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Abstract 

In this paper, we propose new analog neural methods to combinatorial optimization 

problems, in particular, quadratic assignment problem. Our proposed methods are based 

on an analog version of the入-optheuristics, which simultaneously changes assignments 

for入elementsin a permutation. Since we can take a relatively large入value,our new 

methods can ac坤evea middle-range search over the possible solutions, and this helps the 

system neglect shallow local minima and escape from local minima. fu experiments, we 

have applied our methods to relatively large-scale (N = 80 ~ 150) QAPs. Results have 
shown that our new methods are comparable to the present champion algorithms, and 

for two benchmark problems, they are able to obtain better solutions than the previous 

champion algorithms. 
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1 Introduction 

In this paper, we propose new analog neural methods to combinatorial optimization problems. 

In particular, we deal with quadratic assignment problem (QAP) (Burkard, Karisch and Rendl, 
1991), which is known to be a very difficult combinatorial optimization problem. However, our 
proposed approaches can be applied to various combinatorial optimization problems where each 
solution is represented as a permutation. An example is traveling salesman problem (TSP). 
In the case of TSP, a solution is represented by aligning the city indices along the sales-

man's route, which is a permutation of the set of city indices. A solution of QAP can also 
be represented by a permutation. In the conventional neural approaches, on the other hand, 

an Ising (binary) spin system (Hopfield and Tank, 1985; Bilbro, Mann, Miller, Snyder, Van 
den Bout and White, 1989) or a Potts spin system (Peterson and Soderberg, 1989; Ishii and 
Sato, 1997) has been used to represent a solution. The constraints for the permutation are 
then implemented as "soft" constraints, namely, penalty terms for violations are added to the 

objective function. This often produces infeasible solutions, which is one of the reasons why 

these approaches are not very good when the problem scale becomes large. 
We (Ishii and Sato, 1996) previously proposed a neural optimization method called the 

doubly constrained network (DCN), in which all of the permutation constraints are treated 

as hard. Namely, the space of possible spin configurations is almost equivalent to that of the 
permutations. The obtained solution is therefore feasible in general, and it is better than the 
solution that would be produced by the Ising or Potts spin approach. Even in DCN, however, 

several problems exist: (1) Since the algorithm is deterministic, the system can not escape 
from a local minimum by itself. In addition, there is no solution variety even if the initial 
conditions are variously prepared; and (2) In order to obtain a proper permutation, a careful 
deterministic annealing is actually needed. These features prevent our approach from achieving 
further improvements in the solution. 

In our new approach, we apply a replacement to a permutation as a basic operation. In 
addition, we introduce non-equilibrium dynamics to DCN. These modifications overcome the 

above-mentioned problems. The non-equilibrium dynamics makes the system to escape from 
local minima and it results in a solution variety. The basic replacement operation ensures a 

solution to be a valid permutation. 
When the basic operation is an exchange of two elements in a permutation, it is called 
"2-opt" search. When入(>2) elements in a permutation are changed at once, the operation is 

called "入一opt"search (Lin and Kernighan, 1973; Martin, Otto and Feltman, 1992). The 2-opt 
search is a very simple heuristic algorithm, but it easily falls into a local minimum. A neural 

network approach based on the 2-opt heuristics was proposed by Hasegawa et al. (Hasegawa, 
Ikeguchi and Aihara, 1998). In order to escape from local minima, tabu list (Taillard, 1995) 

and chaos (Hasegawa, Ikeguchi and Aihara, 1998) have been proposed. On the other hand, 

入-opt(入>2) heuristics get computationally heavy, as入becomeslarge. 
Our proposed methods are based on an analog version of the入-optheuristics. Since we 

employ analog neural approaches based on our DCN formulation, it is possible to set入aslarge 

as 15 ~ 60, and this enables the system to search for good permutations over a middle-range 
region one after another. In addition, the relatively large入valuesprevent the system from 

falling into shallow local minima around the present system state. 

In experiments, we apply our new methods to relatively large-scale (N = 80 ~ 150) QAPs 
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taken from QAPLIB (Burkard, Karisch and Rendl, 1991), which is a standard set of QAP 
benchmark problems. Our new approaches are comparable to the present champion algo-
rithms, which are based on tabu search (Taillard, 1991; Battiti and Tecchiolli, 1994), genetic 

algorithms (Fleurent and Ferland, 1994), and simulated annealing (Amin, 1998). Moreover, 
for two benchmark problems, the new approaches are able to better the champion algorithms. 
Consequently, our methods can be considered as one of the stronger algorithms for QAP. 

2 ,,¥-DCN 

2.1 Quadratic assignment problem 

Quadratic assignment problem (QAP) is known as a very difficult combinatorial optimization 
problem (Burkard, Karisch & Rendl, 1991). Naturally, it belongs to the class of NP-hard 
problems. A typical instance of QAP is a facility location problem, in which a set of facilities 
are to be assigned to an equal number oflocations at the minimal cost. For each pair of facilities, 
an amount of flow is given, and for each pair of locations, a distance is given. The cost is defined 

as the summation of the product of the flow between two facilities and the distance between the 

locations to which the facilities are assigned. Many combinatorial optimization problems, such 
as the traveling salesman problem, maximum clique problem, and graph isomorphism problem, 

are special and easy cases of QAP. 
Let D and F denote an (N x N)-dimensional distance and flow matrices, respectively. QAP 

with a problem size N is defined by 

N N 

冑とこ加Fp(a),p(b),
a=l b=l 

(1) 

where II is the set of all permutations of { 1, 2, …，N} and p(a) gives the element assigned to 
the location a in a permutation p E IT. 

2.2 入-DCNequations 

In order to deal with problem (1), we define an (N x N)-dimensional assignment matrix: 
Sa,n = l if p(a) = n and Sa,n = 0 otherwise. In order for the assignment matrix S to represent 

a valid permutation p(a), the constraints: I:!;=1幻 =l(a=l,…, N) and I:1:=l Sa,n = l (n = 
1, ... , N) should be satisfied. By using the assignment matrix, problem (1) can be defined as a 
minimization of an objective energy function: 

N 

E。bj(S)=~Da,bFn,mふ，ふ，m,
a,b,n,m=l 

(2) 

subject to the assignment matrix constraints. It should be noted that if the facility matrix is 
of the form: Fn,m = (5n,(m+l) + Dn,(m-i))/2 , objective function (2) is equivalent to that of an 
N-city TSP. 5i,j is Kronecker's delta. Namely, TSP is a special case of QAP. 

Next, we define a permutation matrix by 

Ya,b = { 1 if element p(b) changes its location to a 
0 otherwise 

(3) 



4
 

Here, although an assignment matrix S can be regarded as a permutation matrix applied to 

the identity assignment, p(n) = n (n = 1, ... , N), we distinguish assignment matrices and 
permutation matrices for description convenience. For the permutation matrix, there are also 
the following constraints: 

N 

LYa,b = l 
a=l 
N 

I:Y, ゅ =1
b=l 

We also consider the following constraint: 

(b = 1, ... ,N) (4a) 

(a= 1, …，N) (4b) 

も7a,a= N —入，
a=l 

(5) 

where O :s; 入:s;N is a constant integer. Constraint (5) restricts the number of elements whose 
location is changed by the permutation Y to入.In the following, we call a permutation matrix 
Y subject to constraints (4) and (5) a 入—permutation matrix. When a permutation matrix Y 
applies to an assignment matrix S, the new assignment matrix S'is given by 

S'=YS. (6) 

Next, we consider a set of 入—permutation matrices: A = {(Y¥ Pk)Jk = 1, …}, where pk is 
the probability for the permutation yk. The ensemble average for the new assignment matrices 

applied by this set of permutation matrices is given by 

〈S'〉A=〈Y〉AS, (7) 

where〈・ハ isthe mean with respect to the permutation set, namely, 〈f(k)〉A三江f(k)Pk.We 
use the notations: V三〈S'〉Aand X三〈Y〉A・
Let us now consider a minimization of the objective energy function, E。bj(S'),with respect 
to the new assignments. In order to make this discrete problem a continuous one, we introduce 
a free energy function: 

F

H

 

〈Eobj(S')〉A-TH
N 

ー I:P(S')logP(S')~ ―L Va,n log Va,n, 

(8a) 

(8b) 

s
 

a,n=l 

where P(•) denotes the probability for that configuration. T is the temperature and H is the 
entropy of the possible configurations. 

Here, we assume the objective energy function has a quadratic form: 

1 N 
Eabj(S') =ーこ

2 a,n,b,m=l 

N 

Wa,n;b,m芯ぶ，m+ L Ia, ぶ，n,
a,n=l 

(9) 
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where the weight matrix is symmetric, i.e., Wa,n;b,m = wb m;a,n (a, n, b, m = 1, …, N). In this 
case, we can conduct the following approximation: 

1 N N 

~- L Wa,n;b,m Va,n½,m + L Ia,n Va,n 
2 a,n,b,m-=l a,n=l 

1 N 

-2 a,b~dccl Ct Wa,a;b,=名ふ，=)心x,,,+.t, (土I.,n均，n)Xa,b 
1 N N 

- -L w:,b;c,d=l (S)ふぷ，d+LI: ふ(S)Xa,b三ば(X;S) (10) 
2 a,b,c,d a,b=l 

〈E。bj(S')〉A

where w:,b;c,iS) 三 ~n,m 凱，n;c,m品ふ，m and I贔(S) 三 ~nfa,ぶ，n• The new weight matrix is 
also symmetric, i.e., W* a,b;c,d c,d;a,b・ = W* In equations (8b) and (10), we use a similar approx1ma-

tion to the mean-field theory (Bilbro, Mann, Miller, Snyder, Van den Bout and White, 1989; 
Peterson and Soderberg, 1989), which is not rigorously applicable to the configuration space of 

the assignment matrices. 
On the other hand, the entropy is given by 

N N 

H~ — L Va,n log Va,n =一 L Xa,p-l(n) log Xa,p-l(n) = -t Xa,b log X砂三 H*(X), (11) 
a,n=l a,n=l a,b=l 

where p is the permutation represented by S. Similarly, constraints (4) and (5) are also repre-
sented by the average permutation matrix X. 
Accordingly, the new continuous problem is defined by 

mm. 1. m1. ze F*(X; S) = E*(X; S) -TH*(X) (12a) 
N 

subject to~Xa,b = l (b = 1, …, N) (12b) 
a=l 
N 

LXa,b=l (a= 1, …, N) (12c) 
b=l 
N 

~Xa,a = N —入． (12d) 
a=l 

The new problem is a minimization of the free energy function (12a), which is defined by the 

average permutation and not by the average assignment. In addition, the problem is not a 

global one. It is a local problem, depending on the previous assignment S. In problem (12), 
the entropy (11), with constraints (12b) and (12c), prevents the average permutation X from 
going out of its domain [O, 1]氾 Inthis sense, it functions as a barrier function (Luenberger, 
1989). It should be noted that the constant入isnot necessarily an integer in this continuous 

problem. 
Using the Lagrange method, a solution to problem (12) can be given by the following 

simultaneous equations. 

Xa,b 
Ua,b 

O'.a/3訂似，b
(13a) 
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Ua,b 三 exp(_I_ 8E*(X; S)) (13b) 
T 8Xab ， 

I: Ua,b 
O'.a = b fJb"flia,b 

(13c) 

函=L Ua,b (13d) 
O'. 1oa,b a a 

1 I: Uaa 
'Y =N-入―ぬ'a O:a 

(13e) 

where aa (a = 1, …, N), 店 (b= 1, …, N) and'Y are Lagrange multipliers. For the energy 
function (10), BE* /8Xa,b =江，d陀，b;c,dふ，d+ l!,b• The equations defined by (13) are called 
入-DCNequations. 

2.3 Basic algorithm 

In order to obtain solutions to入-DCNequations, the following basic algorithm works well in a 

practical sense. 

1. Set t at 0. Set X(O) to be 

ふ，b(O)= { (l -入/N)(l+ Ea,b) if a= b 
入(1+い）/(N(N -1)) if a# b' 

(14) 

where Ea,b denotes small noise, e.g., a uniform random value in [-0.1, 0.1]. 

2. For all a, b, calculate: 

Uゅ(t+ 1) =exp(-~8鸞闊S)). (15) 

3. Set a~ld to be年 (t)for all a, set (3g1d to be江 Ua,b(t+l) 
知 (t)'"'f(t)8a,b

for all b, and set ry01d to be ry(t). 

4. The following substeps are iterated. 

(a) For all a, calculate: 

a 
new N 広，b(t+l)
a =区b=l (3炉(1old)如，b. (16) 

(b) For all b, calculate: 

/3new I: N Ua,&(f + 1) 
b ＝ a=I a戸 ("(old)fib,a. 

(17) 

(c) Calculate: 

r 
new 1 N Ua,a(t + 1) 

N —入
L . 
a=l a炉羹ew

(18) 
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If each of aa, /3b, and I converges, set aa(t + 1)サ森(t+ 1), and ,(t + 1) to those values. 
After that, rescale o:(t + 1) to江叫t+l)=l.

5. For all a, b, calculate: 

Xa,b(i + 1) = 
Ua,b(i + 1)/(森(t+ l)t(t + 1)い）, __ 

、、・ (19) 

6. If X(t) converges, exit the algorithm. Otherwise, add 1 tot and go to step 2. 

Like in DCN (Ishii and Sato, 1996), this algorithm does not necessarily converge. However, 
the free energy function (12a) is likely to decrease after a single process of the above basic 
algorithm. 

2.4 たDCNalgorithm 

When the temperature T is small, the average permutation matrix X obtained by the above 
basic algorithm is close to a vertex of the hypercube domain. Then, the matrix is regarded 
as signifying one of the入-permutationmatrices. Moreover, we can obtain several permutation 
matrices during a single process of the basic algorithm. Among these, we choose the best 
permutation matrix, i.e., the one that minimizes the objective function (9). This process 

retrieves a good new assignment matrix that is an application of one of the入-permutation
matrices to the previous assignment matrix S. 
Our proposed procedure, which is called入-DCN,repeats the above-mentioned process. 

FiguTe 1 schematically shows this procedure. After a single process, a new assignment S'which 

is transformed from the previous assignment S by a入-permutationY is retrieved. The new 
assignment S'is expected to be improved so as to have a lower objective function value than 
the previous assignment. In the following process, another assignment S" is retrieved from S' 
by calculating・a good入-permutationY'. 

When the parameter入isequal to 2, this procedure corresponds to an analog version of 

the 2-opt heuristics, which is a local search algorithm over the nearest neighbors. However, 

by taking a relatively large入value,our入-DCNalgorithm can achieve a middle-range search 

over the possible assignments, and this helps the system neglect shallow local minima around 
the previous assignment, and search for good local minima of the objective energy function. 
It should be noted that this procedure never terminates, namely, non-equilibrium dynamics is 
introduced. In other words, the system is not trapped by any local minimum. 

3 ふinteriorDCN 

Since the入-DCNalgorithm retrieves assignments using 入—permutations, it often ignores good 

local minima located in the nearby neighborhood around the current assignment. 

In order to deal with this problem, we propose another method here, where the equality 

constraint (5) is replaced by the following inequality constraint: 

もra,a~N —入，
a=l 

(20) 
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which restricts the number of elements relocated by the permutation Y to be smaller than入

In order to implement this inequality constraint, the following barrier function is additionally 

introduced in the free energy function (12a): 

K'(X)三 T(t,x.,.-Mい（言ふ，a-M) + T(0 -I) (釘a,a-M) , (21) 
where M 三 N —入 and 0 (= 0 ~ 1) is a constant parameter. In this case, constraint (12d) is 
removed. 

Using barrier function (21), equations (13b) and (13e) in the DCN equations are replaced 
by 

(1  BE*(X; S) _ 08) (22b) Ua - exp -- a,b 
'b - T 8Xa,b 

び1豆 4~ 旱 ・-M
(22e) a aaf3a 

'Y = 2 

This derivation is described in the Appendix. Then, in the basic algorithm in Section 2.3, 

equation (15) is replaced by 

Ua,b(t + 1) = exp (_2_ BE*(X(t); S) -08a,b) , 
T 8Xa,b(t) 

and equation (18) is replaced by 

(23) 

r new ＝ 
M2 + 4I: 広，a(t十1)

a a: ぎ噸戸
-M  

2 
(24) 

The other parts are the same as in the basic algorithm. 
The modified basic algorithm searches for a good [-permutation where O~l~ 入fromthe 
previous assignment S. Therefore, it is considered that the new procedure achieves a local 

search and a middle-range search simultaneously, in the vicinity of the previous assignment. 
The new procedure is called the入-interiorDCN algorithm. 

4 Experiments 

The procedures above can be applied to any quadratic problem whose solutions are represented 

by permutations. In the case of QAP (1), we set Wa,n;b,m = Da,bFn,m (a, n, b, m = 1, …，N) and 
Ia,n = 0 (a,n = 1, …，N). 入isset at 15 ~ 60, depending on the problem. 
The benchmark problems used in the experiments are "Tai80a" (N = 80), "TailOOa" (N = 
100), "WillOO" (N = 100), and "Tho150" (N = 150), all of which are taken from QAPLIB 
(Burkard, Karisch and Rendl, 1991). The distance and facility matrices for these problems are 

symmetric and dense. "Tho150" is the largest problem with its dense matrices in QAPLIB. For 

"Tai80a" and "TailOOa", the champion algorithms (Taillard, 1991; Battiti and Tecchiolli, 1994) 

are based on tabu search. For "WillOO", the champion algorithm (Fleurent and Ferland, 1994) 
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is a combined algorithm of a genetic algorithm and tabu search. For "Tho150", the champion 

algorithm (Amin, 1998) is called simulated jumping. 

Table I shows the experimental results. The value in each column is a deviation in percentage 

from the champion data. For comparison, the table also contains solutions obtained by our 

previous approach (Ishii and Sato, 1998), i.e., DCN annealing, and the best solutions that 

the 2-opt heuristics could obtain from among many runs. With DCN annealing, 入-DCN,and 

入—interior DCN, the obtained solutions were improved by the 2-opt heuristics. For入-DCNand 
入-interiorDCN, the table also contains the application numbers of the basic algorithm until 

the best solutions are retrieved. 

In Table I, we can see that the results of our new methods are very good. For "WillOO" 

and "Tho150", the obtained solutions are comparable to the champion data. For "Tai80a" and 

"TailOOa", both of the proposed methods achieved better solutions that the previous champion 

algorithms. 

Table I : Obtained solutions 

"Name" represents the problem's name, "N" is the problem's scale, "feas.sol" 
is the previous best solution, "algorithm" is the previous champion algorithm, 

"DCA" is the solution obtained by DCN annealing, "2-opt" is the best solution 

obtained by many 2-opt runs for various initial conditions, "入-DCN"is the 

solution obtained by our入-DCNmethod, and "入-interDCN" is the solution 
obtained by our入-interiorDCN method. Each solution is represented by 

the deviation in percentage from the previous best solution. A number in 

parentheses denotes the number of the basic algorithm applied to retrieve the 

best solution. 

Name N feas.sol algorithm DCA 2-opt 入-DCN 入-interDCN 
Tai80a 80 13557864 robust tabu search 1.2% 3.1% -0.060% (2568) -0.040% (2481) 
TailOOa 100 21125314 reactive tabu search 5.7% 3.2% -0.015% (688) -0.082% (5656) 
WillOO 100 273038 genetic hybrids 0.27% 0.73% 0.46% (2109) 0.070% (2563) 
Tho150 150 8133484 simulated jumping 0.33% 1.5% 0.24% (7139) 0.28% (6956) 

5 Conclusion 

When入isrelatively large, it is computationally difficult to search for a good assignment over 

all of the assignments reachable by 入—permutations from the current assignment. In this paper, 

we proposed a couple of neural methods that partially achieve this mechanism, by considering 
the free energy function dependent on the current assignment. They are入-DCNandふinterior

DCN. The new methods are also improvements of our previously proposed DCN annealing 

in two points: (1) Since non-equilibrium dynamics is introduced, the system is never trapped 

by a local minimum, and the obtained solutions have variety. Accordingly, as the number of 

iterations becomes large, improvements in the solution can be expected; and (2) Since we take 

a permutation as a basic operation, the retrieved solutions always represent valid permutations. 

This is one of the reasons for why our basic algorithm practically works well. 

In experiments, we applied our methods to relatively large-scale (N = 80 ~ 150) QAPs. 
Consequently, it was found that our new methods are comparable to the present champion 
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algorithms, and for two benchmark problems, they are better than the champion algorithms. 
We therefore conclude that our new methods are one of the stronger algorithms for QAP. 

Figure 1 

Schematic figure of the proposed入-DCNprocedure, which retrieves a new 

assignment S'from the previous assignment S. After that, the procedure re-
trieves another assignment S11, and continues this process. S'is an assignment 

transformed from S by a 入—permutation Y. 
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Appendix 

Here, we derive the入-interiorDCN equations defined by (13a), (22b), (13c), (13d), and (22e). 
In order to minimize F*(X; S) = E*(X; S) -TH*(X) + B*(X) subject to constraints (12b) 
and (12c), we define a Lagrange function: 

L=F'+ジ（言ふ，bー 1)+臣 Ct,x.,bー 1), (A.1) 

where Aa (a= 1, ... , N) and Eb (b = 1 N) , ... , are Lagrange multipliers. A stationary cond1t10n 
of the Lagrange function is given by 

8L 8E* 
闊，b=瓦十T[1ogXa,b + 1 +似，b(log(~Xa,a -M) + 0)] + Aa + Bb = 0, 

with constraints (12b) and (12c). Equation (A.2) is solved as 

l 8E* 
X a,b = exp (―戸茂:;)/(a凸） if a =ft b 

Xa,a (~ ふ，a-M) = exp (-~ 工-0)/(aふ），

(A.2) 

(A.3a) 

(A.3b) 

where O:a三 exp(Aa/T+ 1) and f3b三 exp(Bb/T)are the converted Lagrange multipliers. 
Equation (A.3a) is equivalent to (13a) and (22b) for a =J b. The summation of (A.3b) over a 
gives a quadratic equation for I:a Xa,a• A solution of the quadratic equation is given by 

I:Xa,a = 
M + びf2+ 4~aー五

a 2 
(A.4) 

By defining'Y三区aXa,a -M, the equation (22e) is obtained. Equation (22b) for a = b is 
straightforward from (A.3b) and the definition of'Y. 




