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Abstract 

The Bayesian framework provides a principled way of the model selection. This frame-

work estimates a probability distribution over an ensemble of models and the prediction is 

done by averaging over the ensemble of models. Accordingly, the uncertainty of the mod-

els is taken into account and complex models with more degrees of freedom are penalized. 

However, integration over model parameters is often intractable and some approximation 

scheme is needed. 

Recently, a powerful approximation scheme called the Variational Bayes (VB) method 

has been proposed by Attias (1999). This approach defines the free energy for a trial 

probability distribution, which approximates a joint posterior probability distribution over 

model parameters and hidden variables. The exact maximization of the free energy gives 

the true posterior distribution. The VB method uses factorized trial distributions. The 

integration over model parameters can be done analytically, and an iterative EM-like al-

gorithm, whose convergence is guaranteed, is derived. 
In this paper, we derive an on-line version of the VB algorithm and prove its convergence 

by showing that it is a stochastic approximation for finding the maximum of the free energy. 
By combining the split and merge algorithm proposed by Ueda et al. (1999), the on-line 
VB algorithm provides a fully on-line learning method with a model selection mechanism. 
In preliminary experiments using synthetic data, the on-line VB method showed a faster 
and better performance than the batch VB method. 
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1 Introduction 

The learning of model parameters from observed data can be accomplished by using the maximum 

likelihood (ML) method for probabilistic models (Bishop 1995). The Expectation-Maximization (EM) 

algorithm (Dempster et al. 1977) provides a general framework for calculating the ML estimator for 

models with hidden variables. The fundamental problems of the ML method are overfitting and the 

inability to account for the model complexity, so it is unable to determine the model structure. 

The Bayesian framework overcomes these problems in principle (Bishop 1995; Cooper & Herskovitz 
1992; Gelman et al. 1995; Heckerman et al. 1995; Mackay 1992a; Mackay 1992b). The Bayesian 

method estimates a probability distribution over an ensemble of models and the prediction is done by 

averaging over the ensemble of models. Accordingly, the uncertainty of the models is taken into account 

and complex models with more degrees of freedom are penalized. The evidence, which is the marginal 

posterior probability given the data, gives a criterion for the model selection (Mackay 1992a; Mackay 

1992b). However, an integration over model parameters is often intractable and some approximation 

scheme is needed (Chickering & Heckerman 1997; Mackay 1999; Neal 1996; Richardson & Green 1997; 

Roberts et al. 1998). Markov Chain Monte Carlo (MCMC) methods and the Laplace approximation 

method have been developed to date. MCMC methods can, in principle, find exact results, but they 

require a huge amount of time for computation. In addition, it is difficult to determine when these 

algorithms converge. The Laplace approximation method makes a local Gaussian approximation 

around a maximum a posteriori parameter estimate. This approximation is only valid for a large 

sample limit. Unfortunately, it is not suited to parameters with constraints such as mixing proportions 

of mixture models。

Recently, an alternative approach called Variational Bayes (VB) has been proposed by Attias 

(1999), (see also Neal & Hinton 1998; Waterhouse et al. 1996). This approach defines the free energy 

for a trial probability distribution, which approximates a joint posterior probability distribution over 

model parameters and hidden variables. The maximum of the free energy gives the log evidence for 

an observed data set. Therefore, the exact maximization of the free energy gives the true posterior 

distribution over the parameters and the hidden variables. The VB method uses trial distributions in 

a restricted space where the parameters are assumed to be conditionally independent of the hidden 

variables. Once this approximation is made, the remaining calculations are all done exactly. As a 

result, an iterative EM-like algorithm, whose convergence is guaranteed, is derived. The predictive 

distribution is also calculated analytically. 

The VB method has several attractive features. The method only requires a modest amount 

of computational time comparable with the EM algorithm. The BIC /MDL model selection criteria 

(Rissanen 1987; Schwartz 1978) are obtained from the VB method in a large sample limit (Attias 

1999). In this limit, the VB algorithm becomes equivalent to the ordinary EM algorithm. The 

VB method can be easily extended to the hierarchical Bayes method. Sequential model selection 

procedures (Ghahramani & Beal 1999; Ueda 1999) have also been proposed by combining the VB 

method and the split and merge algorithm (Ueda et al. 1999). 

In this paper, we derive an on-line version of the VB algorithm and prove its convergence by 

showing that it is a stochastic approximation for finding the maximum of the free energy. We also 

prove that the VB algorithm is a gradient method with the inverse of the Fisher information matrix 

for the posterior parameter distribution as a coefficient matrix. Namely, the VB method is a type 

of natural gradient method (Amari 1998). By combining sequential model selection procedures, the 

on-line VB algorithm provides a fully on-line learning method with a model selection mechanism. It 

can be applied to real-time applications. In preliminary experiments using synthetic data, the on-line 

VB method showed a faster and better performance than the batch VB method. We also found that 

the introduction of a discount factor is crucial for a fast convergence of the on-line VB method. 
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We study the VB method for general Exponential Family models with Hidden variables (EFH 

models) (Amari 1985), although the VB method can be applied to more general graphical models 

(Attias 1999). The use of the EFH models makes the calculations transparent. Moreover, the EFH 

models include a lot of interesting models such as Normalized Gaussian networks (Sato & Ishii 1999), 

hidden Markov models (Rabiner 1989), mixture of Gaussian models (Roberts et al. 1998), mixture of 

factor analyzers (Ghahramani & Beal 1999), mixture of probabilistic principal component analyzers 
(Tipping & Bishop 1999), and others (Roweis & Ghahramani 1999; Titterington et al. 1985). 

2 Variational Bayes Method 

2.1 Exponential family model with hidden variables 

In this section, we review the Variational Bayes (VB) method (Attias 1999) for the general Expo-

nential Family models with Hidden variables (EFH models) (Amari 1985). An EFH model for an 

N-dimensional vector variable x = (xi, ... , むN汀isdefined by a probability distribution, 

P(xl0) = j dμ(z)P(x, zl0), 

P(x,zj0) = exp[r(x,z)・0+ro(x,z)-"11'0(0)], (2.1) 

where z = (z1, …，ZM汀denotesan M-dirnensional vector hidden variable and 0 = (01, ... , 0K汀denotes

a set of model parameters called the natural parameter.1 A set of sufficient statistics is denoted by 

r(x,z) = (叫x,z),…，ば(x,z))T. An inner product of two vectors rand 0 is denoted by r• 0 = 
K I:k=l九0k.Measures on the observed and the hidden variable spaces are denoted by dμ(x) and dμ(z), 

respe"ctively. The normalization factor'1!0(0) is determined by 

exp ['110(0)] = j dμ(x)dμ(z) exp [r(x, z)・0 + ro(x,z)], (2.2) 

which is derived from the probability condition J dμ(x)P(xl0) = l. P(x, zl0) represents the proba-

bility distribution for a complete event (x, z). 

The expectation parameter for the EFH model, <p = (外…，咋）互 isdefined by 

</> = 8'110(0)/80 = (8恥 /801,…,8如 /8保）T

= E [r(x, z)/0] = j dμ(x)dμ(z)r(x, z)P(x, z/0). 

2.2 Evidence and free energy 

The likelihood for a set of observed events X{T} = {x(t)lt = 1, …, T}, is defined by 

T 

P(X{T}l0) = IT P(x(t)J0). 
t=l 

(2.3) 

(2.4) 

In the maximum likelihood (ML) approach, the objective is to find the ML estimator that maximizes 

the likelihood for a given data set. The ML approach, however, suffers from overfitting and the 

1 In general, the natural parameter is a function of another model parameter 1..p, i.e., 0 = 0 (1..p). The 

following discussions can also be applied in this case. 
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inability to determine the best model structure. Bayesian approaches overcome these difficulties by 

averaging over the ensemble of models. The evidence for a data set X{T} is defined by 

P(X{T}) = J dμ(0)P(X{T}l0)Po(0), (2.5) 

where dμ(0) denotes a measure on the model parameter space and Po (0) denotes a prior distribution 

for the model parameters. The integration over model parameters in (2.5) penalizes complex models 

with more degrees of freedom (Bishop 1995). This integration, however, is often difficult to perform. In 

order to evaluate this integration, the VB method (Attias 1999) introduces a trial posterior distribution 

for model parameters 0 and hidden variables Z{T} = {z(t)lt = 1, ... , T}, Q(0, Z{T}). The free energy 

for a data set X{T} is defined by 

F(X{T}, Q) = j年(0)dμ(Z{T})Q(0,Z{T}) log(P(X{T}, Z{T}l0)Po (0)/Q(0, Z{T})), (2.6) 

where the probability distribution for a coIDplete data set (X{T}, Z{T}) is given by 

T 

P(X{T}, Z{T}l6) = IJ P(x(t), z(t)l6). 
t=l 

logP(X{T}) = maxF(X{T},Q) 2: F(X{T},Q), 
Q 

(2.7) 

The log evidence is given by the maximum of the free energy (see Appendix A), 

(2.8) 

under the probability condition J dμ(0)dμ(Z{T})Q(0, Z{T}) = l. The maximum solution is given by 

Q(0, Z{T}) = P(X{T}, Z{T}l0)Po(0)/ P(X{T}) = P(0, Z{T}IX{T}), (2.9) 

which is the true posterior distribution for the model parameters and the hidden variables. The 

equation (2.8) implies that the lower bound for the log evidence can be evaluated by using some trial 

posterior distributions Q (0, Z{T}). 

2.3 Variational Bayes algorithm 

In the VB method, trial posterior distributions are assumed to be factorized as 

Q(0, Z{T}) = Q0(0)Qz(Z{T}). (2.10) 

We also assume that the prior distribution Po(0) is given by the conjugate prior distribution2 for the 

EFH model (2.1) : 

Po(0) = exp [,o(o:o・0 -~0(0)) -<l?a(o:。',o)]' (2.11) 

where (a。,,o) are prior hyperparameters. The normalization factor <I>a(a。,,o) is determined by 

exp[虹 (ao,'Yo)]= j dμ(0) exp [,yo(a。-0―如(0))]. (2.12) 

The equations (2.10) and (2.11) are the only assumptions in this method. Under these assumptions, 

we try to maximize the free energy F(X{T},Q). The maximum free energy with respect to factorized 

Q, (2.10), gives an estimate (lower bound) for the log evidence log(P(X{T})). 

2 It is also possible to use non-informative priors (Attias 1999). 
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The free energy can be maximized by alternately maximizing the free energy with respect to Q0 and 

Qz, This process closely resembles the free energy formulation for the EM algorithm (Neal & Hinton 
1998) for finding the ML estimator. In the VB E-step, the free energy is maximized with respect 

to Qz(Z{T}) under the condition J dμ(Z{T})Qz(Z{T}) = 1, while Qe(0) is fixed. The maximum 

solution is given by the posterior distribution for the hidden variables with the ensemble average of 

model parameters (see Appendix A): 

T 

Qz(Z{T}) = IT Qz(z(t)), (2.13) 
t=l 

Qz(z(t)) = P(z(t)lx(t),0) = P(x(t),z(t)l0)/P(x(t)l0), (2.14) 

0 = j dμ(8)Q0(0)0. (2.15) 

In the VB M-step, the free energy is maximized with respect to C?0(0) under the condition J dμ(0)Qe(0) = 
1, while Qz(Z{T}) obtained in the VB E-step is fixed. The maximum solution is given by the conjugate 

distribution for the EFH model with posterior hyperparameters (a:,"() (see Appendix A): 

Q0(0) = Pa(0Jn, 1) =exp[,(O'. ・0 -W0(0)) -<I>a(n, 1)], (2.16) 

1'= T + "r'o, (2.17) 

a = _!_ [r〈r(x,z)〉9+a。."(O]' (2.18) 
'Y 

1 T J 〈r(x,z)〉0 =—こ年(z(t))P(z(t) [x(t), 0)r(x(t), z(t)). (2.19) 
T t==l 

The effective amount of data'}'= (T +'YO) represents the reliability (or uncertainty) of the esti-

mation. As the amount of data T increases, the reliability of the estimation increases. The prior 

hyperparameter'Yo represents the reliability of the prior belief on the prior hyperparameter n。.The 

posterior hyperparameter n is determined by the expectation value of the sufficient statistics. The 

prior hyperparameter no gives the initial value for n. 

Since the posterior parameter distribution Qe(り） is given by the conjugate distribution Pa(0/n,'Y), 

which is also an exponential family model, the mtegration over the parameter 0 in (2.15) can be 

explicitly calculated as 

＝
 

I~ 

〈O〉a

〈O〉a,

= J dμ(0)Pa(0Ja,-y)0 = 
1 8<1>°' 
-y 8a 

(a,-y). 

(2.20) 

(2.21) 

The natural parameter of the conjugate distribution is given by (1o:, 1). The corresponding expecta-

tion parameters are given by the ensemble averages of the model parameters: 〈O〉adefined in (2.21) 

and 

い）〉O'.=Id訊 (Ola:,'Y)的 (0)=誓(o:,'Y)•o:- 委(o:, ,'), 

Q e (0) = Pa (0 Io:, -Y) = exp b (o: ・0 -¥JF e (0)) -<I> a (o:, -y)] , 

(2.22) 

2 .4 Parameterized free energy function 

Since the optimal solution simultaneously satisfies (2.14) and (2.16), the trial posterior distributions, 

Q0(0) and Qz(Z{T}), can be parameterized as 

(2.23) 
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T 

Qz(Z{T}) = IT Qz(z(t)), 
t==l 

Qz(z(t)) = P(z(t)lx(t),0), 

(2.24) 

(2.25) 

where'Y, a, and 0 are arbitrary variational parameters. By substituting this parameterized form into 

the definition of the free energy (2 .6), one can get the parameterized free energy function : 

T 

F(X{T}, 0, a, 刃=LlogP(x(t)IB) + boa。— 'YO'.) . 〈O〉a+T〈r(x,z)〉{). (〈O〉O'.-0) 
t=l 

-(T +'YO -'Y)〈¥f!e(0)〉a+T¥f!e(B) + <I>0(a, う')-<I>a(o。,'YO), (2.26) 

where the ensemble averages of the parameters〈O〉0 and〈¥f!e(O)〉0 are given by (2.21) and (2.22),re-

spectively. 
The VB E-step equation (2.20) can be derived from the free energy maximization condition with 

respect to 0: 

8F(X{T}, 0,a,'Y)/80 = 0. 

The derivative of the free energy with respect to 0 is given by (see Appendix B) 

oF/80 = U(0)・(〈O〉0:- 0), 
T 

(2.27) 

U(0) =区(r(x(t),z(t)) -〈r(x(t),z(t))〉が(r(x(t),z(t))-〈r(x(t),z(t))〉l))り。 9

t=l 

〈r(x(t),z(t))〉0 = j dμ(z(t))P(z(t)lx(t), 0)r(x(t), z(t)). (2.28) 

Since the coefficient matrix U is positive definite, the maximization condition (2.27) leads to the VB 

E-step equation (2.20). The Hessian of the free energy with respect to 0 at the VB E-step solution 
is given by (-U). This shows that the VB E-step solution is actually a maximum of the free energy 

with respect to 0. 
The VB M-step equations (2.17) and (2.18) can be derived from the free energy maximization 

condition with respect to (o:,,y): 

fJF(X {T}, 0, a,'Y) /缶=0, 

fJF(X{T}, 0, a,,y)/fJa = 0. 

The derivative of the free energy with respect to (a,'Y) is given by (see Appendix B) 

(2.29) 

(¥り：／ご）＝（隠:: 応） (T〈r(x,z) 〉ゲ―□。竺―~(T+'Yo)a)'(2.30) 

where the Fisher information matrix V for the posterior parameter distribution Pa(0jo:, 1) is given by 

Vn ， a 

Va,1 = 

V "f,"f 

g(O) = 

喜〈(81ご） (a~!;°') 八＝〈(0 -〈0〉a)(0-〈O〉af〉O'.'

}〈(81ご） (81>~Pa)>a= <(0- <O>a)(g(0) -〈g(0)〉a)〉O'.'

<(8l~~Pa) (8l~~Pa)) =〈(g(0)-〈g(0)〉o:)(g(0)-〈g(0)〉a)〉a, (2.31) 
a 

a-0―如(0).
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Since the Fisher information matrix V is positive definite, the free energy maximization condition 

(2.29) leads to the VB M-step equations (2.17) and (2.18). From the equation (2.30), it is shown that 

the VB M-step solution is a maximum of the free energy with respect to (o:, 1) as in the VB-E step. 

The VB algorithm is summarized as follows. First, 1 is set to (T + ,o)- In the VB E-step, 

the ensemble average of the parameter 0 is calculated by using (2.20). Subsequently, the expectation 

value of the sufficient statistics〈r(x,z)〉-(2.19) is calculated by using the posterior distribution for the 

゜hidden variable P(z(t)[x(t), 0) (2.14). In the VB M-step, the posterior hyperparameter o: is updated 

by using (2.18). Repeating this process, the free energy function (2.26) increases monotonically. This 

process continues until the free energy function converges. 

Using (2.28) and (2.30), the VB equations (2.20) and (2.18) can be expressed as the gradient 

method: 

△0 

△a 

= 0new -() =〈O〉a-0 

u-1(0) 
8F 

= -
細

(X{T}, 0, a, 1), 

1 
= O'.new -O'. = -(T〈r(x,z)〉l)+ ,oao -,a) 

'Y 
1 8F 

＝万はら(a,,)―-(X{T},0, a,,), 
'Y 80: 

together with'Y = T +'YO・Substituting the VB E-step equation (2.20) into the free energy (2.26), the 

VB algorithm is further rewritten as 

l 8F 
知＝万Va;a(a,1)-(X{T},0=〈O〉a,a,,).

1 8a 

(2.32) 

(2.33) 

(2.34) 

This shows that the VB algorithm is the gradient method with the inverse of the Fisher information 

matrix as a coefficient matrix. Namely, it is a type of natural gradient method (Amari 1998). This 

fact is proved for the first time in this paper. 

When the VB algorithm converges, the free energy (2.26) can be written in a simple form: 

T 

F(X{T}, o:) = L log P(xl0) + T¥Jle(0) 
t=l 

+(<I>a(o:,,) -,o:. 〈O〉o:)-(<I>a(o:。,,o) -,oo:。• 〈O〉o:)- (2.35) 

The first term on the r.h.s. of (2.35) is the log-likelihood with the ensemble average of the parameters. 

The remaining terms represent the penalty due to the model complexity. This will become clear in a 

large sample limit as will be shown later. 

2.5 Predictive distribution 

If the posterior parameter distribution is obtained by using the VB algorithm, one can calculate the 

predictive distribution for the observed variable x. The predictive distribution for x is given by 

P(xlX{T}) = / dμ(0)Qe(0)P(xl0) 

= J dμ(0) J dμ(z) exp [(r(x, z) +'Ya)• 0 + r0(x, z) 

-(1 + "()'¥0(0) -<I>a(n,'Y)]. (2.36) 
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By interchanging the integration with respect to 0 and z, one can get 

P(xlX{T}) = j年(z)exp [ro(x, z) +恥(a(x,z),, + 1) -<Iia(o:,,)], (2.37) 

a(x,z) = bo:+r(x,z))/(1+1). 

For a finite T, this predictive distribution has a different functional form than the model distribution 

P(xl0), (2.1). 

2.6 Large sample limit 

When the amount of observed data becomes large (T~1 : 1~1), the solution of the VB algorithm 

becomes the ML estimator (Attias 1999). In this limit, the integration over the parameters with 
respect to the posterior parameter distribution can be approximated by using a stationary point 

approximation: 

exp [41a(a, 1)] = J年(0)exp [,(a・0 -'1!e(0))] 

~ exp[,(a-0-'1!0(0)-½log,z:;:(0) +0(1/,)], 

where 0 is the maximum of the exponent (a・0 -Wg(0)), i.e., 

Bwe~ 
80 

(0) = a. 

Therefore, <I>a can be approximated as 

虹 (o:,,y)~'Ya. f) 
(A  A 1 麟

ー we(fJ)--log ,y-〇＾

2 f)f)f)f) 
(0) + O(lh), 

Consequently, the ensemble average of the parameter 0 can be approximated as 

-a"―
 

1 8<I>a 

r fJa 
(o:, 1) 

l 8 
~ --(r(o:. 0 -'1!0(0))) = 0. 

180: 

(2.38) 

(2.39) 

(2.40) 

(2.41) 

The relations (2.39) and (2.41) imply that the posterior hyperparameter o: is equal to the expectation 

parameter of the EFH model, 也(seeEq.(2.3)) in this limit. Furthermore, the equations (2.18), (2.39), 

and (2.41) are equivalent to the ordinary EM algorithm for the EFH model. In a large sample limit, the 

data term is dominant over the model complexi_ty term. Consequently, the free energy maximization 

becomes equivalent to the likelihood maximizat10n. Using (2.40) and (2.41), the free energy becomes 

F ~ 
T K 
~log P(xlO) -- log'Y 
t=l 

2 

1 a2w。-
--log -(0) 
2 8080 

十 1o(a。・0-We(0)) -Pa(a。,'Yo)+0(1/,y). 

(2.42) 

This expression coincides with the BIO/MDL criteria (Rissanen 1987; Schwartz 1978). 
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The predictive distribution P(x/X {T}) in this limit coincides with the model distribution using 
the ML estimator P(x/0). This can be shown by using the following relations: 

&(x,z) 

虹 (&(x,z),r+l)

1 
a+ -(r(x, z) -a)+ 0(1/召），

ぅ／

1 B<I>a 8虹~ <I>a(a,1) + -(r(x,z) -a)-(a,1) + -(a,1) 
, Ba 缶

～叫(a,1)+r(x,z)・0-如 (0).

3 On-line Variational Bayes method 

3.1 Expectation value of the free energy 

In this section, we derive an on-line version of the VB algorithID. The amount of data increases over 

time in the on-line learning. Therefore, it is desirable to calculate a free energy corresponding to a 
fixed aIDount of data. For this purpose, let us define an expectation value of the log evidence for a 
finite amount of data : 

E [log P(X{T})]p = J dμ(X{T})p(X{T}) log(/ dμ(0)P(X{T}l0)Po(0)) , (3.1) 

where p represents an unknown probability distribution for observed data. The corresponding VB free 
energy is given by 

E [F(X{T}, Q0, Q』]p T J dμ(0)Q0(0)E [! dμ(z)Qz(z) log (P(x,zj0)/Qz(z))] 
p 

+J年(0)Q0(0)log (Po(0)/Q0(0)). (3.2) 

The ratio bo/T) determines the relative reliability between the observed data and the prior belief for 
the parameter distribution. The expected free energy (3.2) can be estimated by 

F(X{ T }, Q0, Qz, T) = (~) t J dμ(0)Q0(0) J年(z(t))Qz(z(t))

x log (P(x(t),z(t)j0)/Qz(z(t))) 

+ j dμ(O)Q0(0) log (Po(0)/Q0(0)). (3.3) 

Note that T represents the actual amount of observed data, and it increases over time while Tis fixed. 

In on-line learning, parameters are updated each time new data is observed. Therefore, Qz(z(t)) is 

parameterized with different parameter values for different data: 

Qz(z(t)) = P(z(t)lx(t), 0(t)). (3.4) 

A time dependent discount factor入(t)(0::; 入(t)::; 1, t = 2, 3, …） is introduced, and a discounted free 

energy is defined by 

炉(X{T }, 0{ T }, o:, T) Try(T)言（叫s))j咋(B)Q,(8)j dμ(z(t))P(z(t)jx(t),il(t)) 

x log (P(x(t), z(t)j0)/ P(z(t) [x(t), 1J(t))) 

，
 



+ j dμ(0)Q0(0) log (Po(0)/Q0(0)) 

T叩） t, (, 叫(,))[IogP(x(t)IO(t)) 

+ j dµ(z(t))P(z(t)/x(t),0(t))r(x(t),z(t))• (〈O〉a-0(t)) +'¥0(0(t))] 

+(,oa。— ,a). 〈O〉a+<I>a(a,,) -<I>a(a。,,o), (3.5) 

where 1 = (T十而） （） is used and T/ r represents a normalization constant: 

ry(r)~[t, (且1入(,))l―1 (3.6) 

3.2 On-line variational Bayes algorithm 

The on-line VB algorithm can be derived from the successive maximization of the discounted free 

~nergy (3.5). The calculations can be done in the same way as in Sec. 2.4. Let us assume that 

〇{--r-1} = {0(t)lt = 1, ... ,--r -1} and o:(--r -1) have been determined for an observed data set 
X{--r -1} = {x(t)lt = 1, ... ,--r -1}. With new observed data x(--r), the discounted free energy (3.5) is 
maximized with respect to 0(--r): 

The solution is given by 

BF入(X{T},lJ{T},a(T-l),T)/80(T) = 0. 

18屯a

屈）＝〈O〉0:(T-1)= -―(o:(T -1),"f). 
'Y 80: 

(3.7) 

(3.8) 

In the next step, the discounted free energy is maximized with respect to o:, while 0{ T} is fixed: 

BF入(X{T},O{T},a,T)/Ba = 0. (3.9) 

The solution is given by 

四 (T)= T《r(x,z)》(T)+"f匹 O, (3.10) 

where the discounted average〈い〉(T)is defined by 

《r(x,z) 〉〉 (r)~ry(r)言［叫(s))I年(z(t))P(z(t)Ix(t), 0(t))r(x(t), z (t)). (3.11) 

The discounted average can be calculated by using a step-wise equation: 

《r(x,z)〉〉(r) = (1-r;(r))《r(x,z)〉〉(r-1) 

+r;(r) j dμ(z(r))P(z(r)lx(r),0(r))r(x(T),z(r)), (3.12) 

r;(r) = (1十入(r)/r;(r-1))―1. - (3.13) 

The recursive formula for a(T) is derived from the above equation: 

△ a(T) a(r) -a(r -1) 

1 
1ry(r) [パ卯(z(r))P(z(r)lx(r),0(r))r(x(r), z(r)) +氾oa。— "f0'.(7 -1)]. (3.14) 
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The on-line VB algorithm is summarized as follows. In the VB E-step, the ensemble average of 

parameter 0(T) is determined by equation (3.8). Using this value, one calculates the expectation value 

for the sufficient statistics, 

尾 [r(x(T),z(T))l0(T)]= j dμ(z(T))P(z(T)lx(T), 0(T))r(x(T), z(T)). (3.15) 

The posterior hyperparameter is updated by (3.14) in the VB M-step. By combining the VB E-step 

(3.8) and VB M-step equations (3.14), one can get the recursive update equation for o:(T): 

△ o:(T) =~TJ(T) (rEz [r(x(T),z(T))I〈O〉a(r-1)]+ ,oa。— 10'.(T-1)). (3.16) 

3.3 Stochastic approximation 

Unlike the VB algorithm, the discounted free energy in the on-line VB algorithm does not always 

increase, because a new contribution is added to the discounted free energy at each time instance. In 

the following, we prove that the on-line VB algorithm can be considered as a stochastic approximation 

(Kushner & Yin 1997) for finding the maximum of the expected free energy defined in (3.2), which 

gives a lower bound for the expected log evidence defined in (3.1). The expected free energy (3.2), in 

which the maximization with respect to Qz has been performed, can be written as 

where 

maxE [F(X{T},Qe,Qz)]p = E [F叫x,a,T)]P, 
Qz 

応 (x,a, T) = T j dμ(z)P(zlx, 〈0)a)j dμ(0)Qe(0) log (P(x, zl0)/ P(zlx, 〈O〉a))

+J年(0)Qe(0)log (Po(0)/Qe(0)) 

= TlogP(xl〈0〉a)-[(祝a-')'ono)・ 〈O〉a-Twe(〈O〉a)]

(3.17) 

+<I>a(a,1') -<I>a(a。,1'0)- (3.18) 

The gradient of FM is calculated as 

8FM 

80: 
(x,o:,T) = "(Vo:,o:(o:,'Y)・[TEz [r(x,z)I〈O〉o:]+ "(QO'.。— "(O'.]' (3.19) 

where the Fisher information matrix Va,a for the posterior parameter distribution, Q0 (0) = Pa (0 In,'Y), 

is defined in (2.31). Consequently, the on-line VB algorithm (3.16) can be written as 

l 8FM 
△ 0:(T) =万ry(T)Va_ら(o:(T-1),"f)・一(x(T),o:(T-1),T). 

'Y 80: 
(3.20) 

If the effective learning rate r;(T) (2:: 0) satisfies the condition (Kushner & Yin 1997) 

00 co 

L ry(T) = oo and 区祈(T)<oo, (3.21) 
t=l t=l 

the on-line VB algorithm (3.16) defines the stochastic approximation for finding the maximum of the 

expected free energy (3.2). 

When there is no discount factor, i.e., 入(T)= 1, the effective learning rate 7) (T) is given by 

ry(T) = ljT. (3.22) 
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This satisfies the stochastic approximation condition (3.21). However, the learning speed becomes 

very slow if this schedule is adopted (see Sec. 5). The reason for this slow convergence is that earlier 

inaccurate hyperparameter estimations affect the hyperparameter estimations in later learning stages 

because there is no discount factor in the sufficient statistics average (3.11). The introduction of the 

discount factor is crucial for fast convergence. 

As in the on-line EM algorithm proposed in our previous paper (Sato 1999), we employ the following 

discount schedule 

which can be calculated recursively: 

1 
1 —入 (r) = 

1T-2)氏十 TQ'

入(T)= 1 -
1 —入 (T -1) 

1+叫1-入(T-1)) 

The corresponding effective learning rate'TJ (r) satisfies 

冗十 1 1 

加）ご~(-;:-)戸

(3.23) 

(3.24) 

(3.25) 

so that the stochastic approximation condition (3.21) is satisfied. The constants appearing in (3.23) 

have clear physical meanings. ro represents how many samples contribute to the discounted average 

for the sufficient statistics (3.11) in the early stage of learning. "" controls the asymptotic decreasing 

ratio for the effective learning constant ry(r) as in (3.25). The values of ro and氏 controlthe learning 

speeds in the early and later stages of learning, respectively. 

4 On-line Model Selection 

In the usual Bayesian procedure for model selection, one prepares a set of models with different 

structures and calculates the evidence for each model. Then, the best model that gives the highest 

evidence is selected or the average over models with different structures is taken. 

In this paper, we adopt sequential model selection procedures (Ghahramani & Beal 1999; Ueda 
1999). We start from an initial model with a given structure. The VB learning process for this model is 

continued by monitoring the free energy value. When the free energy converges, the model structure 

is changed according to some criterion and the initial model is saved as the base model. The VB 

learning process for the current model is continued until the free energy converges. If the free energy 

of the current model is greater than that of the base model, the current model is saved as the base 

model. Otherwise, the base model is not changed. One always keeps the base model as the best model 

to date. A new trial model is selected based on the base model. This process continues until further 

attempts do not improve the base model. 

The above procedure is a deterministic process. We can consider a stochastic model selection 

process based on the Metropolis algorithm (Metropolis et al. 1953). In this case, the base model is 
different from the best model to date .. If the free energy of the current model is greater than that of 

the base model, the current m・odel is saved as the base model. Otherwise, the base model is changed 

to the current model with the probability exp(f3(Fcurrent -Fbase)). This stochastic process can be 

applied to model selection in dynamic environments. 

In the next section, we study the model selection problem for mixture of Gaussian models. As a 

mechanism for structural change we adopt the split and merge method proposed by Ueda et al.(1999) 

(see also Richardson & Green 1997; Ghahramani & Beal 1999; Ueda 1999). For mixture models, the 

split and merge method provides a simple procedure for structural changes. We choose either to split 
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a unit into two or to merge two units into one in the sequential model selection process. In the current 

implementation, the same process is applied if the previous attempt was successful. Otherwise, the 

other process is applied. 

A criterion for splitting a unit is given by the unit's free energy, which is assigned to each unit. 

The split is applied to the unit with the lowest free energy among unattempted units. A criterion 

for merging units is given by the correlation between the two units'activities, which are represented 

by the posterior probability that the units will be selected for given data. The unit pair with the 

highest correlation among unattempted unit pairs is selected for merging. The deletion of units is also 

performed for units with very small activities, which indicate that the units have not been selected at 

all. 

We adopted the above model selection procedure because of its simplicity. Other model selection 

procedures using the split and merge algorithm have also been proposed (Ghahramani & Beal 1999; 
Ueda 1999). 

By combining the sequential model selection procedure with the on-line VB learning method, a 

fully on-line learning method with a model selection mechanism is obtained and it can be applied to 

real-time applications. ・ 

5 Experiments 

As a preliminary study on the performance of the on-line VB method, we considered model selection 

problems for two-dimensional Mixture of Gaussian (MG) models (see Appendix C). We borrowed two 

tasks from a paper by Roberts et al. (1998). A data set'A'consisting of 200 points was generated 

from a mixture of four Gaussians with the centers (0, 0), (2, Jiう）， (4,0),and (-2,-~ 互） (Fig. IA). 

The Gaussians had the same isotropic variance庄=(1.2)乞 Inaddition, a data set'B'consisting of 

1000 points was generated from a mixture of four Gaussians (Fig. IB). In this case, they were paired 

such that each pair had a common center, i.e., m1 =血=(2, v12) and m3 = m4 = (-2, -JIう），
but had different variances, i.e., er『＝吋=(1.0)2 and吋＝叶=(5.0)2. Although these models were 

simple, the model selection tasks for them were rather difficult because of the overlap between the 

Gaussians (Roberts et. al. 1998). 

In the first experiment, we examined the usual Bayes model selection procedure. A set of models 

consisting of different numbers of units was prepared. The VB method was applied to each model and 

the maximum free energy was calculated. We used a nearly non-informative prior for all cases, i.e., 

初=0.01. The on-line VB method used the discount schedule (3.23) with To = 100 and氏=0.01 for 

all cases. 

The learning speed was measured according to epoch numbers. In one epoch, all training data 

were supplied to each VB method once. The on-line VB method updated the ensemble average of 

parameters for each datum, while the batch VB method updated them once according to the average 

of the sufficient statistics over all of the training data. 

The results are summarized in Fig. 2. Both the batch VB method and the on-line VB method 

gave the highest free energy for the true model consisting of four units. The on-line VB method 

showed a faster and better performance than the batch VB method, especially for large amo皿 tsof 

data (Fig. 2). The reason for this performance difference can be considered as follows. In the on-line 

VB method, the posterior probability for hidden variables is calculated by using the newly calculated 

ensemble average of the parameters improved at each observation. The batch VB method, in contrast, 

uses the ensemble average of the parameters calculated in the previous epoch for all data. Therefore, 

the estimation quality of the posterior probability for the hidden variables improves rather slowly. 

This becomes more prominent for larger amounts of data. In this case, the on-line VB method can 

find the optimal solution within one epoch, as shown in Fig. 2D. 
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The on-line VB method without the discount factor showed a poor performance and slow conver-

gence for all cases. This result implies that the introduction of the discount factor is crucial for a good 

performance of the on-line VB method, as pointed out in Sec. 3. If there is no discount factor, the 
early inaccurate estimations contribute to the sufficient statistics average even in the later stages of 

the learning process and degrade the quality of estimations. 

In the second experiments, the sequential model selection procedure described in Sec. 4 was tested 

using two initial model configurations consisting of two units and ten units. When the model structure 

was changed, the discount factor and the effective learning constant in the on-line VB method were 

reset as (1 —入 (T)) = 0.01 and TJ(T) = 0.01. The on-line VB method was able to find the best model in 

all cases (Fig. 3). It should be noted that the VB method sometimes increased the free energy while 

decreasing the data likelihood (Figs. 3 and 4). This was achieved as a result of the decrease in the 

model complexity. The batch VB method also found the best model except for one case, in which the 

batch VB method got stuck in a local maximum (Fig. 4C). 

In summary, the on-line VB method showed a better and faster performance than the batch VB 

method in all cases. 

6 Conclusion 

In this paper, we derived an on-line version of the Variational Bayes (VB) algorithm and proved its 
convergence by showing that it is a stochastic approximation for finding the maximum of the free 

energy. A fully on-line learning method with a model selection mechanism was also proposed based 

on the on-line VB method together with a sequential model selection procedure. This method can be 

applied to the model selection problem in dynamic environments. 

In this paper, we considered the Bayes model without hierarchy. The current method can be easily 

extended to the hierarchical Bayes model (see Appendix D). 

In preliminary experiments using synthetic data, the on-line VB method showed a faster and 

better performance than the batch VB method. A detailed study on the performance of the on-line 

VB method will be published in a forthcoming paper. It is also remained for future study to find 

better sequential model selection procedure. 
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Appendix A 

The free energy (2.6) can be maximized with respect to Q(0, Z{T}) by using the following theorem: 

• The maximum of (J dμ(y)Q(y)(f(y) -log(Q(y)))) under the condition, J dμ(y)Q(y) = I, is 

given by 

Q(y) = exp[f(y)]/ j dμ(yt) exp[f(yt)]. 

The theorem can be proven with the help of the Lagrange multiplier method. The VB equations, 
(2.13)-(2.19), can also be proven by using this theorem and the following relations: 

F = j dμ(0)Qe(0) [T(〈r(x,z)〉q2・0-We(0)) +logPo(0) -logQe(0)] 

+ Qe(0)-independent terms 
T 

= L j dμ(z(t))Qz(z(t)) [r(x(t),z(t))・ 〈O〉Q。+ro(x(t), z(t)) -log Qz(z(t))] 
t=I 

+ Qz(z(t))-independent terms, 

where <•> Qe and <•> Qz denote the expectation value with respect to Qe(0) and Qz(Z{T}), respectively. 

Appendix B 

The calculation on the derivative of the parameterized free energy (2.26) is lengthy but straight-
forward. The outline of the calculation is shown below. The derivative with respect to 0 can be 
calculated as 

BF層 =T(贔〈r(x,z)〉f))(〈O〉Q -0), 

by using the relation, 

8 
T 

呼。涌信logP(x(t)IO))=T(〈r(x,z)〉°―詞-)

The coefficient matrix T(a〈r〉0/88) turns out to be U(O) defined in (2.28). 
The derivatives with respect to (a:, 1) are given by 

18F 

1'8a 

8F 

缶

＝ 戸80:aaT). (T〈r(x,z)〉0+ ,oa。ー (T十 'YO)o:) + (T + ,o -r) (冨正―戸盃―)，(1 8出 18叫 1D<I>a 

= (¼f三塁：） ·(T〈r(x,z)〉0+,o匈— (T + ,o) a) + (T + ,o -,) (~) . 

The equations (2.30) and (2.31) can be derived by using the above and the following equations. 

1 82Pa 
? = 
ァ噂o:ao:T 喜〈(81ご）（り::a)〉0:'

: 〈(81ご） (ol;~Pa) >0:'

-< (ol;~Pa) (81〗~Pa) 〉。

1 82Pa 1 8<1?a 
- - = 
"(80: 釣笠 80:

炉①
°' 

的缶
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Appendix C 

The VB algorit血 forthe Mixture of Gaussian model is briefly explained in this Appendix.3 We 

first explain more general mixture models, i.e., the Mixture of Exponential Family (MEF) models. 

The probability distribution for the i-th unit in the MEF model is defined by 

P(xl0i, i) = exp[ri(x)・oi十八，o(x)一並(0り］．

The conjugate distribution for (A.I) is given by 

Pa(0i[o:i,ti,i) = expfti(ai・0i―'¥i (0 i)) -<I> i (ai, , け］．

The probability distribution for the MEF model is, then, defined by 

M 

P(xjg, 0) = I: 鱈 (xl0i,i) 

(A.l) 

(A.2) 

~exp[i= に (logg; ー並(O;))+ z;r; (x)• O; + z;r ;,o(x)))] , (A.3) 
{z} i=l 

where the hidden variable z = {zi Ii = 1, • ・ ・, M} is an indicator variable, i.e., Zi = 0 or 1, and 

江臼lZi = l. 塁}denotes the summation over M possible configurations of z. The mixing proportion 

g = {g叶i= 1, • ・ ・, M} satisfies the constraint 江〗 9i = 1, which is automatically satisfied by the 

expression, 9i = e'Pi / (L似e'Pj).

The set of model parameters {g, 0} = {gi, 0ili = 1, ・ ・ •, M} is not the natural parameter of the 

MEF model (A.3). The natural parameter is given by {w, 0} = {wi = (f)iー並(0ふ仰=1,・・・,M}. 

The corresponding sufficient statistics is given by { Zi, zふ (x)li= 1, ・ ・ ・, M}. Accordingly, the MEF 

model can be written as the EFH model: 

P(xlw,0) =互exp[喜凸＋叫x)• 0;)ー的(w,o)], (A.4) 

11!0(w,8)~log [t, exp(w, 十 W,(8,))]. (A.5) 

The conjugate distribution for the MEF model (A.3) is given by the product of the Dirichlet distri-

bution and the conjugate distribution for each unit: 

凡(g,Olaい） = exp ['Yシ(log9i -'1i訊） + O'.i . 釦ー叫(a,い）］
i=l 

exp [ふい＋叫 -0りー憧e(w,0)―虹(a,い）] , (A.6) 
i=l 

M M 

虹 (a,v,'Y) L logr(加 +1)-logr行+M)+L屯(a戸叫， (A.7) 
i=l i=l 

3 Notation in this Appendix are slightly different from those in the text. 
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where Vi satisfies I: 己1巧=1, and r(,) is the gamma function, i.e., r('Y) = ft dse―s s1-1. The VB 

algorithm for the MEF model can be derived by using虹 asdescribed in Sec. 2. The VB E-step 

equation is given by 

l)i =〈O知＝
I 8虹

加 00:i

I 8虹
ら＝〈叫0:= - --O:i. 〈0i〉O:・

T如

The VB M-step equation is given by 

--y = T十 1'(0),

1 
乃＝ー(r〈z畑+1'(0)叫0))'

ぅ＇

1 
O:i =戸(r〈Zふ (x)〉l)+'Y(O)叫0)叫 0)).

(A.8) 

(A.9) 

(A.10) 

(A.11) 

(A.12) 

where "f(O) and {玲(O),ni(O)/i= 1,・・・,M} are the prior hyperparameters of !he prior parameter 
distribution. 〈•〉。 denotes the expectation value (2.19) with respect to P(z/x, w, 0). 

The free energy of the MEF model after the VB M-step is expressed as 

M 

F = L [r〈z』ogP(x/w, lJ)〉lJ-T〈z』ogP(x, z/w, 0)〉。
i=l 

+ log r(ぅ1々 +1)-vilogr(ぅ+M) + <lり(nいうvi)-<I>i(ni(O), ぅ(0)/M)], (A.13) 

where we assumed乃(0)= 1/M. 
The Mixture of Gaussian (MG) model is obtained, when the component distribution P(xl0i, i) is 

the riormal distribution: 

P(xlm心ふi) = (2司―N/2閂11;2exp [-l(x -m喜 (x-mi)] 

[ 1 T T ] = exp --2 x~ ぷ+X~iilli ―並 (miぶ）， (A.14) 

並(m,,江） ＝ 1 r 1 N （） 
-2 mi I; 皿＋ー2log I江I--2 log 21r , (A.15) 

where mi and~i denote the center and the inverse covariance matrix of the i-th Gaussian. The 

natural parameter of the normal distribution is given by 0i = (~i, 江mi)-The conjugate distribution 

for the normal distribution (A.14) is given by the normal-Wishart distribution (Gelman et al. 1995), 

Pa(m心叫Ci,△心） = exp [-!ri(mi -cif~i(mi -ci) -!1iTr(江△;1) 
2 2 

1 

2 
十一(ri-N) log I江I一屯（い）］， (A.16) 

~ ½:ogl • ,11 +喜logr (1'; + :-n) -½7;Nlog 信）
--log巳）＋ーN(N-1) log冗

2 21r 4 

屯（△i''Yi) 

(A.17) 

The natural parameter of the conjugate distribution (A.16) is given by 

(ai, 叫＝仇（△il + CiC『)，m心叫． (A.18) 

The VB algorithm for the MG model can be derived by using the above equations. 
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Appendix D 

The VB method can be easily extended to the hierarchical Bayes model. Let us consider the EFH 

model (2.1) with the prior distribution Pa(Ola。,,o). The evidence for the hierarchical Bayes model is 

given by the marginal likelihood with respect to the model parameter 0 and the prior hyperparameter 

O'.Q : 

P(X{T})= j年(0)dμ(ao)P(X{T}l0)凡 (Ola。,"!o)Po(ao), (A.19) 

where Po (o:o) is the prior distribution for the prior hyperparameter o:。.The free energy is de且nedby 

F(X{T}, Q) = j心(0)dμ(eto)dμ(Z{T})Q(0,a。,Z{T}) 

x log (P(X{T}, Z{T}l0)Pa(0la。,--Yo)Po(ao)/Q(0,ao,Z{T})). (A.20) 

The hierarchical VB method can be obtained assuming the conjugate prior for Pa(Olo:。,'Yo),
Po(o:o) = exp [bo(aoo:。'YO —屯a(o:o,'Yo)) ―虹(ao, bo)] 

and the factorization for the trial posterior distribution, 

Q(0, 0:。,Z{T}) = Qe(0)Qa(a:o)Qz(Z{T}). 

(A.21) 

(A.22) 

The remaining calculations can be done by the same way as in the VB method. The VB algorithm 

in this case consists of three steps. The posterior probability for the hidden variable P(z(t) jx(t), 0) is 

calculated in the VB E-step by using the ensemble average of the parameters 

0=〈O〉O'.・

The posterior hyperparameter a is calculated in the VB M-step; 

,o: 

,o〈O:Q〉a

T〈r(x,z)〉0+ ,o〈o:o〉a,

'YO J dμ(o:o)Qa(o:o)o:。=!竺
baa 

(a, b), 

together with 1 = T + ,o。Theposterior hyper-hyperparameter (a, b) is then calculated 

a 

b 

〈O〉a

〈O〉a +ao, 

b。+1, 

1 8<I>a 

1 8a 
(a,,). 

(A.23) 

(A.24) 

(A.25) 

(A.26) 

(A.27) 

(A.28) 

Repeating the above three steps, the free energy monotonically increases. The on-line VB algorithm 

can be similarly derived. 
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Figure 1 

Fig.I (A): 200 points in data set'A'generated from mixture of four Gaussians with different 

centers. (B): 1000 points in data set'B'generated from mixture of four Gaussians. Pairs of Gaussians 

have the same centers but different variances. 
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Figure 2 

Fig.2 Maximum free energies obtained by three learning methods and their convergence times measured 

by epoch numbers are plotted for various models. Three methods are batch VB (dash-dotted line with 

crosses), on-line VB (solid line with circles), and on-line VB without discount factor (dotted line with 

triangles). Abscissa denotes number of Gaussian units in trained models. (A): Results for data set 

'A'. (B): Results for data set'B'. 
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Figure 3 

Fig. 3 On-line model selection processes using on-line VB method. Free energies and number of units 

for best model (solid line) and current model (dash-dotted line) are shown. Log-likelihood for current 

model (dotted line) is also shown. (A) and (B): Results for data set'A'. (C) and (D): Results for data 

set'B'. 
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Figure 4 

Fig. 4 Sequential model selection processes using the batch VB method. Free energies and number of 

units for best model (solid line) and current model (dash-dotted line) are shown. Log-likelihood for 

current model (dotted line) is also shown. (A) and (B): Results for data set'A'. (C) and (D): Results 

for data set'B'. 
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