TR-H-295

ATR’S “CAM-Brain Machine” (CBM)
and Artificial Brains

Hugo DE GARIS, Michael KORKIN (Genobyte)
and Katsunori SHIMOHARA

2000.4.18

ATR AR5 k15 w98 o

T619-0288 FHATAFAHREMSEERT Y. H2-2 TEL: 0774-95-1011

ATR Human Information Processing Research Laboratories
2-2, Hikaridai, Seika-cho, Soraku-gun, Kyoto 619-0288, Japan

Telephone: +81-774-95-1011
Fax : +81-774-95-1008

O FR)ATR A FH1E B 5 W3R RT

ATR’s ?” CAM-Brain Machine” (CBM) and
Artificial Brains
An FPGA Based Hardware Tool which Evolves
a Neural Net Circuit Module in a Second and
Updates a 40 Million Neuron Artificial Brain in
Real Time

Hugo de GARIS!, Michael KORKIN?, Katsunori SHIMOHARA!

! Evolutionary Systems Dept., ATR, - Human Information Processing Research
Laboratories, 2-2 Hikari-dai, Scika-cho, Soraku-gun, Kyoto 619-0288, Japan
{decgaris, katsu}@hip.atr.co.jp, http://www.hip.atr.co.jp/~degaris
Tel: +81-774-95-1079, Fax: +81-774-95-1008
2 Genobyte, Inc., 1503 Spruce Street, Suite 3, Boulder CO 80302, USA
korkin@genobyte.com, http://www.genobyte.com
Tel: 41-303-545-6790, Fax: +1-303-449-1671

Abstract. This article introduces ATR’s " CAN-Brain Machine” (CBM),
an FPGA based picce of hardware which implements a genctic algorithni
(GA) to cvolve a cellular automata (CA) based ncural network circuit
module (of approximately 1000 neurons) in about a second (i.c. a com-
plete run of a GA, with 10,000s of circuit growths and performance eval-
uations). Up to 32000 of these modules (each of which is evolved with a
humanly specified function) can be downloaded into a large RAM space,
and interconnected according to humanly specified artificial brain archi-
tectures. This RAM, containing an artificial brain with up to 40 million
neurons, is then updated by the CBM at a rate of 150 Billion CA cells
per second. Such speeds should enable real time control of robots and
hopefully the birth of a new research field that we call "brain building”.
The first such artificial brain (to be built by ATR in 1999) will be used
to control the behaviors of a life sized robot kitten called "Robokoneko”.

1 Introduction

This article introduces ATR’s » CAM-Brain Machine” (CBM) [5], a Xilinx XC6264
FPGA based piece of hardware that is used to evolve 3D cellular automata based
neural network circuit modules at electronic speeds, i.e. in about a second per
module. 32000 of these modules can then be assembled into a large RAM space
according to humanly specified artificial brain architectures. This RAM is up-
dated by the CBM fast enough (150 Billion CA cell updates/sec) for real time
control of robots. ATR’s CBM should be built and delivered by the first quarter
of 1999. .

"~ The CBM is the essential tool in ATR’s ”Artificial Brain (CAM-Brain)
Project” [2, 3], which at the time of writing (December 1998), has been run-

ning for nearly 6 years. Although the focus of this article is on the functional
principles and design of the CBM, a certain background needs to be provided so
that the motivation for its construction is understood.

The basic (and rather ambitious) aim of the CAM-Brain Project as first
stated in 1993 was to build an artificial brain containing a billion artificial neu-
rons by the year 2001. The actual figure in 1999 will be maximum 40 million,
but the billion figure is still reachable if we really want. The ATR Brain Builder
team is hoping that the CBM will.revolutionize the field of neural networks (by
creating neural systems with tens of millions of artificial neurons, rather than
just the conventional tens to hundreds), and will create a new research ficld
called ”Brain Building”. The CBM will make practical the creation of artificial
brains, which are defined to be assemblages of tens of thousands (and higher
magnitudes) of evolved neural net modules into humanly defined artificial brain
architectures. An artificial brain will consist of a large RAM memory space, into
which individual CA modules are downloaded once they have been evolved. The
CA cells in this RAM will be updated by the CBM fast enough for real time
control of a robot kitten "Robokoneko” (Japanese for "robot, child, cat™).

Since the neural net model used to fit into state-of-the-art evolvable clectron-
ics has to be simple, the signaling states of the neural net were chosen to be 1
bit binary. We label this inodel ” CoDi-1Bit” [4] (CoDi = Collect & Distribute).
This article will summarize the principles of this 1 bit neural signaling model,
since the CBM is an electronic implementation of it. We realize that limiting
oursclves to only 1 bit per ncural signal (to fit into the Nilinx XC6264 chips),
is rather severe (although nature uses a 1 bit signal scheme with its evoked po-
tentials, i.e. the spikes in the axons), so it is possible that future versions of the
CBM may use multibit ncural signaling to obtain higher "evolvability” of neural
module functionality.

The remainder of this article is structured as follows. Scction 2 gives an
explanation of the "CoDi-1Bit” neural net model that is implemented by the
CAM-Brain Machine (CBM). Section 3 discusses briefly the representation that
our team has chosen to interpret the 1 bit signals which are input to and output
from the CoDi modules (we call this representation "SIIC” = Spike Interval In-
formmation Coding). This representation is important because the CBM measures
the " fitness” (i.e. the performance measure of the evolving circuit) using analog
output values obtained by convoluting the binary outputs of the module with a
digitized convolution function. Section 4 shows how analog time-dependent sig-
nals can be converted into spike trains (bit strings of Os and 1s) to be input into
CoDi modules using the so-called "HSA” (Hough Spiker Algorithm). The SIIC
(spiketrain to analog signal conversion) and the HSA (analog signal to spike-
train conversion) allow users (EEs = evolutionary engineers) to think entirely in
analog terms when specifying input signals and target (desired) output signals,
which is much easier than thinking in terms of spike intervals (the number of Os
between the 1s). This analog thinking for EEs simplifies the evolution of mod-
ules, and overcomes the limitation to some extent of the 1 bit binary signaling
of the CoDi modules (and hence the CBM). Section 5, the lieart of this article,

provides a detailed summary of CBM design and functionality, using the ideas
already discussed in the earlier sections. Since an artificial brain without a body
(such as a robot) seems rather pointless, section 6 introduces early work on the
behavioral repertoire and mechanical design of the kitten robot ”Robokoncko”
that our artificial brain will control. Section 7 presents a (software simulated)
sample of what evolved CoDi modules will be able to do, once the CBM is com-
plete and delivered. Our Brain Builder team will then be evolving thousands
of such modules. Section 8 discusses ideas for interesting future modules and
multi-module systems to be evolved. Section 9 concludes.

2 The CoDi-1Bit Neural Network Model

The CBM implements the so called ”CoDi” (i.e. Collect and Distribute) [4]
cellular automata based neural network model. It is a simplified form of an earlier
model developed at ATR (Kyoto, Japan) in the summer of 1996, with two goals
in mind. One was to make neural network functioning much simpler and more
compact comipared to the original ATR model, so as to achieve considerably
faster cvolution runs on the CAM-8 (Cellular Automata Machine), a dedicated
hardware tool developed at Massachusetts Institute of Technology in 19809.

In order to evolve one neural module, a population of 30-100 mmodules is run
through a genetic algorithm for 200-600 generations, resulting in up to 60,000 dif-
ferent module evaluations. Each module evaluation consists of - firstly, growing a
new set of axonic and dendritic trees, guided by the module’s chromosome (which
provide the growth instructions for the trees). These trees interconnect several
hundred neurons in the 3D cellular automata space of 13,824 cells (24*24%24).
Evaluation is continued by sending spiketrains to the module through its efferent
axons (external connections) to evaluate its performance (fitness) by loaking at
the outgoing spiketrains. This typically requires up to 1000 update cycles for all
the cells in the module.

On the MIT CAM-8 machine, it takes up to 69 minutes to go through 829
billion cell updates needed to evolve a single neural module, as described above.
A simple "insect-like” artificial brain has hundreds of thousands of neurons ar-
ranged into ten thousand modules. It would take 500 days (running 24 hours a
day) to finish the computations.

Another limitation was apparent in the full brain simulation mode, involving
thousands of modules interconnected together. For a 10,000-module brain, the
CAM-8 is capable of updating every module at the rate of one update cycle 1.4
times a second. However, for real time control of a robotic device, an update
rate of 50-100 cycles per module, 10-20 times a second is needed. So, the second
goal was to have a model which would be portable into electronic hardware to
eventually design a machine capable of accelerating both brain evolution and
brain simulation by a factor of 500 compared to CAM-8.

The CoDi model operates as a 3D cellular automata (CA). Each cell is a
cube which has six neighbor cells, one for each of its faces. By loading a different
phenotype code into a cell, it can be reconfigured to function as a neuron, an

axon, or a dendrite. Neurons are configurable on a coarser grid, namely one per
block of 2¥2*3 CA cells. Cells are interconnected with bidirectional 1-bit buses
and assembled into 3D modules of 13,824 cells {24%24*24).

Modules are further interconnected with 92 1-bit connectious to function to-
getlier as an artificial brain. Each module can receive signals from up to 92 other
modules and send its output signals to up to 32,768 modules. These intermodu-
lar conncctions are virtual and implemented as a cross-reference list in.a module

- interconnection memory (sce below).

In a neuron cell, five (of its six) connections are dendritic inputs, and one
is an axonic output. A 4-bit accumulator sums incoming signals and fires an
output signal when a threshold is exceeded. Eacli of the inputs can perform an
inhibitory or an excitatory function (depending on the neuron’s chromosome)
and cither adds to or subtracts from the accumulator. The ncuron cell’s output
can be oriented in 6 different ways in the 3D space. A dendrite cell also has
five inputs and onc output, to collect signals from other cells. The incoming
signals are passed to the output with an 5-bit XOR function. An axon cell is
the opposite of a dendrite. It has 1 input and 5 outputs, and distributes signals
to its neighbors. The ”Collect and Distribute” mechanism of this neural model
is reflected in its name ”"CoDi”. Blank cells perform uo function in an evolved
neural network. They are used to grow new sets of dendritic and axonic trees
during the cvolution node.

Before the growth begins, the module space consists of blank cells. Each cell is
seeded with a 6-bit chiromosome. The chromosome will guide the local direction
of the dendritic and axonic tree growth. Six bits serve as a mask to encode
different growth instructions, such as grow straight, turn left, split into three
branches, block growth, T- split up and down etc. Before the growth phase starts,
some cells are secded as neurons at random locations. As the growth starts,
cachi neuron ¢ ntinuously sends growth signals to the surrounding blank cells,

alternating between "grow dendrite” (sent in the direction of future dendritic
" inputs) and "grow axon” (sent towards the futurc axonic output). A blank cell
which reccives a growth signal becomes a dendrite cell, or an axon cell, and
further propagates the growth signal, being continuously sent by the root ncuron,
to other blank cells. The direction of the propagation is guided by the 6-bit
growth instruction, deseribed above. This mechanism grows a complex 3D system
of branching dendritic and axonic trees, with each tree having one neuron cell
associated with it. The trees can conduct signals betwecen the neurons to perform
complex spatio-temporal functions. The end-product of the growth phase is a
phenotype bitstring which encodes the type and spatial orientation of each cell.

Thus there are two main phases - neural net growth and neural net signaling.
In the CoDi-1Bit model, the signal states contain only 1 bit, so an interpretation
problem arises. With an 8 bit signal for example (as was the case in the old CAM-
Brain Project model) one simply looks at the signal state to see the signal valuc.
With 1 bit signaling, one necds to choose an interpretation of the signals, c.g.
frequency based (count the number of spikes (1s) in a given time), or interpret the
spacing between the spikes as containing information etc. Thesc interpretation

issues will be taken up in the next section.

3 The Spike Interval Information Coding Representation,
b} SIIC”

3.1 Choosing a Representation for the CoDi-1Bit Signaling

The constraints imposed by state-of-the-art programmable (evolvable) FPGAs
in 1998 are such that the CA based model (the CoDi model) had to be very
simple in order to be implementable within those constraints. Consequently, the
signaling states in the model were made to contain only 1 bit of information
(as happens in nature’s "binary” spike trains). Thie problem then arose as to
interpretation, How were we to assign meaning to tlie binary pulse streams (i.e.
the clocked sequences of Os and 1s which are a neural net module’s inputs and
outputs? We tried various ideas such as a frequency based interpretation, i.e.
count the number of pulses (i.e. 1s) in a given time window (of N clock cycles).
But this was thought to be too slow. In an artificial brain with tens of thousands
of modules which may be vertically nested to a depth of 20 or more (i.c. the
outputs of a module in layer n get fed into a module in layer n + 1, where n
may be as large as 20 or 30) then the cumulative delays may end up in a total
response time of the robot kitten being too slow (e.g. if you wave your finger in
front of its eye, it mnight rcact many seconds later). We wanted a representation
that would deliver an integer or real valued number at each clock tick, i.c. the
ultimate in speed. The first such representation we looked at we called ”unary”
i.e. if N neurons on an output surface are firing at a given clock tick, then the
firing pattern represented the integer N, independently of where the outputs
were coming from. We found this representation to be too stochastic, too jerky.
Ultimately we chiose a representation which convolves the binary pulse string
with the convolution function shown in Fig. 1. We call this representation ” SIIC”
(Spike Interval Information Coding) which was inspired by [7].

This representation delivers a real valued output at each clock tick, thus con-
verting a binary pulse string into an analog time dependent signal. Our team has
already published several papers on the results of this convolution representa-
tion work [6]. Fig. 2 shows the result of deconvoluting an arbitrary analog curve
(i.e. converting an analog signal into a spike train (binary string) as explained in
section 4, and then convoluting it back (i.e. converting a spike train into an ana-
log signal) to the original analog curve. The smooth curve is the original curve,
and the spikey curve is the result of the two conversions. The percentage errors
obtained between tch original curve and the result of the two conversions were
only about 2%, so we thought these two conversions were very useful. Of course,
it is one thing to have accurate conversions from analog signals to spike trains
and vice versa. It is another that a CoDi-1Bit neural net module can evolve
a spike train that when convoluted can produce a desired analog output. Fig.
3 shows just such an example (of a target 3 period sine curve) which evolved
quite successfully, showing that the basic idea is sound. (The solid curve is the

target curve, and the dashed curve is the evolved and convoluted result. The
actual spikes (i.e. the 1s in the binary string output from the CoDi module) are
shown beneath the curves). Fig. 4 shows two outputs of a "halver” circuit which
was evolved to take a constant analog input {(e.g. 600 or 400) and to output
half its value {300 or 200). This case is a good example of how a evolutionary
engineer can think entirely in analog terms when evolving modules. The analog
input is automatically converted to a spike train, which enters the neural net
module, and the spike train output of the module get automatically converted
to an analog signal whose values are compared with a target curve to evaluate
the fitness (perormance) of the evolving circuit. Further examples of evolved
modules (although using only binary 1/0), are to be found in section 7.

70 T 1 T T T T T T T

GOF

50L

“

301

201

Fig. 1. The convolution function used in the "SIIC” representation

3.2 The S1IC Convolution Algorithm

The convolution algorithm we use takes the output spiketrain (a bit string of 0s
and 1s), and runs the pulses (i.e. the 1s) by the convolution function shown in
tlie simplified example below. The output at any given time t is defined as the
sum of those samples of the convolution filter that have a 1 in the corresponding
spiketrain positions. The example below should clarify what is meant by this.

Simplified Example Convolve the 'spilict:rain 1101001 (where the left most bit
is the earliest, the right most bit, the latest) using the convolution filter values
{149 5-2}. The spiketrain in this diagram moves from left to right across the

450 : :

Fig. 2. An analog (smooth) curve and its deconveluted/convoluted approximation
(jerky) curve.

convolution filter. Alternatively, one can view the convolution filter (window)
nmoving across the spiketrain. The number to the right of the colon shows the
value of the convolution sum at cach time ¢.

time-shifted spike train : 1 0010 1 1 ---> (moves left to right)
convolution filter : 1 4 9 5 -2

i 0 0 1 0 1 1

[N
o
o
o

15 t =3

Fig. 3. A 3 period sine curve resulting from convolution of an evolved CoDi-1Bit. The
lower figure shows the actual spikes that generated the waveform.

1 0 0 1

0 0 0 -2 2 t =7
1 0 0

0 0 0 0 :9 t =28
1 0

0 0 O 0 5 t=9
1

0 0 0 0-2 -2 t =10

Hence, the time-dependent output of the convolution filter takes the values
(0,1, 5,13, 15,7,7,6, 2,9, 5,-2). This is a time varying analog signal, which
is the desired result.

Fig. 4. Outputs of a halver circuit (with inputs 600 and 400) using fully analog 1/O.

4 The "Hough Spiker Algorithm” (HSA) for
Deconvolution

Scction 3 above explained the use of the SIIC (Spike Interval Information Cod-
ing) Representation which provides an efficient transformation of a spike train
(i.e. string of bits) into a- (clocked) time varying "analog” signal. We nced this in-
terpretation in order to interpret the spike train output from the CoDi modules
to cvaluate their fitness values (e.g. by comparing the actual converted ana-
log output waveforms with user specified target waveforms). However, we also
need the inverse process, 1.e. an algorithm which takes as input, a clocked (digi-
tised, i.e. binary numbered) time varying ”analog” signal, and outputs a spike
train. This conversion is nceded as an interface between the motors/sensors of
the robot bodies {e.g. a kitten robot) that the artificial brain controls, and the
brain’s CoDi modules. However, it is also very useful to users, i.e. EEs (evolution-
ary engineers) to be able to think entirely in terms of analog signals (at both the
inputs and outputs) rather than in abstract, visually unintelligible spiketrains.
This will make their task of evolving many CoDi modules much easier. We there-
fore present next an algorithm which is the opposite of the SIIC, namely one
which takes as input, a time varying analog signal, and outputs a spike train,
which if later is convoluted with the SIIC convolution filter, should result in the
original analog signal.

A brief description of the algorithm used to generate a spiketrain from a time
varying analog signal is now presented. It is called the "Hough Spiker Algorithm”
(HSA) and can be viewed as the inverse of thie convolution algorithm described
above in section 3.

To give an intuitive feel for this deconvolution algorithm, consider a spiketrain
consisting of a single pulse (i.e. all 0s with one 1). When this pulse passes through
the convolution function window, it adds cach value of the convolution function
to the output in turn.

A single pulse: (100000... = t = +00) will be convoluted with the convolu-
tion function expressed as a function of time. At ¢ = 0 its value will be the first
value of the convolution filter, at ¢ = 1 its value will be the sccond value of the -
convolution filter, etc. Just as a particular spiketrain is a series of spikes with
time delays between themn, so too the convolved spiketrain will be the sum of
the convolution filters, with (possibly) time delays between them. At each clock
tick when there is a spike, add the convolution filter to the output. If there is no
spike, just shift the time oflset and repeat.

The same examnple.

spike train 11
convolution filter 1 4

t->0 1 2 3 4 6 6 7 8 910

out:

1 1 9 5 -2

1 1 4 9 5 -2

0 0 0 0 0 O

1 1 4 9 5 -2

0 0O 0 0 0 O

0 0O 0 0 0 O

1 1 4 9 5 -2

1 513156 7 7 6 2 9 5 -2

In the HSA deconvolution algorithm, we take advantage of this summation,
and in effect do the reverse, i.e. a kind of progressive subtraction of the convo-
lution function. If at a given clock tick, the values of the convolution function
are less than the analog values at the corresponding positions, then subtract the
convolution function values from the analog values. The justification for this is
that for the analog values to be greater than the convolution values, implies that
to generate the analog signal values at that clock tick, the CoDi module must
have fired at that moment, and this firing contributed the set of convolution
values to the analog output. Once one has determined that at that clock tick,
there should be a spike, one subtracts the convolution function’s values, so that
a similar process can be undertaken at the next clock tick. For example, to de-
convolve the convolved output (using the sanie vlaue of the convolution function
as in the simple exanmple of the previous section.

17513 15
compare:

9 b -2

[¢) B>

_ conv.vals<analog Sig»'vals, so spike: 1
7 6 2 9 5 -2 subtract (time++)

1
W N

77
1 4 9
0 1 41

(@]

compare: 1 4 9 5 -2 less, so spike: 11
0 0 1 4 9 6 2 9 5 -2 subtract (time++)
compare: 1 4 9 5-2 not less, so no spike: 110
0 0 01 4 9 6 2 9 5 -2 (time++)
compare: 1 4 9 5 -2 less, so spike: 1101
0 0 0 0 0 0 1 4 9 5 -2 subtract (time++)
compare: 1 4 9 5 -2 not. less: 11010
0 0 0 00 0 1 4 9 5-2 (timet+) .
compare: 1 4 9 5 -2 not less: 110100
0 0 0 0 0 0 1 4 9 5 -2 (time++)
compare: 1 4 9 b5 -2 less, so spike: 1101001
0 0 0 0 0 0 0 0 O 0O O subtract (time++)

It is assumed that spiking will irreversibly raise the value of the convolved
output. If the convolution filter value at a given clock tick is less than that of
the target waveform, spiking will bring the two values closer together. If the
waveform value is still too low after a spike hias occurred, a near future spike
will bring the two closer together.

Fig. 5 shows an example of an HSA spiketrain output. It is the spike train
corresponding to Fig. 2 in fact. The original input analog signal is the solid
line in Fig. 2. The spiketrain resulting from cacli analog input is sent into the
SIIC convolutor (shown in Fig. 1). The resulting analog output (the jerky curve)
should be very close to the original solid line as Fig. 2 shows it to be. The HSA
scems to work well when the values of the waveforms are large and do not take
values close to zcro, and do not change too quickly relative to the time width of
the convolution filter window. It may be possible to simply add a constant value
to incoming analog signals before spiking tliem and to ensure that the analog
signal does not change too rapidly.

(time —~->)
111100010001101111110100010111110110100010101110100100010011010100

100010101010100101001010110001101010011001101011010101011101110101101

Fig.5. The spiketrain output of Fig. 2, as generated by the Hough Spiker
Algorithm (HSA).

Note however, that the HSA deconvolution algorithm was only discovered
fairly recently, so the neural net module evolution that is discussed in section .
7 below, does not use it. The I/Os to these modules as specified by the EE
(cvolutionary engineer) were in binary, not analog.

5 The CAM-Brain Machine (CBM)

5.1 CBM Overview

The CAM-Brain Machine (CAM stands for Cellular Automata Machine) is a
research tool for the simulation of artificial brains. An original set of ideas for
the CAM-Brain project was developed by Dr. Hugo de Garis at the Evolutionary
Systems Department of ATR HIP (Kyoto, Japan), and is currently being im-
plemnented as a dedicated research toel by Genobyte, Inc. (Boulder, Colorado).
Genobyte is licensed by ATR. International and Japan’s Key Technologies Center
to manufacture and sell CBMs to third parties.

An artificial brain, supported by the CBM, consists of up to 32,768 necural
modules, cach module populated with up to 1,152 neurons, a total of 37.7 million
neurons. Within each neural module, ncurons are densely interconnected with
branching dendritic and axonic trees in a three-dimensional space, forming an ar-
bitrarily complex interconnection topology. A neural module can receive afferent
axons from up to 180 other modules of the brain, with each axon being capable
of multiple branching in three dimensions, forming hundreds of connections with
dendritic branches inside tlic module. Eacli module sends cfferent axon branches
to up to 32,768 other modules.

A critical part of the CBM approach is that neural modules are not " manually
designed” or "engineered” to perform a specific brain function, but rather evolved
directly in hardware, using genetic algorithins. '

Genetic algorithins operate on a population of cliromosomes, which represent
neural networks of different topologies and functionalities. Better performers for
a particular function arc seclected and further reproduced using chromosome
recombination and mutation. After hundreds of generations, this approach pro-
duces very complex neural networks with a desired functionality. The evolution-
ary approach can create a contplex functionality without any a priori knowledge
about how to achieve it, as long as the desired input/output function is known.

5.2 CBM Architecture

The CBM consists of the folowing six major blocks:

.. Cellular Automata Module

. Genotype/Phenotype Memory

. Fitness Evaluation Unit

. Genetic Algorithm Unit

. Module Interconnection Memory
. External Interface

Cy Ut b WO B

Each of these blocks is discussed in detail below, followed by some further
architectural points in section 5.3, and a summary of CBM capacities in section
5.4.

Cellular Automata Module The cellular automata module is the hardware
core of the CBM. It is intended to accelerate the speed of brain evolution through
a highly parallel execution of cellular state updates. The CA module consists of
an array of identical hardware logic circuits or cells arranged as a 3D structure of
24*24*24 cells (a total of 13,824 cells). Cells forming the top layer of the module
are recurrently connected with the cells in the bottom layer. A similar recurrent
conncction is made between the cells on the north and south, east and west
vertical surfaces. Thus a fully recurrent toroidal cube is formed. This feature
allows a higher axonic and dendritic growth capacity by effectively doubling
each of the three dimnensions of the cellular space. '

The CBM hardware core is time-shared between multiple modules forming a
brain during brain simulation. Only one module is instantiated at a timne. The
FPGA firmwarc design is a dual-buffered structure, which allows simultaneous
configuration of the next miodule while the current module is being run (i.c.
signals arc propagated through the dendrites and axons between ncurons). Thus,
the FPGA core is run continuously without any idle time between modules for
reconfiguration.

The surfaces of the cube have external connections to provide signal input
from other modules. Each surface has a matrix of 60 signals, which is repeated
on the opposite surface due to wrap around connections. Thus, a total of 180
. different connections is available. Four connections, i.e. one on each of the sur-
faces, and onc at onc of the 8 corner cells of the cube, are used as output points.
Due to wrap around, any corner cell has 3 wrap-around faces, so it is within two
cells maximum of any other comer cell, including the oppposite corner, and at
the same time equidistant from the three other outputs. The fourth output is
cquivalent to the center of the cube, so the set of all 4 putputs looks nice and
symmetric.

The CA module is implemented with new Xilinx FPGA devices XCG6264.
These devices are fully and partially reconfigurable, feature a new co-processor
architecture with data and address bus access in addition to user inputs and out-
puts, and allow tlie reading and writing of any of the internal flip-flops through
the data bus. An XC6264 FPGA contains 16384 logic function cells, each cell
featuring a flip-flop and Boolecan logic capacity, capable of toggling at a 220 NHz
rate. Logic cells are interconnected with neighbors at several hierarchical levels,
providing identical propagation delay for any length of connection. This feature
is very well suited for a 3D CA space configuration. Additionally, clock routing
is optimized for equal propagation timne, and power distribution is imnplemented
in a redundant manner. .

To implement the CA module, a 3D block of identical logic cells is configured
inside each XC62064 device, with CoDi specified 1-bit signal buses interconnecting
the cells. Given the FPGA internal routing capabilities and the logic capacity
needed to implement each cell, the optimal arrangement for a XCG6264 is 4*6*8
(192 cells). This elementary block of cells requires 208 external conncctions to
form a larger 3D block by interconnecting with six neighbor FPGAs on the
south, north, east, west, top, and bottom sides in a virtual 3D space. A total of

72 FPGAs, arranged as a 6*¥4*3 array are used to impleinent a 24¥24%24 cellular
cube.

The CBM implements interconnections between 72 FPGAs, each placed on a
small individual printed circuit board, in the form of one large backplane board,
carrying all 72 FPGA daughter boards.

The CBM clock rate for cellular update is selected between 8.25 MHz, 9.42
MHz, and 11 MHz. At this rate all 13,824 cclls are updated sirnultancously,
which results in the update rate of 114 to 152 billion cells/s. This rate exceeds
the CAM-8 update rate by a factor of 570 to 751 times.

Genotype and Phenotype Memory Each of the 72 FPGA daugliter boards
includes 16 Mbytes of EDO DRAM to be used for storing the genotypes and
phenotypes of the neural modules, a total of 1,180 Mbytes. There are two modes
of CBM operation, namely cvolution mode and run mode. The evolution mode
involves the growth phase and signaling phase. During the growtl phase, memory
is used to storc the chromosome bitstrings of the evolving population of modules
(module genotypes). For a module of 13,824 cells there are over 91 Kbits of
genotype memory needed. For each module the genotype memory also stores
information concerning the locations and orientations of the neurons inside the
module, and their synaptic masks.

During the run mode, memory is used as a phenotype miemory for the evolved
modules. The phenotype data describes the grown axonic and dendritic trees
and their respective neurons for each module. The phenotype data is loaded
into the CA miodule to configure it according to the evolved function. The geno-
type/phenotype memory is used to store and rapidly reconfigure (reload) the
FPGA hardware CA module. Recornfiguration can be performed in parallel with
running the module, due to a dual pipelined phenotype/genotype register pro-
vided in cach cell. This guarantecs the continuous running of the FPGA array at
full speed with no interruptions for reloading in either evolution or run modes.
The phenotype/genotype memory can support up to 32,758 interconnected neu-
ral modules at a time. An additional memory will be based in the main memory
of the host computer (Pentium-Pro 300 MHz) connected to the CBM through a
PCI bus, capable of transferring data at 132 Mbytes/s.

Fitness Evaluation Unit Signaling in the CBM is accomplished with 1-bit
spiketrains, a scquence of ones separated by intervals of zeros, similar to those
of biological neural networks. Information, representing external stimuli, as well
as internal wavcforms, is encoded in spiketrains using a so-called ”Spike Interval
Information Coding {SIIC)”. This method of coding is implemented by nature in
animal neural networks, and is very efficient in terms of information capacity per
spike. Conversion from spiketrains into ” analog” waveforis representing external
stimuli, or internal signaling, is accomplished by convolving the spiketrain with
a special multi-tap linear filter.

When a module is being evolved, it must be evaluated in terms of it’s fit-
ness for-a targeted task. During the signaling phase, cach module receives up to

180 different spiketrains, and produces up to three different output spiketrains,
which is compared with a target array of spiketrains in order to guide the evo-
lutionary process. This comparison gives a measure of performance, or fitness,
of the module. ‘

Fitness cvaluation is supported by a hardware unit which consists of an input
spiketrain bufler, a target spiketrain buffer, and a fitness evaluator. During each

clock cycle an input vector is read from its stack and fed into the module’s inputs. -

At the same time, a target vector is read from its buffer to be compared with
the current module outputs by the evaluator. The fitness evaluator perforins a
convolution of the spiketrains with the convolution filter, and coniputes the sum
of the waveform's absolute deviations for the duration of the sig- aling phase. At

the end of the signaling phase, a final measure of the module’s fitness is instantly
available.

Genetic Algorithm Unit To evolve a module, a population of modules is eval-
uated by computing every module’s fitness measure, as described above. A subset
of the best modules arce then selected for further reproduction. In cach genera-
tion of modules, the best are mated and mutated to produce a set of offspring
modules to become the next generation. Mating and mutation is performmed by
the CBM hardware core at high speed, configured for the genetic phase. During
this phase, each cell’s firmware implenients crossover and mutation masks, two
parent registers and an offspring register. Thus, each offspring chiromosome is
generated in nanoscconds, directly in hardware. The sclection algorithin is per-
formed by the host computer in software, using access to the CBM via a PCI
interface.

Module Interconnection Memory In order to support the run mode of op-
eration, which requires a large number of evolved modules to function as one
artificial brain, a module intercounection memory is provided. Each module can
receive inputs from up to 180 otlier modules. A list of these source modules ref-
erenced to each module is stored in a CBM cross-reference memory (3 Mbytes)
by the host computer. This list is compiled by CBAI software using a module
interconnection netlist in EDIF format. This netlist reflects the module inter-
connections as designed by the user, using ofl-the-shelf scliematic capture tools.

The length of module interconnections is 96 cells (clock cycles). For cach
of the 32,768 modules, a Signal Memory stores up to three 96-bit long output
spiketrains.

During the run mode, at the time each module of a brain is configured in the
CA hardware core (by loading its phenotype), a signal input bufler is also loaded
with up to 180 spiketrains according to the netlist in the module interconnection
memory. The spiketrains are the signals saved from the previous instantiation
and signaling of the 180 sourcing modules. At the same time, the three output
spiketrains of the currently instantiated miodule are saved back to the Signal
Memory. This repetitive cycling through all the modules which form the brain,

results in a repetitive saving and retrieving of the spiketrains to/from the Sig-
nal Memory. It provides the signaling between modules according to the brain
interconnection structure reflected in the schematics, designed by the user.

In a maximum brain with 32,768 modules, the CBM update rate is such that
cachi cell propagates approximately 288 bit-long spiketrains per second. A 288
bit-long spiketrain can carry on the order of 72 bytes of signal information, using
the SIIC coding method. Each neuron receives up to 5 spiketrains, so there are
up to 188 million spiketrains being processed by necurons in the brain. Thus the
maximum information processing rate by all ncurons in the brain is of the order
of 13.5 Gbytes/s. '

Additional spiketrain processing in multiple dendritic branches can be esti-
mated by assuming 50% of the total cellular space to be occupicd by dendrite
cells, cach cell on average having 2.5 branches out of 5 possible. Informational
throughput of dendrite cells is then of the order of 40.8 Gbyte/s.

External Interface The CBM architecture can receive and send spiketrains
not only fromn/to the Signal Memory, but also from/to the external CBM inter-
face. Any module can receive up to 180 incoming spiketrains and send up to 4
spiketrains to an external device, such as a robot, a speech processing system,
cte. In a brain with 16,384 modules, the information rate, as measured at the
external interface is up to 4.5 Kbytes/s per cach module, or up to 74 Mbyte/s
overall. In a smaller brain witli less number of modules, the external information
rate is higher, for example, a brain with 4,000 modules provides quadruple the
exterual information rate for each module (18 Kbyte/s).

5.3 Turther CBM Architectural Points

The CBM corce is implemented as a large 12-layer backplane with 72 FPGA niod-
ule boards plugged in. Each FPGA module board contains one Xilinx XC6264
BG560 FPGA, one Xilinx XC95216 BG352 CPLD, and a 16 Mbyte EDO DRANM
module. Each FPGA contains 16K reconfigurable function units. Memory is used
under CPLD control to load and save FPGA configurations to accomplish time
sharing of the fast FPGA hardware. The datapath between memory and an
FPGA is 32-bits wide and provides a data transfer rate of 66 Mbyte/s. An FPGA
is thermally coupled with a temperature sensor circuit which is pre-prograinmed
to shut-off the main clock when a temperature limit is exceeded.

The backplane serves primarily as a means to interconnect all 72 FPGAs.
Each FPGA has 208 bi-directional connections to six other FPGAs arranged as
a three-dimensional array of 6 by 3 by 4 FPGAs. In addition, the backplane’s
opposite side hosts several other boards used for overall sequencing and con-
trol of the system, implementing an SIND (Single Iustruction Multiple Data)
architecture. Overall, there are 7.2 million reconfigurable gates in the CBM. To
accomplish this connectivity, a High Density Metric connector system is used
with press-fit contacts, providing over 30,000 connections.

The CBM is connected as a PCI target to a Pentium II computer which

_initializes the system and performs some background auxiliary control.

Although the CBM has been developed primarily to implement a specific neu-
ral network model based on cellular automata, its architecture is quite universal
and very flexible. In fact, the CBM can be used for a large varicty of applica-
tions which benefit from a high speed and fast reconfigurability of its hardware.
Hardware-based implementations of a variety of algorithms have been shown to
exceed tlie computational speed of high-cost super computers, as is the case with
the CAM-Brain algorithm. The computational power of the CBM is cstimated.
to be equivalent to one to ten thousand Pentium IT 400 NMHz computers in the
CAM-Brain algorithin implementation. ’

In particular, one application supported by the CBAI architecture is gate-
level and function-level evolvable hardware, which is based on applying a genetic
algorithm to cvolve complex digital circuits for a specific task. With 7.2 million
gates, the resulting circuit complexity is likely to exceed human ability to design,
debug, or even understand the dynamics of such a circuit. The CAMN-Brain
algorithm itself is an example of function-level evolvable hardware, where a basic
unit of evolution is a function of a cellular automata cell, implemented as a
specific (non-evolvable) logic circuit. This circuit can implenient a number of
different functions selectable by loading a chromosome bit string into the cell’s
genotype register which switches the cell to perform a specific function.

5.4 Summary of CBM Technical Specifications

Table 1. Summary of CBM Technical Specifications

Cellular Automata Update Rate (max.) 152 billion cells/s
Cellular Automata Update Rate (min.) 114 billion cells/s
Number of Supported Cellular Automata Cells (max.) 453 million
Number of Supported Neurons (max., per module) 1,152
Number of Supported Neurons (max., per brain) 37,748,736
Number of Supported Neural Modules 32,768
Information Flow Rate, Neuronal Level (max.) 13.5 Gbytes/s
Information Flow Rate, Dendrite Level (estimated average) 40.8 Gbytes/s
Information Flow Rate, Intermodular Level (max.) 74 Mbytes/s
Number of FPGAs 72
Number of FPGA Reconfigurable Function Units 1,179,648
Phenotype/Genotype Memory 1.18 Gbytes
Chromosome Length 91,008 bits
Power Consumption 1 KWatt (5 V, 200 A)

6 ”Robokoneko”, the Kitten Robot

An artificial brain with nothing to control is rather uscless, so we chose a control-

lable object that we thought would attract a lot of media attention, i.c. a cute

life-size robot kitten that we call "Robokoneko” (which is Japanese for "robot-

child-cat”}. We did this partly for political and strategic rcasons. Brain building
is still very much in the "proof of concept” phase, so we want to show the world

something that is controlled by an artificial brain, that would not require a PhD

to understand what it is doing. If the kitten robot can perform lots of interesting

behaviors, this will be obvious to anyone siniply by observation. The more media

attention the kitten robot gets, the more likely our brain building work will be

funded beyond 2001 (the end of our current research project).

Fig. shows the mechanical design our team has chosen for the kitten robot. Its
total length is about 25 ecms, hence roughly life size. Its torso has two components,
joined with 2 degrees of freedom (Dol?) articulation. The back legs have 1 DoF
at the ankle and the knee, and 2 Dol at the hip. All 4 feet are spring loaded
between the heel and toe pad. The front legs have 1 DoI" at the knce, and 2
Dol at the hip. With once mechanical motor per DoF, that makes 14 motors for
the legs. 2 motors are required for the connection between the back and front
torso, 3 for the neck, 1 to open and close the mouth, 2 for the tail; 1 for camera
zooniing, giving a total ¢.” 23 motors.

In order to evolve modules which can control the motions of thie robot kitten,
we thought it would be a good idea to feed back the state of cach motor (i.e. a
spiketrain generated from the pulse width modulation PYWM output value of the
motor) into the controlling module. Since each module can hiave up to 180 inputs,
feeding in these 23 motor state values will be no problem. We are thinking we
may install acceleromotors and/or gyroscopes which may add another 6 or more
inputs to each motion control module. It can thus be seen that the mechanical
design of the kitten robot has implications on the design of the CBN modules.
There need to be sufficient numbers of inputs .or example.

Thie motion control modules will not be evolved directly using the mechanical
robot kitten. This would be hopelessly slow. NMechanical fitness measurcmernt is
impractical for our purposes. Instead we will soon be simulating the kitten’s mo-
tious using an elaborate commercial simulation software package called ” Working
Model - 3D”. This software will allow output from an evolving module to control
the siinulated motors of the simulated kitten. This software simulation approach
negates to some extent the philosophy of the CAM-Brain Machine and the CAM-
Brain Project, i.e. the nced for hardware evolution speeds. This compromise was
felt to be a necessary evil. In practice, the proportion of modules concerned with
motion control will be very small compared to the total. Potentially, we have
32K modules to play with. Probably most of them will be concerned with pat-
tern recognition, vision, audition, ctc. and decision making. Designing the kitten
robot artificial brain remains the greatest resecarch challenge of the CAM-Brain
Project and will eccupy us through 1999, and probably beyond.

Fig. 6. "Robokoncko”, the life-sized kitten robot to be controlled by our artificial brain

7 A Sampler of CoDi-1Bit Evolved Neural Net Modules

Since the whole point of using the CBM is to attain a high evolution speed, it
is useful if the representation chosen to interpret the 1 bit signals which enter
and leave the CoDi modules can be unique, otherwise several representations
would need to be implemented in the electronics. (For the CBM to be efficient,
i.e. to evolve CoDi modules in about 1 second, fitness measurements need to be
perforied at electronic speeds, which implies that the representation chosen for
the signals be implemented directly in the hardware). We chose the SIIC to be
our unique representation. However, as mentioned at the bottom of section 5,
most of the evolutionary experiments presented here were alrcady undertaken
“before the SIIC representation was chosen. Since the results of these carlier ex-
periments are interesting in their own right, we report on them here. They show
to what extent that CoDi modules are evolvable and the power of their function-
ality. The cvolution of SIIC-representation-based and HSA-based modules will
be the subject of work in the very near future, given that both algorithms are

now ready. So is the CBM multi-module simulation code, so progress should be
rather rapid in the coming months prior to the delivery of the CBM itself. Once
the CBM is delivered, multi-module systems should be built as fast as we can
drcam them up. The bottleneck in building large scale multi-module systems will
become human creativity lag, not module evolution lag (as was the case with
software evolution speeds in the "pre-CBM cra”.) We now provide a sample of
evolved CoDi neural net modules, their specified functionalities, and their actual
performances, to give a feel for what they can do.

7.1 XOR Module

If a CoDi module could not be cvolved to perform something as simple as an
exclusive OR, then the whole CAM-Brain approach would be cast in doubt,
so onc of the first things we tried was to evolve an XOR module. The module
size was a cube of 24¥24%¥24 3D CA cells (the standard CBM module size, as
implemented in the hardware). Two binary signals, A and B (on the Z = 0
face of the cube at (x,y, z) coordinates of (1,1,0) and (7,1,0) (axon cells)) were
input over G4 clock ticks. There were 4 test cases (using a multi-test fitness
measurement):

Casce 1
The A input was a steady strcam of 1s for 64 clocks, and
the B input was a steady stream of 1s for 64 clocks.

Case 2:

The A input was a steady stream of 1s for 64 clocks, and
the B input was a steady strecam of 0s for 64 clocks.

Case 3:

The A input was a steady stream of Os for 64 clocks, and
the B input was a steady strecam of 1s for 64 clocks.

Casc 4:

The A input was a steady strcam of Os for 64 clocks, and
the B input was a steady stream of Os for 64 clocks.

At the output point (4, 4,0), the desired or target output values were a strean
of 0s, 1s, 1s and 0s respectively (to implement the XOR function). The total
fitness value was the sum of the partial fitness values of the 4 test cases, i.e.
the total number of correct output values, giving a theoretical maximum fitness
value of 4¥64 = 256. However, since there arc incvitable delays as the signals
progress through the CA cells of the module, this perfect score is not possible.

The elite module, (population of 15, mutation rate of 0.005 per bit per gen-
eration, one point crossover rate of 0.6 per chromosome per gencration), gave
after about 20 gencrations, the following outputs for the 4 cases, with partial
fitness scores of 63, 57, 56, 64 respectively. Hence total fitness was 240.

Case 1:

_ 0000000100

Case 2: T

0000000111

Case 3:
000000001111111111111111111111111211112111111111131111131111111111

Case 4:
00000000000000000000000000000000000000060000000060000000000000000

So the XOR module evolved fairly quickly and casily. Note that the XOR
casc is an example of "multi-test fitness measurement”. For cach test, a partial
fitness score is obtained, whichi is later summed with other partial fitess scores,
resulting in the overall fitness score of the CoDi module. Between cach partial
test, the signal states of the module are cleared, and a new test run is performed
using the same circuit, but with different input. The same story occurs in thie
CBA! hardwarec.

7.2 Timer Module

One of the first things we tested after the CoDi-1Bit model was invented, was
to see if a CoDi module (cousisting of 4K 3D CA cells, with about 150 artificial
neurons in thie 4I< space, could evolve a "timer”, i.c. where constantly firing bi-
nary inputs generate at a single ccll output (placed elsewhere in the CA space)
a string of 0s during the first 30 clock ticks, then a string of 1s during the next
20 clock ticks, and finally a string of Os in the last 20 clocks, as shown below.
This was quite a demanding evolutionary task, which was a uscful test vehicle
during our carly evolutionary trials.

000000000000000000000000000000 11111111111111111111 00000000000000000000

The fitness definition was pretty simple. (Note, that the evolution of this
module did not use the SIIC or HSA approachies. Inputs and outputs were spec-
ificd directly in binary signals). If a 0 appeared in the first (0) block, score one
point. If a 1 appeared in the second (1) block, score three points. If a 0 appeared
in the third block (0), score two points. Hence a perfect score would be 30*1 +
20*3 + 20*%2 = 130. Population size was 24, with no crossover.

The Codi-1Bit model software simulation evolved this with a fitness of 100%
in about 150 generations. A few days later, by strongly increasing the neuron
density i1 the CA space to about 90% of the maximum value, we got the same
result in about 50 generations!

7.3 Multiple Timer Module

Since a 100% fitness score does not test the limits of evolvability of a module,
a more demanding output function was tried. The target output (shnilar to the
above pattern) and the actual evolved output (placed immediately under the
target pattern for comparison) were as follows:

Target

000000000000000000000000000000 11111111111111111111

Evolved ‘

000000000000000000000000000000 00011111111111111111

Target ctd. '

000000000000000000000000 1111111111111111 00000000000000000000

Evolved ctd.
100000000000000000000000 0111111111111111 10000000000000000000

The fitness definition was similar to the above. If a 0 appcared in the first
(0) block, score 12 points. If a 1 appeared in the second (1) block, score 7 points.
If a 0 appeared in the third block (0), score 3 points. If a 1 appeared in the
fourth block (1), score 2 points. If a 0 appeared in the fifth block (0), score 1

point. Hence a perfect score would be 30%¥12 + 20*7 + 24*3 + 16*2 -+ 20*1
= $24. These weightings were cliosen so as to encourage the carlier outputs to
be correct before the later outputs. Population size was 30. No crossover. This
result converged after about 100 gencrations with a fitness value of 0.957.

It is intcresting to note that these good results are evolving in about 100
generations or so, and yet the chromosome length is very large. The standard
CBM chromosome length is of the order of 90K bits. One might think that such a
long chromosome would be very slow in evolving, but this was not the case. One
possible explanation for this is that there may be so many possible solutions,
that (any rcasonable) one is quickly {found.

7.4 Switcliable Dual Function Module

Our thoughts then turned to the idea of trying to evolve a module whose be-
haviors could be placed under switchable coutrol, i.e. a module with dual func-
tionality, which could be switched fromn one behavior to the otlier, depending on
whether a ”control” input was activated or not.

More specifically, two fixed position input points IN and SWITCH were placed
on au input surface (z = Q), at positions (8, 8,0} and (16, 16, 0) for a rectanguloid
of 24*24*18 3D CA cclls, with a fixed output point at position (11,12,9). If the
output point was not an axon, fitness was defined to be zero.

Two experiments were run on the same module (the same CoDi-1Bit circuit,
with signal flushing between experiments). In both experiments, the IN input
fired at cvery clock tick. In the first experiment, the SWITCH input was off for
cvery clock tick. In the second experiment the SWITCH input fired for every clock
tick. The module was evolved to give a very active output (lots of 1s) if the
SWITCH was off, but a low output (few 1s) if the SWITCH was on. That is, the
SWITCH acted as an inhibitor.

The bitstrings below show the outputs for the two cases, firstly with SWITCH
off, then on. Over 90 clock ticks, the first output had 42 more 1s than the sccond
output.

SWITCH off
00000000000000000000000000000000000110001110111111111111111111111
1111111111111113111111111

SWITCH on
00000000000000000000000000000000000010000010000010000010000010000
0100000100000100000100000

The number of 1s in the two outputs were.labeled as Sum, and Sums re-
spectively. The fitness definition finally settled upon, was:

IF(Sum, > Sums,)

fitness = 10000 * (Sum; — Suma) 4 0.001 * (Sum, + Sumy)
IF(Sum; < Suma)

fitness = 100 * (Sumy — Sum;) + 0.001 * (Sumy + Sums)

The term 0.001 * (Sumy + Swms) was used to encourage circuits to give
nonzero output at the output point. The terms 100 * (Sums — Sum;) and
10000 # (Sum; — Sums) encouraged dilferences in the two outputs, with a strong
preference for the first case to give more 1's in the output. ,

This result was very encouraging because it shows that coutrollable (switch-
able) multi-function modules are evolvable with the highly simplified (suitable
for implementation in evolvable clectronics) CoDi-1Bit model. Such modules will
be very useful when the time comes to evolve themn for placement in artificial
brain architectures.

7.5 Pattern Detector Module

With a slight modification of the code used to evolve the above module, a pat-
tern detector module was evolved which was capable of distinguishing between
two squarc wave inputs, of 111000111000... and 11111000001111100000... In this
case, no switch input was used. Two experiments were run. In the first, the
input was the G clocktick cycle square wave input, applied at the fixed input
point (8,8, 0). In the second experiment, the circuit was regrown with the same
chromosome and the 10 clocktick cycle square wave input was applicd to the
same fixed input point. The fitness definition was the same as above. Results
arc shown below. Over 90 clockticks, thie first output had 48 more 1s than the
second output.

Square wave input 111000111000...

QOutput
000000000000000000000000100110111011111111111111111711111111111111
1111111111111111111111111

Square wave input 11111000001111100000...

Qutput
00000000000000000000000000001000100010001000100010001000100010001
0000000000010001000100010

Since the CoDi modules seem capable of evolving such detectors, it may be
possible to cvolve modules which are capable of detecting a specific phoneme
analog input (e.g. the spike train (bit string) which when couvoluted with a
particular convolution function gives the time dependent analog signal). In a
manner similar’ to the above, one could input the signal in the first experi-
ment, and a random signal in the second, in a multi-test experiment, and cvolve

the phoneme detector. Maybe one could evolve a set of detectors, one for cach
phoneme. By using the SIIC and HSA digital/analog conversions, this kind of
thing may become quite practical.

7.6 Hubel-Wiesel Line Motion Detector Module

The results of the following experiment were significant for the CAM-Brain
Project as a whole, we felt. It involved the evolution of a Hubel Wiesel type
line motion detector. Hubel and Wiesel won a Nobel prize for discovering that
certain neural cells in the visual region of the cat’s brain fired strongly when
lines of light at particular orientations and speeds were shone onto a screen that
the cats werc observing. These cells (ncurons) were detecting the motion of lines
at a particular orientation. The evolution of this *Hubel-Wiesel” module used
the same fitness definition and a similar methodology as in the above case. In the
first experiment, a square 12*12 neuron input grid was used. At the first clock
tick, the top horizontal 12 neurons were made to fire - at the sccond clock tick,
the second horizontal row of 12 neurons was made to fire, ete, for 12 clock ticks,
then the cycle was repeated. This input firing pattern simulated the motion of a
line of light moving horizontally down the visual ficld on the retina of a cat. In
the sccond experiment, 12 randomly positioned input neurons were fired at each
clock tick. These 12 positions were randomly generated for each clock tick. This
sceond input firing pattern simulated input noise, to be contrasted with the line
motion input. Output results are shown below.
Line Motion Input Case
Output
00000000000000000000000010011010011011111111111111111111111111111
111111711111111711111111111
Random Input Case
Output
00000000000000000000000000001000000000000000010001010101010101010
1010101010101010101010101

There were 35 more 1 bit outputs in the first case than the second. Since the
inputs to the second case are positioned randomly, the same neural net module
will generate a different fitness value depeuding on the input. Nevertheless the
evolution still improved over time, developing a fairly robust net giving fitness
values corresponding to over 30 1-bit differences {between the two experiments)
in most cases (e.g. the top 5 fitness chromosomes were saved for each generation
and not crossed over or mutated. The fitness values (1-bit difference count) of
these top 5 were 31, 34, 35, 30, 29 after several hundred generations). Thus it .
was possible to evolve a Hubel Wiesel Line Motion Detector - quite an achieve-
ment. Of course, we have no idea how the circuit does what it does. This is
the great strength of "evolutionary engineering”. Evolved circuits can achieve
performance levels beyond what human engineers can achieve with traditional
top-down design techniques, i.e. attain superior cugincering performance levels,
but the price is that one loses scientific understanding, due to the overwhelming

structural and dynamical complexity of these CoDi circuits. Thus "evolution-
ary cngineering” can provide superior engineering, but inferior science. It is a
trade-off. In practice, once EEs can generate tens of thousands, even millions
of modules, only a few die-hard analysts will want to know how an individual
module functions. For the most part, noone will care how a particular module
amongst millions actually does its thing.

8 Ideas for Interesting Future CoDi Modules to be
Evolved

8.1 The "Dagwood Approach” for a Multi-Test Module

The CBM hardware automatically performs a fitness measurcment on the as-
sumption that the 1Bit signals which leave the evolving module into the fitness
measurenient circuit arve interpreted with the SIIC approach, i.e. the hardware
actually immplements the SIIC convolution algorithm. We have hinplemented the
CBM having a single very general fituess measurement methodology, to simplify
the electronics. Hence evolutionary engineers using the CBM will need to specify
the functions of the modules they want to evolve using the SIIC methodology.
Howcever, there is a problem with this unified approach, namely how to give the
same circuit several tests, i.c. several sets of different inputs in a single run. For
example, iinagine one aims to cvolve a module which detects a time dependent
input pattern P. One inputs the pattern P for T, clocks. (Note that a CBM mod-
ule has maximumn 180 binary inputs, maximumn 3 binary outputs). One wants
the module to respond strongly when the pattern in detected, and weakly if any
other pattern is presented. Hence the same circuit needs to be tested for several
pattern inputs, i.e. P and others. The pattern P is called the positive case, while
the others ve called the negative cases. (It is also possible that there may be
several posicive cases (F;)). One does not want a module which responds well to
any old pattern. It must discriminate.

How does one test all these cases (positive and ncgative) in a single run?
By concatenating them, i.e. sandwiching them ("Dagwooding” them) over time.
(Dagwood was a popular US cartoon character who was famous for making
multilayer sandwiches). For example, imagine there are 2 positive examples and
4 negative examples to be input to the same circuit. Hence there will be 6 time
periods in which the patterns are presented sequentially at the input in one long
run. Between each input signal presentation, the signal states in the circuit are
cleared out, ready for the next signal input. This the CBM actually does. This
resetting of the signal states is part of the CBM fitness measuring approach that
- we call "multi-test” fitness measurement. The 6 input pattern periods can be
represented as ¥ Py, Py, Ny, Nay N3, N4”. The periods last P and N; clock ticks
cach. So that the total nuinber of clock ticks for the positive periods is more
or less equal to the. total of the negative periods, the durations of the P; can
be lengthened. This should increase the evolvability of the positive responses.
Otherwise the evolution may favor the negative cases too heavily. The target

output patterns one wants for these 6 periods can be represented as "high, high,
low, low, low, low”.

Clearing the signal states between individual inputs in multi-test runs is
nceded because it is almost certain that self sustaining reverberating loops will
be set up once an initial input is switched off. Such self sustaining loops may
in fact be very useful, since they can be looked upon as a form of memory, and
licnce may be used to make CoDi modules capable of learning, i.e. adapting to
their experience. The next subsection will elaborate on this idca.

The CBM evaluates cach partial fitness (one for each test in the multi-test
case) and then sums the partial fitnesses to get the total fitness for the circuit (the
module). The XOR case described in the previous section is a siinple example
of a multi-test case.

8.2 Modules Which Learn

Up until recently, we have always thought that the CAM-Brain Project would
produce neural circuits that would be INcapable of learning, i.c. they would not
modify themselves based on their run time experience. The rationale was that
it. would be complicated enough dealing with tens of thousands of non learning
modules all interacting with each other, let alone having tens of thousands of
learnable modules. Also, we saw no way of having CoDi modules which could
learn. Lately however, we have begun to think that learnable CoDi modules
might be evolvable. The essence of learning in a system is that some event in
the past leaves some trace or memory in the system. In a CoDi module, that
could take the form of reverberating internal signaling after an initiating input
arrives. In some modules, once the input stops, the resulting 1Bit signals could
dic away, i.c. be transient. Alternatively, the reverberating signals could persist
and hence constitute a form of memory. Thus CoDi modules may be evolvable
which gencrate reverberating signals.

Once one begins to think along these lines, it may be possible to create
modules capable of Pavlovian conditioning and similar plienomena, e.g. one could
evolve a module which has two possible inputs M(eat) and B{cll). One evolves
the circuit and gives it 3 tests (in a multi-test case), namely M alone (followed by
a signal reset), then B alone (followed by a signal resct), then M and B together
(with NO signal reset) followed by B alone. The respective output for each of the
3 cases should be high, low, high. The dagwooded input stream would be *[M],
{B], {(M&B) then BJ]”, and the desired outputs would be "high, low, high”. Note
that there would be no signal reset between the M&DB input and the B input.
This allows for a reverberating internal signaling to be set up by the M&B which
allows the B input to give a high output. If this module can be made to function,
it shows that classical conditioning is possible with CoDi modules. (Of course
certain negative cases would need to be Dagwooded into the multi-test case as
well). Thus artificial brains capable of learning could be designed using learnable,
conditionable modules.

8.3 TFrom Multi Module Systems to Artificial Brains

Once our group and others have gained a lot of experience in evolving single
modules, the next obvious step is to start to design multi-module systems, since
the ultimate goal of the CAM-Brain Project is to put many many modules to-
gether (up to 32,000 of them in the current design of the CBM) to make artificial
brains. Obviously, no CAM-Brain team will try to build a 32000 module brain
(with maximum 40 million artificial neurons) all at once. Instead, as a first step,
small multi-module systems will be built, with tens of modules. Once experience
is gained in how to do this successfully, larger systeins will be undertaken, e.g.
with 100s of modules, then 1000s, and later 10,000s. What kinds of multi-module
systems with about a dozen modules might be interesting to build? Answering
such a question will depend on the creativity of individual (human) "evolution-
ary cengineers” . Here are sone ideas for 710 to 1”7 systems (i.e. ten to power 1 =
tens of modules) - handwritten "capital letter” recognizers (where each module
is evolved to respond to a particular input stimulus e.g. 3 converging lines on the
middle lelt hand side of the input region (which would make the letters A, E, F,
H, P potential candidates). Similar feature extractor modules could be placed in
appropriate input positions. Boolean modules (AND module, OR module) could
combine the outputs of the feature extractor modules, to distinguish the let-
ters. A Vwinner-take-all” macromodule (i.c. a module of modules considered as
a functional unit) would be needed to detect the letter module with the largest
output signal. How to design/cvolve the macromodule? The usual way is to use
a forin of lateral inlibition. Using CoDi modules to build such a device might
not be trivial. '

Another "10 to 17 suggestion is a simple artificial nervous system with a small
number of sensor modules, and a liinited number of motion generatiug modules,
which can be switched on or off by a control signal (i.c. the motion is active
while the control signal is active, and becomes inactive when the control signal
is inactive). The sensor modules {e.g. the environment is very bright, or dark,
or noisy, or quict, ctc) can send their output signals to some decision modules
(probably Boolean), whosec outputs become the activating signals to the motion
generating modules.

Over time, artificial nervous systems can grow in complexity, until they can be
called artificial brains. The robot kitten ("Robokoneko” = Japancse for "robot,
child, cat”) that our team is currently designing will be controlled by an artificial
brain with up to 32000 modules. Since this kitten robot contains a CCD TV
camera, microphones for ears, touch sensors, 22 motors for the legs and body,
etc, it should offer plenty of scope for brain buitding. Obviously, we will probably
begin with 10 to 2” systemns to control it, and work our way up to "10 to
4" systems. This is a huge amount of work, which will need to be distributed
over many CAM-Brain teams across the planet. With modern (almost cost frec)
internet telephone technology, coordinating such a large management effort is
less expensive. Our team already uses IPhone to talk witlr our international
collaborators on a daily basis.

9 Conclusions

This article has provided an overview of ATR’s CAM-Brain Machine (CBM) and
the Artificial Brain ("CAM-Brain”) Project of which the CBM is the project’s
fundamental tool. The CBM should be delivered to ATR in the first quarter of
1999. The CBM will update 150 Billion 3D CA cells a second and evolve a CA
based neural net module in about 1 second. This speed should make practical
the assemblage of tens of thousands of evolved ncural net modules into humanly
defined artificial brain archtitectures, and hopefully create a new rescarch field
that we call simply ”Brain Buildiug”. This article has discussed the neural net
model (" CoDi-1Bit") which is implemented by the CBM. Also presented were
discussions on how to convert back and forth between analog time dependent
signals and spikctrains (bit strings of 0s and 1s), thus enabling users to think
entirely in terms of analog input and target output signals. A sample of cvolved
neural network modules using the CoDi-1Bit model was given. Once the CBM
15 delivered and sufficient experience with it enables the construction of large
neural systems, witli teus of thousands of modules, an artificial brain will be
designed and built to control the behavior of a robot kitten called " Robokoncko”
{Japanesc for "robot, child, cat”). The challenges which remain in ATR’s CAM-
Brain Project are to {ully test the limits of the cvolvability of the CoDi-1D3it
modules (using the CBM), so as to gain experience in what can be readily
evolved and what cannot, and-then to asseible large numbers of them to malke
Robokoncko’s brain. The biggest challenge will probably be creating the brain’s
architecture, our main task for 1999.

The CBM should be fast enough for many multi-module tests to be under-
taken. Multi-module systems can be evolved, assembled into the RAM, and then
tested as a functional unit. Once a system has been built successfully it can be
used as a component in a larger system, ad infinitwin. The challenges of the
CAM-Brain Project are not only conceptual in nature, but managerial as well.
A back of the envelope calculation says that if an "evolutionary cngincer (EE)”
{i.c. somecone wlio cvolves a neural net module using a CBM) takes half an hour
of human thinking time to dream up the fitness definition (i.e. the performance
criterion) of a module, to specify the module’s input signal(s), its target output
signal, its input and output links with other modules, ctc, then 4 EEs would be
necded fo complete the design of a 32000 module artificial brain within 2 years.
Thus one needs to speak in terms of brain builder teams. If one wants to be a lot
more ambitious and build a million module artificial brain in 2 yecars, then 120
EEs are needed. Such a large team would need managers to control them. One
can imagine higher level "brain architects” (BAs) handing out module specifi-
cations to lower level EEs who actually evolve them on their CBMs and report
back to the BAs with the results. The BAs and EEs need not be located in one
place. Modern internet telephone technologies make globally distributed ” vir-
tual teams” practical. For example, our ATR CAM-Brain team alrcady uses thie
”IPhone” on a daily basis to collaborate with international colleagues.

If artificial brains can be made to work reasonably successfully, e.g. by making
interesting robot pets, or simple houseliold cleaner robots, ctc, then a new arti-

ficial brain based computer industry will be created, which in twenty years may
be worth a trillion euros a year world wide. However, all this will only be possi-
ble if machines such as the CBM can deliver sufficient "evolvability” to make it
happen. By cvolvability is meant the degree to wheih some desired functionality
is evolvable by a given model and implementation. As EEs quickly learn, not all
neural net modules evolve as one would wish. For example, it is quite possible
that the decision to limit the CoDi model to 1 bit ncural signaling (in order to
implement the model in the Xilinx XCG6264 chips) has limited the evolvability
of the CoDi neural net modules. The first author (de Garis) evolved neural net
modules'(in software) with 8-10 bit neural signals for his PhD a decade ago {1],
and obtained a remarkable level of evolvability, but cven then there were limits.
Section 7 above has provided a taste of what CoDi-1Bit modules can do. Once
our team lhas the CBM, we will be able to broaden rapidly our experience in
CoDi module cvolution and hence obtain a feel its evolvability, within the con-
straints of 1 bit signaling and the CA based neural nets. We will then be more
able to design an artificial brain based on inodules that are evolvable in practice.

As Moore’s law provides more powerful evolvable chips in future years, later
versions of the CBM will be able to impleinent more complex neural net mod-
cls, with multi bit signaling, with more realistic ncuron models, ete, and hence
provide a greaicer level of evolvability, a concept fundamental to the cffort of
building artificial brains !.

References

1. Hugo de Garis. Genctic Programming: GenNets, Artificial Nervous Systems, Ar-
tifical Embryos. TPhD thesis, Brussels University, January 1992, Available at
http://www lip.atr.co.jp/~degaris.

2. Hugo de Garis. An artificial brain : ATR’s cam-brain project aimns to build/cvolve
an artificial brain with a million neural net modules inside a trillion cell cellular
automata machine. New Generation Computing Journal, 12(2), July 1994.

3. Hugo de Garis, Felix Gers, Michael Korkin, Arvin Agal, and Norberto Eiji Nawa.
Building an artificial brain using an FPGA based *CAM-brain machine’. Artificial
Life and Robotics Journal, 1999. to appear.

4. Felix Gers, Hugo de Garis, and Michael Korkin. Codi-1 Bit: A simplified cellular
automata based neuron model. In Proceedings of AE97, Artificial Evolution Con-
ference, October 1997.

5. Michacl Korkin, Hugo de Garis, Felix Gers, and Hitoshi Hemuni. CBM (CAM-
Brain Machine): A hardware tool which evolves a neural net module in a fraction
of a sccond and runs a million neuron artificial brain in real time. In John R.
Koza, Kalyanmoy Deb, Marco Dorigo, David *'. Fogel, Max Garzon, Hitoshi Iba,
and Rick L. Riolo, editors, Genetic Programming 1997: Proccedings of the Second
Annual Conference, July 1997.

6. Michacl Korkin, Norberto Eiji Nawa, and Hugo de Garis. A 'spike interval infor-
mation coding’ representation for ATR's CAM-brain machine (CBM). In Proceed-
ings of the Second International Conference on Evoluable Systems: From Biology to
Hardware (ICES’98). Springer-Verlag, September 1998,

! Early papers on the project can be found at http://www.hip.atr.co.jp/~degaris

7. Fred Ricke, David Warland, Rob de Ruyter van Steveninck, and William Bialek.
Spikes: ezploring the neural code. MIT Press/Bradford Books, Cambridge, MA,
1997.

This article was processed using the IATEX macro package with LLNCS style -

