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Abstract: In this essay-like report I argue that self-organization of mind can take place 

even in a hardware neural environment with unchangeable synapses, provided the 

environment supports a sufficient number of state variables (ATR's CBM belongs to this 

class of hardware). The discussion is preceded by an introduction to the field of discrete 

dynamic systems. A novel interpretation of the notions of state and complexity is 

proposed. 
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Self-Organization of Mind in CBM-like Environments 

We see that hum.an creativity and innovation 
can be understood as the amplification 
of laws of nature present in physics and 
cherrustry 1 

—IL YA PRIGOGINE 
Nobel Prize winner in chemistry 

The field of dynamical systems emerged from mathematics and control theory. 

Introducing the study of chaotic systems it has been hailed as one of the important 

breakthroughs in science in this century2. The notion system refers to a collection of 

related elements that we consider as a single entity. The word dynamics refers to the way 

a system behaves as time passes3. Since in physical world everything changes, we can 

recognize everything as dynamical systems, however, such radical view is a bit 

impractical, especially when an analysis of a system refers to a particular period of time 

in which changes in the system are negligible. 

Functions and states 

A diagrammatic representation of any system is showed below. 

1 Prigogine (1997: 71). 
2 Devaney (1989). 
3 Norton (1995). 
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As it can be noted, this diagram fits everything physically existing, from an 

electron to a galaxy, from a single bacterium to the mankind. For a particular system, any 

consistent description of the function and the variables it maps is a model of the system. 

In simple cases, a collection of numerical variables representing stimuli and behaviors 

plus a simple mathematical formula is sufficient. In some cases, with the same numerical 

variables, a transition table describing the function is helpful. Sometimes the function 

may be given in the form of a multi-step algorithm. In of very sophisticated behaviors the 

stimuli and reactions may be described verbally. In such case also the function must be 

described verbally, as, for example, a rule set. If through the entire time we are interested 

in a system the same constant stimulus implies the same constant set values describing its 

behavior, we do not need to call such system dynamic one. 

When a system that reacted to a given stimulus in a particular way, next time 

reacts to the same stimulus in different way, this means that the function changes in time. 

One (inefficient) way to cope with such situation is to assume that when speaking about a 

stimulus we mean the full record of stimuli that took place from the beginning of the 

system's existence. In such case the function could map all possible histories of stimuli to 

all possible histories of its behavior. Another way is to assume that the function may 

change as time passes and provide rules describing the way the function changes. Yet 

another method of system description— the most useful of all methods known so far, is to 

view the function as two unchanging functions and a collection of internal variables, 

called state. Let it be assumed that a current stimulus and current state are mapped by the 

function 1 onto speed and direction of the change of the state, while the state is mapped 

by the function 2 onto the system behavior, as it is showed in the below diagram. 
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It has been stated as a kind of theorem that a state-based system description exists 

for practically any behavior4. Using the notion of state has two major advantages. First, 

the history of stimuli is not required to deduct the system's behavior. Second, several 

even surprisingly sophisticated behaviors can be explained using relatively simple 

function 1 and function 2 and a small collection of variables considered as a state. It can 

also be noted, that owing to the notion of state the difference between behaviorism and 

cognitivism disappears5. Let, therefore, the view of system represented by the above 

diagram be a framework for further discussion about mind— the thing supposed to be a 

dynamical system. 

Sampling and Control Parameters 

In order to make the things simpler, let us assume that the state of a system is 

sampled at fixed time intervals. With this assumption the system is called discrete 

dynamical system. The state sampling is common practice in research of real objects. For 

example, measuring body temperature every 6 to 8 hours is the standard practice. A 

number of man-made systems change their states in regular periods of time. For example, 

every next change of the state of a digital electronic device takes place only when a clock 

sends next control pulse. A discrete system can be a model of a real continuous object. 

For every real object there is maximum length of the period between two consecutive 

samples with which the approximation remains sufficiently accurate. In a discrete system 

the vague notion'speed and direction of the state change'is replaced with the simple 

notions: current state and next state. Indeed, the difference between the next state and the 

current state is a counterpart of the speed and direction of the state of the continuous 

system. For discrete systems it is assumed that the function 1 maps all possible pairs 

〈currentstate, current stimulus〉ontothe set of adequate next states. The behavior may be 

considered as a series of consecutive values returning by the function 2 for selected 

variables from among those constituting the state. 

4 Kahnan, Falb &Arbib (1969). 
5 Kampis (1991: 11). 
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Also in order to make things simpler, let us assume that we discuss the cases 

when the analyzed behavior is a result of constant stimulus. This way we put aside a lot 

of interesting topics explored by classic control theory, but (i) there are systems that even 

for constant stimulus demonstrate amazingly sophisticated behaviors, and (ii) when we 

investigate a psychological phenomenon, sometimes it is important to know whether a 

change in subject's behavior is caused by a change of stimulus or it is a consequence of 

internal dynamics of subject's mind. In any case, even with the constant-state assumption 

dynamical systems remain interesting topic. Dynamic-system theorists call constant 

stimulus a set of control parameters. 

Orbits and Attractors 

Such domain-specific concepts, as, for example, strange attractor, bifurcation, and 

fractal, has been popularized in the media. The concepts let us, in a convenient way, 

compare systems, analyze their behaviors, and, to certain extent, predict their behaviors 

even when we do not know the present state of a given system 6. Let us introduce some of 

them to facilitate further discussion. 

state 
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time 

Let a series of consecutive states of a given system be called an orbit. The orbit is 

called periodic of period p when every p samples the state is the same, as it takes place in 

the above example. 

If a current state of a given system is equal to its next state, then the current state 

is called a stationary state or a fixed point. A fixed point is called stable if for every r>O 

there exist d>O such that if the distance between an initial state and the point is not 

6 see Nowak, V allacher & Levenstein (1994). 
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greater than d, then the distances between all next states and the point are not greater than 

r7. In other words, if we have chosen how close the state of system must remain to the 

fixed point in the future, we can find how close the initial state must be to the point. 

Analogically the notion of stability can refer to periodic orbits. 

｝ r 

time 

In several cases one cannot analyze system behavior using only a single numerical 

variable. Having, say, two or three state variables we can use two plots, however such an 

image may be not too informative. The recommended solution is to resign from time 

coordinate and assign all available coordinates to state variables. In case of dense 

sampling, the orbit becomes practically a continuous curve. A hypothetical space having 

as many dimensions as the number of variables needed to specify a state of a given 

dynamical system theorists call phase space. When a state of a system is specified by 

more than three variables is difficult to visualize the system's phase space. Since without 

a visualization it may be difficult to predict or discover the most interesting system 

behaviors, a good solution is to aggregate some state variables onto so called order 

parameter which itself is also a state variable. In case of a large number of state 

variables, for example, when one want to model the dynamics of gas molecules in a 

container, instead of coping with positions and velocities of billions molecule, those can 

introduce only two collective variables -pressure and temperature8. Finding a proper set 

of order parameters is a kind of art. 

7 Adapted from Martelli (1999: 16-18). 
8 Example taken from Nowak & Lewenstein (1994). 
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If, after a theoretical or experimental investigation of a system, we know its 

stationary states or orbits and its initial state, we can say a lot about future behavior of the 

system. If the initial state is close to a stable point, we can suppose the system will 

remain near the stable state. If the initial state is perfectly in an unstable point, the system 

will keep in this state until an external force changes its state to even a little distance off 

the initial point. Then the state will dramatically escape towards a stable point if such 

exists. This is not the same as a perfect prediction of the state in particular time, but it is 

far more than to know nothing about the system's future behavior. Sometimes, however, 

an orbit seems to neither tend to a stable state nor look periodic. Such an orbit can be 

called chaotic. But not everything what is chaotic must be completely unpredictable, 

especially if it is describable in terms of attractors. 

An orbit in 2-dimentional phase space 

order parameter X 

A stable periodic orbit 

order parameter Y 

A fixed point Xs is said to be an attractor if there exist r>O such that for any initial 

state x0 which are at distance less than or equal to r from Xs the further states tend toward 

Xs, when time goes to infinity. Also a periodic orbit as a whole can be said to be an 

attractor, when each of its points is an attractor . It has been observed, that sometimes an 

9 Adapted from Martelli (1999: 61-62). 

7
 



orbit can converge to an unstable point10. This counterintuitive observation led to a 

formal definition of an attractor in reference to states assumed as q-dimensional 

numerical variables: Let U be a subset of q-dimensional space of real numbers and let 

function 1 map U onto U; a closed and bounded set A, being a subset of U is an attractor 

if the function 1 for A returns A and there exists r>O such that for any initial state x0 the 

distance between x0 and A not less than r implies that the distance between n-th state and 

A tends to zero as n goes to infinity11. In other words, an attractor is a limit set that is not 

contained in any larger limit set, and from which no orbits emanate12. If, therefore, we 

can divide a phase space of a given system onto attractor basins, we are able to predict, to 

certain extent, long-term behaviors of the system. However, the more sophisticated shape 

of an attractor, the smaller precision of the predictions. But even imprecise prediction is 

more than nothing. 

Deterministic chaos 

Let us assume, that there is an orbit that comes closer and closer to a fixed point. 

Such an orbit is called asymptotic. What will happen if an initial state of the same system 

is very close to an asymptotic orbit? The intuitive answer is that the orbit emanating from 

the initial state will be also asymptotic. This is true for a number of cla~sesof dynamical 

systems. However, it was observed, that there are systems for which there are orbits 

demonstrating so called sensitive dependence. This means that for a given orbit most 

other orbits that pass close to it at some point do not remain close to it as time advances. 

In such situation it is hardly to say that the system's behavior is predictable since from 

two very close initial states it can go completely different ways. If for a dynamical system 

most orbits demonstrate sensitive dependence we can call such system fully chaotic. 

When some special orbits are nonperiodic but most are periodic or almost periodic, we 

can call such system limitedly chaotic and predict at least certain features of its behavior 

patterns . 13 

1゚ Martelli(1999: 202). 
Martelli (1999: 203). The distance between a state and a set can be formally defined in several ways. 

12 Lorenz (1995: 206). 
13 Lorenz (1995: 206-212). 
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Maybe the most spectacular example of limited chaos is Lorenz attractor. In 

1963, Edward Lorenz, the MIT meteorologist, formulated a system of differential 

equations with three state variables as a crude model of atmospheric behavior. By 

selecting realistic values of three control parameters and solving the system numerically, 

he noticed that very minor changes in the initial conditions could produce significantly 

different outcomes. Since the distance between corresponding states of initially very 

close orbits could oscillate aperiodically, Lorenz suggested that this discovery implied 

that no long-range prediction of atmospheric changes would be ever possible . 
14 

Regardless the truth of the suggestion, the Lorenz's discovery was the beginning of 

amazing career of deterministic chaos. There is no contradiction between'deterministic' 

and'chaotic'. As it has been showed, the chaotic behavior is demonstrated by a system 

described using simple and completely deterministic mathematical formulas. In 1971 sets 

of such kind as this obtained by Lorenz for the first time was called strange attractor15, 

which, as Mario Martelli states, is an expression well-suited for describing these 

astonishing and poorly understood objects16. The phenomenon consisting in sudden shift 

of a system's state to a distant region of a phase space caused by a small disturbance 

making a minute deviation from a sensitive dependent orbit has been called the Butteげly

Effect. The name came from the jocular "example" how Lorenz attractor works: a 

butterfly flapping its wings today in Brazil can jiggle the atmosphere so as to cause a 

snowstorm in Alaska tomorrow17. Coincidentally, a colored projection of Lorenz attractor 

onto a 2-dimedsional surface really resembles a butterfly . 
18 

Self-organization 

When a thin layer of silicone oil is heated carefully from below, the initial 

featureless uniformity of the liquid suddenly gives away to an array of hexagonal 

convection cells, forming a honeycomb pattern19. This amazing phenomenon, known as 

14 Lorenz (1963); quoted from Martelli (1999: 205-206). 
15 Ruelle F, Takens F (1971) On the nature of turbulence, Commun. Math. Phys., 20, 167-192. 
16 Martelli (1999: 203). 
17 Casti (1994: 89). 
18 see Gleick (1988) 
19 Platten and Legros (1984: 318); quoted from Coveney & Highfield (1995: 155). 
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Raileigh-Benard cells, is easily explainable using dynamic-systems concepts. If a given 

orbit is stable but also sensitive dependent, a small deviation from it may cause sudden 

escape of a system's state from the orbit. Sometimes the new orbit may be completely 

chaotic. Let temperature be a control parameter, while a shape of convection pattern let 

be an order parameter. For a certain range of temperatures the shape is honeycomb-like 

and stable, i.e. although one can observe small movements of the cells'borders, they 

remain honeycomb-like and keep their average size. Even if the oil is shaken, which may 

be interpreted as a setting of a new initial state, the convection cells will appear again, 

which means that the orbit went to a stable quasi-periodic orbit (atractor). This works this 

way until the temperature is above certain threshold. Below this threshold all possible 

orbits are chaotic. 

Half century ago Boris Pavlowitch Belousov devised a cocktail of chemicals and 

with a surprise noted that the mixture oscillated, with clockwork regularity, between 

being colorless and having a yellow hue. In subsequent investigations he also observed 

the formation of spatial patterns. Unfortunately, the reaction was so peculiar that it's 

discoverer had a great trouble in convincing the scientific establishment that it was real. 

No editor wanted to publish his manuscript. But the research was continued by Anatoly 

Zhabotinski―a Belousov's student. Testimonials to the importance of the discovered 

phenomenon were sought from scientists worldwide in 1979―nine years after 

Belousov's death20. Todays, both Raileigh-Benard cells and Belousov-Zhabotinski 

reaction are quoted as the most impressive examples supported the notion of self-

organization. 

Self-organization is such a process that in a dynamical system a new quality 

emerges with no external information about the target pattern and with no external 

control towards the target pattern. Neither Belousov-Zhabotinski reaction nor Raileigh-

Benard cells were designed. Moreover, both of them neither were nor could be predicted. 

Indeed, even for several simple theoretical systems (i.e. described by relatively simple 

mathematical formulas) nobody knows other way of prediction of a given system's state 

a dozen or more samples ahead but as to calculate all consecutive states taking each time 

2°Coveney & Highfield (1995: 175-176). 
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a previous state as a data for the next state calculation. The results of the process of self-

organization are, therefore, unpredictable. However, this conclusion applies only to the 

situation when perfect predictions are required, which, if took place, would be an 

unrealistic requirement. In real life, based on reasoning by analogy, or after experimental 

estimation of a given system states'attractors, we can try to anticipate whether the 

phenomenon of self-organization will take place or not, and if so, to estimate more or less 

probable directions of the process. The most important conditions for self-organization 

are as follows: 

1. Patterns can arise spontaneously as the result of large numbers of interacting 

components; if there are not enough components or they are prevented from 

interacting, neither pattern emergence nor evolution will be seen. 

2. The system must be dissipative and far from equilibrium; dissipation is equivalent to 

a kind of attraction that may take several forms, from stable points or orbits to those 

more or less chaotic; in other words, due to nonlinear interactions in the system, heat 

or other form of energy does not diffuse uniformly but is concentrated into structural 

flows that transport the energy (dissipate it) more efficiently; many of the system's 

degrees of freedom is suppressed and only a few (represented by order parameters) 

contribute to the behavior . 
21 

The general scheme of self-organizing dynamic system constitutes grounds for 

deeper understanding a number of phenomena apart from physics/chemistry investigated 

22 23 
in the field of biology and social sciences . Several sorts of self-organizing processes 

have been utilized in extraordinary engineer's constructions, as for example, cellular 

24 25 26 
automata , artificial neural networks and evolutionary systems (all three ideas 

21 Summarized from Kelso (1995: 16-17). 
22 It is suggested that a complex biological cell emerged from the coevolution of bacteria (de Duve 1996; 
Stewart & Cohen 1997: 23). Hameroff (1997) investigates a possibility of emergence of consciousness 
from interactions of tubulins constituting cytoskeleton. 
23 Axelrod R (1986); Nowalc A, Szamrej J & Latane B (1990); Axelrod R & Bennet DS (1993); Now血
Lewenstein M & Szamrej J (1993); Nowalc & Vallacher (1998ab) 
24 Toffoli & Margolus (1987); Toffoli (1995). 
25 Rumelhart, NcClelland & PDP Research Group (1986); Schalkoff (1997); Heikkonen & Koikkalainen 
(1997); Moravec (1999: 40-49). 
26 Goldberg (1989); Michalewicz (1992); Man, Tan & Kwong (1999). 
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implemented also as hardware27) where ingeniously framed energy dissipation inside 

electronic circuits leads to an emergence of useful computation. Scientists attempt to 

explain the biggest mysteries of existence—origins of life and species evolution—in 

terms of self-organization in extremely complex systems28. It was shown that in 

analogical terms one can analyze brain and mind functioning29, however, dynamical 

approach in psychology still remains rather an idea than a routine methodology. 

Nevertheless, the small dynamical-system-theoretic implant seemingly is not going to be 

rejected by psychology. Some serious tokens of its presence can be observed, as for 

example the resurrection of Gestaltists'ideas . 30 

Conclusions 

A structure of a dynamical system provided in this chapter is commonly accepted, 

but the non-standard way of presentation and the interpretation of some of its elements 

have been invented to facilitate further discussion. In the framework of the proposed way 

of thinking the self-organization may be considered as a given system's behavior 

resulting in a growth of the system's complexity, where the complexity is interpreted as a 

minimum number of elementary relationships between elementary variables representing 

efficiently the state of the system and explaining its behavior. Owing to this intellectual 

trick we can keep the simple view of the system transition function as an aggregate of a 

changeable state and unchangeable function 1 and function 2. The functions can be 

assumed to be fixed but capable of processing a great number of variables from which 

only a small part is initially non-zero. Indeed, the model in which function becomes more 

and more sophisticated may demonstrate the same behaviors as the model in which new 

variables become active and start influence the system's behavior making it more 

sophisticated. Why not to consider a case, where function 1 and function 2 are 

represented by a fixed hardware, while the entire state is,equivalent to an informational 

27 Korkin, de Garis, Nawa & Rieken (1999); Glesner & Pohlmiiller (1994); Stoica, Keymeulen & Lohn 
(1999). 
28 Eigen & Schuster (1979); 
29 Keeler (1990); Kelso (1995: 257-285); Haken (1996); Cerf, El Ouasdad & El A皿 ・i(1999); Haken 
(1999); Uhl & Friedrich (1999). 
30 Epstein & Hatfield (1994). 
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content of a random access memory? The emerging conclusion is that a hardware 

simulating a very large-scale neural network can serve as an environment of self-

organizing mind even if it has unchangeable synapses . 31 

Pieces of pure information also can interact. Hence, one can imagine a great 

number of purely informational entities, which, interacting, results in an emergence of 

higher mental functions. The energy to be dissipated does not need to be physical. As we 

learned from the Hopfield model32, also energy can be a stipulated entity existing as pure 

information. In order to be able to mteract the ent1t1es must exist in an environment 

facilitating their interactions. Today we know no other such environments but nervous 

system or electronic hardware. If higher mental phenomena may emerge from 

interactions in a large number of informational entities, maybe this way a complete 

personality can organize itself. If so, why it had to be possible exclusively in a protein-

based facility? These speculations cause a strong drive and give a promising direction for 

research towards a computational model of self-organizing mind. 

Belousov's discovery had to wait for almost 30 years for being noted by scientific 

est~blishment and, finally, recognized as Mona Lisa of the gallery of curios the complex-

sys!em science maintains and develops. Knowing this one should not be surprised having 

noted that psychologists so far seldom try to explain the mind as a whole in terms of 

states, attractors, or self-organization. Seemingly lot of those who try to use connectionist 

networks for modeling of particular mental phenomena, utilize self-organization 

unconsciously, as researchers us叫 lyconcentrate on si皿laritybetween values provided 

by their models and the values characterizing behaviors of examined people or animals, 

putting aside the essentials of the behaviors of the models themselves33. Yet it seems to 

be obvious that since similar phenomena, explainable in terms of dynamical system 

theory, are noted in a number of various physical, chemical, biological systems, as well 

as in designed artifacts, this means that the theory of dynamical systems tries to fathom a 

still poorly noted law of nature— the law supposedly equally important and omnipresent 

31 The CBM (Cellular [Automata-based] Brain Machine) developed it Genobyte Inc. can simulate a system 
consisting on over 75,000,000 neurons with unchangeable synapses (see Korkin, de Garis, Nawa & Rieken 
1999; Buller, Chodakowski, Hemmi & Shimohara 1999). 
32 Schalkoff (1997: 256). 
33 See Reed & Miller (1998). 
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as the law of conservation of energy or the law of gravity. It would be a groundless 

speculation to consider a possibility that human psyche is beyond the law's reach. 

Perhaps one day students of psychology will learn the dynamical-systemic toolbox as 

eagerly as they learn chi-square test today. Indeed, as this chapter seems to show, the 

states, orbits, phase spaces, attractors, or self-organization-the notions so useful in 

mental phenomena modeling-can be discussed without discouraging mathematics. 
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