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Abstract 

The general goal of this project is to develop a system able to reconstruct the 3D structure 
of an object, with only minimal knowledge about the camera, the object, and the relative 
position of the two; namely, the object is textured and rigid and assuming a perspective 
camera model. This system is able to acquire images from an uncalibrated, general purpose 
camera, extract feature points in the acquired images and track those points in the stream 
of images. Those points that have been tracked for a long period of time are then used to 
reconstruct the 3D structure of the object in the form of a 3D point cloud. The images, 
the tracked points for each image and the 3D reconstructed points are then used to create 
a realistic rendering of the object. This report will focus on the last part of the project, 
namely the realistic rendering of the object. It relates all the steps taken to achieve the final 
goal, including numerous wrong paths. The reasons for taking these paths as well as the 
explanations of why these were wrong are also given. 

1 Introduction: Understanding the problem 

Visualization of data is an important aspect of today's research. Of course, fundamental research 
yields mostly mathematical formulas, which are pretty hard to explain to non-scientific people. 
But more applied research, such as the subject of this report, can be better exposed through the 
use of graphical representation. Therefore, a good representation can make the difference between 

a successful presentation and a partial failure. Although the most interesting part of research is 
most likely not working on some interface for displaying results, but how to generate those results, 
the former is still very important. This project has a little of both. Given the reconstruction of 
a 3D structure, to create an appealing and intuitive representation for visualizing the data. And 
also, if possible, improve the quality of the display so it matches as much as possible the actual 

object. 
As will be discussed in greater detail later in this document, obtaining a visually appealing 

interface for visualizing the data is quite simple and straightforward to implement. But the 

enhancement of this display, so that the displayed object matches as closely as possible the original 
object was a little more problematic. Although many ideas were found to solve this problem, most 

of them led to bad results and had to be discarded. 

1.1 What was already done 

The 3D reconstruction process of an object, from an uncalibrated camera, as explained and de-
signed in [l], generates 3 types of data. It generates a set of n images, from different views of 

the object, a set of n 2D points files, containing coordinates of the points tracked from on image 
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to the next, and used to generate the 3D reconstruction and one 3D point file, containing the 
reconstructed coordinates in 3D space of the tracked 2D points. Every point file (2D and 3D) has 
the same number of points, and point correspondence across files is determined by the order of 
the points. So this is the starting point for the generation of a rendered version of the data. 

1.2 The goal of the project 

The main goal of this project was to develop a program that would allow the reconstruction/display 
of any rigid, textured 3D object. 3D objects can be classified in many ways: convex/concave, 
polyhedral/non-polyhedral, rigid/non-rigid, textured/flat, etc. A convex object can be defined as 
follows: any line segment from any point of the object to any point of the object is also part of 
the object. This is also defined as a convex hull. A concave object can be best defined from the 
definition of a convex object, that is: a concave object is not convex. A polyhedral object is an 
object which can be entirely defined using planar surfaces; it doesn't have any curved surfaces. 
A non-polyhedral object has curved surfaces. A textured object is defined as an object having a 
non-uniform colored surface, as for a flat object would be of uniform color. A rigid object refers 
to an object which doesn't change it's 3D structure over time (is not deformed), and a non-rigid 
object can be deformed over time. 

At the beginning of this project, the aim was to be able to deal with any kind of rigid, textured 
3D object. But in the end, due to unsuccessful results, the type of object was further restricted 
to polyhedral, convex, rigid, textured 3D object. 

1.3 Rendering: using existing software 

Once we have the point files (2D and 3D), the correspondence information (ordering of the points 
in the files) and the images, the next step is displaying the rendered object. To simplify this task, 
an already existing software was used for rendering. Geomview, a 3D viewer developed by the 
Geometry Center[4] seemed, at first, to be a very good choice. The file format used to represent 
the 3D world was very simple and very easy to generate. But a serious problem quickly appeared, 
the rendering was unstable, especially when part of the object was outside of the viewing window, 
the texture from two adjacent triangles would no longer fit and became distorted. Two alternatives 
were available, either use another rendering program, or build one from scratch. The alternative 
chosen was to use VRML1, which is still quite simple to generate and has quite a few viewers 
available on the Internet. 

2 G enerating a triangular mesh on the input points 

The files generated by the preceding stage (tracking & 3D reconstruction) contains two types 
of information for the same points, 3D reconstruction and their 2D projection. Simple point 
clouds like these are very unattractive for displaying the structure of an object. The aim was 
to obtain a more intuitive display of the rendered object, using the textures from one of the 
images acquired in the previous step. But in order to rnap the textures from the image on the 
3D reconstruction, more than 3D points are required. For that reason, a new 3D representation 
must be generated. The kind of representation usually used in texture mapping applications is 
the triangular mesh. Such a representation is very easy to generate, and very well understood and 
also very well documented. The software used to generate the tessellation was once again taken 
from the Geometry Center[4][5]. 

When the tessellation of a 3D point cloud is required, the point cloud is first projected to a 
plane and the tessellation is computed on this 2D projection instead of the 3D point cloud. The 
reason for this is that generating a tessellated convex hull in 3D is far more complex than in 2D 
and generally does not give good results. Since the input to this step is composed of corresponding 
3D and 2D point clouds, the tessellation was made directly on the 2D data, and then transferred 

1 Virtual Reality Mark-up Language 
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to the 3D points. That is, the same point order was used on both the 2D and 3D data. Figure 1 

is an example of an object's image and the 2D points used for reconstruction and tessellation. 

Figure 2 is an example of tessellation. 

Figure 1: Image example, with 2D points. 
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Visualizing the textured 3D object 

Generating a preliminary, crude output is very easy and straightforward, given the input file 
available. VRML output can be generated very easily; only two steps are required to obtain 

the data in a format suitable for VRML output. First step, generating the triangular mesh, as 
described in Section 2. Second step, normalizing the 2D data points to be texture coordinates. 
This is simply done by dividing the coordinates of the 2D points by the size of the images. The 
VRML output can then be easily viewed in most Web browsers equipped with the appropriate 

plug-in (see for example, [6]). 
But as can be seen in Figure 3 and especially in Figure 4, the output is distorted and does not 

really look like the original box (Figure 1). The main reason for these results arise from the way 
the tessellation is computed. It is computed on the 2D points, which contain no information on 
the 3D structure of the object. Therefore, 2D triangles whose image contain parts of two surfaces 

of the object can appear in the tessellation. This problem, coupled to the fact that the number 
of tracked points is rather small leads to the generation of big triangles, that tend not to respect 

the structure of the object when transferred to the 3D reconstruction. In our example (Figures 1 

to 4), there are a few triangles whose texture is going through the edges of the box and as such, 
distort2 the reconstruction. For example, the triangles composed of the points number 34-31-28 or 

20-18-30 are such triangles. Those triangles will be referred later in this document as bad triangles, 

2It should be noted that the other distortion of the box, namely the stretching, is caused by another problem, 
present in the reconstruction of the 3D structure. For more details on this, please refer to [l]. 
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Figure 2: A tessellation (triangulation). 

Figure 3: The rendered object. 

while the triangles such as the one composed of the points 22-16-34 or 18-19-20 which contain only 
the image of a 3D planar surface will be referred as good triangles. 

4 Improving the quality of the display 

Simply displaying the rendered object has already improved a lot the visualization of the results. 
But there is still room for improvement. Simply eliminating the triangles that are clearly wrong 

(triangles that are crossing through an edge of the box) would already be a great improvement. 
Replacing those triangles with correctly generated triangles would be even better. 

To achieve such a goal, we tried a few different techniques, mostly based on the texture con-
tent of each triangle. From one image to the next, the viewpoint of the camera, relative to the 
object, changes. Therefore, any triangle representing a planar surface (so-called good triangles) 
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Figure 4: Another view of the same object. 

will contain strictly the same information from one view to another; although it will be sheared or 
rotated. This derives directly from an invariant found in projective geometry which states that the 
cross-ratio of distances is invariant to change in view points, or more precisely, that the cross-ratio 
of four distinct points on a line is invariant under perspective projection. Let A, B, C, D be four 
points on a straight line u. Let them be projected into points a, b, c, d upon another straight line 
u1. Then the cross-ratio of the points on u1 is equal to the cross-ratio of the points on u for any 

projection. 
(C -A)・(B -D) 

(B -A)・(C -D) 

(c -a)・(b -d) 

(b-a)・(c-d) 
(1) 

For example, see Figure 5. But if a triangle is not representing a planar surface (i.e. crossing 
between two surfaces of the object), then that cross-ratio is no longer invariant and part of the 

triangle will be compressed or stretched, as can be seen in Figure 6. The first few techniques used 
to eliminate those bad triangles all try to find this skew in the triangle texture between many 
triangles (see Section 5). 

Figure 5: The same patch, corrected to have two triangles. Notice the points remain on the same 

line from the left image to the right image. 
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Figure 6: Example of distortion observed in a triangle, from two different views, 4 points on a line 
in the left image are no longer on the same line in the right image. 

Once those bad triangles are eliminated, or at least identified, they have to be replaced by 
better triangles. In this case, a better triangle would be defined as a triangle that matches more 
closely the true surface of the object. 

5 Com paring triangles 

Since there is a substantial difference between two bad triangles'texture, when viewed from a 
different angle; the idea of comparing the content of each triangle from one view to another 
therefore makes sense. The only thing needed is an estimator which will quantify the difference 
between two images. In the absence of image noise, the difference between two views of a good 
triangle should be very small, and caused mostly by the digitizing error. On the other hand, 
when comparing two bad triangles (two triangles going through an edge or not representing a real 
planar surface), the error should be much higher. Since it is assumed that the digitizing error 
(pixel noise) is lower than 1 pixel, it should not make a big difference in the comparison of the 

triangles. 
In order to compare the two views of the same triangle, it is required to be able to find 

corresponding pixel positions in two different views of the same triangle. To achieve this, the 
homography. Relating the two triangles is computed. A homography H relates 2 triangles if and 
only if these triangles are projections of the same triangle in space. 

5.1 Using the root mean squared error of the pixels 

A very intuitive and easy estimator to use to quantify the difference between two sets of data is the 

Root Mean Square of errors RM  Serror =〉□三二〗where err pixeぃ=I mg l;,j -I mg2;,j is 

the difference between the pixels from each triangle texture. The main advantages of this approach 

are the low computational cost and simplicity. 
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5.2 Why the RMS error isn't a good estimator 

There are important drawbacks to the RMS error estimator. First, this technique requires a 
threshold to differentiate between good and bad triangles. This threshold doesn't have any physical 
meaning and therefore has to be set empirically. Second drawback, this technique is not robust 
to changes in brightness and contrast (offset and scaling of the gray value) that may occur in the 
data. This last drawback is a major one, since the input images do not come from a controlled 
environment, but instead, from bad or changing lighting conditions. These conditions result in 
a great variation in the RMS error, making it impossible to differentiate between good and bad 
triangles as can be observed in Figure 7. 

Figure 7: Contrast and brightness change for two views of the same triangle. In this case, the left 
triangle has a mean pixel value of 71 (the maximum being 255) and a standard deviation of 77. 
The right triangle has a mean pixel value of 91 and a standard deviation of 99. 

5.3 Th ・e variance of errors, a more robust estimator 

Using a very similar approach to the RMS error, it is possible to become robust to changes in 
brightness very easily. The idea is that if the two triangles have a different content (because they 
are distorted) then the pixel error will vary a lot. But if the only difference between the two 
triangles is in brightness, then the error will be approximately constant. So all one needs to verify 
is the variance of errors, described by the following equation: 

L (err~ixel;,;) -n・errpixez2 
Varerror = 

n-
(2) 

Where n is the number of pixels and err pixel is the average gray-value error. This is another very 
simple way to differentiate the bad triangles from the good ones. Unfortunately, this estimator 
is not robust to contrast changes. It is also not more robust to pixel error than the RMS error 
estimator; and still requires the use of a threshold, which must be set empirically. 

5.4 Increasing robustness in the presence of point noise, the neighbor 
best-search 

Even using the variance of the errors, the difference between good and bad triangles is still not 
clear. The fact that this estimator, Var error is not robust to changes in contrast might be to 
blame, but another reason starts to emerge. The tracking algorithm seems to be making a bigger 
error than previously assumed. That results in a pixel error closer to I pixel instead than much 
lower than one pixel. In order to gain in robustness to pixel noise, a simple best search can be 
performed on the immediate neighbors of the target pixel. The 3x3 neighborhood of each pixel 
of the second triangle is being searched to find the one that minimizes the error. In the hope to 
compensate for any error of I pixel. 
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5.5 Re-estimating the triangle points to reduce the pixel error 

So to verify the error on the position of the points of the triangle was low, another technique was 
tried. It consisted in testing the whole neighborhood of each of the three triangle points with the 
whole neighborhood of each other of three triangle points, resulting in 729 (N eighborhoodSize3 
where NeighborhoodSize = 3 x 3) comparisons of the texture content of the whole triangle (Figure 
8). The best position was then used as the position of the point. The results of the neighborhood 
search revealed that it was indeed required, since the best position (which minimized the error) 
was the original one only in about 10% of the cases. But because of the shear volume of data that 
was required to analyze in order to obtain those results, this technique could hardly be used. 

Pt, 

Figure 8: Re-estimation of the triangles'points using Neighborhood best-search between 2 corre-
sponding triangles. 

5.6 Equalizing the image using histograms 

In order to increase the robustness to contrast changes, the image was equalized using the his-
togram equalization method. The technique is usually used to enhance the contrast of an image, 
but it has a very nice side-effect. It makes the distribution of pixels per gray-level flat. So if 
the texture content of the triangle should be the same, equalizing it with this technique will then 
remove the contrast difference between the two images. Another side-effect of this technique is 
that it re-centers the histogram, effectively eliminating the offset (or brightness difference). 

This technique uses bins to do its processing. The number of bins is usually the total number 
of values a pixel can have (256 in this case) and the value for each bin of the histogram is the 
number of pixels having that gray-level value in the image. Each bin value is the number of 
pixel having that gray-level in the image. The histogram generated this way can be viewed as an 
estimate of the probability of occurrence of each gray-level. So what we want to do is to equalize 
this probability, which can be done by applying the equation 

k n・ 
繹 =I:_]_

n 
j=O 

to the histogram and re-mapping the values for all pixels in the image to these new values; where 
sk is the new value for the kth gray-level, nj is the number of pixels having the gray-level j and n 
is the total number of pixels. Essentially, what we are doing is taking the bins and equalizing the 
probability that a particular bin will fall at a particular gray-level (Figure 10). 

(4) 

5. 7 Equalizing the triangles using histograms 

The histogram equalization, used for the whole image did not, as expected, have any good effect on 
the results. The reason for that being that the differences in brightness and in contrast happen on 
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Figure 9: Histogram of an image before equalization. 
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Figure 10: Sarne Histogram after equalization. 

the different faces of the object. So equalizing the whole image will only make it worst, especially 
since the background, which is not part of the object, will still be used for equalization. Where 
this algorithm could be better used though is in equalizing the triangles'texture content before 
comparing two triangles. 

As expected, this approach successfully reduced the error for good triangles. But it was still 
impossible to determine a threshold to differentiate the good and bad triangles. 

5.8 U. sing correlat10n to compare triangles 

Since the RMS error and the variance of errors can not be used successfully to separate good and 
bad triangles, regardless of any improvements, another basic method seems to be required. So we 
tried to use the correlation of corresponding triangles'texture from different view as an estimator 
for the error. The correlation of images can be represented by the equation: 

L7=1 ((ui―u)・（防一万））
Xcorr = 

(n -I) ・汽•”
(5) 

Where Ui and Vi represent the ith pixel of the texture inside the triangles to compare, 可 and万

are the mean pixel value of both triangles'texture, au and av are the standard deviation of the 

pixels'values. 

5.9 Why correlation is no better than the RMS error or the variance 
of errors 

Perhaps a little late in the project, the reason for the repeated failure of the different approaches 

became more obvious: all the methods were pixel-based. That is, the noise in the triangles'points, 

coupled to the error caused by interpolating to find the proper pixel value, was simply making 

this approach inappropriate. We needed to use another approach if we were going to use the 
content of the image. The pixels themselves do not hold any information on the structure of the 
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image" That is, if there is a stretch in the image, then there might still be enough pixels having a 
high correlation score, or constant error to generate bad results" A good way to cope with these 
problems could be to use a method for extracting and matching features inside the triangle。

5.10 Extracting and matching features within the triangles 

The logic behind this idea is that, using very simple geometry, it is possible to define normalized 
two-dimensional coordinates systems based on two views of the same triangle. Therefore, extract-
ing and matching features from the two triangles would be very easy. In the presence of good 
triangles, these features would be at exactly the same coordinates in the normalized spaces. But 
if the triangle was a bad one, this positions would be different. But due to a lack of time, this 
algorithm was not tested nor implemented. 

6 Adding some knowledge about the object, restricting to 

polyhedral objects 

Since the previous pixel-based methods were unsuccessful, a different approach was used. We 
made the hypothesis that the object was also convex and polyhedral; i.e. it is assumed the object 
is formed only of planar surfaces and does not contain any hole. Therefore, the objective was to 
regroup the triangles into planes. Those planes can then be extended to their intersections so the 
bad triangles are replaced by good triangles. 

6.1 Finding planes in the object 

There are a few ways to extract planar information from a 3D tessellated point cloud.'We could 
have used a mesh decimation algorithm, which would have grown planar surfaces[8][9]. It itera-
tively merges the triangles that are the most planar to form bigger planar surface. The problem 
with such and algorithm is that it does ,not identify bad triangles but simply merge good ones. An 
other way would be to regroup the triangles roughly on the same plane together to define only a 
few planes, and eliminate the triangles that do not fit one of those planes. This is the approach 
that was used, and that will be described in the next sub-sections. 

6.1.1 Representing the triangles for clustering 

A very simple way to define the orientation of a plane in 3D is through it's normal. In order 
to classify the normals, to determine the planar surfaces of the polyhedral object, the normals 

T 
were represented in spherical coordinates (Figure ll)W = (0 p¢)  . Since the normals were 
normalized ll'ftll = p = 1, the norm p coordinate was not required and the normals could then 
be represented in 2D space; using the zenith and the azimuth (¢0) . These coordinates where 
then used for clustering. 

6.1。2 Clustering the normals 

The clustering algorithm used was the Minimal Spanning Tree. As described in [2], it works in the 
following way: considering all the objects (normals in this case) as clusters, find the two clusters 
having a minimal distance and join them in a new cluster, positioned at the center of mass of the 
two merged clusters (Figure 12). Let X; andふ betwo separate clusters, then: 

dmean (Xi,Xj) = II叉—冗II (6) 

This is repeated until only one cluster remains. In this case, since we don't want to obtain 
a complete Minimal Spanning Tree, but a certain number of clusters, the iteration is stopped 
earlier, when the distance between the two closest clusters is greater than a certain threshold, in 
this case, 10°. Also, the clusters containing less than x normals are discarded, where x is set to 3 

in this implementation. 
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Figure 12: Clustering using the center of mass of the clusters. 

6.1.3 Other clustering philosophy 

There are other ways to generate clusters using the normals from the triangles. Although the 
general algorithm remains the same as stated above, the measure used to determine the distance 
between clusters can be changed. For instance, instead of using the center of mass of the cluster, 
one could use the closest sub-cluster distance (Figure 13): 

dmin(Xi, ふ） = min llx -YII 
xEX;,yEX, 

One could also use the farthest sub-cluster distance (Figure 14): 

dmaェ(X;,ふ） = max llx -
xEX;,yEX; 

YII 

(7) 

(8) 

The problem with both of these measures is that like all techniques involving minima or maxima, 
they tend to be very sensitive to outliers. The use of the center of mass is an easy way to gain 
robustness. Especially since in our case we know there will be outliers, since we know there is 
more than 1 cluster and probably bad triangles. These two other measures are therefore obvious 
bad choices. 

6.1.4 Computing best-fit planes 

Once the triangles'normals have been clustered in different planes, in order to reduce the noise 
in the 3D rendered image, all the points are projected on their respective planes. But, in order 
to achieve this, the plane that best-fit all the points of all the triangles of each cluster must be 

11 



Figure 13: Clustering using the minimum distance between clusters. 

Figure 14: Clustering using the maximum distance between clusters. 

computed. In order to compute the best-fit plane for each cluster, orthogonal regression was used. 
Orthogonal regression computes the best-fit plane, by minimizing the distance of each point to 
the plane. The source code for computing the orthogo叫 regressionwas taken from the Internet 

at [10]. 

6.1.5 Projecting the 3D points on their respective planes 

Once the best-fit planes are computed for each cluster, each 3D point is then projected on their 
respective clusters: Points that are on more than one plane are projected to the intersection of 
the different planes they are part of (line or a single point). 

6.1.6 Interpolating points on the intersections of the planes 

Once the different planes have been computed and the points projected, the bad triangles must 
be replaced. Usually, each bad triangle has points on more than one plane. In order to replace the 
triangles, new points are created on the intersection of the planes. Since the point being projected 
on the intersection already exists on one of the two planes, it's projection is included in the other 
plane (see Figure 15). 

6.1.7 Obtaining the 2D description for interpolated points 

Once the new 3D points have been interpolated, their 2D projection on their new respective 
planes is computed. Then, the homography[3] between the 2D descriptions of the each of the 3D 

plane and the corresponding original 2D image points is computed. This approach is required 
in order to obtain the relation between the newly 3D created points and the 2D images. It also 
allows the program to function even if the projection matrix relating each image to the 3D points 

is unknown. Each newly created point is then projected using this new projection matrix, to 
obtain their positions in the original 2D image. Each plane's 2D points are then re-triangulated 

as described in Section 2. This last step is required to minimize the remaining holes in the final 

rendering (see Figure 16). 
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Figure 15: Projection of points from a plane to another. 

Figure 16: The final rendering. 

7 Con cl us ion 

In this report, we have presented a few approaches to generate the rendering of a reconstructed 
three-dimensional point cloud which represents a convex-rigid polyhedral object. These approaches 
were based on both the content of the texture of the images from、vhichthe three-dimensional 
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point cloud was reconstructed and the structure of the triangulated point clouds. We also give an 
explanation why the pixel-based approaches were unsuccessful in this endeavor. 

This implementation has the advantage that it does not require any additional information 
other than the three-dimensional and two-dimensional point clouds and the image from which 
the two-dimensional point cloud was extracted from. The use of a homography to relate the 
planar surfaces of the three-dimensional object to the camera image removes the need to know 
the projection matrix. On the other hand, we fell short of our goal, which was to be able to deal 
with any rigid-textured object, since this implementation is restricted to convex, polyhedral, rigid 
textured objects. 

Further work could be done in order to lift the restriction that the object must be polyhedral, 
by using the texture information as outlined in Section 5.10, and to enable the processing of ob-
jects with occlusion, by processing different parts of the object separately and merging the surface 
information. 
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