
TR-H-262

MRI Toolbox: A MATLAB-Based System for
Manipulation of MRI Data

Mark K.TIEDE

1999.1.8

ATR人間情報通信研究所
〒619-0288 京都府相楽郡精華町光台2-2 TEL: 0774-95-1011

ATR Human Information Processing Research Laboratories
2-2, Hikaridai, Seika-cho, Soraku-gun, Kyoto 619-0288, Japan

Telephone: +81-774-95-1011
Fax : +81-774-95-1008

c(株）ATR人間情報通信研究所

MRI Toolbox

A MATLAB-based system for manipulation of MRI data

Mark K. Tiede

ATR Human Information Processing Laboratories

Summary: The MRI Toolbox provides functions for parsing scanner-generated MRI
data files, supports a custom class rnri vol facilitating manipulation of MRI volumes
at variable data resolutions, includes a GUI for interactive viewing, measuring, and
oblique reslicing of data, and offers a range of user-extensible analysis routines.

Dependencies: The tools require Matlab version 5.1 or later, and have been tested on
Mac, Wintel, and Unix (SGI and Sun) platforms. Compiled MEX files are used to
improve response where appropriate (source included); M-file equivalents permit the
tools to function in their absence. Certain analysis routines depend upon the
availability of the Image Processing Toolbox.

January 1999

1. The mrivol custom class

1.1 Motivation

MR images are typically reconstructed from an excited volume of interest (a

'slice') collapsed across depth to form the output image. Volumetric data is obtained

by collecting parallel slices at repeated offsets through the region of interest:

Figure 1: Sagittally-oriented volumetric MRI

If the goal is measurement of the MR-sampled volume the resulting image sets are

difficult to work with for several reasons. For instance, the number of imaged slices

bracketing a volume typically ranges from 20 to 50, requiring substantial book-

keeping to co汀ectlytrack load order, orientation, et cetera. In addition, as a

consequence of the collapse across depth the effective resolution of MRI volumes is

less along the axis of acquisition, so separate scaling factors must be maintained for

both the image plane and its normal. Annotations made during data collection (e.g.

target articulation) must be maintained as separate, potentially confusable records.

Clearly it is advantageous to store all information associated with a volume (data,

2

parameters, and annotations) as a single object, preferably one derived automatically

from the original scanner-generated file.

The Matlab (Math Works, Inc.) environment has several advantages for MRI

analysis, including its support for multi-dimensional arrays, user-extensible filter and

analysis functions, and plotting capabilities consistent across platforms. A

straightforw紅 drepresentation of a MRI volume within Matlab is possible by simply

mapping each image slice to a three-dimensional array: [height x width x

image#]. However, Matlab performs all arithmetic using an eight byte (double

precision) format, so the memory requirements for a typical [256 x 256 x 30]

volume can rapidly become overwhelming. One workaround suggested and to some

degree supported by Math Works is to store the data in'uint8'(byte) format,

especially if its intensity range lies within 8 bits. The potential intensity range of MRI

data is 15 bits, however, with vocal tract data typically reaching 12 for extreme

values.

4000
I

airway
I

tissue

3000~i / ／ I

I
I

2000

1000

゜ 200 400 600 800 1000 1200 MR intensity

Figure 2: Trimmed虹stogramof vocal tract volume data

Simple min/max scaling of such data to 8 bit precision results in the useful range of

the data being squashed into the low end of the byte range. Scaling using a

standardized cutoff (say 1000 given the above histogram) gives more useful results

and permits consistent comparison across volumes. However, while generally

satisfactory for viewing volumes, the loss of precision inherent in any scaling is a

problem for analysis, especially in automated or semi-automated feature detection

tasks. Ideally then routines for manipulation of MRI data should be flexible with

respect to storage requirements, operating transparently on data mapped to different

precisions.

3

Within the MRI Toolbox, the desiderata of unified data stored with flexible

precision and its associated parameters and annotations are encompassed through the

use of a custom storage class called mrivol. Objects of this type encode all

information associated with a volume, but can be manipulated as simple variables.

Support exists for creating mri vol objects directly from scanner format files, or they

may be generated from sets of separate images or as the output of toolbox

manipulations (e.g. reorientation or resizing). Overloaded methods function as

wrappers to mainstream Matlab and Image Processing Toolbox (IPT) procedures.

From the user's perspective the mrivol class permits volume data from contrasting

conditions (say /i/ vs. /a/) to be named, stored, and otherwise manipulated as a single

object, with component parts (e.g. a specific slice, scaling factors, etc.) accessed as

necessary.

1.2 Anatomy

Here is an example rorivol object:

mt_aa_c =
COR mrivol object: [256 x 204 x 30] (int16)

dims = [2 5 7 . 0 9 2 x 2 0 4 . 6 6 5 x 116] (mm)
mpp = 1. 0082
1S1 = 4

range= [O 2227]
info=

ID:'B32186. 0'
Subject:'M. Tiede'

Comments:'AA'
Date:'96-08-17'
Time:'15: 52: 55'

Orientation:'COR'
LeftSide:'RIGHT'

BottomSide:'FEET'
Numimages: 30

SideLength: 256
Thickness: 4

Pitch: 4
FOV: 258.1000

AcqT ime : 13 9
工magingData:'SE/256, TR=920, TE=15, NEX=l'

LoadOrder:'posterior ==> anterior'

In this case mt_aa_c is an mri vol class variable composed of 30 coronally oriented

image slices stored using signed two byte precision (int16). Each image is [256 x

204] pixels in size with a mm per pixel scaling factor (mpp) along the image plane of

1. 0082. The inter-slice-interval (isi) specifying the mm offset between slices along

the axis of acquisition is here 4 mm. By applying these to the pixel/slice dimensions

4

of the volume isotropic mm dimensions (dims) are obtained. The intensity range for

this volume is [o 2227]. The info structure can consist of anything the user wants;

in this case it has been initialized to annotations derived from the header of the

Shimadzu format data file from which rnt_aa_c was created.

Each of these components may be accessed individually. For example,

>> mt_aa_c.mpp
ans=

1. 0082

>> mt_aa_c.type
ans=
COR

>> rnt_aa_c.isi = 5;

% access the'mpp'field

% access the orientation'type'

% change the'isi'value to 5 mm

The range and dims fields are read-only. The info field may be accessed as a

complete structure, or by individual member (if not found a new info. element

member is created). For example,

>> mt_aa_c. src ='shimadzu';

adds a new field src to the info structure with value'shirnadzu.'

Image data may be accessed in one of several ways. The upper leftmost pixel

of the first image of the volume may be accessed by rnt_aa_c (1, 1, 1) . Similarly a

range of data may be obtained using standard Matlab array addressing as in

rnt_aa_c (1 o : so , s, [1 3 J) , which would return rows 10 through 50 of the fifth

column from volume slices 1 and 3. Since it is often convenient to access a single

image slice, rnrivol supports a non-standard use of the curly brace notation in which

all rows and columns of the slices specified within braces are returned. For example,

rnt_aa_c { 1: s} returns the first five slices of the volume, and is equivalent to

rnt_aa_c (: , : , 1: s) . The entire volume may also be accessed using the

rnt_aa_c. data syntax. Each of these access methods return data in the same format

as stored (int16 in this case). Explicitly typecasting a format type as in

double (rnt_aa_c) for instance returns the specified data in the appropriate format.

1.3 Methods

An mrivol object is created using the following syntax:

>> m = mrivol (data, type, mpp, isi, info);

5

where data is image volume data [height x width x slices], t匹 eis one of

SAGittal, CORonal, TRaNsverse, or OBLique, mpp and isi give the mm/pixel and

inter-slice-interval, and info is an arbitrary annotation object. Any or all of these

may be empty. Data may be given in one of uintB, uint16, intl6, or double

formats.

Ordinarily users will create mrivol objects using a function designed to parse

scanner-generated data files, as in

>> mt_aa_c = LoadSMT ('B32186. 0');

Currently data loading functions exist for Shimadzu format and individual raw or

supported format image data files (a DICOM parser is under development).

Overloaded methods for the mri vol class include the following:

>> length(mt_aa_c)
ans=

30

>> size(mt_aa_c)
ans=

256 204 30

% returns number of slices

発 returnspixel/slice dimensions

and the various type converters (uint8, double, etc.). Image Processing Toolbox

functions with overloaded methods include im2bw, imcrop, irnhist, imrotate,

montage, and movie.

The mri vol class also supports several special purpose methods, of which

three of the most useful are resize (to up/down sample the image data while

preserving mm scaling), res lice (to resample the image data in either standard or

arbitrary orientations), and slicer (the core procedure for oblique slice resampling).

For example,

>> mt_aa_x2_s = resize(reslice(mt_aa_c,'SAG') ,2,'cubic');

produces a new sagittally oriented volume from the original coronal dataset with

twice the number of image pixels per mm.

Although MRI data is intensity-based, a common analytic procedure is conve1i

thresholded data to binary-valued form (e.g. air/tissue boundary extraction). The

threshold method performs exactly this function, converting the resulting data to

uint8 format automatically. Because intermediate interpolation of the resulting

6

binary data is problematic, the MRI Toolbox supports the shape-based interpolation

algorithm of Raya and Udupa (1990), through the Shapeエnterpand DistMap

methods. In this approach binary data are characterized by the shortest distance from

an edge (i.e., a 1/0 juncture), and these distance values (rather than the original binary

data) provide the basis for interpolation. The results (thresholded to give output

binary images) track intermediate shapes with much less distortion than simple

interpolation techniques.

7

2. IRMA: mrivol object GUI

2.1 Overview

Visual inspection is an essential step in the analysis of any MRI data. Within

the MRI toolbox the mrivol class is complemented by the IRMA* interactive

viewing tool, which is intended to facilitate such inspection. IRMA provides a

graphical interface for display, measurement and animation of the slices comprising a

volume. It permits simple interactive control of displayed size and brightness, and

supports extraction of oblique views through the volume with arbitrary orientation.

IRMA also provides support for user-extensible analysis procedures triggered by

mouseDown events within the displayed volume.

IRMA is invoked from the command line specifying the name of an rnri vol

object, with an optional colormap argument:

>> irrna(rnt_aa_c, gray(256));

More than one IRMA tool may be open simultaneously. As it is often useful to

compare equivalent images from contrasting conditions IRMA supports

'synchronizing'open viewers so that all increment their displayed slices

simultaneously.

There are three main windows associated with each IRMA viewing tool: a

'Viewer'control window for interactive control of display scaling and animation, a

'Display'window that presents the image data, and a'Slicer'window for specifying

the parameters for oblique reslicing. Each of these windows support additional

functions via menu options and accelerator key shortcuts. While IRMA windows are

hidden from mainstream Matlab graphics calls, images may be exported to a

standalone window object suppo1ted by the MRI toolbox (called smartwin) that

supports measurement, resizing, and annotation, and is accessible to Matlab functions

for printing, saving, et cetera.

'"IRMA: Imagerie par Resonance Magnetique (Animee). So OK you try making a name out of MRI. …

8

2.2 Viewer window

The IRMA viewer window provides interactive control of display parameters

for the loaded volume.

Figure 3: IRMA Viewer control window

The uni ts switch toggles between pixel and mm axis units (if the mrivol mpp field is

empty, only pixel units are possible). The scaling range controls are used to map

the intensity range of the volume to the displayed colormap; values may be either

selected by slider or entered explicitly. The pushbuttons control animation: the left

and rightmost buttons reset to the first/last image of the volume, "≪" and "≫"

initiate reverse and forwards animation,"<" and">" step one image backwards or

forewords, and the "o" button halts ongoing animation: The displayed image may

also be selected using the Image slider or entry field. Animation speed is hardware

and platform dependent, however the Delay slider control permits interpolation of an

interval between updates if the refresh rate is too fast. The x, Y, and intensity Value

fields are updated continuously when the cursor is moved over the (active) Display

window.

，

When either the Viewer control or Display windows are active, IRMA

supports certain functions by a menu interface (depending on the platform, this may

be either attached to each window directly, or appended to the global Matlab

menubar). Most of these functions may also be invoked using the associated

accelerator key, as in "D" (suitably modified) to select "Duplicate Window."

Figure 4: IRMA Viewer and Display Menu options

Among these functions the About entry presents built-in help for IRMA using the

helpwin mechanism. Reset Default Position repositions the Viewer and Display

windows in their original size and location. Show Reference Grid toggles the

superimposition of dotted reference lines upon the currently displayed image. When

Interpolate Slices is toggled intermediate images are interpolated at Imm

increments when stepping between actual volume slices (typically separated by 3 -

5mm isi offsets). Mouse Down Behavior supports selection of user-defined routines

triggered by a mouse click over the displayed image (see section 2.6). Duplicate

window creates a copy of the currently displayed image in a separate stand-alone

smartwin object (discussed below).

The Slicer window controlling oblique slicing parameters is not initially

visible; the Oblique Slicer menu option is used to make it active. It is possible to

create a new displayed object as a function of IRMA-based analysis (e.g. Extract

Sections), and the resulting mrivol can be exported to the base workspace using the

Export Data menu option. Close IRMA provides a means of deleting the currently

active viewer.

10

The Movement menu options shadow the Viewer control window animation

buttons (the associated accelerator keys provide efficient control of animation from

the keyboard). In addition, the Step Synchronize option when toggled causes a

single step forward or back in the current IRMA object to be echoed by all the

currently active IRMA viewers (however active animation is not tracked).

2.3 Display window

The IRMA display window displays the volume image slice at the current Z

offset (if the Interpolate Slices option is active the intermediate interpolation is

displayed). The intensity range of the volume mapped to the active color map is

displayed in the rectangular bar to the right.

Figure 5: IRMA Display window

The axis units are controlled by the uni ts setting of the Viewer control. Fast (pixel

doubling) resizing is supported by resizing the window (use the Reset Default

Position menu option to restore the default size). As the cursor is moved over the

11

(active) Display window, the current X and Y offset values in axis units are displayed

within the Viewer control, along with the intensity value of the nearest voxel.

IRMA provides support for identifying and labelling orientation, not just of

the original volume, but of oblique slices through it. Volume data are displayed using

the following orientations:

1st image==> last image

right--> left

posterior--> anterior

inferior--> superior

(Sagittal)

(Coronal)

(Transverse)

IRMA thus presents sagittal data viewed from subject right, coronal data viewed from

subject front, and transverse data viewed from underneath (looking up).

IRMA's mouseDown behavior (i.e. a mouse click with the cursor over the

displayed image) depends on the current units type. When pixels are selected, any

mouseDown in the Display window is passed to the mainstream Matlab zoom

function, permitting rapid enlargement of an area of interest. When mm units are

selected, in default of a user-selected procedure the clicked location (X, Y, Z) is

echoed to the command line (a right button or otherwise modified click leaves a

plotted crosshair at the clicked location). When a user procedure is active (e.g.

iu_threshold supporting seed-based binary thresholding) the mouseDown is passed

to it for processing. Regardless of user procedure, a double-click in the window

border surrounding the image causes the displayed image to be refreshed.

2.4 Slicer window

Oblique reslicing through an mri vol dataset is separately controlled through

an additional window. Initially this'Slicer'control window is not visible; selecting

Oblique Slicer from the Viewer window menu hides the Viewer control window

and displays the slicing controls. The Viewer controls are restored when the Slicer

window is itself closed, either by depressing the "□one" pushbutton or by selecting

the platform-dependent window close option. Slicing requires that the displayed

mrivol have both mpp and isi fields defined (to permit isotropic scaling).

12

At the top of the Slicer window is a wireframe representation of the displayed

volume showing the current slice plane. Its orientation may be changed by clicking

and dragging within the window. Use the "reset" button to restore the original

orientation. This display is informational only; use the controls beneath it to change

the location of the slice plane relative to the volume.

Figure 6: IRMA Oblique Slicer control window

The slice plane orientation is controlled by setting an offset point within the volume,

and azimuth and elevation angles defining a plane through it. Volume coordinates are

in mm relative to the lower left comer of the first slice of the volume. The azimuth

and elevation angles are specified CCW from the horizontal in degrees. As the Z

value changes, the associated image slice (interpolated if necessary) is shown in the

13

Display window, and the current (X, Y) offset values are updated to reflect its

projection onto that slice. It is also possible to select an image slice explicitly using

the Img control.

While the Slicer window is active a reference line is superimposed on the

image shown in the Display window corresponding to the current offset and azimuth

orientation of the slice plane through that image slice. The offset can be set directly

from the image by clicking and dragging on the midline circle; similarly the azimuth

can be changed by dragging the circle on the line/frame intersection.

Figure 7: Display window with active slicer reference

Once the parameters for slicing have been established, depressing the

"Generate Slice" pushbutton computes the interpolated oblique image and displays

the result in a stand-alone smartwin object. The maximum dimension of the resulting

image is determined by the norm of the volume dimensions, however blank rows and

columns are trimmed from the result. Three interpolation methods are supported:

14

nearest neighbor, trilinear interpolation, and tricubic (Catmull-Rom spline-based;

Arata 1995). The active method is selected by the corresponding radiobutton control

within the Slicer window.

The Slicer window supports a separate set of menu options, all with associated

accelerator keys. The Next and Previous Image entries provide a means of nudging

the currently displayed image. Pop Display is useful for finding an occluded

Display window in a crowded screen display.

:;i:::':::irilit::iiilil:lilil]:::]:!::::::i::1i!::i:li:liii:::;:::ii:i:::i: 躙．ヽ：：l
斤訊匹lii!11111llllllll/lllillll!1JJ:1llii/1ill諏：lifI::!

lllllllifgil!II叫ツ．一 ：エ・臨lltl!lll!111

lllll!IIIJ!lllllJ:illll!!i,ll,ll!il!!l!!li!i!il!!l!iil!!!!1!!il1li:l;!li!ll!li!:lil

Figure 8: IRMA Slicer Menu options

Invert Orientation rotates the current azimuth by 180°and inverts the sign of the

current elevation. The Reset entry restores the default slice orientation of mid-image

offset, and 90°azimuth and elevation (it also restores the default wireframe volume

perspective. Generate is another way to initiate slice computation. Extract

sections is used to initiate the process of vocal tract cross-section extraction

(discussed below).

15

2.5 smartwin objects

The MRI Toolbox makes extensive use of a specialized image display

function called smartwin that supports intensity scaling, reorientation, resizing, and

various other options in a window accessible to mainstream Matlab calls (for printing,

annotating, et cetera).

Figure 9: Smartwin Menu options

A srnartwin may be resized in the usual way using fast pixel doubling, after which

the Default Size option can be used to restore the original scaling. The Resize

Image option brings up a dialog supporting (optionally filtered) high quality resizing

using bilinear or bicubic interpolation. Measure uses the IPT function get line to

obtain the coordinates of clicked locations on the image, reporting X and Y positions,

segment lengths, angles, and total length at the command line in the units of the

figure. The Flip and Rotate options can be used to reorient the image while

preserving axis labelling.

A smartwin object also supports three ways to change the displayed intensity

mapping. The Colormap itself may be set to one of 16 built-in models. Adjust LUT

permits control of the display gamma, and the minimum and maximum intensity

values mapped to the range of the current colormap. Finally, the Full Range option

sets the minimum and maximum values to correspond to those of the image.

2.6 IRMA user procedures

With mm selected as the current units type, a mouse click with the cursor

positioned over the Display window image causes the current location (X, Y, Z) to be

echoed to the command line (a right button or otherwise modified click leaves a

16

plotted crosshair at the clicked location). User extensions to this default behavior are

supported through the mechanism of customizable mouse-down procedures, which

are installed by choosing Select from the Mouse Down Behavior menu option.

After configuration mouseDown events are passed to the active user procedure for

specialized processing. For example, iu_boundary is a sample user procedure

supporting air/tissue boundary detection:

Figure 10: i u_boundary user procedure configuration dialog

Figure 11: appliction of i u_boundary; clicking in airway (left image)
results in detected boundary (right image)

17

IRMA provides three command line options for interacting with user procedures:

data = irma ('get')

params = irma ('show')

irma ('set', params)

も retrieveuser proc data

急 showcurrent user proc parameters

も replacecurrent with specified params

Each user procedure is free to customize the internal structure of both the data and

params (configuration state) variables maintained by IRMA. The iu_boundary

procedure for example returns the X, Y, Z coordinates of the detected outline in

response to irma ('get') .

2.7 V ocal tract cross-section extraction

The MRI toolbox was developed to address problems encountered in MRI-

based analysis of vocal tract shapes characteristic of sustained vowels (Tiede & Y ehia

1996). An essential part of this analysis is the extraction of vocal tract cross-sections

approximately orthogonal to the tract, whose orientation is established through an

extension of the'semi-polar'grid originally proposed by Heinz & Stevens (1964). To

permit consistent grid scaling across subjects, IRMA includes support for deriving the

extraction grid automatically from four physiologically based landmarks identified on

a midsagittal projection through the volume of interest (for details and motivation of

this approach see Tiede 1999). As currently implemented cross-section extraction is

supported for coronal and transverse volumes only.

The first step towards establishing the extraction grid with this procedure is to

establish the orientation (offset, azimuth and elevation) of the midsagittal projection.

Because the orientation is used as the basis for cross-section extraction along the grid

this provides a mechanism for co汀ectionof subject head misalignment with respect to

the sampling plane. Once determined, select Extract Sections from the Slicer

window menu; this opens the midsagittal projection through the volume in a

smart win object, and displays a grid initialization dialog (click. OK to continue):

18

Figure 12: grid initialization dialog

The grid layout is determined by interactively identifying in turn the location of the

four landmarks on the midsagittal projection: the base of the alveolar ridge, the

highest point of the palatal vault, the point on the rear pharyngeal wall adjoining the

anterior apex of the second vertebra, and the meeting of the rear pharyngeal wall with

the arytenoid cartilage. Move the mouse over the image location corresponding to

each landmark and click; an asterisk will appear at the selected location. The delete

key can be used to remove a misplaced landmark.

Figure 13: application of cross-section extraction to /i/;
midsagittal projection (left) with superimposed grid (right)

Once the four landmarks have been chosen press the Enter key to initiate cross-

section grid extraction. The derived grid is superimposed on the midsagittal

19

projection, and the results of section extraction (a derived mrivol object) are

displayed in a new IRMA viewer. The derived mri vol uses the info field to store

details of the extraction parameters used, and includes the midsagittal projection

image, which is displayed and synchronized by IRMA to show the offset of each

displayed cross-section along the tract.

Figure 14: derived cross-section mri vol (left) with attached rnidsagittal
projection (right) showing offset along the tract

If the Load from userproc checkbox of the initialization dialog is selected a

previously established set of landmarks can be used to re-establish the grid, bypassing

the interactive selection step. The landmark coordinates are stored as the userproc

par ams value after each successful extraction and as such they may be retrieved or

reset using the command line get/ set mechanism described in section 2.6.

20

3. MRI Toolbox Reference

This section provides descriptions of each toolbox function, showing purpose,

argument structure, and examples. A list of the main MRI toolbox functions with one

line descriptions can be obtained by entering help rnri from the command line

prompt. Each function of the toolbox is self-documenting, so that entering help

<function> provides detailed help for that function.

3.1 General

3.1.1 convert -filtered data format conversion

usage: outData = convert(inData, newFormat、clip)

supported input formats: uint8, uintl6, intl6, double
newFormat can be one of
uint8 -input data scaled to 256 level range
uint16 -input data is range checked for O .. 65535 range
intl 6 -input data is range checked for+/-32767 range
double -equivalent to double (inData)

optional clip argument is meaningful only for conversion to uint8;
specify 1 to clip rather than scale data to 256 level range (default= 0)

input double format data is rounded for non-double output

Examples:
Scale two byte int 16 data to one byte (256 level) data:

>> byteData = convert(int16data,'uint8');

Notes:
convert is implemented as a compiled MEX file for efficiency.

3.1.2 DistMap -apply Raya-Udupa distance transform to binary image

usage: dt = DistMap (bw)

Given binary (uint8) thresholded image bw this procedure computes its Raya/Udupa distance
transform dt: each output pixel receives as its value the shortest distance to the boundary between the
O and 1 regions of bw. The output image is in uin t 8 format. Points on the boundary receive output
values of 128, points within the boundary receive values 129 .. 254, points outside the boundary
receive values 1 .. 127. Distances are clipped to 1 (max external distance) and 254 (max internal
distance).

Examples:
Display the distance map of binary image bw:

>> smartwin (DistMap (bw));

Notes:
Implements the algorithm described in Raya & Udupa (1990). This function is supported as a MEX
file only. See also rnri vol/ distmap, Shapeエnterp.

21

3.1.3 FindOutline -determine perimeter coordinates

usage: xy = FindOutline (bw)

Given a (single, connected) perimeter contained in binary (uint 8) tlrresholded image bw, returns the
set of ordered perimeter coordinates in xy (in ULC-based image units).

Examples:
Find the outline of the fast-detected contiguous region found within binary image bw:

>> labelledimg = bwlabel (bw) ; % IPT regュonlabelling function
>> xy = FindOutline (labelledimg == 1); % find 1st detected region

Notes:
See also seedfill.

3.1.4 hist -compute and display smoothed histogram

usage: [bins, sBins] = hist(img, nBins, cutoff)

This procedure computes the histogram of intensity image img and displays it with a Butterworth
lowpass filtered overlay. The zero bin is not displayed. The nBins (number of histogram bins)
argument defaults to the image intensity range. The cutoff argument for low pass smoothing must
lie within the range O <= cutoff < 1. The default is .1; specify Oto disable smoothing. The
function optionally returns bin counts for unsmoothed (bins) and smoothed (sBins) histograms.

Examples:
Display the 100-bin histogram for img with default (.1) smoothing:

>> hist(img, 100);

Find the bin counts for default number of bins and .3 smoothing:
>> [bins, sBins] = hist (img, [], .3);

Notes:
加 sfunction uses the IPT function imhist. See also rnrivol/ imhist.

3 .1.5 imp lot -scaled image plotting

usage: [fh, ih] = irnplot (irng, mag, map, range)

This procedure plots irng within a new figure window the same size as the image. Intensity images
[rows x cols x 1] are plotted using specified color map (default= gray). Three plane RGB
images [rows x cols x 3] are plotted as truecolor. The optional magnification factor mag
(default= 1) performs bicubic interpolation with anti-alias lowpass filtering applied when
downsampling. The optional range argument is passed to irnagesc for intensity scaling (default=
full range). The function optionally returns handles to the created figure (fh) and image (ih).

Examples:
Plot the 10th slice of mrivol vol:

>> irnplot (vol{lO}) ;

Plot it at halfsize with colormap bone:
>> irnplot(vol{lO}, .5, bone(64));

Notes:
Resizing is disabled for figures created with irnplot. The Matlab zoom function is enabled by
default. See also srnartwin, irnagesc, zoom.

22

3.1.6 irma -interactive mrivol object viewing tool

usage: irroa(vol, map, name)

Initialize with rnri vol object vol. Optional colormap map argument defaults to gray (2 5 6). The
display name argument defaults to the vol variable name, but any string may be specified.

Additional command line options include:

>> irrna
>> irrna abort

>> vol = irrna ('vol')
>> data = irrna ('get')
>> pararns = irrna ('show')
>> irrna ('set', par ams)

-pops all active IRMA viewers
-closes all active IRMA viewers

-returns displayed mri vol object
-returns contents of user procedure data
-returns current user procedure params
-replaces current user procedure parameters

When the Slicer window is available the following option supports resetting slicing parameters from a
structure:

>> irma ('slcp'、info)

where info has fields
AZ -azimuth (degrees)
EL -elevation (degrees)
OFFSET -[X Y Z] volume offset (mm)
REFPTS -[4 x x, Y] extraction grid landmarks (relative to rnidsagittal projection)

IRMA uses the volume type to establish labelled orientations if possible:

1st image==> last image
right--> left

posterior--> anterior
inferior--> superior

The standard IRMA display therefore presents sagittal data viewed from subject right, coronal data
viewed from subject front, and transverse data viewed from underneath (looking up). Use reslice
to resample a volume to other orientations.

Examples:
Display mrivol foo with colormap bone and name vocal tract:

>> irrna (foo, bone (64) ,'vocal tract') ;

The same thing with the default (grays) colormap:
>> irma (foo, []、 'vocaltract');

3.1.7 ・Ill ＊ -Irma mouseDown user procedures

usage: data= iu_*(action, varargin)

IRMA mous~Down procedures must support at least two action handlers:

CONFIG -process any configuration necessary
DOWN -called on mouseDown over image in Display window

The CONFIG handler is called when the userProc is installed, or when Reconfigure is selected
from the Mouse Down Behavior menu.

Notes:
By convention IRMA user procedures are prefixed by iu_ (the interactive procedure selection mask
matches iu_ *). Several example procedures exist, with the iu_template procedure in particular
providing a starting point for user customization.

23

3.1.8 Loadlmg -load MRI data from supported image format files

usage: vol= Loadirng(fileMask, frnt, type, rnpp, isi, info)

This procedure loads image data from an imread supported format and returns mri vol object vol.
User is first prompted to select one file from the set matching f ileMask using an interactive dialog
box. type, rnpp, isi, and info arguments are optional and passed directly to the mri vol
constructor. Working assumptions: image files are named in slice acquisition order.

Examples:
Load a volume from files matching IY*. tif, specifying type, rnpp and isi scaling parameters:

>> iy = Loadirng ('工Y*.tif','COR', 1. 04, 3) ;

Notes:
See also Load饂 W,LoadSMT, mrivol.

3.1.9 LoadRaw -load 16 bit raw format MRI data

usage: vol= LoadRaw(fileMask, type, mpp, isi, info)

This procedure loads raw format (headerless, uncompressed) image data and returns mri vo 1 object
vol. User is first prompted to select one file from the set matching fileMask using an interactive
dialog box. type, mpp, isi, and info arguments are optional and passed directly to the mri vol
constructor. Working assumptions: data files are named in slice acquisition order; data are row-wise
256 x 256 16bit pixel format

Examples:
Load a volume from files matching IY*. dat, specifying type, mpp and isi scaling parameters:

>> iy = LoadRaw ('IY*. dat','COR', 1. 04, 3);

Notes:
See also Loadエmg,LoadSMT,mrivol.

3.1.10 LoadSMT -load and annotate MRI volume from Shimadzu format file

usage: vol== LoadSMT(fileName)

This procedure parses a Shimadzu format SMT file and rett1ms the annotated mrivol object vol.
Scaling factors and orientation are determined from header values; relevant imaging parameters are
returned as members of the info field. fileName is assumed to hold the path to a Shimadzu format
SMT file. If fileName is empty the file may be selected using an interactive dialog; if fileName
contains the "*" wildcard it is interpreted as a mask for the file selection dialog. Image data are
returned in int 16 fo1mat.

Examples:
Load a volume interactively, resize and display it:

＞＞ュrma(resize(LoadSMT, 2), bone(64),'coronal iy');

Load a volume interactively using file selection mask B*. SMT:
>> vol == LoadSMT ('B*. SMT') ;

Notes:
See also LoadRaw, mrivol, smt2mat, SMTread.

24

3.1.11 match -pattern matching using convolution
usage: [ci, xy, v, best] = match(img, subimg, tol)

Returns ci, the cross-correlation of subimg with img derived by convolution. Use this function to
facilitate matching between a template and a base image. tol is an optional argument specifying the
cutoff for returned values of match peaks as a percentage of the maximum correlation value (default =
.9). Locations are in pixel coordinates relative to image ULC and are returned in xy [nVals x X, Y]
along with their associated magnitudes v [nVals x 1]. The index of the best fit (i.e. xy location
associated with max (v)) is returned in best.

Examples:
Compute and plot the cross-correlation with default tolerance:

>> imp lot (match (img, subimg)) ;

Find and plot the location of the best fit of subimg within img at 98% tolerance:
>> [ci, xy, v, best] = match(img, subimg, .98);
>> implot (img); hold on;
>> plot (xy (best, 1) , xy (best, 2) ,'+') ;

Notes:
Works best with thresholded or semi-thresholded data.

3 .1.12 resize -resize intensity image

usage: irng = resize(irng, scale, method}

Given a single plane intensity image in double fom皿tthis procedure returns the result resized by
scale using the specified interpolation method. scale can be any number> 0. Three methods are
supported: nearest (nearest neighbor, linear (bilinear interpolation), and cubic (bicubic
interpolation). If unspecified method defaults to cubic.

Examples:
Plot image at twice size using bilinear interpolation method:

>> smartwin(resize(img, 2,'linear'}};

Reduce image size by half with preliminary lowpass anti-alias filtering using default (cubic) method:
>> [ih, iw] = size(irng}; rnih = floor(ih*.5}; rniw = floor(iw*.5);
>> h = firl(lO, rnih/ih}'* firl(lO, rniw/iw};
>> img = resize (fil ter2 (h, irng} , . 5} ;

Notes:
resize is implemented as a compiled MEX file for efficiency. See also rnri vol/resize.

3.1.13 rotate -rotate image

usage: rotエmg=rotate(img, theta, origin, method)

This function rotates img through angle theta measured CCW in degrees. The rotation pivot is
specified by the origin argument in pixel units relative to the. image ULC (default is image center).
The intelJ)olation method is passed directly to interp2 (default is'* linear'). If no output
argument is specified the rotated image is plotted with superimposed image bounds and origin.

Examples:
Plot image rotated 30°around its center with superimposed reference bounds and bicubic interpolation:

>> rotate(img, 30, [],'*cubic');

Rotate image -30°around origin [50 50] using default method:
>> rotエmg=rotate(img, -30, [50 50]);

Notes:
See interp2 for supported inte1-polation methods.

25

3.1.14 seedfill -find filled region containing seed within threshold limits

usage: [img_out,xy] = seedfill(xv,yv,img_in,levels,seed,connect)

This function supports thresholded region detection within intensity image img_in. xv, yv are
optional arguments specifying the image coordinate system (by default uses pixel based coordinates
with ULC origin). The thresholding boundaries are specified by the levels argument. If scalar image
pixels with values <levels are mapped to 0, pixels >=levels are mapped to 1. levels may also
specify a [min max] vector giving the range of pixel intensities to map to 1. The seed argument is
an [X Y] vector giving the starting point for connected region detection; if unspecified may be selected
from the plotted image interactively. The connect argument specifies neighborhood connectivity for
fill operations (default= 8). Returns img_ou t, a binary image corresponding to img_in whose non-
zero elements give the detected contiguous region. Optionally returns xy, the perimeter coordinates of
the detected region.

Examples:
Find and plot region between intensity levels [50 100] using an interactively chosen seed:

>> [img_out, xy] = seedfill (img_in, [50 100]);
>> implot(img_out); hold on; % plot binary image
>> plot (xy (: , 1) , xy (: , 2))・ -,, plot perュmeter

Notes:
Requires the IPT.

3.1.15 Shapelnterp -shape based interpolation using Raya-Udupa algorithm

usage: bw = Shapeinterp (bwO, bwl, ni)

Given binary (uint8) thresholded images bwl and bw2 this procedure intetpolates ni intermediate
images (default= 1) returned in bw (bwO and bwl are the first, last images of the returned array).

Examples:
Interpolate 3 intermediate images between original 2 for a resulting 5 image array:

>> bw = Shapeエnterp(bwO, bwl, 3); % size(bw,3) == 5

Notes:
Implements the algorithm described in Raya & Udupa (1990). This function is supported as a MEX
file only. See also DistMap, mri vol/ Shapeinterp.

3.1.16 smartwin -enhanced image display window

usage: fh = smartwin(img, ...)

This procedure creates a new figure displaying the specified monochrome intensity image at its optimal
size, and attaches a menu supporting various kinds of subsequent manipulation. Supported

initialization name : value argument pairs include:

'map'
'range'
'rnpp'

'xlab'
'ylab'
'orient'
'title'

-colormap (default gray)
-intensity scaling range ([min max] , default is full image range)
-mm per pixel (for mm scaling; default is pixel coordinates)
-{bottom top} orientation labels (default none)
-{ 1 e ft right} orientation labels (default none)
-orientation (0, 1, 2, 3; default O); displayed image is rotated CW 90°* orient

-figure title

Unless mpp is specified, window uses default ULC 01igin for image coordinates; if mpp is given 01igin
is image LLC. smart win optionally returns handle fh of the created figure; in this case the figure
'visible'property is set to'off'to support further pre-display initialization. By manipulating
the displayed intensity range smartwin supports interactive thresholding; to export the image mapped
onto the current display intensity range use

>> [img, map] = smartwin ('EXPORT');

This format also optionally returns the colo1map in use.

26

Examples:
Display & export an image using the bone colormap with clipped intensity range:

>> smartwin(img,'map', bone(256),'range', [50 250]);
>> clippedimg = smartwin ('EXPORT') ;

Display a mm/pixel scaled image:
>> smartwin(img,'mpp', 1.014); % 1.014mm/pixel

Display a labelled image:
>> smartwin (img,'xlab', {'bottom''top'},'ylab', {'left''right'}) ;

Display a titled image rotated 270°CW:
>> srnartwin(irng,'title','Rotated Image','orient'、3);

Notes:
See also implot.

3 .1.17 superimpose -superimpose one image on another interactively

usage: superimpose(imgl, img2, mode, ...)

Plots the smaller image superimposed on the larger; the superimposed region may then be dragged to a
new location using the mouse. Optional mode argument specifies how regions are combined; can be
one of

'ADD'-addition
'SUB' -subtraction
'COPY'-displace previous contents
'AND'-bitwise AND
'OR• -bitwise OR
'XOR'-bitwise XOR (default)

The current combination mode can be changed using

>> superimpose('MODE', newMode)

entered from the command line. Any additional initialization arguments passed directly to
smartwin.

Examples:
Superimposition with default (XOR) combination mode:

>> superimpose (bigimg, littleimg);

Change combination mode to AND:
>> superimpose ('MODE','AND')

Notes:
See also smartwin, match.

3 .1.18 threshold -binary threshold intensity image

usage: img = threshold(img, levels)

If levels is scalar it is interpreted as a cutoff value (values< cutoff returned as 0); otherwise each
row of levels specifies a [min max] pair bracketing an intensity region to be mapped to output
"1"

Examples:
Threshold image using two selection ranges:

>> binimg = threshold(img, [100 200 ; 400 500]);

Notes:
smart win can be used to perform this function interactively.

27

3.2 mrivol methods

This section provides descriptions of toolbox functions specialized for mr i vo 1

objects. Several functions that overload the default behavior of mainstream functions

are not documented here if their behavior is transparent. These include support for

typing (uintB, int16, uint16, double; returns image data as an array in requested

format), size (returns the pixel dimensions and number of slices), length (number of

slices); DistMap, resize, Shapeinterp, and threshold (return results applied to all

volume images). Use help mrivol/<function> to see help for overloaded

functions.

3.2.1 area -area function estimation

usage: A= area(vol, sections)

Computes and displays area function for binary thresholded cross-sectional vol for specified
sections (default is all sections). Returns area A in units of volume.

Examples:
Display area function for sections IO -50:

>> area(vol, [10:50]);

Notes:
Requires the IPT. See also threshold.

3.2.2 FindOutline -.determine perimeter coordinates for thresholded mrivol

usage: otl = FindOutline(m)

Given a binary thresholded mri vol object m returns the set of perimeter coordinates associated with
each section as a cell array (assumes one object per section). Each cell contains an array with
dimensions [nCoords x X, Y, z] where X, Y are mm coordinates relative to the slice LRC and Z
is the mm offset into volume.

Notes:
Requires the IPT. See also threshold and the mainstream FindOutline.

3.2.3 imcrop -selects a subvolume cropped from input volume images

Interactive version:

usage: [m_out, cropRect] = imcrop (m_in, imgNum);

Displays image irngNum frorn mri vol m_in (default= 1), then awaits mouse-driven selection of the
cropping rectangle. Optionally returns the cropping rectangle used. Non-interactive version:

m_out = irncrop(m_in, cropRect);

where cropRect specifies the cropping rectangle bounds in pixels.

Notes:
Requires the IPT.

28

3.2.4 imhist -builds and displays volume histogram

usage: pv = imhist (m, full)

Identifies (from smoothed histogram) bimodal peaks and the trough between them, returned as pv
[lower_peak trough upperーpeak]. By default the lowest (0) bin is ignored; specify non-
zero full to override this behavior and plot all.

Notes:
Requires the IPT.

3.2.5 imwrite -saves volume images as separate files

usage: imwri te (m, scale, fname, fmt, ...)

Creates files for each mr i vo 1 m image plane named fname_n . fmt, where n = 1 : 1 ength (m) ,
using seal e to map data to an 8 bit intensity range. The only required argument ism; if unspecified
the filename is selected by interactive dialog, fmt defaults to tiff (no compression), and scale
defaults tom. RANGE. Additional arguments passed to mainstream imwri te.

Examples:
Save volume images as jpeg files overriding default scaling (filename selected interactively):

>> imwrite (vol, [50 1000], [],'jpeg'); % empty filename arg

Notes:
Complements Loadimg.

3.2.6 montage -display volume slices as a single image

usage: montage (m)

Passes the reshaped contents ofm. DATA to the IPTmontage function.

Notes:
See also the mainstream IPT montage.

3.2.7 movie -creates a Matlab movie from the volume image slices

usage: movie (m, ...)

Creates (and optionally returns) a Matlab format movie from mri vol object m image data, then
;plays'it. The remaining arguments are passed to the built-in movie function.

Examples:
Create volume slice movie; play it 3 times at 2 fps:

>> movie(vol, 3, 2);

Notes:
See also irma.

3.2.8 mrivol -construct mri vol object

usage: m = rnrivol(data, type, mpp, isi、info)

where
data -volume image data [height x width x depth]

optional data descriptors are
type -SAG I CORI TRN I OBL
mpp -mmfpixel mapping factor
is 1 -intershce interval (mm)
info -arbitrary annotation field

29

Examples:
Create an mrivol object from a coronal image array:

>> info = struct ('SUBJECT','MT','UTTERANCE','AE') ;
>> m = mrivol(corData,'COR', 1, 3, info);

Notes:
血 agedata given in IPT image deck form (height x width x 1 x nエmages)is flattened
automatically by mri vol. See also the various. Load* functions.

3.2.9 reshce -resample mrivol object

This function supports various ways of resampling mri vol data. All require that data, mpp, and
isi be specified for the input volume, and reorientations require that the input type be one of { SAG
COR I TRN}. In the first form optimized manipulations are selected by keyword:

usagel: m_out = reslice(m_in, option, isi, method, crop)

where option is one of
'SAG'-convert to sagittally oriented volume
' C OR'-convert to coronally oriented volume
'TRN' -convert to transverse oriented volume
'RESAMPLE'-resample using new isi

m_in is the input mrivol object; isi is the output inter-slice-interval (mm, default= 1); method is
the resampling method (default= cubic); crop is an optional argument that if non-zero causes 0-
valued rows and columns to be removed from the resulting slices (default= 1).

The second form supports generalized translation and rotation:

usage2: m_out = reslice(m_in,az,el,origin,isi,method,crop,type)

where az is the reorientation azimuth (degrees, default= O); el is the reorientation elevation (degrees,
default= 0), origin is the reorientation pivot (mm, default= m_in volume center); type is the
output volume type (default='OBL'); remaining arguments as above. Binary thresholded data are
interpolated using the Raya-Udupa distance transform (see DistMap).

Examples:
Convert an mrivol to a sagittally oriented dataset using 3mm isi with default method and cropping:

>> sagVol = reslice (vol,'SAG', 3) ;

Resample volume correcting for subject head tilt (default isi, trilinear interpolation, no cropping):
>> corVol = reslice(vol,-5,2,[110 100 50],[],'linear',0,'COR');

Notes:
See also slicer.

3.2.10 seedfill -threshold volume starting from seed voxel

rn_out = seedfill(rn_in, levels, seed)

Given seed location [X, Y, z J in volume mm coordinates returns connected levels thresholded
output volume in uint8 (logical) fo皿

Examples:
Assuming seed is a voxel within levels, find thresholded voxels connected through volume:

≫filledVol = seedfill (vol, [50 320] , [110 100 20 J);

Notes:
Requires the IPT.

30

3.2.11 slicer -extract oblique slice from mri vol object

This function supports two ways to specify an oblique resampling plane. In the first form the slice
bounds are determined from an offset point within the volume, and azimuth and elevation angles:

usagel: [img,isect] = slicer(m, az, el, offset, method, crop)

Azimuth az is the counterclockwise angle in the xy plane measured from the positive x axis in
degrees. Elevation el is the angle from the xy plane. offset [x y z l defines a point in rnri vol
rn mm coordinates, where x increases from left to right, y increases from bottom to top, and z increases
from first image to last. The origin is the lower left corner of the first image of the volume. The
default offset is the center of the volume. method is an optional argument specifying the
interpolation method; one of {'nearest'J'linear'I'cubic'(default)}. crop is an
optional argument that if non-zero causes 0-valued rows and columns to be removed from the
generated slice (default= 1).

The resulting oblique slice intersects the volume along the plane through offset oriented at the
azimuth and elevation angles (relative to the volume). Output image size is determined by the norm of
the dimensions of rn.

In the second form the oblique slice bounds are specified explicitly:

usage2: irng = slicer(rn, bounds, method, crop)

bounds defines the initial and terminal edges of the oblique slice in the form of XYZ point pairs (0-
based volume mm coordinates, [4 x 3 l), where the point ordering determines the volume sweep
direction. bounds can be exterior to the volume, but must be rectangular to avoid distortion.

Returns the oblique image slice (double format); pixels on the extracted image external to the volume
are returned as 0. Binary thresholded data are interpolated using the Raya-Udupa distance transform
(see DistMap). Optionally returns initial, terminal intersection coordinates isect of oblique slice.

Examples:
Extract the midsagittal projection through a coronally oriented volume (default center volume offset):

>> sagエmg=slュcer(corVol, 90, 90); % tricubic, cropping

Extract a coronal projection through a transverse oriented volume (default interpolation, no cropping):
>> [corirng,isect] = slicer(trnVol, 5, 88, [105 98 15], [], 0);

Same thing using intersection bounds returned above:
>> corirng = slュcer(corVol, isect,'cubic', 0) ;

Notes:
See also irrna, reslice.

31

References

Arata, L. (1995) "Tri-cubic Interpolation," in Graphics Gems V (A. Paeth, ed.),

New York: Academic Press, pp. 107-110.

Heinz, J.M., and Stevens, K.N. (1964) "Derivation of area functions and acoustic
spectra from cineradiographic films of speech," Quarterly Progress Report,
Research Laboratory of Electronics, MIT, 74, pp. 192-198.

Raya, S.P., and Udupa, J.K. (1990) "Shape-based interpolation of multidimensional
objects," IEEE Transactions on Medical Imaging, 9, pp. 32-42.

Tiede, M. K. (1999) "An MRI~based morphological approach to vocal tract area
function estimation," Ph.D. dissertation, Linguistics, Yale University.

Tiede, M.K., and Yehia, H. (1996) "A shape-based approach to vocal tract area
function estimation," Proc. ASA-ASJ 3rd Joint Meeting, pp. 861-866.

32

