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Abstract 

In this report, error propagation 1s derived for an existing sequence 

of equations, which allows to projectively reconstruct a 3D point set 
solely using given images of this point set. As input, image feature 

points, their position uncertainty, and the correspondence information 
must be given. All image feature points are assumed to be stochasti-

cally independent. The covariance tensor calculus is used to propagate 
the uncertainty of the input into an uncertainty of the output, which 

consists of projection matrices and 3D reconstructed points. In the 
course of error propagation all stochastic dependencies are modelled, 

resulting in an accurate description of the reconstruction error. This 

fact is experimentally validated. Furthermore, experiments with real 

image data are given. 

1 Introduction 

[Tonko & Kinoshita 99] discuss a 3D scanning system prototype which takes 

several images of a rigid textured object, establishes 2D point correspon-

dences across the sequence of images and calculates a 3D Euclidian structure 
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that is constrained by the 2D point correspondences. Principally the system 

is shown to work, but judging from the experimental results, one can see that 

there is room for improvements such as: 

• Euclidan reconstruction is subject to reconstruction errors. The error 
distribution of each reconstructed 3D point should be estimated as 

precisely as possible. 

• Error distributions should subsequently be used by an error reduction 
method. 

•. A reconstructed 3D point set describes the structure of an object, but 
is not vis叫 lyappealling to the system operator. A method has to be 
applied which -based on the sequence of images and the relation of 
each 3D point with its 2D projections -renders image content on the 

3D point set in order to achieve a realistic 3D impression of the object. 

This report mainly deals with the first item, i.e. the unbiased estimation 
of the projective geometry and its uncertainty from point correspondences 
and point uncertainties. Readers interested in the second and third item are 
referred to [Kinoshita & Tonko 99] and [Doyon 99], respectively. 

Once 2D point correspondences are established over the sequence of im-
ages, Euclidian reconstruction is accomplished by estimating 

1. the two-dimensional epipolar, 

2. the three-dimensional projective, and 

3. the three-dimensional Euclidian geometries. 

The analysis of Section 3 is used in Section 4 to Section 7 to quantify re-
construction error up to the projective level under the assumption of known 

error distributions for all 2D point features. Section 8 gives experimental 

results on the analysis. 

2 Related Work 

[Georgis et al. 98] derive uncertainty descriptions of projectively reconstructed 

points. They restrict their error analysis to a special scenario with two ref-

erence planes and four markers per plane that must be in the field of view 
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of each camera. Their approach makes thus use of specific scene knowl-
edge. [Csurka et al. 97] remark that -once the uncertainty of the funda-

mental matrix is estimated -uncertainty descriptions for projectively recon-

structed points are obtainable, they show results, but do not give equations. 

[Kanatani 96] gives uncertainty descriptions for projectively reconstructed 

points. He bases his work on the knowledge of the essential matrix, not the 

fundamental matrix. [Collins 92] restricts his analysis of the projective re-

construction error to approximately planar scenes as valid for the special case 
of aerial imagery. [Grimson et al. 92] discuss an uncertainty analysis of ob-

ject pose, where the position of image points is assumed to be uncertain and, 
more important, a model of the object is given. [Ha & Kweon 99] -with-
out calculating the uncertainty of the reconstructed point cloud -devise a 

method, which reduces reconstruction error by enforcing angular constraints 
that depend on object model knowledge. As the approach discussed in this re-

port, [Ha & Kweon 99]'s approach is based on [Bougnoux 98]. [Sun et al. 99] 
derive an error characterization of the factorization approach to shape and 
motion recovery from images, which are taken with an uncalibrated affine 
camera. In the past the factorization approach has been extended to deal 
with weak-perspective and para-perspective projection. However, both types 
of projection are only approximations to perspective projection. Arguing 

that error propagation is only a first order approximation of the truth, 
[Matei & Meer 99] use the bootstrap method to evaluate 3D rigid motion 
more accurately. 

[Singh 90] details an interesting approach that allows to automatically 
extract the uncertainty of a 2D point feature correspondence by relating the 

Laplacian of intensity to the Fisher Information matrix.. Therefore point 
uncertainties do not need to be predefined, but can be algorithmically found 

for each particular feature correspondence. 

3 Error Propagation 

If errors in the input data are unavoidable, the general way to improve the 
situation is to model errors of the input data statistically and propagate this 

uncertainty into the output and its uncertainty. Doing this the results do 
not get any better, but at least a quantiative assessment of error is possible 

(see Fig. 1). [Kanatani 96] gives a wealth of information on how to do that 

in a systematical and sound way. 
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Figure 1: Error Description: Statistical modelling of data is to specify mean and 
covariance, i.e. error distribution. If mean and true value coincide, we say that the 
estimation is bias-free. 

The notation of [Kanatani 96] is adopted, who uses bold lowercase letters 

a= (a』,i = 1, ... , n to describe n-vectors, bold uppercase letters B = (B砂
i = 1, ... , m, j = 1, ... , n to describe mn-matrices, and calligraphic letters 

to denote tensors. For example, C = (C叫， i= 1, ... ,m, j = l, ... ,n, 
k = 1, ... ,Pis an mnp-tensor. 

In general, if the output can be calculated from the input using an analytic 
function, the following Theorem 1 can be applied to propagate the input error 

through the analytic function into an output error. 

Theorem 1 (Error Propagation) Given matrices A1, A2, ... , An, and 
matrix B as a function of A1, ... , An. Also the covariance tensors V[A↓ 
i = 1, ... , n are given. The covariance tensor V[B] of B is approximated as 

n 
8B 

V[B] = I: 一 V[Ai,A』 -
[)BT 

8Ai oA・. 
位 =l J 

Unfortunately, not all functions are analytic and the question is how to pro-

ceed in that case, e.g. calculate the gradient of a non-analytic function. For 
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the case of function ker, which computes the kernel of a matrix, a solution 

for the gradient can be found using the Perturbation Theorem 2 stated in 

[Kanatani 96]. 

Theorem 2 (Perturbation Theorem) Let A=  AT and D be square ma-

trices. Further let {入i}be the descendingly sorted eigenvalues and {叫 the

corresponding eigensystem of symmetric matrix A: 

A ui =入iUi, U『Uj=妬：＝｛，
1 z = J 

0, i -f-j 
(1) 

Consider a perturbed matrix A'= A + ED for a small E. Let {闘}be the 
descendingly sorted Eigenvalues and { ua the corresponding Eigensystem of 
A'. Then the following approximations hold: 

入~ ~ 入i+EU『Dui

I: 
叫 Dui

叫～止＋€
入

Uj 
#i i―ふ

、

＼

ー

／

）

2

3

 

（

（

 

Thus, it is possible to approximate noisy Eigenvalues and -vectors depending 
on the true Eigenvalues and -vectors plus the known error on the input 
matrix. Next, this is used to give an approximation of the gradient of function 

ker. 

Theorem 3 Let A=  AT be a singular square matrix and Un the eigenvector 

of A, which corresponds to eigenvalue心=0. Then we can approximate: 

畑 n

aAij 
—~L(u叫）ij叫

k=/=n 
入K

(4) 

To proove this for element Aij of A, we define A'= A + ED with matrix D 

to be 

D 
l, p = i & q = j 

pq = {。,otherwise・(5)  

Since the Perturbation Theorem 2 is applicable, the following holds for small 

€: 

u~ 勺叫— EL
uf Dun 

k=/-=n 
入k

Uk・ (6) 
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On the other hand~is defined to be 

°叫
8A勺

～
 
～
 

lim 
叫—砥

Aら→Aij Aij - A~j 

L ur Dun 
k-:/=n 入k

Uk € 
lim 
€• O 

区urDun 

k=f-n 
入k

€ 

(u四 T .. 

叫=L n)iJ叫・

姑紐
入k

(7) 

So far, these results are restricted to square matrices. Suppose that matrix 
C is not square. In this case we define matrix A = CT• C and to calculate 

党， wemultiply the result如 /8Aof Eq. (7) with 

鸞）ikmn 二＝
8Cmi・Cmk 
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(8) 

Finally, we are able to express the gradient of function ker. 

（信）ijk 苫（冒）ilm信）lmjk 

~(言）ikJ望）km沐

＋互（言）J悶）l切k+ (冒）,J給）K切K

~(冒）ikm C, 戸-~(言）ilkい（言）ikk C介

~(言）ikm C;m+~(冒） ilk C;, 

LL (upu;)km 
入

m pf.n p 
国）ic加
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+ LL (uqu~)zk 
入

国）i Cjz・

l q=f-n 
q 

(9) 

Given the covariance tensor V[C], the uncertainty V[u月iscalculated using 

Theorem 1. In the case of matrix A = C• cT, a similar description of幌？
can be obtained. 

Once we are able to state the Euclidian reconstruction problem in terms 

of functions that allow to apply Theorems 1 to 3, an error description for 

the reconstructed 3D point cloud can be found. However, since the error is 

propagated under the assumption of negligible second order derivatives, the 
error description is bound to be an approximation of the true error. 

4 Uncertainty of the Canonical Projective Ge-

ometry 

In the sequel, it is assumed that the fundamental matrix F and its uncer-
tainty tensor V[F] has already been estimated from point correspondences 
｛叫立}and their uncertainties V[x』andV[叫.F and V[F] can be esti-
mated with the integrated method of [Kanatani & Mishima 98] or by running 
uncertainty estimation a la [Csurka et al. 97] on top of fundamentalmatrix 
estimation a la [Hartley 95] or [Zhang 96]. In any case, the rank constraint of 
matrix F sh叫 dbe exactly observed. It is assumed that there is no stochas-
tic dependency between arbitrary point correspondence pairs {叫， x~} and 

{ X(J, 的},where a f-{3. 
Given a fundamental matrix F, the canonical projective geometry is de-

termined by first estimating one epipol u'as the normalized eigenvector of 
matrix F FT corresponding to the smallest eigenvalue. Then, according to 
[Luong & Vieville 94], the canonic pair (P, P') of projective projection ma-
trices is defined as 

P = (I I O) and P'= (M I u') , (10) 

where J is the 3 x 3 identity matrix, 0 is the 3-dimensional nullvector, and 

equation M = -l u'」xF holds. For matrix la J x equation la」xb= a X b 

is valid. 
Given the covariance tensor V[F] of fundamental matrix F, we want to 

determine the covariance tensors V[P] and V[P'] of matrices P and P', 
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respectively. Since P is a constant 34-rnatrix, its covariance tensor V[P] 
is the 3434-nulltensor. In order to find V[P'], let {刈 bethe descendingly 
sorted eigenvalues and {叫 thecorresponding eigensystem of symmetric 3 x 
3-matrix (F Fり.As a first step, we calculate the uncertainty V[u'] of the 
epipole u'. There are two ways to yield the covariance matrix V[u']. 

• The first way proceeds using the theory of [Kanatani & Mishirna 98], 
some intermediate steps are discussed in Section 10. According to 

Theorem 4, we have 

V[u'] = (FFり； G (FFT汀，

where 

(FFT); = t~ 叫 uj and G = (G,;) 

3 

with Gij =区 V[FFT属 (Unu';;) kl . 
k,l=l 

(11) 

(12) 

The covariance tensor V [FF門isfound to be 

3 

V[FFりiklj = I: {広（丘V[F]inlq+贔V[F]injq)
n,q=l 

＋丘 (FjqV[F]knlq + Fl討[F]knjq)}。 (13)

• The other way is to simply use the covariance tensor calculus as detailed 
in Subsection 10.2, particularly Eq. (64), in combination with Eq. (9). 
We prefer to go this way, since our implementation reveals that it is 
more numercially stable compared to the first way. 

Next, we note that matrix M'= -Lu'」xF= J(F, lu'」x)is a function 
含ofmatrices F and l u'」x. Furthermore, matrix l u'J x = Q:51 (uりcanbe 
obtained via linear transformation l u'」x=甘u'with333-tensor甘 =(H叫
from vector u', where 

加＝｛
1, (i,j,k) E {(1,2,3),(2,3,1),(3,1,2)} 

-1, (i,j,k) E {(1,3,2),(2,1,3),(3,2,1)} 
0 . ， otherwise 

(14) 
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Since V[F] and V[u'] are known, we can use the covariance tensor calculus 
of Subsection 10.2, particularly Eq. (64), to find 

V[M'] 
oM'oM'r oM'oM'r 

= V[F]- -
8F 8F 

+ V[u'] 
如 I 0U1 + 

8M' T T 

V[F,u'] 
8M'8M'8M'  

8F ou'ou' 
+ V[u',F]-8F . (15) 

We can calculate the gradient tensors 

(8M'=  _ o江 (lu」心F切

i)F) ijmn iJFmn 

ージ（翌） lmn 凡—{ (luJ0xl.m: 二 (16)

as well as 

(8M 如')iji 

饂 (lu」心F幻

罰）l

_ t o(lu」x¥k fJF, 幻

k=l o(u')1 
凡+(l叫X)ik

o(u')1 
ヽ

=0 

3 

一 LHiklF, 灼・
k=l 

We further have 

（靡 V[F亨）ijkl 

and 

L 
3M'3M' 

3F 
・V[F] 

．． 

m,n,p,q iJmn 3F klpq 
mnpq 

（竺 EIM'T EIM'EIM' 
flu'V[u'] flu')~L flu'ijm・flu'kin・V[u']mn 

ijkl m,n 

(17) 

(18) 

(19) 

as well as 

（悶'V[F,u']ご,T)ijkl~ ご1;,'ijmnご'klp・V[F,u']mnp (20) 

，
 



and furtheron 

心V[u',F詈〗jkl = I: 8M'8M' 
．．  

Bu'ijm a F klnp 
V[u', F]mnp・(21) 

m,n,p 

In order to find V[P'] for P'as it is specified in Eq. (10), we derive 

(8P') 
&M' i3kl 

Finally, we yield 

V[P'],;" = { 

and 

(8P') 
8u' ijk 

V[M']ijkl 
V[u']枕

V[M', u']ijk, 
V[M',u'加，

{ 1, i=k&j=l三3
0, else 

{ 1, i=k&j=4 
0, else 

i,j,k,l E {1,2,3} 
i,k E {1,2,3} and j = l = 4 
i,j,kE{l,2,3} and l=4 
i, k, l E {1, 2, 3} and j = 4 

(22) 

(23) 

5 Reconstruction in the Canonical Projective 

Geometry 

Given the canonic pair (P, P') = ((I I 0), (M'I u')) of projective projection 
matrices, their respective covariance tensors V[P] and V[P'] as well as a 
pair (x, x') of image points and their respective covariance matrices :V[x] 
and V[x']. We reconstruct the scene point z in the canonic frame usmg a 
method published by [Zhang 96], which combines the two standard projection 
equations for the two image points in a homogeneous linear system. Since 
its kernel contains scene point z, we can apply the theory of Subsection 10.1 
to get an uncertainty description for vector z. 

For projective reconstruction of z from x = (三巧，1),x'= (x~, x;, 1), 
and the projection matrices P, and P', we use the method given in [Zhang 96]. 

Let Pi and p~be the i-th row vectors of P, and P', respectively. Then the 
method relies on singular value decomposition to find the nullspace of the 
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linear system 

A-z = (塁） ・Z= 

几
几
，
か
[
I
几

•••• 
1
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ー

1
1
2
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x
x
x
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―
―
 

1

2
ー

1
,
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（

＼

 
) z~o, (24) 

i.e. the eigenvector corresponding to the smallest eigenvalue of AT• A. In 
a comparison of projective reconstruction methods (cf. [Rothwell et al. 97]), 
this method was found to be superior to four other common approaches. In 
order to calculate V[A], we state 

噂）ijkl 
O(P,'. ―:ip3j) = {。

j = l, i = k ::; 2 

j = l, k = 3, i ::; 2 

else ｛
 

1 ， 
-xぃ

0, 

Furthermore, we find 

（竺）ijk 

a(Pij -xiP3j) 
= OXk = { 

(8A 闊。）ij加

U1t加

9

9

 

1

0

 
｛
 

秋P;1-x;P31)

8 P k l '  

-P砂
0, 

~I= l } 

i = k::; 2 
else 

i = m:::; 2,j = n 
else 

{';".d i -2~m Sc 2, .i~n 
0, else 

(25) 

(26) 

fJA~fJA~ Analog statements can be given for the gradients -― and - Using the [JP'OX'. 
equations 

(27) 

we arrive at the following four gradient descriptions: 
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else 

1 :s; i = k :s; 2, j = l 
1 :s; i :s; 2, k = 3, j = l 

else 
(28) 
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1 < i = kく 2

else 
(29) 

3 :S i = k + 2 :S 4, j = l 

3 :S i :S 4, k = 3, j = l 
else 

3:Si=k+2:S4 
else 

(30) 

(31) 

If also the 16 covariance tensors and matrices, which describe all stochastic 
relations between P, x, P', x', are given, then an approximation for the error 
distribution of A can be found. Subsequently, these 16 covariance tensors 

and matrices are discussed. 

• The covariance tensors V[P], V[P'] and matrices V[x], V[x'] as well 
as V[x, x'], V[x', x] are known. 

• Since V[P] is 3434-nulltensor, the covariance tensors V[P, x], V[P, P'], 
V[P, x'], V[x, Pl, V[P', Pl, and V[x', P] are also nulltensors. 

• The remaining covariance tensors V[x, P'], V[P', 叫 V[P',x'],Vに',P']
all stochastically relate an image point to projection matrix P'. Gradi-

8M' ent tensors可;,and般I'areknown from Eqs. (16) and (22), respec-

8P'・ tively. Therefore, gradient tensor万F 1s computable. Also, V[x, Fl, 

V[F, 叫， V[F,x'], V[x', F] can be derived from the epipolar error equa-

tion (cf. [Kanatani 96]) 

e = x'. F. X. (32) 

Thus, two of the four remaining covariance tensors are defined to be 

V[F, 叫

(33) 
The covariance tensors V[P', x'] and V[x', P'] are defined analogously. 

V[x,P'] = V[x,F] 膚）T and 
8P' 

V[P',x] = (布）

Again, the theory of Section 3, particulary Eq. (9), tells us how to find 

a covariance description V[z] for reconstructed 3D point z. Eq. (72) of 

Subsection 10.3 is useful for the calculation of the normalization of 3D point 

z and its covariance description V[z]. 
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oz fJA fJA Moreover, since the gradient tensors冗;ras well as —— and-fJA 
oP'fJP' 

砂areknown, gradient expressions盟号條， and靡 canbe~~l~ 

culated. Fi叫 ly,we yield the covariance tensors V[z, Pl, V[P, z], V[P', z], 
V[z, P'] as well as the covariance matrices V[z, 叫 V[zぶ],V[x, z], V[x', z]. 

It is important to realize that reconstruction introduces through projec-
tion matrices P and P'a stochastical dependency V[za, z叶betweenarbi-
trary reconstructed 3D points Za and z炉

V[za, z13] =~V[P] 四T十生 竺 T
fJP fJP fJP 

V[P,P'] 
8P' 

OZ a 8z13 T OZa 8z13 T 
+-V[P',P]-— +-V[P']-
8 P'fJP  8P'fJP'. 

(34) 

In the case of reconstruction in the canonical projective geometry the first 
three summands of Eq. (34) are叫 ltensors.

6 Uncertainty of the General Projective Ge-

ometry 

Given the canonic pair (P, P') =((II 0), (M'I u')) of projective projection 
matrices, their respective covariance tensors V[P] and V[P'] as well as five 
reconstructed scene points z°'and their respective covariance matrices V[z辻
we can specify a homography H, which transforms the descriptions relative 
to the canonical projective frame into an arbitrary projective frame. 

Define Z = (z1 ... zりwithz°" a= 1, ... , 5. Matrix Z defines a projec-
tive basis in projective space炉.Necessarily, the Za are linearly independent 
and 

ヨ入＝（ふ，．．．，ふ）ヂ 0:Z・入 =0. (35) 

With th e proJect1ve equations Za =入
4 

a・Za and窃=I:a=l心 ・Za,we have 

1 0 0 0 1 

Z=三~(~ ~> H} (36) 

which defines homography H. Eq. (35) is a homogeneous linear equation and 
the theory of Section 3, particulary Eq. (9), tells us how to find a covariance 
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description V[入]for solution vector入.Prior to that, covariance tensor V[Z] 
is to be defined using Eq. (34) and 

信） ijk~U: 
i = k, j = l 
else 

(37) 

where k indexes the k-th component of vector z1. A calculation yields 

V[Z]ijkl -(t竺 V[z加二）
m,n=l 8zm 8zn ijkl 

ご1信(:f:tV[z戸王（已）J 
- V[zj,Z蒻

(38) 

(39) 

(40) 

An approximation to the covariance tensor V[H] of homography H is 
defined as 

aH aHr aH aHr aH aHr BH aHr 
V[H] = - V[Z] - +-V[入］―— +-V[Z,入］―-一

az az a入 0入 az a入 8入
+ V[入， Z]-

(41) az 

Next, we note Hij = Xj・Zij, j~4 as well as入3=心／ふ andderive 

心）kl=~(-入］嵐+ A5・ 畠）
Then the gradients恨 and謄 arespecified as follows: 

(42) 

&HiJ a(衿・Zi1) 以， &Zi1 &X- X i = k, j = l ::::; 4 
―=  =— ·Zi1+>x· —- = J .z.. j, 
&Zkl &Zkl &Zkl j &Zkl &Zkl iJ+{ 。, else 

(43) 
and 

8Hij 8(衿・Zij) 8入; , fJZij 
-=  =―.zij+入.•-
瓜 k 8入k 0入k J 0入k= 
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Figure 2: Left Image: A synthetic 3D grid of 4 x 4 x 4 equally spaced 3D points 
is defined and used to assess the quality of error description that is possible with 
the approach detailed in this report. Right Image: The results of empiric error 
estimation based on 100 generated image data sets is shown. 

. OAT For covariance tensor V[ Z, 入]equation V[Z, 入］ = V[Z] -(E[Z]) holds 
8入 8Z

and Eq. (42) defines each component of - A similar equation can be set oz・ 
up for covariance tensor V[入， Z].

Since we are also interested in the statistic relation V[za, H] of recon-
8H. structed 3D point Za and homography H, gradient - 1s derived: oz。

尺）＝OZa ijk 

8H 8(入，Z) 8Hij 8入 az aH az 

a(入， Z)·8z0~ ~ 式（厄’戸し（威° 正）〗
戸喜畠（三）J+信悶二（塁）mn.}46) 

I: 
8Hij 8入n 8H勺

OAn 8Zkm azkm 
n 

Other statistic relations we are interested in are V [ P, H] and V [ P', H]. 

These covariance tensors are determined by equations 

8H 
(V[P, H]),1., ~ ~(i)P) klmn・(V[P])iJmn 
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and 
8H 

(V[P', H]),;kl =~(詞）klmn. (V[P'])ijmn, (48) 

where gradients翡 and翡 areproducts of gradients聾 and笥ぅ， a=

1, ... , 5, as well as 仇~and oz"' 
BP'' 

respectively. 

The actual transform of the projective basis is done by Q = P・H and 
Q'= P'・H. Using the covariance tensor calculus on the input covariances 
V[H], V[H, Pl, V[H, P'], we can come up with uncertainty descriptions 

V[Q], V[Q'], but also with V[Q, Q'] =昴 ・V[H]・請．

7 Reconstruction in the General Projective 

Geometry 

The theory of Section 5 can be used for the task of reconstructing a 3d 
point in the general projective geometry that is specified by matrices Q and 
Q'of Section 6. Apart from the uncertainty descriptions V[x, Q], V[x, Q'], 
V[x, Q'], and V[x', Q'] all other uncertainty descriptions such as V[Q] and 
V[ Q'] are known. We can approximate 

8Q fJQ fJQ 8H 
V[Q叫=8P-V[P叫where (和し=~国）ijm; (布)mnkl. 

(49) 
The covariance tensors V[x, Q], V[x, Q'], V[x, Q'], and V[x', Q'] can be de-
rived analogously. 

8 Experiment 

8.1 Synthetic Image Data 

This experiment with synthetic data serves to assess the error estimation 
capabilities of the approach. Comparison to the truth as well as to empirically 
estimated error descriptions is possible. 

A 3D grid of 4 x 4 x 4 eq叫 lyspaced 3D points and 3 artificial cam-
eras are defined. The 3D grid is projected to their respective image planes 
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(see Fig. 2). Image noise of CJ" = 0.6[pixel] is added to the components 

of the projected points. In order to find the empirical error distribution, 

100 data sets are generated this way. Per data set, a 3D point set is pro-

jectively reconstructed using the approach given in [Tonko & Kinoshita 99]. 
The transformation into metric space is facilitated with the knowledge of the 

true homography, that transforms the true projective reconstruction into the 
true metric reconstruction. 

Also image data set 6 is used to projectively reconstruct a 3D point cloud. 

Its error distribution is estimated with the approach detailed in this paper. 
The transfer into Euclidian space is done with an estimated homography, 

which can be calculated from the three images. Fig. 3 shows a close-up of 
16 reconstructed 3D points. Precisely, the true 3D points, the empirically 
estimated 3D points including error distribution (light colors) as well as those 

estimated from data set 6 are shown (dark colors). The true points coincide 
with the empirical mean. Comparing the ellipsoids, you can judge that the 
estimation of ellipsoid orientation is quite good. Certainly, there is an over-
or underestimation of the ellipsoid volume. All ellipsoids correspond to a 
75%-confidence. Despite this low confidence, the true point is in all cases 

already within the dark colored ellipsoids, which correspond to the single 
shot estimation based on image data set 6. 

Next, the question "Is modelling of stochastic dependencies necessary?" 
is of interest. Fig. 4 shows four true 3D points and two error distributions 
per true point. -The dark ellipsoids are calculated assuming that there is 

no stochastic dependency between the projection matrices and that those 
matrices are exact. It is further assumed that all reconstructed 3D points 
are stochastically independent from each other. The light ellipsoids are cal-

culated under the assumption that all stochastic dependencies have to be 
modelled, i.e. the error propagation approach of this report is used. Note 

that each ellipsoid volume corresponds to a 99%-confidence. One can see 

that all four dark ellipsoids do not contain the true value whereas the light 
ellipsoids do. Thus, the light ellipsoids describe the error better than the 

dark ellipsoids and it is strongly recommended to model the entire set of 

stochastic dependencies as done in this paper. 
Fig. 5 shows that there is an unwanted error amplification outside of the 

region that is surrounded by the four reference points of the projective basis. 

This fact is also observed by [Georgis et al. 98], who state " ... unless the 

points are projected within a region more or less surrounded by the reference 

points, we are bound to have amplification of the [3D position] error ... ". 
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8_.2 Real Image Data 

In this experiment, real image data is used for 3D reconstruction (see Fig. 6). 

Three images of a polyhedral structure consisting of three planes, which are 

orthogonal to each other, are acquired. Subsequently, the projective recon-

struction approach as detailed in this report and [Tonko & Kinoshita 99] is 
applied to find a projective as well as 3D Euclidian reconstruction. 

Fig. 7 shows the Euclidian reconstruction of the polyhedral structure from 

different views. One can see that angular information as well as length ratios 

are picked up with some error that has to be described. Fig. 8 shows the 
results of single-shot error distribution estimation as presented in this report. 

Note that the error estimation is done for a projective reconstruction. Using 
the estimated homography, which transforms the projective into an Euclidan 

reconstruction, as is, error ellipsoids can be transformed into and displayed 

in Euclidian space. 

For each reconstructed point, its 99%-confidence region is given as light 

gray rendered ellipsoid. Apart from the lower right image, all other images 
show two planar faces that are tilted towards a third planar face. Most of 
the error ellipsoids point into the direction of the tilt, i.e. they specify high 
error in the direction of the tilt. The lower right image shows not so much 
error when judging only from its appearance. Naturally, the error ellipsoids 
are quite small, i.e. the amount of light gray covering the dark gray rendered 

structure is small. 

9 Conclusion 

Based on an existing sequence of equations that allows to reconstruct 3D in-
formation from images taken with uncalibrated cameras (see [Tonko & Kinoshita 99]), 
this report explains how uncertainty in the input data can be propagated 
through this sequence of equations into output data. The covariance ten-

sor calculus is used to find approximate error descriptions for each equation 

of the sequence. The use of perturbation theory enables us to propagate 
uncertainty also in case of nullspace problems. 

In the course of error propagation, we take all stochastic dependencies 

into account, which exist because of the nature of the problem. In partic-

ular, stochastic dependencies between two distinct reconstructed 3D points, 
but also between 3D points and projective projection matrices. Doing this, 
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the propagation of uncertainty gets much more complicated. However, a 

synthetic experiment validates that for the case of modelling all stochastic 

dependencies, on average a 99%-confidence error distribution really contains 

the true value. Also it is shown that errors are damped or amplified in cer-

tain 3D point positions, which is due to the fact that the error propagation 
detailed in this report is a first order approximation of the truth. 

The resulting error information can be used by error reduction approaches 

like the one detailed in [Kinoshita & Tonko 99] which reduces the position 
uncertainty of each 3D point of a reconstructed point set based on a new 
image of this point set. 

10 Theorems and Equations 

10.1 Uncertainty of the Nullspace 

Given a perturbed mn-matrix C'of rank r = min{m, n} -1 and its covari-
ance tensor V[C'], we want to find vector u'of the nullspace of C'and its 
covariance matrix V[u']. 

Since [Kanatani & Mishima 98] give results for the special case of the fun-
damental matrix and one epipol, we can easily generalize their result. First, 
we note that vector u'coincides with the eigenvector u~of the symmetric 
matrix A'= C'T C', where u~corresponds to eigenvalue 入~= 0. u'can thus 
be derived via eigenanalysis of A'. 

Matrix V[u'] can be derived with the perturbation theorem given in 
[Kanatani 96], which states the relations 

入~ ~ 入戸— E uf Du2 

L 
吋Du2

叫～柘＋€
入

j-f.i i —入j
Uj 

(50) 

(51) 

between the Eigenvalues心凶 andrespective Eigenvectors uぃ叫 ofsquare 
matrices A and A'= A+  ED (also see Theorem 2). 

In particular, because入n= 0 and in general (aTb) c = (ca門b,we have 

u~ ~ 叫＋€戸 t心ー~:,エ＝叫—€ご叱入:]D Un= 叫— ,(A);D(;;; 
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where the rank-constrained generalized inverse (A); of A is defined as (A); = 

江=l心叫u'J(see [Kanatani 96]). Since V[u~] = E[△ Un△ u~] for u~= 

叫＋△Un and (A);= ((A);:f, we get 

V[u~] 聾 (A);Dun) (t:(A); Duれげ］
召E[(A);Dunu;DT (A); ―l 
召(A);E[Dunu;Dり(A);

(A); G (A);. 

(53) 

(54) 

(55) 

Here, nn-matrix G is elementwise defined as 

G,; = E [ti'囚 Dり

k,l=l 
（叫ur)kll~ 文V[A']iklJ

k,l=l 
(Unu';;) kl (56) 

and E[・] denotes expectation for scalars. 
In the following, we determine the covariance tensor V[A'] of matrix A'. 

In general, if covariance tensor V[C'] of mn-matrix C'is known, the covari-
ance tensor V[A'] of nn-matrix A'is calculated using 

V[A']iklj = ここ（悶）ikmn 
信） V[C']mnpq・ 

ljpq 
(57) 

Given matrix C'and matrix A'= C'T• C', we get 

（閏）ikmn 

BA' ik 
oC'= mn 
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(58) 

Furthermore, using Eq. (58) we have 

V[A']iklj 
m%1n~J;;} (悶）ikmn 

L{C贔(cんV[C']mipl+ C仇V[C']mipj)
m,p=l 

+c加(CんV[C']mkpl+ c;lv[C']mkpj)}-

傷） V[C']mnpq (59) 
ljpq 

(60) 
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In an analog calculation, given matrix C'and matrix A'= C'・C'T, we get 

（悶）ikmn 

oC' in . C' kn 
oC'= mn 

.

J

'

，
'
,
 

旦

n
O
び

in

びkn
び

in
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J

,

m

2

 

c
 

1
.
t
 

(
|
 

.Jo 

▽
 ゜＝ 

馴

ik-mmn
iヂm&kc:/-m
臼1::.m&k=m

i=m&kc:/-m 
i=m&k=m 

(61) 

Furthermore, using Eq. (61) we have 

V[A']iklj LL文（麟mE{i,k} pE{l,j} n,Fl) ikmn 
n 

L{Cに(C五V[C']inlq + C砂[C']injq) 
n,q=l 

+c:n (c;q V[C']knlq + c;q V[C']knjq) }. 

（閏）りpq
V[C']mnpq (62) 

(63) 

Therefore, we are able to state 

Theorem 4 Let C'be a perturbed mn-matrix of rank r = min{m, n}-1 and 
let V[ C'] be its covariance tensor V[C']. Then the vector u'of the nullspace of 
C'is found to be the eigenvector u~corresponding to the smallest eigenvalue 
入~= 0 of matrix A'= C'T C'. Further, Eqs. (55), (56), and (60) describe, 
how V[u'] is calculated from C', V[C'], 叫， andA. If A'= C'C'r, then 
Eqs. (55), (56), and (63) are used for calculation. Since we do not know the 
true value of Un and A, we use u~and A', respectively, in the implementa-
tion. 

10.2 Covariance Tensor Calculus 

Given matrices A1, A2, ... , An, and matrix B as a function of matrices 
ふ，..., An. Assume that also the covariance tensors V[Aふi= 1, ... , n are 
given. The covariance tensor V[B] of B is then approximated as 

V[Bl=I: 
n 8B 8B T 

V[Ai,A』-
8Ai 8Ai i,j=l 

(64) 

21 



For tensors A=  (Aijkl) and B = Bijkl the product ABAT is a tensor whose 

(ijkl) element is~m,n,p,q AjmnAklpqBmnpq・The product B工 isa tensor 
whose (m硫 l)element is~p,q AklpqBmnpq・ 

If B =R(A) depends via function Q5 on A and V[A, B] needs to be 

calculated, we use the Taylor expansionR(A)=R(E[A])+翡(E[A])(A-

E[A]) and get 

V[A,B] £[(A -E[A]) 0 (R(A) -E[R(A)])] (65) 

£[(A-E[A]) 0 {竺(E[A])・(A-E[A]) (66) 

E [(A -E[A]) 0 (:~E[A]) 悶\E[A]l (67) 

£[(A -E[A]) 0 (A -E[A])]言T(E[A]) (68) 

⑯ T 

V[A]・-(E[A]). 
fJA 

(69) 

Analog to that, the following can be proven: 

V[B,A] =悶(E[A])・V[A]. (70) 

For matrices A = (Aij) and B = (B砂 thetensor product A 0 B is a 
tensor whose (ijkl) element is Ajl加. For tensor A = (Aijkt) and matrix 

B = (B砂 theproduct AB is a matrix whose (ij) element is I:k,l AijklBkl・ 
In fact, Eq. (64) can be derived using the calculations of Eqs. (65) to (69). 

10.3 Miscellaneous 

• Since equation 

A'= L,,\~u~- 叫T (71) 
k=fn 

holds for matrix A'and its eigensystem excluding eigenvector u~for 
8A' eigenvalue 入~= 0, we can compute the derivative―to be the null-
畑

tensor. Thus, 80'80'8A' 
8u~8A' 如

also equals the nulltensor. 
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• Suppose n-vector z = (る）， Zn# 0, and its covariance matrix V[z] are 
given and z'= 1/ Zn・z as well as V[z'] is needed. Then, according to 
[Kanatani 96], 

゜V[z']= 
Q。V[z]Q6 

硲
with Q。=1-z' ・

:
0
1
 

T 

(72) 

can be used to obtain the uncertainty description V[z'] of vector z'. 
Note that I is the n x n identity matrix. 
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Figure 3: Close-up of 16 reconstructed 3D points: The true 3D points, the em-

pirically estimated 3D points including error distribution (light colors) as well as 

those estimated from data set 6 are shown (dark colors). The true points coincide 

with the empirical mean. 
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Figure 4: Is modelling of stochastic dependencies necessary? One can see that 
all four dark ellipsoids -calculated under the assumption that some stochastic 

dependencies can be neglected -do not contain the true value, whereas the light 

ellipsoids -calculated under the assumption that all stochastic dependencies have 

to be modelled -do. 
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Figure 5: Error Amplification Region: There is an unwanted error amplification 

outside of the region that is surrounded by the four reference points of the projec-

tive basis (see the four light grey points in the upper left region of the image). 
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Figure 6: Real Image Data: Three images of a polyhedral structure consisting of 
three planes, which are orthogonal to each other, are acquired. 
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Figure 7: Reconstruction of the polyhedral structure from different views. One 

can see that angular information as well as length ratios are picked up with some 

error. 
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Figure 8: Results of single-shot error distribution estimation as presented in this 

report. For each reconstructed point, its 99%-confidence region is given as light 

gray rendered ellipsoid. 
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