module 
are recurrently conuected with the cells in the bottom layer. A similar recurrent 
connection is made between the _cells on the north and south, east and west 
vertical surfaces. Thus a fully recurrent toroidal cube is formed. This feature 
allows a higher axcinic an<l clendritic growth capacity by effectively doubling 
each of the three dimensions of the cellular space. 

叫 CDMhardware core is time-shared between multiple modules forming a 
brain during brain simulation. Only one module is instantiated at a time. The 
FPGA firmware design is a dual-buffered structure, which allows simultaneous 
configuration of the uext module while the current module is being run (i.e. 
signals are propagated through the dendrites and axons between neurons). Thus, 
tl1e FPGA core is run continuously with叫 anyidle time between modulc~s for 
reconfiguration. 

The surfaces of the cube luwc external connections to proYiclc sig叫 input
from other modules. Each surface has a matrix of GO signals, which is repeated 
on the opposite surface due to wrap around counectious. Thus, a total of 180 
different councctions is available. Four co11ncctious, i.e. one on each of the sur-
faces, and one at one of the 8 corner cells of the cube, are used as output points. 
Due to wrnp around, a11y corner cell has 3 wrap-around faces, so it is within two 
cells maximum of any other corner cell, including the oppposite corner, and at 
the same time equidistant from the three other outputs. The fourth output is 
cquirnlent to the center of the cube, so the set of all 4 putputs looks nice and 
symmetric. 

The CA module is implemented with new Xilinx FPGA clC¥・ices XCG2G4. 
These devices are fully and partially reconfigurable, feature a ne¥¥" co-processor 
architecture with data and address bus access in addition to user inputs and out-
puts, and allow the reading and writing of any of the internal flip-flops through 
the data bus. An XC6264 FPGA contains 16384 logic function cells, each cell 
featuring a flip-flop and Boolean logic capacity, capable of toggling at a 220 I¥IHz 
rate. Logic cells are interconnected with neighbors at several hierarchical Jeycls, 
prodding identical propagation delay for any length of connection. This feature 
is Ycry well suited for a 3D CA space configuration. Additionally, clock routing 
is optimized for equal propagation time, and power distribution is implemented 
in a redundant manner. 

To implement the CA module, a 3D block of identical logic cells is configured 
inside each XC62G4 device, with CoDi specified 1-bit signal buses interconnecting 
the cells. Given the FPGA internal routing capabilities and the logic capacity 
needed to implement each cell, the optimal arrangement for a XCG264 is 4*6*8 
(192 cells). This elementary block of cells requires 208 external connections to 
form a larger 3D block by interconnecting with six neighbor FPGAs on the 
south, north, east, west, top, and bottom sides in a virtual 3D space. A total of 



72 FPGAs, arranged as a 6*4*3 array are used to implement a 24*24*2・1 cellular 
cube. 

The CI3M implements intercormcctions between 72 FPGAs, each placed on a 
small individual printed circuit board, in the form of one large backplane board, 
carrying all 72 FPGA daughter boards. 
The CI3M clock rate for cellular update is selected between 8.25 MHz, 9.42 
MHz, and 11 MHz. At this rate all 13,824 .cells are updated simultaneously, 
¥Yhich results in the update rate of 114 to 152 billion cells/s. This rate exceecl~ 
the CA:t¥1-8 update rate by a factor of 570 to 751 times. 

Genotype and Phenotype Memory Each of the 72 FPGA daughter boards 
includes 16 Mbytcs of EDO DRA:t¥I to be used for storing the genotypes and 
phenotypes of the neural modules, a total of 1,180 Mbytcs. There are two modes 
of CI3M operation, namely evolution mode and run mode. The C¥'olution mode 
im・olves the growth phase and signaling phase. During the growth phase, memory 
is used to store the chromosome bitstrings of the evolving population of modules 
(module genotypes). For a module of 13,824 cells there are over 91 Khits of 
邸notypememory needed. For each module the genotype memory also stores 
information concerning the locations and orientations of the neurons insicle the 
module, and their synaptic masks. 
During the run mode, memory is used as a phenotype memory for the cYolved 
modules. The phenotype data describes the grown axonic and denclritic trees 
aucl their respective neurons for each module. The phenotype <lat.a is loaded 
iuto the CA module to configure it according to the eYolved function. The geno-
type/phenotype memory is used to store and rapidly reconfigure (reload) the 
FPGA hardware CA module. Reconfiguration can be performed in parallel with 
running the module, due to a d叫 pipelinedphenotype/ genotype register pro-
vided in each cell. This guarantees the continuous running of the FPGA array at 
full speea、1,ithno interruptions for reloading in either evolution or run modes. 
The phenotype/genotype memory can support up to 32,758 interconnected neu-
ral moclules at a time. An additional memory will be based in the main memory 
of the host computer (Pentium-Pro 300 MHz) connected to the CBM through a 
PCI bus, capable of transferring data at 132 Mbytes/s. 

Fitness Evaluation Unit Signaling in the CBM is accomplished with 1-bit 
spiketrains, a sequence of ones separated by intervals of zeros, similar to those 
of biological neural networks. Information, representing external stimuli, as well 
as internal wayeforms, is encoded in spiketrains using a so-called "Spike Interval 
Information Coding {SIIC)". This method of coding is implemented by nature in 
animal neural networks, and is very efficient in terms of information capacity per 
spike. Conversion from spiketrains into" analog" waveforms representing external 
stimuli, or internal signaling, is accomplished by convolving the spiketrain with 
a special multi-tap linear filter. 

¥Vhen a rn,odule is being evolved, it must be evaluated in terms of it's fit-
ness for・a targeted task. During the signaling phase, each module rcceiycs up to 



180 different spikctrains, and produces up to t hrec cliffcrrnt output spiketrai11s, 
,Yhich is compared with a target array of spiketrains in order to guide the e,・o-
lutionary process. This comparison gives a measure of performance, or fitness, 

of the module. 

Fitness m・aluation is supported by a hardware u11it which consists of an input 
spiketrain buffer, a target spiketrnin bu『er,and a fitness cvaluator. During each 
dock cycle an input vector is read from its stack and fed into the module's inputs.• 
At the same time, a target vector is read from its buffer to be compared ¥Yit h 

the current module outputs by the eyaJuator. The fitness cniluator performs a 
con¥'olution of the spikctrains ,¥・ith the convolution filter, and computes the sum 
of the waveform's absolute deviations for the duration of the sig・:ding phase. At 
the end of the signaling phase, a final measure of the module's fit11ess is instantly 
available. 

Genetic Algorithm Unit To c,・olYe a module, a population of modulc!s is eYal-
uatecl by computing cvrry module's fitness measure, as clcsc:riht'cl abo,・c. A subset 
of the best modules arc then select、eelfor further reproduction. In cac:h genera-
tion of modules, the best are mated and mutated to produce a set of offspring 
modules to become the next generation. Mating and mutation is performed by 
the CD:\•I hardware core at high speed, configured for the gc'11ctic phase. During 
this phase, each cell's finmrnrc implements crossm・cr allCI mutation masks, two 
parent registers and an offspring register. Thus, each offspring cl1romosome is 
generated in nanoseconds, directly in hardware. The selection algorithm is per-
formrd by the host computer in soft,rnrc, usi11g access to the CD'.¥l Yia a PCI 
interface. 

Module Interconnection Memory In order to support the run mode of op-
cration, ,yhich requires a large number of eYoh・ed modules to function as one 
artificial brain, a module interconnection memory is proYided. Each module can 
rccciYe inputs from up to 180 other modules. A list of these source modules ref-
erenced to each module is stored in a CBM cross-reference memory (3 Mbytcs) 
by the host computer. This list is compiled by CB¥I software using a module 
interconnection netlist in EDIF format. This net.list reflects the module inter-
connections as designed by the user, using off-the-shelf schematic capture tools. 

The length of module interconnections is 96 cells (clock cycles). For each 
of the 32,7G8 modules, a Signal Memory stores up to three 9G-bit long output 

sp1ketrams. 

During the run mode, at the time each module of a brain is configured in the 
CA hardware core (by loading its phenotype), a signal input buffrr is also loaded 
Yヽithup to 180 spiketrains according to the netlist in the module interconnection 
memory. The spiketrains are the signals saved from the prcYious i11stantiaLion 
and signaling of the 180 sourcing modules. At the same time, the three output 

spiketrains of the currently instantiated module are saYed back to the Signal 
T¥Iemory. This rcpetitiYe cycling through all the modules which form the brain, 



results in a repetitive saying and rctricYing of the spiketrains to/from the Sig-
nal Memory. It proYides the signaling between modules according to the brain 
interconnection structure reflected in the sclll'rnatics, designed by the user. 
In a maximum brain with 32,768 modules, the CBM update rate is such that 
each cell propagates approximately 288 bit-long spiketrains per second. A 288 
Lit-long spiketrain can carry on the order of 72 byt.es of signal information, using 
the SIIC coding method. Each neuron recei,・cs up to 5 spiketrains, so there are 
up to 188 million spiketrains being processed by neurons in the brain. Thus the 
maximum information 1irocessing rate by all neurons in the brain is of the order 
of 13.5 Gbytcs/s. 
Additional spiketrain processing in multiple dcndritic branches can be esti-
mated by assumi11g 50% of the total cellular space to be ocetipicd by dendrite 
cells, each cell on average having 2.5 branches out of 5 possible. Informational 
throughput of dendrite cells is then of the order of 40.8 Gbyte/s. 

External Interface The CDl¥1 architecture can recci¥'c and send spikctrains 
not only from/to the Signal Memory, but also from/to the external CDl¥I inter-
face. Any module can recei¥'c up to 180 incoming spikctrains and send up to 4 
spikctrains to an external device, such as a robot, a speech processing system, 
etc. In a brain with lG,384 modules, the information rate, as measured at the 
external interface is up to 4.5 Kbytes/s per each module, or up t.o 74 Mbyte/s 
O¥'erall. In a smaller brain with less number of modules, the external information 
rate is higher, for example, a brain、dth4,000 modules provides quadruple t.he 
external information rate for each module (18 Kbytc/s). 

5.3 Further CBM Architectural Points 

The CBM core is implemented as a large 12-layer uackplane with 72 FPGA mod-
ule boards plugged in. Each FPGA module board contains one Xilinx XCG2G4 
I3G5GO FPGA, one Xilinx XC95216 BG352 CPLD, and a 1G Mbytc EDO DRAM 
module. Each FPGA contains 16K reconfiguraole function units. Memory is used 
under CPLD control to load and saye FPGA configurations to accomplish time 
sharing of-the fast FPGA hardware. The data path between memory and an 
FPGA is 32-bits wide and provides a data transfer rate of 66 Mbyte/s. An FPGA 
is thermally coupled with a temperature sensor circuitヽ,・hichis pre-programmed 
to shut-off the main clock when a temperature limit is exceeded. 
The backplane serves primarily as a means to interconnect all 72 FPGAs. 
Each FPGA has 208 bi-directional connections to six other FPGAs arranged as 
a three-dimensional array of 6 by 3 by 4 FPGAs. In addition, the backplane's 
opposite side hosts several other boards used for overall sequencing and con-
trol of the system, implementing an SIMD (Single Instruction Multiple Data) 
architecture. Overall, there are 7.2 million reconfigurable gates in the CI3M. To 
aecomplish this connectivity, a High Density l¥Ictric connector system is used 
ヽ~·ith press-fit contacts, providing over 30,000 connections. 
The QBM is connected as a PCI target to a Pentium II computer which 
initializes the system and performs some background auxilia.ry control. 



Although the CBJ¥1 has bC'en dcycJopcd primarily to implement a specific neu-

ral nct¥rnrk model based on cellular automata, its archit0cturc is quite universal 

and Ycry flexible. In foct, the CBl¥1 can be used for a large yaricty of applica-
tionsヽd1ichbenefit from a high speed and fast reconfigurability of its hardware. 

Hardware-based implementations of a variety of algorithms hm・c been shown to 

exceed the computational speed of high-cost super computers, as is the case with 

the CAJ¥1-Brain algorithm. The computational power of the CDM is estimated 
to be equiYalent to one to ten thousand Pentium II 400 ::"IIHz c・omputcrs in the 
CAl¥I-I3rain algorithm implementation. 

In particular, one application supported by the CB:-! architecture is gate-
level and function-level evoh-ablc hardware,、d1ichis bc1scd on applying a genetic 
algorithm to evolve complex digital circuits for a specific task. With 7.2 million 

gates, the resulting circuit complexity is likely to exceed human ability to design, 
debug, or eYen understand the dynamics of such a circuit. The CAl¥l-Brai11 
algorithm itself is an example of function-level CYOlYable harchrnre, where a basic 
tmit of ernlution is a function of a cellular automata cell, implemented as a 
specific (non-eYolvable) logic circuit. This circuit can implement a number of 
different functions selectable hy loading a chromosome bit string int.o the cell's 
genotype register、d1ichsヽ~·itches the cell to perform a specific function. 

5.4 Summary of CBM Technical Specifications 

Table 1. Summary of CBM Technical Specifications 

Cellular Automata Update Rate (max.) 152 billion cells/s 
Cellular Automata Update Rate (min.) 114 billion cells/s 

Number of Supported Cellular Automata Cells (max.) 453 million 
Number of Supported Neurons (max. , per module) 1,152 

Number of Supported Neurons (max. , per brain) 37,748,736 

Number of Supported Neural Modules 32,768 

Information Flow Rate, Neuronal Level (max.) 13.5 Gbytes/s 
Inf orrnation Flo,1 Rate, Dendrite Level (estimated average) 40.8 Gbytes/s 
Information Flo-w Rate, Intermodular Level (max.) 74 Mbytes/s 

Number of FPGAs 72 

Number of FPGA Reconfigurable Function Units 1,179,648 

Phenotype/Genotype Memory 1.18 Gbytes 
Chromosome Length 91,008 bits 
Power Consumption 1 KWatt (5 V, 200 A) 



6 "Robokoneko", the Kitten Robot 

An artificial brain with nothing to control is rather. useless, so we chose a control-
!able object that we thought would attract a lot of media attention, i.e. a cute 
life-size robot kitten that we call "Robokoneko" (which is Japanese for "robot-
child-cat"). ¥Ye did this partly for political and strategic reasons. Brain building 
is still Yery muth in the "proof of concept" phase, so ,,・c want to show the world 
something that is controlled by an artificial brain, that would not require a P:1D 
to uuclcrsland what it is doiug. If the kitten robot can perform lots of intcrestmg 
behaviors, this will be obvious to anyone simply by observation. The more media 
nttenlion the kitten robot gets, the more likely our brain building work will be 
funded b(•yond 2001 (the end of our current research project). 

Fig. shows the mechanical design our team has chosen for the kitten robot. Its 
tot al length is about 25 cms, hence roughly life size. Its torso has two components, 
joinccl ¥¥'ilh 2 degrees of freedom (DoF) articulation. The back legs haYc 1 DoF 
at the auklc and the kucc, and 2 DoF at the hip. All 4 feet arc spring loaded 
between the heel and toe pad. The front legs have 1 DoF at the knee, mid 2 
DoF at the hip. With one mechanical motor per DoF, that makes 14 motors for 
the legs. 2 motors arc required for the conncctio11 between the back a11d front 
torso, 3 for the neck, 1 to open and close the mouth, 2 for the tail, 1 for camera 
zooming, gi,・ing a total < .・23 motors. 

Iu order to C¥'olYe modules which can control the motions of tl1e robot kitten, 
、,・cthought it would be a goocl idea to focd back the state of each motor (i.e. a 
spikctrain generated from the pulseヽridth modulation P,YM output value of the 
motor) into the controlling module. Since each module can have up to 180 inputs, 
foecling in these 23 motor state values,ヽ・illbe no problem. ¥¥'e are thinkiug we 
may install acccleromotors and/or gyroscopes which 111ay add another 6 or more 
i11puts to each motion control module. It can thus be seen that the mechanical 
(¥(,sign of the kitten rohot has implications on the design of the CD?II modules. 
There need to be sufficient numbers of inputs ,or example. 

The motion control modules will not be eYolwcl directly using the mechanical 
robot kitten. This would be hopelessly slow. 1¥lechanical fitness measurement is 
impractical for our purposes. Insteadヽvcヽ¥'illsoon be simulating the kitten's mo-
tions using an elaborate commercial simulation softヽ;,,・arepackage called "¥Vorking 
l¥fodcl -3D". This software will allow output from an evolving module to control 
the simulated motors of the simulated kitten. This software simulation approach 
negates to some extent the philosophy of the CAM-Drain Ivlachine and the CAM-
Drain Project, i.e. the need for hardware eYolution speeds. This compromise was 
felt to be a necessary evil. Iu practice, the proportion of modules concernedヽdth
motion control will be very small compared to the total. Potentially, we have 
32K modules to play with. Probably most of them will be concerned with pat-
tern recognition, Yision, audition, etc. and decision making. Designing the kitten 
robot artificial brain remains the greatest research challenge of the CAl¥1-Drain 
Project and will occupy us through 1999, and probably beyond. 



Fig. 6. "Robokoneko", the life-sized kitten robot to be controlled hy our artificial brain 

7 A Sampler of CoDi-lBit Evolved Neural Net Modules 

Since the whole point of using the CBM_ is to attain a high eYolution speed, it 
is useful if the representation chosen to mterprct the 1 bit signals which enter 
and leave the CoDi modules can be unique, otherwise several representations 
would need to be implemented in the electronics. (For the CfftvI to be efficient, 
i.e. to evolye CoDi modules in about 1 second, fitness measurements need to be 
performed at electronic speeds, which implies that the representation chosen for 
the signals be implemented directly in the hardv-mre). We chose the SIIC to be 
our unique representation. HoweYer, as mentioned at the bottom of section 5, 
most of the eYolutionary experiments presented here、¥'erealready undertaken 
before the SIIC representation ¥Yas chosen. Since the results of these car-lier ex-
periments are interesting in their own right, we report on them here. They show 

to what extent that CoDi modules arc ernlvable and the power of their function-
ality. The c'volution of SIIC-rcpresentation-based and BSA-based modules will 
be the subject of work in the Ycry near future, given that both algorithms are 



now ready. So is the CBM multi-module simulation code, so progress should be 
rather rapid in the coming months prior to the delivery of the CBM itself. Once 
the CBM is deJiyered, multi-module systems should be built as fast as we can 
dream them up. The bottleneck in building large scale multi-module systems will 
become human creativity lag, not module c¥'olution lag (as was the case with 
software evolution speeds in the "prc-CBl¥I era".) ¥Ve now proYide a sample of 
evolved CoDi neural net modules, their specified functionalities, and their actual 
performances, tci give a feel for what they can do. 

7.1 XOR Module 

If a CoDi module could not be evolved to perform something as simple as an 
cxclusiYc OR, then the whole CA1¥I-I3rain approach would be cast in doubt, 
so one of the first things we tried was to ,,,・olvc an XOR module. The module 
size was a cube of 24 *24 *24 3D CA cells (the standard CD!¥'l module size, as 
implemented in the hardware). Two binary signals, A and I3 (on the Z = 0 
fac-c of the cube at (x, y, z) coordinates of (1, 1, 0) and (7, 1, 0) (axon cells))、¥"C!l'C
input. over G4 clock ticks. There were 4 test cases (using a multi-test fit1wss 
mcasuremc11t): 

Case 1: 
The A input was a steady stream of ls for G4 clocks, and 
the B input was a steady stream of ls for G-1 clocks. 

Case 2: 
The A input was a steady stream of ls for G--1 docks, and 
the I3 input was a steady stream of Os for 64 clocks. 

Case 3: 
The A input was a steady stream of Os for 64 clocks, and 
the I3 input was a steady stream of ls for G--1 clocks. 

Case 4: 
The A input ¥¥・as a steady stream of Os for G4 clocks, and 
the I3 input was a steady stream of Os for G--1 clocks. 
At the output point (4, 4, 0), the desired or target output ,・alues were a stream 
of Os, ls, ls and Os respectively (to implement the XOR function). The total 
fitness value was the sum of the partial fitness values of the 4 test cases, i.e. 
the total number of correct output Yalues, giving a theoretical maximum fitness 
Yalue of 4 *64 = 256. However, since there are incYitable delays as the signals 
progress through the CA cells of the module, this perfect score is not possible. 

The elite module, (population of 15, mutation rate of 0.005 per bit per gen-
eration, one point crossoYer rate of O.G per chromosome per generation), gaye 
after about 20 generations, the follo、dngoutputs for the 4 cases, 1ヽ,cithpartial 
fitness scores of G3, 57, 56, 64 respectively. Hence total fitness was 240. 

Case 1: 
0000000100000000000000000000000000000000000000000000000000000000 

Case 2: 
0000000111111111111111111111111111111111111111111111111111111111 



Case 3: 
0000000011111111111111111111111111111111111111111111111111111111 
Case 4: 
0000000000000000000000000000000000000000000000000000000000000000 
So the XOR module crnlvccl fairly quickly and easily. Note that the XOR 
case is an example of "multi-test fitness measurement". For each test, a partial 
fitness score is obtained, which is later summed with other partial fitess scores, 
resulting in the overall fitness score of the CoDi module .. Between each partif1l 
test, the signal st.ates of the module are cleared, a11Cl a ucw test run is perfqrmcd 
using the same circuit, but with diffc,rent input. The same story occurs iu the 
CI3~I har<lwarc. 

7.2 Timer Module 

One of the first things we testecl after the CoDi-lnit model was inYc11t.Pd, was 
t.o sec if a CoDi module (c:011sisting of -!K 3D CA cells, ¥¥'il.h about 150 artificial 
neurons in t.lic、1Kspace, could evol¥'c a "timer", i.e. whe:rc constantly firing hi-
nary inputs gc11cratc at a single cell output (placl'd elsPwlicre i11 the C..¥ space) 
a string of Os during the: first 30 dock ticks, then a string of ls clming the next 
20 clock ticks, aud finally a striug of 0:-; in the last 20 clocks, as sho¥¥'11 IJclow. 
This was q11itc a demanding C'Yolutionary task, which was a usefol test Ychic:le 
during our early cYolutionary trials. 
000000000000000000000000000000 11 l l l 111111111111111 00000000000000000000 
The fit11ess cldinitio11 was pretty simple. (l¥'otc', that the eyo¥ution of this 
module did not use the SIIC or I-ISA approaches. Inputs and outputs ¥¥'ere spec― 
ificd directly in binary signals). If a O appeared in the first (0) block, score one 
point. If a 1 appeared in the second (1) IJlock, score three points. If a O appeared 
in the third IJlock (0), score two points. Hence a perfect score woulcl be 30*1 + 
20*3 + 20*2 = 130. Population size "・as 24, ,Yith no crosso¥'er. 
The Codi-lDit model software simulation eyo¥wd this ¥Yith a fitness of 100% 
in about 150 generations. A fow clays later, by strongly increasing the neuron 
de11sity in the CA space to about 90況 ofthe maximum ya¥uc, ¥¥'e got the same 
result in about 50 generations! 

7.3 Multiple Timer Module 

Since a 100% fitness score does not test the limits of evoh・ability of a module, 
a more demanding output function was tried. The target out.put (similar to the 
abm・e pattern) and the actual e¥'oh-ed output (placed immediately under the 
target pattern for comparison) "・ere as follo¥¥'s: 

Target 
000000000000000000000000000000 11111111111111111111 

EvolYed 
000000000000000000000000000000 00011111111111111111 

Target c:td. 
000000000000000000000000 l 111111111111111 00000000000000000000 



Evoh・od ctd. 

100000000000000000000000 011111111111 l l l l 10000000000000000000 

The fitness definition was similar to the aboYc. If a O appeared in the first 
(0) block, score 12 points. If a 1 appeared in the second (1) block, score 7 points. 
If a O appeared in the third block (0), score 3 points. If a 1 appeared in the 
fourth block (1), score 2 points. If a O appeared in the fifth block (0), score 1 
point. Hence a perfect score would be 30*12 + 20*7 + 24*3 + 1G*2 + 20*1 
= G24. These weightings were chosen so as to encourage the earlier outputs to 
be correct before the later outputs. Population size was 30. No crossover. This 
result c:oll¥'ergcd after about 100 generations with a fitness Yalue of 0.957. 

It is interesting to note that these good results arc ernlving in about 100 
generations or so, and yet the chromosome length is very large. The standard 
CI3:¥J chromosome length is of the order of 90K bits. One might think that such a 
long chromosome would be very slow in eYoh・ing, but this was not the case. Ono 
possible explanation for this is that there may be so many possible solutions, 
that (any reasonable) one is quickly found. 

7.4 Switchable Dual Function Module 

Our thoughts then turned to the idea of trying to cvoh・e a module whose be-
haYiors could be placed under switchable control, i.e. a module with dual func-
tionality, which could he switched from one behavior to the other, clepeu<liug on 
whether a "control" input was activated or not. 

More specifically, t.wo fixed position input points IN and SWITCH 、~•ere placed 
on an input surface (z = 0), at positions (8, 8, 0) and (lG, lG, 0) for a rect.anguloid 
of 24*24*18 3D CA cells, with a fixed output point at position (11, 12, 9). If the 
out.put point was not an axon, fitness was defined to be zero. 

Two experiments were run on the same module (the same CoDi-lBit circuit, 
with signal flushing between experiments). In both experiments, the IN input 
fired at every clock tick. In the first experiment, the SWITCH input was off for 
every clock tick. In the second experiment the SWITCH input fired for every clock 
tick. The module was evolved to give a very active output (lots of ls) if the 
SWITCH was off, but a low output (few ls) if the SWITCH ,ms on. That is, the 
SWITCH acted as an inhibitor. 

The bit.strings below show the outputs for the two cases, firstly with SWITCH 
off, then on. Over 90 clock ticks, the first output had 42 more ls than the second 
output. 
SWITCH off 

00000000000000000000000000000000000110001110111111111111111111111 
lllll 11111111111111111111 
SWITCH on 
00000000000000000000000000000000000010000010000010000010000010000 
0100000100000100000100000 

The number of ls in the two outputs were-labeled as 5・um1 and 5vm2 re-
spcctivcl)'・The fitness definition finally settled upon, was: 



IF(Sum1 > Su叩）

fitness = 10000 * (Sumi -Sum2) + 0.001 * (Sum1 + Sum2) 
IF(Sum1 < Su叫）

fitness= 100 * (Sum2 -Sumi)+ 0.001 * (S11m1 + Sum2) 

The term 0.001 * (Sum1 + S111112) was used to encourage circuits to give 
nonzero output at the output point. The terms 100 * (Smn2 -S1.1加） an<l 
10000 * (Smn 1 -Smn.2) encouraged differences in the two outputs, with a strong 
preference for the first case to give more l's in the output. 

This result was very encouraging because it shows that co11trollablc (switch-
1.lb!e) multi-function modules are evolrnblc with the highly simplified (suital.llc 
for implemc11t.aticm in e,,oh-able electronics) CoDi-lDit model. Such modules will 
be ¥'cry useful when Lite time comes to cvol¥'e them for placement in artificial 
brain architectures. 

7.5 Pattern Detector Module 

With a slight modification of the code used to eYoh-c the abm・c module, a pat-
tern detector mo<lulc was c¥'Olvccl ¥¥・hich was capable of distinguishing between 
two square wm・c inputs, of 111000111000…and 1 ll 11000001111100000 ... In this 
case, no switch input was used. Two experiments were nm. In the first, the 
input was the 6 docktick cycle square wave input, applied at the fixed input 
point (8, 8, 0). In the second experiment, the circuit was rcgrmn1 with the same 
chromosome and the 10 clocktick cycle square wave input was applied to the 
same fixed input point. The fitness definition was the same as abm・e. Results 
arc shown below. Qyer 90 clockticks, the first output ha<l 48 more ls than the 
second output. 
Squarerヽnveinput 111000111000 ... 
Output 
00000000000000000000000010011011101111111111111111111111111111111 
11111111111111111 llllllll 
Squareヽ,・aveinput 11111000001111100000 ... 

Output 
00000000000000000000000000001000100010001000100010001000100010001 

0000000000010001000100010 

Since the CoDi modules seem capable of evoh・ing such detectors, it may be 
possible to evolve modules which arc capable of detecting a specific phoneme 
analog input (e.g. the spike train (bit string) which ¥¥'hen comoluted、Yitha 
particular convolution function giyes the time dependent analog signal). In a 
manner similar・to the aboYe, one could input the signal in the first experi-
ment, and a random signal in the second, in a multi-test experiment, and crnlYe 



the phoneme detector. Maybe one could evoh-c a set of detectors, one for each 
phoneme. By using the SIIC and RSA digital/analog con,・ersions, this kind of 
thing may become quite practical. 

7.6 Hubel-Wiesel Line Motion Detector Module 

The results of the following experiment were significant for the CAM-Drain 
Project as a ,vhole, we felt. It inYo!ved the ernlution of a Hubel ¥Viesel type 
line motion detector. Hubel and ¥¥'icsel won a Nobel prize for disco¥'cring that 
certain 1ieural cells in the Yis叫 regionof the cat's brain fired strongly when 
lines of light at particular orientations and speeds were shone onto a screen that 
the cats were obscn・ing. These cells (neurons) were detecting the motion of lines 
at a particular orientation. The e¥'olution of this "Hubcl-'¥Vicscl" module used 
the same fitness definition and a similar methodology as in the above case. In the 
first experiment, a square 12*12 neuron input grid was used. At the first clock 
tick, the top horizontal 12 neurons were made to fire -at the sccoi1d clock tick, 
the second horizontal row of 12 neurons was made to fire, etc, for 12 clock ticks, 
then the cycle was repeated. This input firing pattern simulated the motion of a 
line of light moving horizontally down the vis叫 fieldon the retina of a cat. In 
the second experiment, 12 randomly positioned input neurons were fired at each 
clock tick. These 12 positions were randomly generated for each clock tick. This 
second input firing pattern simulated input noise, to be contrasted with the line 
motion input. Out.put results are shown below. 
Line Mot.ion Input Case 
Output 
00000000000000000000000010011010011011111111111111111111111111111 
ll lll ll 111111111111111111 
Random Input Case 
Output 
00000000000000000000000000001000000000000000010001010101010101010 
1010101010101010101010101 

There were 35 more 1 bit outputs in the first case than the second. Since the 
inputs to the second case arc positioned randomly, the same neural net module 
will generate a different fitness value depending on the input. Nevertheless the 
evolution still improved over time, developing a fairly robust net giving fitness 
Yalues corresponding to over 30 1-bit differences (between the two experiments) 
in most cases (e.g. the top 5 fitness chromosomes were saYcd for each generation 
and not crossed over or mutated. The fitness values (1-bit difference count) of 
these top 5 were 31, 34, 35, 30, 29 after several hundred generations). Thus it 
was possible to cYOIYe a Hubel'¥Viescl Line Motion Detector -quite an achieve-
ment. Of course, we have no idea how tlie circuit docs what it does. This is 
the great strength of "eyoJutionary engineering". Evo!Yed circuits can achieve 
performance levels beyond wh_at human engineers can achic¥'e with traditional 

top-down design techniques, i.e. attain superior e11giuecring performa_nce leYels, 
but the price is that one loses scientific understanding, due to the overwhelming 



structural and dynamical complexity of these CoDi circuits. Thus "evolution-

ary engi11eering" can provide superior engineering, but inferior science. It is a 
trade-off. In practice, once EEs can generate tens of thousands, even millions 
of modules, only a few die-hard analysts will want to know how an individual 
module functions. For the most part, noone will care how a particular module 
amongst millions actually does its thing. 

8 Ideas for Interesting Future CoDi :t¥1odules to be 
Evolved 

8.1 The "Dagwood Approach" for a Multi-Test Module 

The CBivI hardware automatically performs a fitness measurement on the as-
sumption that the 1I3it signals which leave the evolvi11g module into the fi.t11css 
measurement circuit are interpreted with the SIIC approach, i.e. the harclware 
actually implements the SIIC conrnlution algorithm. ¥Ye have implemented the 
Cl3M haYing a single Ycry general fitness measurement mct.hoclology, to simplify 
the dectronics. Hence evolutionary engineers using the CDI¥1 will need to specify 
the functions of the moclules they want to eyoJye using the SIIC methodology. 
However, there is a problem "・ith this unified approach, namely how to give the 
same circuit scYcral tests, i.e. scyernl sets of different inputs in a single run. For 
example, imagine one aims to eYo]ye a module which detects a time clcpenclcnt 
input pattern P. One inputs the pattern P for Tp clocks. (Note that a CDI¥1 mod-
ule has maximum 180 binary inputs, maximum 3 binary皿 tputs).One wants 
the module to respond strongly when the pattern in detected, and weakly if any 
other pattern is presented. Hence the same circuit needs to be tested for several 
pattern inputs, i.e. P and others. The pattern Pis called the positive case, while 
the others :・e called the ncgatiYe cases. (It is also possible that there may be 
seyeral positive cases (P;)). One docs not want a module which responds well to 
any old pattern. It must discriminate. 
How docs one test all these cases (positive and negatiYe) in a single run? 
Ily concatenating them, i.e. sandwiching them ("Dagwoocling" them) over time. 
(Dagwood was a popular US cartoon character who was famous for making 
multilayer sandwiches). For example, imagine there are 2 positive examples and 
4 negative examples to be input to the same circuit. Hence there will Le 6 time 
periocls in which the patterns are presented sequentially at the input in one long 
run. Between each input signal presentation, the signal states in the circuit are 
cleared out, ready for the next signal input. This the CBl¥'I actually does. This 
resetting of the signal states is part of the CBM fitness measuring approach that 
・we call "multi-test" fitness measurement. The 6 input pattern periods can be 

represented as "Pr, P2, Nぃ凡芯，芯".The periods last Pi and応 clockticks 
each. So that the total number of clock ticks for the positiYe periods is more 
or less equal to the-total of the negative periods, the durations of the P; can 
be lengthened. This should increase the evolvability of the positive responses. 
Otherwise the eYolution may favor the negative cases too heayily. The target 



output patterns one wants for these G periods can be represented as "high, high, 
low, low, low, low". 

Clearing the signal states between indiYiclual inputs in multi-test runs is 
needed because it is almost certain that self sustaining reverberating loops ¥¥'ill 
be set up once an initial input is switched off. Such self sustaining loops may 
in fact be very useful, since they can be looked upon as a form of memory, and 
hence may be used to make CoDi modules capable of learning, i.e. adapting to 
their experience. The next subsection will elaborate on this idea. 

The CBM eYaluates each partial fitness (one for each test in the multi-test 
case) an<l then sums the partial fitnesses to get the total fitness for the circuit (the 
module). The XOR case described in the preYious section is a simple example 
of a multi-test case. 

8.2 Modules Which Learn 

Up until recently, we have always thought that the CAM-Brain Project would 
produce neural circuits that would be IN capable of learning, i.e. they would not 
modify theヽmscl¥'esbased on their run time o:xperieucc. The rationale was that 
it. ,,・oulcl be complicated enough dealing ¥¥"ith tens of thousands of non learniug 
rnoclnlcs all int.cracしingwith each other, let alone having tens of thousands of 
learnable modules. Also, we smv no way of haYing CoDi modules which could 
learn. Lat.cly however, we have bc'gun to think that karnable CoDi modules 
might be evoh・ablc. The essence of learning in a system is that some event in 
the past leaves some trace or memory in the system. In a CoDi module, that 
could take the form of revcrberatin? internal sig叫 ingafter an initiating input 
arriYes. Ju some modules, once the mput stops, the resulting lBit signals could 
die away, i.e. be transient. AlternatiYely, the rc,・erbcrating signals could persist 
and hence constitute a form of memory. Thus CoDi modules may be evolyable 
¥Yhich generate reYcrherating signals. 

Once one begins to think along these lines, it may be possible to create 
modules capable of Pa¥'lovian conditioning and similar phenomena, e.g. one could 
eYolve a module which has two possible inputs M(eat) and D(ell). One evolves 
the circuit and gives it 3 tests (in a multi-test case), namely Malone (followed by 
a signal reset), then B alone (followed by a signal reset), then l¥I and B together 
(with NO sig叫 reset)followed by B alone. The respective output for each of the 
3 cases should be high, low, high. The dagwooded input stream would be "[Ml, 
{I3], [(M&B) then I3]", and the desired outputs would be "high, low, high". Note 
that there would be no signal reset between the ir&B input and the B input. 
This allows for a reYerberating internal signaling to be set up by the I¥I&B ,Yhich 
allows the D input to give a high output. If this module can be made to function, 
it shows that classical conditioning is possible with CoDi modules. (Of course 
certain negath・e cases would 1Jccd to be Dagwoodcd into the multi-test case as 
well). Thus artificial brains capable of learning could be designed using learnable, 
conditionable modules. 



8.3 From Multi Module Systems to Artificial Brains 

Once our group and others have gained a lot of experience in evolving single 
modules, the next obvious step is to start to design multi-module systems, since 
the ultimate goal of the CAM-Drain Project is to put many many modules to-
gether (up to 32,000 of them in the current design of the CBI¥1) to make artificial 
brains. Obviously, no CAM-Brain team will try to build a 32000 module brain 
(with maximum 40 million artificial neurons) all at once. Instead, as a first step, 
small multi-module systems will be built, with tens of modules. Once experience 
is gained in how to do this successfully, larger systems will be undertaken, e.g. 
with 100s of modules, then 1000s, and later 10,000s. ¥¥"hat kinds of multi-module 
systems with about a dozen modules might be interesting to build'? Answering 
such a question will depe11d on the creath・ity of i11di¥'id叫 (human)"evolution-
ary engiucers". Here are some ideas for" 10 to 1" systems (i.e. ten to power 1 = 
teus of modules) -handwritten "capital let.Ler" recognizers (where each module 
is evolved to respond to a particular input stimulus e.g. 3 conwirgi11g lines on the 
middle left hand side of the input region (which would make the letters A, E, F, 
H, P potential candidates). Similar feature extractor modules could be placed in 
appropriate input positions. Boolean moclules (AND module, OR module) could 
combine the outputs of the feature extractor modules, to distinguish the let-
ters. A "winner-take-all" macromoclule (i.e. a moclule of modules considered as 
a functio叫 unit)¥¥'ould be neeclecl to detect the letter module with the largest 
output signal. How to design/evolve the macromoclulc? The us叫 wayis t.o use 
a form of lateral inhibition. Using CoDi modules to build such a device might 
not be trivial. 

Another" 10 to l" suggestion is a simple artificial nervous system ¥¥'ith a small 
numl>er of sensor modules, ancl a limited number of motion generating moclul_cs, 
whicl1 can Le switched on or off by a control sig叫 (i.e.the motion is active 
while the control sigual is active, and becomes inactiYe when the control sig叫
is inactive). The sensor modules (e.g. the enYironment is Yery bright, or dark, 
or noisy, or quiet, etc) can send their output signals to some decision modules 
(probably Boolean), whose outputs become the actiYating sig叫 sto the motion 
generating modules. 

0Yer time, artificial nervous systems can grow in complexity, until they can be 
called artificial brains. The robot kitten ("Robokoneko" = Japanese for "robot, 
child, cat") that our team is currently designing will be controlled by an artificial 
brain with up to 32000 modules. Since this kitten robot contains a CCD TV 
camera, microphones for ears, touch sensors, 22 motors for the legs and body, 
etc, it should offer plenty of scope for brain building. Obviously, we will probably 
begin with "10 to 2" systems to control it, and work our way up to "10 to 
4" systems. This is a huge amount of work, which will need to be distributed 
over many CAM-Brain teams across the planet. 1Vith modern (almost cost free) 
internet telephone technology, coordinating such a large management effort is 
less expensive .. Our team already uses IPhone to talk with-our international 
collaborators on a daily basis. 



9 Conclusions 

This article has provided an OYerYicw of ATR's CAM-I3rain Machine (CI3M) and 
the Artificial Brain (" CAl¥I-Drain") Project of ¥¥'hich the CDM is the project's 
fundamental tool. The CBl¥1 should be delh・crcd to ATR in the first quarter of 
1999. The CBl¥1 will update 150 Dillion 3D CA cells a second and evolve a, CA 
based neural net module in about 1 second. This speed should make practical 
the assemblage of tens of thousauds of eyo]yed neun1l net modules into humanly 
defined artificial brain archtitecturcs, and hopefully create a new research field 
that we call simply "Drain Duilcling". This article has discussed the 11eural net 
model (" CoDi-lBit") which is implemented by the CBM. Also presented were 
discussions on how to conYcrt back and forth bct¥¥'een analog time dependent 
signals and spiketrains (bit striugs of Os and ls), thus enabling users to think 
entirely in terms of analog input and target皿 tputsig叫 s.A sample of evoh-c<l 
neural network modules using the CoDi-lBit mo如1was giyen. Once the CIHvI 
iR delivered and sufficient experience with it enables the construction of large 
neural systems, with tcus of thousands of modules, an artificial brain will l>c 
designed and built to control the beha¥'ior of a robot kitten called "Robokoncko" 
(.Japanese for "robot, child, cat"). The challenges which remain in ATR's CAl¥I-
Drain Project are to folly test the limits of the crnlvability of the CoDi-lI3it 
modules (using the CI31¥:1), so as to gain experience in what can be readily 
evoh・ccl and ¥¥・hat cannot, and then to assemble large numbers of them to make 
Robokorwko's brain. The biggest challenge will probably be creating the brain's 
architecture, our main task for 1909. 
The CDl¥I should be fast enough for many multi-module tests to be under-
taken. Multi-module systems can be evolved, assembled into the R.AlVI, and then 
tested as a functional unit. Once a system has b0en built successfully it can be 
used as a component in a larger system, ad infinitum. The challenges of the 
CA1¥1-I3rain Project are not only conceptual in nature, but managerial as well. 
A back of the envelope calculation says that if an "cYOlutionary engineer (EE)" 
(i.e. someone ¥Yho cYolves a neural uet module using a CBM) takes half an hour 
of human thinking time to dream up the fitness definition (i.e. the performance 
criterion) of a module, to specify the module's input signal(s), its target output 
signal, its input and output links with other modules, etc, then 4 EEs would be 
needed to complete the design of a 32000 module artificial brain within 2 years. 
Thus one needs to speak in terms of brain builder teams. If one wants to be a lot 
more ambitious and build a million module artificial brain in 2 years, then 120 
EEs are needed. Such a large team would need managers to control them. One 
can imagine higher level "brain architects" (DAs) handing out module specifi-
cations to lower level EEs who actually eyo]ye them on their CB:Ms and report 
back to the BAs with the results. The DAs and EEs need not be located in one 
place. Modern internet telephone technologies make globally distributed "vir-
tual teams" practical. For example, our ATR CAM-Drain team already uses the 
"IPhone" on a daily basis to collaborate with international colleagues. 
If artificial brains can be made to work reasonably successfully, e.g. by making 
interesting robot pets, or simple household cleaner・robots, etc, then a new arti-



ficial brain lJased computer industry will be created, which in twcuty years may 

be worth a trillion euros a year world wide. However, all this will only be possi-

hie if machines such as the CBM can dcliYer sufficient "cYoh・ability" to make it 

happen. By cvoh・ability is meant the degree to whcih some desired functionality 

is cvolvablc by a given model and implementation. As EEs quickly learn, not all 

neural net modules eyoJvc as one would wish. For example, it is quite possible 

that the decision to limit the CoDi model to 1 bit neural signaling (in order to 

implement the model in the Xilinx XCG264 chips) has limited the crn!Yability 
of the CoDi neural net modules. The first author (de Garis) crnl¥'cd neural net 

modules (in software) with 8-10 bit neural signals for his PhD a decade ago (1], 
and obtained a remarkable level of evolrnbility, but eYcn then there were limits. 
Section 7 aboYe has provided a taste of what CoDi-lI3it modules can do. Once 

our team has the CB'.¥I, ¥¥"C will be able to broaden rapidly our experience in 

CoDi module evolution aud hence obtain a feel its eyolYahility, within the con-
straints of 1 bit sig叫 ingand the CA based neural nets. ¥¥'c will then be more 
al>le to design an artificial brain based on modules that arc c¥'oh・ablc in practice. 
As T¥Ioorc's law prm・iclcs more powerful e¥"olvaLle chips in futnrc years, later 

Yersions of the CBl¥'I will be able to implement more complex neural net mod-
els, with multi bit signaling, wilh more realistic 1wuro11 models, etc, and hence 
provide a greater lcYcl of ern]yability, a concept fn11dame11t.al to the effort of 
building artificial Lrains 1. 
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