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Abstract 

The concepts of organizational learning in organization and management science cover 

a very wide range of organization-related activities in organization. Since socially situ-
ated intelligence is one of such activities, this paper makes the concept of organizational 

learning operational from the viewpoint of CMOT (Computatio叫&Mathematical Orga-
nization Theory) for investigating socially situated intelligence. In particular, this paper 
focuses on the characteristics of multiagent learning as one of socially situated intelli-

gence, and analyzes them with our model which introduces four operationalized learning 
mechanisms in organizational learning. This model is a GBML (Genetics-Based Machine 
Learning) based architecture, and is composed of the following four mechanisms: (a) 
reinforcement learning, (b) rule generation, (c) rule exchange, and (d) reuse of organiza-
tional knowledge. In this model, agents acquire their own appropriate problem solving 
functions through interaction with other agents in order to complete given problems. A 
careful investigation on the characteristics of multiagent learning with our model from 
the viewpoint of socially situated intelligence has revealed the following implications: (1) 
four learning mechanisms in our model work respectively as (a) a search function, (b) a 
generator of search methods, (c) an entity to change the search range, and (d) an en-
tity to effectively limit large search ranges; (2) these four mechanisms work effectively by 

integrating with other mechanisms, in addition to make up for the defects of the other 
mechanisms. (3) besides the interaction among agents, the interaction among learning 
mechanisms is required to implement socially situated intelligence at a high level; and 

(4) there are two levels in the learning mechanisms for multiagent learning (the individ-
ual level and organizational level) and each mechanism is divided into two types (single-

and double-loop learning). The integration of these various levels and types of learning 
mechanisms contributes to improving socially situated intelligence. 
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1 Introduction 

In recent years, computational science has focused on socially situated intelligence 

[Agre 96, Epstein 96, Kirn 97, Prietula 98] in addition to social science. In the field of 

Artificial Intelligence (AI), in particular, a lot of research on multiagents has addressed 

the problem of making clear the intelligence embedded in multiagent environments. Ex-

amples include multiagent learning [Weiss 96, Weiss 97] based on reinforcement learning 

[Sutton 98, Watkins 92], multiagent evolution which is one type of evolutionary compu-

tation [Goldberg 89], and distributed artificial intelligence (DAI) [Gasser 88, Ishida 96] 

to study the mechanisms of social coordination and the performance improvement in 
organizational problem solving. In the above literature, many individuals or agents be-

have according to their own decisions and affect their groups or organizations as a total 
behavior. 

However, the above research has not yet attained an explanation for socially situated 

intelligence, because they seem to focus only on a small part of intelligence. From this 
fact, this paper focuses on the characteristics of multiagent learning as one of socially 

situated intelligence, and analyzes them from the viewpoints of organizational learning 
[Argyris 78, Duncan 79, March 91, Cohen 95] in organization and management science. 
This is because various types or levels of intelligence are embedded in organizational learn-

ing. To accomplish the aim of this paper, we start by making the concept of organizational 
learning operational from the viewpoint of CMOT (Computatio叫&Mathematical Or-
ganization Theory). 
This paper is organized as follows. Section 2 starts by mentioning the organizational 
learning in organization and management science and Section 3 explains our computa-

tional model which introduces the concept of organizational learning. An example for 
analyzing embedded intelligence is given in Section 4, and Section 5 gives simulations and 
experimental results. Socially situated intelligence in multiagent learning is discussed in 
Section 6. Finally, the conclusion is given in Section 7. 

2 Organizational Learning and Computational 

Analysis 

2.1 Definition of organizational learning 

Research on organizational learning has developed in the context of organization and 

management science, and a lot of research has focused on economical market systems 

or human organizations [Argyris 78, Duncan 79, Espejo 96, March 91, Cohen 95]. In or-
ganization and management science, organizational learning is roughly characterized as 
organizational activities for improving the organizational performance or the ability to 

solve problems which cannot be achieved at an individual level. 

However, the features of organizational learning somewhat differ from researcher to 

researcher, and consequently the definition of organizational learning has become too 

general for our study. As typical definitions, the following information is well-known: 

"Organizational learning occurs when members of the organization act as learning agents 

for the organization, responding to changing the internal and external environments of 

organization by detecting and correcting errors in organizational theory-in-use [Argyris 78] 

" or "Organizational learning is defined as the process within the organization by which 
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knowledge about action-outcome relationships and the effect of the environment on these 
relationships is developed [Duncan 79]". 

2.2 Four-loop learning 1n organ1zat1onal learning 

Since the definition of organizational learning is too general to analyze socially situated 

intelligence, this paper makes it operational from the viewpoint of CMOT. To do this, 

this paper starts by selecting and explaining Kim's model as one of the organizational 

models. This is because his model classifies the learning in detail, compared with the 

others. According to Kim, organizational learning is composed of the following four kinds 

of learning [Kim 93]: 

• Individual single-loop learning: 
Through this learning, an ind1v1dual improves his/her performance not by changing 

the contents or the amount of individual knowledge, but by utilizing them. This 

learning contributes to improving the problem solving efficiency. 

• Individual double-loop learning: 
Through this learning, an individual extends the range of problem solving by creat-

ing and utilizing individual knowledge which includes Macro/Meta knowledge. As 
an operation, the modification or deletion of knowledge is also included in addition 

to the creation of knowledge. 

• Organizational single-loop learnmg: 
Through this learning, individuals improve their performance not by changing the 
contents or the amount of total individual knowledge in the organization, but by 
utilizing them with other individuals. Like the individual single-loop learning, this 
learning contributes to improving the problem solving efficiency. 

• Organizational double-loop learning: 
Through this learning, individuals extend the range of problem solving as a whole 
organization by creating and utilizing organizational knowledge which is shared by 
all of the individuals. Like the individual double-loop learning, the modification or 
deletion of knowledge is also included in addition to the creation of knowledge. 

From the above definition, four-loop learning contributes to improving the ability of 

problem solving; this means (I) an improvement in the problem solving efficiency and (2) 
an extension in the range of problem solving. Furthermore, the above definition mentions 
that (I) there are individual and organization levels in the learning and (2) each learning 

can be classified in terms of single type or double type. 

2.3 Loop leaning 1n computational organ1zat1onal learning 

Although the four-loop learning in Kim's model is classified in detail as we mentioned in 
the previous section, each loop learning is not fully computational from the standpoint of 

CMOT. Therefore, this paper reinterprets each loop learning in Kim's model by defining 

it as follows, from the viewpoint of distributed artificial intelligence (DAI) or multiagent 

systems (MAS) t. 

tThe investigation in the reinterpretation on the concept of Kim's model including loop learning will 
be published elsewhere. 
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• Learning by using individual knowledge: Corresponding to individual 
single-learning 

Through this learning, an individual solves given problems by learning how to use 

individual knowledge which is given or stored in advance. Although the individ叫

interacts with its environment, this learning is performed at an individual level. One 

example of this learning is order acquisition by using individual knowledge. 

• Learning in the creation/utilization of individual knowledge: Correspond-
ing to individual double-learning 

Through this learning, an individual solves given problems by creating and utilizing 
individual knowledge. Although the individual interacts with its environment in the 

same way as the learning by using individual knowledge, the learning is performed 
at an individual level. One example of this learning is the creation of new individual 

knowledge to solve problems which are unable to be solved by stored knowledge. 

• Learning in the exchange of individual knowledge: Corresponding to 
organizational single-learning 

Through this learning, individuals solve given problems which are unable to be 
solved at an individ叫 levelby exchanging their individual knowledge with other 
individuals; In this learning, the individuals interact not only with their environment 
but also with other individuals. One example of this learning is a task assignment 

based on the characteristics of partner individuals. 

• Learning in the creation/utilization of organizational knowledge: Corre-
sponding to organizational double-learning 

Through this learning, individuals solve given problems by creating and utilizing 
organizational knowledge (which means knowledge at an organizational level). In 
this learning, individuals interact not only with their environment but also with 
other individuals in the same way as the above learning in the exchange of individ-
ual knowledge. One example of this learning is shown as follows: individuals store 

the integration of selected individual knowledge as organizational knowledge when 
they solve given problems most effectively, and utilize it in the subsequent problems. 

This kind of knowledge seems to be knowledge on the division of work. 

Using the above definitions, we define computational organizational learning, individual 

knowledge, and organizational knowledge as follows. 

• Computational organizational learning: 
Learning that includes the above four learrnng mechanisms, e.g., learning by us-

ing individual knowledge, learning in the creation/utilization of individual knowl-
edge, learning in the exchange of individual knowledge, and learning in the cre-

ation/utilization of organizational knowledge. 

• Individual knowledge: 
Individual level knowledge stored in each individual independently. 

• Organizational knowledge: 
Organizational level knowledge shared by all individuals. 
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The definitions may seem to define only parts of organizational learning, but the 
authors believe that the above definitions are sufficient for analyzing socially situated 

intelligence from the viewpoint of CMOT. What we claim in this paper is that our attempt 
is to analyze socially situated intelligence with operationalized organizational learning. 

3 Organizational-Learning Oriented Classifier 

System 

3.1 Architecture 

Our computational model (Organizational-learning oriented Classifier System: OCS) 
[Takadama 98a, Takadama 98b] was originally developed to apply complex engineering 

problems in multiagent environments. In this paper, however, OCS is used for inves-
tigating socially situated intelligence. As shown in Fig. 1, OCS introduces four learn-

ing mechanisms defined in the previous section into a learning classifier system (LCS) 
[Goldberg 89, Holland 78), and is composed of a lot of agents. Each agent in OCS has 
the following problem solver, memory and learning mechanisms. As an assumption, each 
agent can recognize its environmental state, but it cannot recognize the total environmen-
tal state. This assumption reflects the situation in which it becomes difficult to acquire 

the appropriate global information as the number of agents increases. 

Environment 

Sub Environment] L Sub Environment 

State¥)  Action Statej)  Action 

ごつ
'Agent 2 j 

こ
; Agent n j 

Detector 苧 Det~ctor Effector 
............. , ............ , , ..... ●● ..... 『 Q.,
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Figure 1: Architecture of OCS 

• Problem Solver 
-Detector and Effector: 

The detector changes a part of an environmental state into an internal state 

and the effector changes an internal state into an action [Russell 95]. 
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• Memory 
-Organizational knowledge memory: 

This memory is for storing organizational level knowledge to be shared by all 

agents. In OCS, the agents store knowledge on the division of work, and this 

knowledge is implemented by a set comprising each agent's rule set acquired 

when the agents solve given problems most effectively. 

-Individual knowledge memory: 

This memory is for storing a set of CFs (classifiers). In OCS, CF is an if-then 
rule with a strength factor, i.e., the worth of rules, and the production system 
operates with these CFs. 

-Working memory: 

This memory 1s for storing the results obtained in recognizing a part of envi-

ronment states and an internal state of an action of fired rules. 

-Rule sequence memory: 

This memory is for storing a sequence of fired rules in order to evaluate them. 

This memory is cleared after the evaluation. 

• Learning Mechanism 
-Roulette selection: 

This mechanism selects one rule from among plural rules matching a particular 
situation. In this selection, the one rule is selected probabilistically according 

to the size of the strength attached to each rule. 

-Reinforcement learning mechanism: 
This mechanism is performed as the learning by using individual knowledge 
described in section 2.3. As a basic mechanism, this mechanism evaluates all 
rules fired and changes the strength of the rules according to an evaluation 

when agents solve given problems. 

-Rule generat10n mechamsm: 
This mechamsm 1s performed as the learning in the creation/utilization of 
individual knowledge described in section 2.3. As a basic mechanism, this 
mechanism creates a new rule when all stored rules in agents do not match a 

current environmental state. 

-Rule exchange mechamsm: 
This mechamsm 1s performed as the learning in the exchange of individual 

knowledge described in section 2.3. As a basic mechanism, this mechanism 
enables agents to exchange their rules with other agents in a particular interval 

of time. 

-Organizational knowledge reuse mechamsm: 

This mechamsm 1s performed as the learnmg m the creation/utilization of 
organizational knowledge described in section 2.3. As a basic mechanism, this 

mechanism enables agents to reuse the knowledge on the division of work by 

utilizing a set comprising each agent's rule set as initial rules sets before other 

problems are solved. 

3.2 Aim of agent and function 

Each agent in OCS cooperates with other agents to solve problems that cannot be solved 

at an individual level. To do this, agents try to divide given problems by acquiring their 
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appropriate functions through interaction with other agents. In this approach for solving 
problems, we define the aim of agents in OCS as finding appropriate functions required 
to solve problems by dividing them. Furthermore, we define a function as a sequence of 

behaviors determined by if-then rules. For example, A→ B→ C and C→ B→ C→ A 
are some of the functions used when A, B, C are assumed as one behavior. 

This definition means that the learning for acquiring appropriate functions in some 

agents is affected by the function acquisition of other agents. For example, some agents 

are affected when one of the A, B, or C behaviors of other agents changes to either the D, 

E, or F behavior through learning, or when the fired order of the A, B, andC behaviors 

of other agents changes according to the change of the rule strength. 

3.3 Learning 1n O CS 

This section describes how the four learning mechanisms in computational organizational 

learning mentioned in section 2.3 are implemented in OCS. 

3.3.1 Reinforcement learmng mechanism 

In OCS, agents have a reinforcement learning mechanism which is the same as LCS, and 
acquire appropriate behaviors which cooperate with other agents through this mechanism. 
Although this mechanism does not contribute to creating rules themselves, it does enable 
agents to change the order of the fired rules by changing the strength of the rules. From 

this fact, this learning mechanism corresponds to "individual single-loop learning" in 
organization and management science, and works as a kind of "learning by using individual 
knowledge" in computational organizational learning. 
In the context of reinforcement learning, OCS employs profit sharing [Grefenstette 88] 
which reinforces a sequence of rules at once when agents obtain some rewards. As a 

concrete mechanism in OCS, positive rewards are distributed to all fired rules as shown 
in Fig. 2 , and the strength of each rule is calculated according to Eq. (1). After the 
rewards are distributed, the memory for storing a sequence of fired rules is cleared. 

Reward 

R 

゜ n n-1・・・・・1 
n: Selected order when agents acquire reward 
R: Size of Reward (R>O) 

Selected 
order of 
rules 

Figure 2: Reinforcement leaning mechanism 

ST(i) = ST(i) + R・an-i, where i = n, n -1, ・・・，1 (1) 

In Fig. 2, the vertical and horizontal axes indicate the size of the reward and the fired 

order of rules, respectively. Note that the rules presented on the right side are fired at 

l
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the first several selections. Furthermore, ST in the equation represents the strength of 
the rule, i represents the order of the fired rules, n represents the maximum number of 

fired rules, R (> 0) represents the size of the reward, and G represents the geometric ratio 
with the range of O < G < l. Concerning i, a small i indicates the first several stages in 
the rule selection. 

3.3.2 Rule generation 1nechamsm 

Agents in OCS create new rules when all of the stored rules do not match the current 

environmental state (which indicates a situation in which agents encounter a new environ-
rnent). Since this rnechanisrn enables the agents to solve given problem not by utilizing 

acquired rules but by changing the contents or the quantities of rules themselves, the 

learning in this rnechanisrn corresponds to "individual double-loop learning" in organiza-

tion and rnanagernent science, and works as a kind of "learning in the creation/utilization 
of individual knowledge" in computational organizational learning. 
However, it is not realistic to create new rules without limit through this rnechanisrn. 

To overcome this problem, the rule with the lowest strength is removed and a new rule 

is generated when the number of rules is more than MAK_CF, which defines the maximum 
number of rules. In particular, when the situation does not change because the same rules 
are selected, the strength of the rules is decreased temporarily and these rules become 
candidates for a replacement with new rules. Through this mechanism, agents can adapt 
to changes of their environments. In the rule generation, the condition (if) part of a rule 

is created to reflect the current situation, and the action (then) part is determined at 
random. Moreover, the strength values of the rules are set to the same initial value. 

3.3.3 Rul e exchange mechanism 

In OCS, agents exchange rules with other agents at a particular interval of time. Since 
this mechanism contributes to cooperation among the agents and improves the problem 
solving efficiency not by changing the contents or the quantities of the rules stored in the 

organization but by utilizing knowledge through the local interaction among the agents, 
the learning in this mechanism corresponds to "organizational single-loop learning" in 
organization and management science, and works as a kind of "learning in the exchange 
of individual knowledge" in computational organizational learning. 

As a concrete algorithm, rules with low strength values are replaced with the rules with 

high strength values between two arbitrary agents according to the following mechanism. 

This rule exchange mechanism works as a crossover operation, but it differs form the elite 
selection principle in conventional evolutionary approaches (which selects one elite popula-

tion among large populations in this case). In the following mechanism, CRDSSDVER_TIME, 
CROSSOVER寧， andBORDER_ST are respectively defined as the interval steps for crossover 

operations, the number of replaced rules, and the rule strength which decides whether or 

not the rule must be replaced. 

• At CROSSOVER_TIME step, two agents are selected at random, and the CRDSSOVER_NUM 
rules are replaced. For example, when agent X and Y are selected as shown in Fig. 

3, rules with low strength values in agent X and Y are replaced with rules with 
high strength values in agent Y and X (C F1 ~ C F3 and CF{ ~ C Fl are replaced, 
respectively, with CFL2 ~ CF£and CFj-z ~ CFj in this case). This method not 
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only prevents agents from getting into deadlock situations, but also improves the 
organizational performance by propagating effective rules among the agents. 

• After the crossover operations, the strength values of the replaced rules are reset to 
their initial values. This reflects the situation in which effective rules in some agents 
are not always effective for other agents in multiagent environments. 

• In order to avoid unnecessary crossover operations, the rules are not replaced when 
their strength values are higher than BDRDER_ST. This method contributes to a quick 
division of work for solving given problems. 
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Figure 3: Rule exchange mechanism 

3.3.4 Org . an1zat10nal knowledge reuse 1nechan1sm 

Finally, agents store the knowledge on the division of work through the cycle of solving 
given problems and reuses the knowledge when other problems are provided. Since this 
mechanism contributes to extending the range of problem solving by creating and utiliz-

ing the knowledge on the division of work, the learning in this mechanism corresponds 
to "organizational double-loop learning" in organization and management science, and 
works as a kind of "learning in the creation/utilization of organizational knowledge" in 
computational organizational learning。

Here, we define organizational knowledge in OCS as knowledge on the division of work, 

and it is implemented by a set comprising each agent's rule set (individual knowledge). 

For example, when we assume RS(x) as the rule set for the x-th agent, one unit of 

organizational knowledge is represented by {RS (1), RS (2), ・ ・ ・RS (X)}. Concerning 
this knowledge, the memory of all agents contains the same knowledge in the first stage 

of OCS. 

As a concrete algorithm, agents store the rule sets of all agents when they solve given 
problems most effectively (e.g., with the minimum number of steps). For example, when 

we assume that problems are solved by x number of agents most effectively with using 

their rule sets, a set comprising each agent's rule set which leads some functions (e.g., 

A→ B→ C→ B→ C・・ ・) as shown in Fig. 4 is stored. This kind of knowledge 
contributes both to reducing the number of iterations and to solving given problems 

which cannot be solvedヽvithoutthis knowledge. 
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Figure 4: Organizational knowledge reuse mechanism 

3.4 Supplemental design principles 

In addition to the above mechanisms, OCS has the following principles. 

• Agents behave according to the behavior in the action part of the selected rule. 

• At the beginning, the FIRSLCF rules in each agent are generated at random, and 
the strength values of all rules are set to the same value. In this case, FIRST _CF is 
defined as the number of rules provided to each agent at the beginning. 

4 Printed Circuit Board Design Problem 

4.1 Problem Descr1pt1on 

Since printed circuit board (PCB) problems are familiarity to the multiagent domain, we 
apply OCS to such a problem for analyzing the characteristics of multiagent learning as 
one of socially situated intelligence. The goal of this problem is to appropriately place all 

parts whose total wiring length is short. As an assumption, circuit diagrams are given, 

and the types and the number of parts are also given in advance. 
In this task domain, the parts are designed as agents in OCS, and have 10 kinds of 
primitive behaviors as shown in Table. 1. Using these behaviors, the parts aim to acquire 

their own functions (a sequence of behaviors) to minimize the total wiring length through 
local interaction among parts. As an assumption, the parts can recognize overlapping 

areas and the local wiring length, but they do not know the total wiring length and their 

effective behaviors beforehand. 

4.2 Index of E 
． 

valuation 

In this PCB design, the parts continue to acquire their functions to血nimizethe total 

wiring length from the initial placement・when all parts are placed. In this cycle, we 
count one step when all parts perform one behavior as shown in Table 1, and count one 

iteration when the parts are all placed. Furthermore, the accumulated steps are defined as 
□言ユterationstep (i) and are assumed as the computational complexity. In this equation, 
i, step (i), and max_iteration indicate respectively the iterations, the steps of i iterations, 

and the iterations when the values of the steps converge. 
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Table 1: Primitive behaviors in parts 
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5 Simulation 

5.1 Contents of experiment 

In the simulation, the effect of the following each mechanism and the integration of all of 
the mechanisms are investigated. 

• Reinforcement learning mechanism: Corresponding to individual single-learning 

• Rule generation mechanism: Corresponding to individ叫 double-learning

• Rule exchange mechanism: Corresponding to organizatio叫 single-learning 

• Organizational knowledge reuse mechanism: Corresponding to organizational 
double-learning 

Actually, the following 15 cases are tested with PCB design problems mentioned in the 
previous section, and the differences in the 15 cases are compared. In the experiment, a 
PCB design problem comprising 92 parts is addressed. Concretely, 40 parts are added to 
the original 52 parts, and the types of parts include a CPU, condenser, register, jumper, 

and so on. Using real CAD data, we evaluate (1) the total wiring length, (2) the steps, 
(3) the iterations and (4) the accumulated steps. 

• Cases 1, 2, 3, 4 : R, G,X,K 

• Cases 5, 6, 7, 8, 9, 10 : RG, RX, RK, GX, GK, XK 

• Cases 11, 12, 13, 14 : RGX, RGK, RXK, GXK 

• Cases 15 : RGXK 

In the above cases, R indicates a Reinforcement learning mechanism, G indicates a 

rule Generation mechanism, X indicates a rule eXchange mechanism, and K indicates 

an Organizational Knowledge reuse mechanism. For example, RGXK indicates the case 
that all four of the mechanisms are included. 
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5.2 Setting for experiment 

When we apply OCS to PCB design problems, the learning mechanisms in OCS are 

designed as follows. 

• Reinforcement learning mechanisn1.: 
Rewards are distributed to a sequence of fired rules in each part according to the 

reinforcement learning function as shown in Fig. 2 or Eq. (1) when all parts are 

placed, and the parts restart in finding the appropriate placement using their rules 
continuously. 

／ • Rule generation exchange mechams1n: 
When parts cannot remove overlapping areas or cannot make appropriate spaces 

among parts due to the current selected rules, the strength of these rules is decreased 

temporarily and these rules are removed in the rule generation/ exchange mechanism. 

• Orgamzat10nal knowle~ge reuse mechamsm: 
Organizational knowledge implemented by a set comprising each agent's rule set is 

prepared using a small PCB size in advance, and is reused as an initial rule set of 
parts in the PCB design with 92 parts. In this case, the small PCB size is composed 
of 45 parts and its layout is designed by adding 20 parts on to the 25 original parts. 
When we assume RS_y(x) as the rule set of the x-th agent which designs the PCB 
with y parts, the、vayof reuse is described as follows. 

RS92(x)← RS4s(mod((エー 1),45) + 1), x = l, ・ ・ ・, 9 2 

As another setting for this experiment, the variables of OCS are set as follows: 
FIRSLCF (the number of initial rules of each agent) is 50, MALCF (maximum number 

of rules) is 100, CROSSDVER_TIME (the interval steps for crossover operations) is 100, 
CROSSOVER...NUM (the number of replaced rules) is 5, BDRDER_ST (the lowest strength of 

the rule not for removal) is -50.0, R (the size of the reward) is 1, and G (the geometric 

ratio) is 0.5. 

5.3 Experimental results 

Table 2 shows the results of PCB re-design in terms of (1) the total wiring length, (2) the 
average steps which are calculated until the value of the wiring length converges, (3) the 

iterations which are counted until the value of the wiring length converges and (4) the 

accumulated steps(= (2)x(3)). 
In this table, the attributes of the horizontal and vertical axes indicate the learning 
at an organizational level and individual level,・respectively. Furthermore, "-" in the 

left-top side box indicates that there is no experiment, and "x" in each box indicates 

that the agents cannot solve the given problems. The number in the first (upper), second, 

third, and fourth (lower) line of each box indicate the total wiring length, the average 

steps, the iteration counts and the accumulated steps, respectively. Moreover, R, G, X, 
and K indicate each of the learning mechanisms mentioned in section 5.1, and the four 
types of arrows indicate the effects of the four learning mechanisms with the change of a 

numerical value. From this table, we can make the following remarks. 
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Table 2: Total wiring length (first line), Average steps (second line), iteration 

counts (third line) and Accumulated steps (fourth line) 

、、，ヽ
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(X) 

None X 
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Rule Generation 128 89 
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""" ．．．．． ......... , ,-----::,........... :rm, 
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Knowledge Rule 
Reuse Exchange & 
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X X 

X X 
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31218 24616 
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一
130 

27 19 
74304 2470 
I I 

RGK t ＇ RGXKt ＇ 
25490 23206 
820 -r+- 138 
24 38 
19680 5244 
......... _ ........... .. ...... ...... .... ” 

Reinforcement learning minimizes the total wiring length, but increases both the 

steps and the iteration counts. From this factor, this mechanism contributes to 

finding an effective solution, but it leads to a large computational complexity. 

• Rule generation mechanism: 
Parts are not able to be placed without a rule generation mechanism. This implies 

that this mechanism is indispensable when necessary and appropriate rules are not 

known beforehand. 

• Rule exchange mechamsm: 
Rule exchange mechamsm not only minimizes the total wiring length but also re-

duces the steps. Since a big change (increase or decrease) in the iteration counts 

is not found, this mechanism contributes to finding effective solutions with small 

average steps. 

• Organizational knowledge reuse mechanism: 
Although organizational knowledge reuse mechanism reduces the iteration counts, 

there is no notable tendency in the total wiring length or the average steps. However, 

this mechanism finds the minimum total wiring length with reducing both the steps 

and the iterations by integrating other mechanisms in OCS. 
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6 Discussion 

6.1 Analysis 

In order to investigate socially situated intelligence, this section analyzes the simulation 

results, and examines the characteristics of each learning mechanism in computational 

organizational learning and the effect of the integration of these four learning mechanisms. 

In the case that all parts are placed on a PCB, we investigate the change of the 
functions (a sequence of behaviors) of one part in every iteration, and show the change 

as in Table. 3. In this table, the 10 symbols (a ~ j) indicate the primitive behaviors 
mentioned in section 4, and one function is composed of the combination of these 10 

behaviors. Especially in the function, the behaviors on the left side indicate behaviors 

selected in the first several steps, and the behaviors on the right side, in constant, indicate 

behaviors selected in the last several steps. Furthermore, "()" indicates the first behavior, 

which is different from the behavior in the previously acquired function. R, G, X and K 

indicate each of the learning mechanisms mentioned in section 5.1. 

Since the tendency of the other parts is almost the same as shown in Table 3, this 

section analyzes the results in one part. From this table, we make the following remarks. 

• Effect of the rule generat10n mechamsm 

-Function change: G 
A part with the rule generation mechanism (represented as G) creates new 
rules when the part encounters a new environment and has no rules matching 

the current environmental state. Due to this mechanism, the location of the 

function change is shifted to the right side as shown in Table 3-1. This means 

that parts cope with the current situation with their own rules and create new 
rules only when they cannot cope with the current situation by their own rules. 

From this result, we find that this mechanism enables parts to adapt to the 

changes in their environments by creating necessary rules only when they are 

needed. Since the variety of behaviors increases by the creation of new be-

haviors, this mechanism works as a generator of search methods or works as a 

generator of search operators from the viewpoint of search. 

-Total wiring length and computational complexity: G 
Since rules are not created frequently, solutions (i.e., the total wiring length in 

this simulation) by the rule generation mechanism converge in small iterations. 

However, this mechanism does not alway create appropriate rules. Due to 

this fact, the total wiring length may become long and the average steps may 

become large. To support the understanding of the reason for this, let us 

assume a situation in which a lot of parts overlap each other as shown in Fig. 

5 (a). If the grey shaded part creates a rule for rotation when it has no rules 
for this situation, this rule is selected continuously as show in Fig. 5 (b). 

However, the situation does not change drastically, and the part cannot reduce 

the overlapping area by itself. 

Since the total wiring length may become long and the steps needed for re-

ducing overlapping area may increase in the case of a high density of parts, 

the transference as shown in Fig. 5 (b) or the movement as shown in Fig. 
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Table 3: Acquired function in every iteration 

Table 3-1 
Iteration I Acquired function by G mechanism 
1 bgdgbcfgcbccdcbgfificcific 

2 bgdgb(f)ccfificdcbdcbfcci 

3 bgdgbfc(f)cbcgdgccifcfcifbd 

4 bgdgbf cf cbc (d) cicbif ccfbdici 

5 bgdgbfcfcbcdcicb(c)iifccfb 

6 bgdgbfcfcbcdcicb(d)fcbciffciic 

7 bgdgbfcfcbcdcicbdfcbc(c) ifci 

8 bgdgbfcfcbcdcicbdfcbc(e)icdifi 

9 bgdgbfcfcbcdcicbdfcbc(c)ific 

10 bgdgbfcfcbcdcicbdfcbccifi(g) igd 

Table 3-2 
Iter些 Acquired function by RG mechanism 

bgdgbcfgcbccdcbgfificcific 

bgdgb(f)ccfificdcbdcbfcci 

bgdgbfc(f)cbcgdgccifcfcfi 

bgdgbfcfcbc(i)ccbbdfcccifci 

bgdgbfcfcbcicc(c)cidiffcfcgdi 

bgdgbfcfcbcicccci(f)fdfcc 

bgdgbfcfcbcic(d)cgjbbhdificcfcbgdbib 

bgdgbfcfcbcicdcgjb(h)cifificcccf 

bgdgbfcfcbcicd(g)bcdfcfiic 

1 

2 

3 

4 

5 

6 

7 

8 ， 
10 

11 

12 

13 

14 

15 

， 

bgdgbf cfcbcicdgb (f) cciccbcf if 

bgdgbfcfcbc(c)dgbdcdcbcfficfi 

bgdgbfcfcbccdgb(c)cifccgdiff 

bgdgbfcfcbccdgbccifc(d)cgdiff 

bgdgbfcfcbccdgb(d)ccifccffibi 

bgdgbfcfcbccdgbdc(i)fccfibficjbhed 

Table 3-3 
Iteration I Acquired function by GX mechanism 
1 bgdgbcfgcbccdcbgfificcf 

2 bgdgb(i)f cbcdfgbccf ciccfgdciif 

3 bgdgbifc(c)dccbbficfibc 

4 bgdgbif c (b) cbcicf igcdf ci 

5 bgdgbifcbc(d)cficgcicicf 

6 bgdgbif cbcdcf (g) ccbdf iccibgi 

7 bg(b) ccdcbficbggcdifcfci 

8 bgbcc(b)dcdcbdeegfifcgcifcfci 

9 bgbccbdcdcbd (f) cif icicif 

10 bgbccbdc(i)cfcfidgficcbigd 
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(a) Orginal layout (b) Rotate 

↓ " 

゜
圃璽

~ 

゜
(c) Transference (d) Move 

Figure 5: Behavior when part density is high 

5 (d) is preferred. Especially in the former case, the transference contributes 
to reducing both the total wiring length and the average steps, because this 
behavior enables parts to jump to areas where the part density is low. In the 
latter case, on the other hand, the movement for making other overlapped parts 
move to the other side contributes to reducing the average steps, because the 

overlapping areas are removed quickly. 

• Effect of the reinforcement learning mechanism 

-Function change: RG 
In the case of mtegrating the rule generation mechanism and reinforcement 

learning mechanism (represented as R), the function changes around the middle 
location, as shown in Table 3-2. This indicates that it is necessary for parts 
to learn to acquire new functions continuously because the behaviors of some 
parts affect the learning of other parts in multiagent learning. Therefore, the 

function of a part changes again and again in Tab. 3-2. From the viewpoint of 
search, this mechanism works as a entity that finds effective solutions or works 

as the learning by using operators. 

-Total wiring length and computational complexity: RG 
Since the functions of each part change in every cycle of learning when the 

reinforcement learning mechanism is introduced, the iterations counted until 

the solution converges become large. However, the search area is extended and 

the parts have a chance to acquire the transference or the movement instead of 

selecting the rotation as shown in Fig. 5, even in the case of a high density of 

parts This kind of learning contributes to minimizing the total wiring length. 

• Effect of the rule exchange mechanism 

-Function change: GX  

In the case of mtegratmg the rule generation mechanism and rule exchange 
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mechanism (represented as X), the function changes at the left side location 
(which means that the behavior changes in early steps), as shown in Table 3-3. 
This indicates that the rules that cannot contribute to reducing overlapping 

areas like the rotation shown in Fig. 5 (b) are removed and new rules are 

introduced from other parts through the rule exchange mechanism, and also 

indicates that these rules are selected in the first several selections because the 
density of parts is high especially in the first steps. 

From the viewpoint of search, this mechanism works as an entity to change the 
search range or works as an entity to change search operators. This kind of 

mechanism enables parts to get out of deadlock situations or local minimum 
solutions, and also contributes to shifting the direction for finding effective 

solutions by removing ineffective rules. 

-Total wiring length and computational complexity: GX 
In the case of introducing the rule exchange mechanism, the rules are exchanged 

continuously until the overlapping areas are removed by acquiring the trans-
ference or the movement instead of selecting the rotation as shown in Fig. 5, 
especially when the density of parts is high. Due to this mechanism, the total 
wiring length becomes short and the average steps become small. 

• Effect of the organizational knowledge reuse mechanism 

-Total wiring length and computational complexity: GK, RGK, GXK, 
RGXK 
By introducing the organizational knowledge reuse mechanism (represented as 
K), the iterations become small as shown in Table 2. This result suggests that 
organizational knowledge on the division of work is general and it contributes 

to utilizing the effective characteristics. From the viewpoint of search, this 
mechanism works as an entity to effectively limit large search ranges or works 
as the creation/utilization of macro operators. 

• Effect of Integration of four learning mechanisms 
From the results, we have found that all of the three indexes (which mean the total 

wiring length, the average steps, and the iterations) in RGXK which introduce all 
of the above mentioned four mechanisms become short or small. This is because the 
four learning mechanisms in OCS work respectively as (a) a search function, (b) a 

generator of search methods, (c) an entity to change the search range, and (d) an 
entity to effectively limit large search ranges, and because each mechanism works in 

different dimensions. However, this feature also indicates that the solution or the 
computational complexity (= averagesteps x iterations) becomes worse when one 
of the mechanisms is血ssing.

From this factor, the four mechanisms in OCS work effectively by integrating with 

the other mechanisms, in addition to make up for the defects of the other mecha-
nisms. In particular, the effective knowledge is utilized by exploiting the characteris-

tics of a search space through the rule exchange mechanism and the organizational 

knowledge reuse mechanism, and the ineffective knowledge is modified/removed 

by exploring another search space through the reinforcement learning mechanism 

and the rule generation mechanism. Furthermore, this factor suggests that itera-

tions among various levels or types of learning mechanisms in addition to iterations 
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among agents contribute to improving the collective performance and the ability of 
the problem solving. 

6.2 Socially situated intelligence and computational organiza-

tional learning 

Through CMOT based simulation using OCS and the analysis mentioned in the previous 
section, we find that the following results contribute to implementing or improving socially 

situated intelligence. 

• First, the architecture, in which a lot of agents behave according to their deci-
sion making and are affected through local interaction with other agents, needs to 

implement socially situated intelligence. This means that we have to design the 

organization as a group of a lot of agents, instead of designing it as one agent. OCS 

is satisfied with this condition. 

• Second, the integration of the four learning mechanisms in computational organiza-
tional learning contributes to improving socially situated intelligence. This indicates 
that iterations among learning mechanisms in addition to iterations among agents 
are required to implement socially situated intelligence at a high level. 

• Third, there are two levels in learning mechanisms in terms of the level between 
individual and organizational loop learning, and each mechanism is divided into 
two types in terms of the level between single-and double-loop learning. Since the 
collective performance and the ability of problem solving become worse when one 

of the learning mechanisms is missing, the integration of various levels and types of 
learning mechanisms contributes to improving socially situated intelligence. 

What is important to be mentioned here is that these results acquired by an analysis on 
operationalized organizational learning can be applied to a lot of systems with multiagent 

architectures and can contribute to engineering and social science in terms of implementing 
social situated intelligence at a high level. 

However, some issues to be uncovered remain in our OCS framework. First, this paper 
omits any investigation on the size effect, which depends on the combination of various 

levels or types of learning mechanisms. From this factor, the next topic of research has to 
focus on analyzing other levels or types of learning mechanisms and also on the effects of 
integrating these mechanisms. Second, we have only analyzed socially situated intelligence 

in terms of the improvement of both the collective performance and the ability of problem 
solving. This does not imply that there are no possibilities to other CMOT approaches 

to socially situated intelligence. Third, each leaning mechanism in this paper might be 

designed in a different way and other computational definitions of organizational learning 
might be made. Fourth, the relationship between the organizational structure and socially 

situated intelligence has to be analyzed, and the effect of knowledge creation [Nonaka 95] 

which able to cope with explicit and tacit knowledge should be investigated from the 

viewpoint of socially situated intelligence. 
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7 Conclusion 

This paper makes the concept of organizational learning operational from the viewpoints 

of CMOT, and analyzes characteristics of multiagent leaning as one of socially situated 

intelligence with four operationalized learning mechanisms in organizational learning. The 

main results are summarized as follows: (1) four learning mechanisms in our model work 
respectively as (a) a search function, (b) a generator of search methods, (c) an entity to 

change the search range, and (d) an entity to effectively limit large search ranges; (2) these 

four mechanisms work effectively by integrating with other mechanisms, in addition to 

make up for the defects of the other mechanisms. (3) besides the interaction among agents, 

the interaction among learning mechanisms is required to implement socially situated 
intelligence at a high level; and (4) there are two levels in the learning mechanisms for 

multiagent learning (the individual level and organizational level) and each mechanism is 

divided into two types (single-and double-loop learning). The integration of these various 

levels and types of learning mechanisms contributes towards improving socially situated 
intelligence. 
Future research includes the following. 
•Ana叫ysis of socially situated intelligence with other CMOT approaches. 

• An investigation on socially situated intelligence with other designs of learning mech-
anisms or with other computational definitions of organizational learning. 

• An investigation on the relationship between the organizational structure and so-
cially situated intelligence 

• An analysis of the effect of knowledge creation from the viewpoint of socially situated 
intelligence. 
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