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A model of vowel perception based on missing 

feature theory 

Alain de Cheveigne, Hideki Kawahara 

Abstract 

Vowel identity correlates well with the shape of the transfer function of 

the vocal tract, or spectral envelope, rather than with the short-term spectrum, 

which contains peaks at multiples of the fundamental frequency (F 0) that sam-

ple the spectral envelope. It is not clear how the auditory system estimates the 

original spectral envelope from representations that it derives from the vowel 

waveform. Cochlear excitation patterns, for example, have high resolution in 

the low frequency region, and their shape varies strongly with F。.The problem 

is acute at high F 0s where the spectral envelope is highly undersampled. This 

paper treats vowel indentification as a form of pattern recognition with missing 

data. Rather than trying to interpolate the spectral envelope from an incom-

plete set of samples, we perform pattern matching restricted to available sam-

ples. Missing data points are ignored. In other words, a non-uniform weighting 

function, dependent on F。,is used to emphasize spectral regions near harmon-

ics of the fundamental, at the expense of other regions. The model is presented 

in two versions: a frequency-domain version based on short-term spectra or 

tonotopic excitation patterns, and a time-domain version based on autocon鴫ela-

tion functions. It accounts well for the fact that vowel identification is relatively 

insensitive to F。-relatedfeatures of the short-term spectrum. 

ー
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1 Introduction 

In voiced speech, the vocal tract is excited with a regular train of glottal pulses, due 

to opening and closing of the glottis at a rate equal to the fundamental frequency 

(F。). According to the acoustic theory of speech production (Fant, 1960), speech is 

the result of filtering this train by the vocal tract. Glottal pulses have a shape that de-

pends on the mode of phonation and characteristics of the speaker. This shape can 

be included mathematically within the vocal tract impulse response, in which case 

the vocal tract may be seen as excited by a train of infinitely narrow pulses in the 

time domain. In the frequency domain, if F。isconstant, the spectrum of the excita-

tion consists of a series of equal-amplitude peaks at multiples of F。.The spectrum 

of speech therefore also consists of peaks, but with amplitudes determined by the 

amplitude of the transfer function at multiples of F。.In other words, the transfer 

function is sampled at multiples of F。(Fig.1). 
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Fig. 1 Line: spectral envelope of vowel /al Dots: spectral envelope sampled at 

F0=200Hz. 

The timbre and identity of a sustained vowel are determined by the shape of the 

vocal tract transfer function, and particularly by the positions of the first two or three 

formants. However the listener hasn't access to this shape, but only to the waveform, 

or auditory representations derived from it. Figure 2 shows the RMS output of a 

bank of gammatone filters in response to vowel /a/. The filterbank has 150 channels, 
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equally spaced from 100 Hz to 4178 Hz. The pattern can be taken as approximat-

ing the activity evoked by the vowel over a tonotopic dimension (excitation pattern) 

(see Hirahara et al., 1996 for examples of responses recorded in the auditory system 

of the cat). At F。=50 Hz (top curve), the pattern is smooth with two clear peaks 

corresponding to the formants. At F。=200 Hz (middle curve) these peaks are still 

present, but slightly shifted, and there are many other smaller peaks at low channel 

frequencies. At F。=216 Hz, however, the peaks at Fl and F2 of /a/ are no more 

prominent than any other peaks, and it is not clear what aspect of the excitation pat-

tern might be used to characterize the vowel. Upon listening, the vowel's timbre does 

not change strikingly between 200 and 216 Hz. 
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Fig. 2 Magnitude of output of gammatone filter bank as a function of channel fre-

quency (excitation pattern). The filterbank had 75 channels uniformly spaced on a 

scale of equivalent rectangular bandwidth (ERB) from 100 Hz to 4178 Hz. Each 

curve is for a different F。.Note the peaks at harmonics for the higher two F。s,and 

the lack of unambiguous evidence for F 1 and F2 at F。=216Hz. 

One could make the hypothesis that the auditory system, by some process that is 

yet to be understood, forms an internal representation that is invariant over variations 

of F。.For example summation of activity of converging nerve fibers might smooth 

out the ripples visible in Fig. 2. Indeed, the figure of 3.5 bark has been proposed as an 

appropriate integration range for vowel spectrum matching. In this paper we argue 
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against this hypothesis for the following two reasons. (a) The sampling of the vocal 

tract implies a genuine loss of data: the waveform contains no information about the 

transfer function at frequencies other than multiples of the F。.Paradoxically, this 

loss is a consequence of repeated excitation of the vocal tract, and it is all the more 

severe as the repetition rate is high. Interpolation or smoo~hiりg cannot recover this 

information. (b) Interpolation, etc. are attempts to guess m1ssmg data based on an a 

priori model of what the missing data should look like. To the extent that the guess 

is incorrect, interpolated data will be misleading. 

1.1 The sampled spectral envelope 

The shape of a spectral envelope can be described in the Fourier domain along a 

dimension of inverse frequency (time interval, often referred to as lag, or quefrency). 

A smooth spectral envelope has mainly components at short lags. We shall use the 

term sampling lag to designate the sampling rate along the frequency axis, inverse of 

the spacing (F 0) between sampling points. From the sampling theorem, we know that 

a spectral envelope sampled at a sampling lag T:。=1/F。isadequately represented 

by its sample points if it contains no components beyond half the sampling lag, or 

Nyquist lag, T:。/2.
Consider for example the short-term spectrum of the vowel /a/ at F。=100 Hz 

[Fig. 3(a), top]. It resembles the spectral envelope sampled along the frequency axis 

at intervals of 100 Hz, with a sampling lag of 10 ms and a Nyquist lag of 5 ms. Sup-

posing that the spectral envelope contains no components (ripples) with lags larger 

than the Nyquist lag, it's shape can be accurately reconstructed from the short-term 

spectrum by filtering in the lag domain to remove components beyond the Nyquist 

lag. The lower curve in Fig. 3(a) shows the result of such filtering. Filtering was 

performed by taking the Fourier transform of the short-term spectrum, setting values 

beyond the Nyquist lag to zero, then applying an inverse transform. The result is not 

quite the same as the original (Fig. 1), implying that the original spectral envelope 

did in fact contain components beyond the Nyquist lag. However the differences are 

small, suggesting that little is lost by sampling at 100 Hz intervals. 

At 200 Hz [Fig. 3(b)] the peaks are wider and there is a strong ripple with a period 

inverse of the Nyquist lag (2.5 ms). At F。=300 Hz [Fig. 3(c)] the reconstructed 

envelope is severely distorted, indicating that the spectral envelope contained a large 

proportion of components beyond the Nyquist lag (1.67 ms), that were necessary 

to describe the original shape. Those components were lost in the voice production 

stage. 
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Fig. 3 (a) Short-term magnitude spectrum of la/ at F O = 100 Hz, and smoothed short-

term spectrum. Smoothing was pe,formed by taking the Fourier transform of the 

magnitude spectrum, setting it to zero for lags larger than the Nyquist lag Ti。=
1/2F。(5ms), and taking the inverse Fourier transform. The smoothed spectrum 

consists entirely of components below the Nyquist lag. (b) Magnitude spectrum and 

smoothed magnitude spectrum at F。=200 Hz. Note the ripples with a period cor-

responding to the inverse of the Nyquist lag (2.5 ms), that indicate that aliasing is 

taking place. (c) Magnitude spectrum and smoothed magnitude spectrum at F。=
300 Hz. Note the distorted shape and lack of evidence of F 1 and F2. 
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1.2 Smoothing considered as harmful 

Smoothing is often proposed as a means to remove F。-relatedstructure from the 

short-term spectrum, in order to obtain an F。-invariantrepresentation that can be 

matched to templates. Low-pass filtering in the lag domain (previous paragraph) is 

one example of smoothing The same idea underlies cepstral smoothing, performed 

by manipulating the cepstrum (Fourier transform of the log magnitude spectrum), 

and in Sect. 2.2 we suggest similar manipulations of the autocorrelation function, 

that is the Fourier transform of the squared magnitude spectrum. 

Smoothing or interpolation may be misleading. To see why, consider the smoothed 

envelopes produced by low-pass filtering in the previous paragraph. They embody 

the assumption that components of the envelope beyond the Nyquist lag are zero. 

That assumpton is incorrect, as evident from the mismatch between original and es-

timated envelopes. In other words, smoothing has replaced data that were incomplete 

but correct by data that are complete but incorrect. 

To further illustrate this problem, a simple vowel identification model was im-

plemented for the set of Japanese vowels /a/, le/, Iii, lo/, /u/. The reference template 

for each vowel was the spectral envelope of that vowel (magnitude of transfer func-

tion). Target vowels were synthesized at F。sranging from 20 to 300 Hz in 1 Hz 

steps. The short-term spectrum was calculated and smoothed by removing compo-

nents below the Nyquist lag (which depends on the target's F。). The smoothed spec-

trum was compared to each template, using a spectral distance calculated by scaling 

both target and template to an RMS value of 1, and then calculating their RMS differ-

ence. Target-template distances for /a/ are plotted in Fig. 4(a). The distance between 

the target /a/ and templates /el, Iii, lo/ and /u/ remains relatively large, despite some 

fluctuations. The distance from the "correct" template /a/ is smaller, but it increases 

steadily with F。,indicating that the estimated envelope is less and less faithful to the 

original. 

Similar plots for the target /i/ are shown in Fig. 4(b). In this case, at high F。S
the estimated envelope is actually closer to the incorrect /u/ template than to the cor-

rect /i/ template. The model thus fails. One might conjecture that the problem lies in 

the dissimilarity between smoothed and unsmoothed spectral envelopes, and that it 

might be cured if smoothed spectral envelopes were used as templates. Figure 4(c) 

shows similar data for templates smoothed at a cutoff lag of IO ms (Nyquist lag cor-

responding to a F。=200 Hz). The estimated envelope is now close to the correct 

template /i/ at F。=200 Hz, however at F。=300 Hz the incorrect template /u/ is a 

better match. Not only that, but distances from rival templates are now similar at low 

F。s,suggesting that smoothing erased features useful for discrimination. 
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Fig. 4 (a) Distance between reference templates for vowels /al, /el, Iii, lo/ and /ul, 

and the smoothed short-term spectrum estimated from a synthetic /al waveform, as 

a function of F。.Smoothing was peげarmedby removing all components beyond the 
Nyquist lag (1/F0). (b) Same as (a), for a synthetic Ii/waveform. (c) Same as (b), 

but reference templates were low-pass filtered at a lag of 1/400 Hz. 

The astute reader may have guessed a solution. As evident from the dip at 200 

Hz for /i/ in Fig. 4(c), a perfect match would be obtained at all frequencies if the 
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templates were smoothed at the same cutoff lag as the target. Reliable identifica-

tion could thus be achieved, provided that an estimate of the F。ofthe vowel to be 
matched was available. The model proposed in this paper is equivalent to such a 

procedure. 

2 Missing-data vowel identification model 

The model acknowledges that important spectral information was lost due to sam-

pling at F。multiples,and that the loss is irretrievable. Instead of trying to interpo-

late or otherwise estimate the missing parts of the transfer function, pattern matchi碑
proceeds using available features only, by giving zero weight to missing features m 

the pattern matching process. A similar idea underlies "missing feature" techniques 

that have been proposed recently in speech recognition to cope with deleted spectro-

temporal features (Cooke et al., 1996, 1997; Lippmann, 1997; Morris et al., 1998). 

Two versions of the model are proposed: one works in the frequency domain, and 

the other in the time domain. Both require an estimate of the F。ofthe vowel. 

2.1 F requency domain vers10n 

The frequency domain version of the model is straightforward. Spectral templates 

are assumed to be available for all vowel classes. The following steps occur when a 

vowel is recognized: (a) its short-term spectrum is estimated, (b) its F。isestimated, 

(c) a spectral weighting function is calculated that emphasizes regions near multiples 

of F。,(d) the short-term spectrum is compared to all templates, using the weighting 

function. Templates are defined for all frequencies, but comparison is restricted to 

certain frequencies. 

The weighting function can be defined as 

W(f) = I: J(f-鴫）
冗=0

(1) 

where 5 () is the Dirac delta function and瓦isthe estimate of F。.The spectral dis-

tance from target S to template Ti can be calculated as: 

D(S, Ti)= j(S(f) -Ti(f))2W(f)df (2) 

where S(f) is the target's short-term spectrum and Ti(!) is the ith template. 

The infinitely narrow peaks of W (f) in Eq 1 are satisfactory in theory. In prac-

tice, to accomodate inevitable inaccuracy in F。estimation,the peaks should widen 

gradually with f. With a square shape and relative widths of 3%, the weighting func-

tion would be equivalent to the harmonic sieve of Duifhuis et al. (1982), that has has 
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been proposed as a mechanism to select information in the context of pitch percep-

tion (Moore et al., 1984, 1985; Darwin et al., 1992) and concurrent vowel identifi-

cation (Scheffers, 1983). 

Reliable F。estimationis impossible for stimuli that are too short, whispered, or 
highly non-stationary, and in general at stimulus onset. However, in those cases the 

short-term spectrum is closer to the spectral envelope, and less affected by F。.Non-

uniform weighting is unnecessary. Weighting should thus be uniform by default, and 

gradually sharpen to emphasize F。multipliesif, and when, reliable F。information
is obtained. Many F。estimationschemes produce, as a by-product, reliability esti-

mates that could be used in such a scheme. 

Physiologically, one could imagine short-term spectral estimation as being per-

formed by the cochlea, sampled by non-uniform weighting of channels along a tono-

topic dimension, based on an F。estimate(itself possibly be derived from tonotopic 

information). The main difficulty with this scheme is to imagine how the set of variable-

pitch harmonic sieves is implemented across frequency channels, and how the appro-

priate sieve is selected based on the F。estimate.In the following section we consider 

an alternative model based on autocorrelation, that might be implemented physio-

logically using time domain processing. 

2.2 A utocorrelation version 

The Fourier-domain reasoning that was applied in Sect. 1.1 to the magnitude of the 

vocal-tract transfer function can be applied equally well to its square. The Fourier 

transform of the squared magnitude transfer function is the autocorrelation of the 

vocal-tract impulse response (AC Ftract). The squared transfer function of the vowel 

/a/ is plotted in Fig. 7(a), and the AC Ftract is plotted as a thin line in Fig. 5(a). When 

a vowel is produced with a constant F。,the squared vocal tract transfer function is 

sampled at multiples of F。.The sampling theorem tells us that the samples describe 

uniquely a spectral function that is band-limited to lags smaller than Ti。/2.In other 

words, the information available about the vocal tract in the samples is entirely con-

tained in the T < Ti。/2portion of the AC Ftract [Fig. 5(a), thick line]. 
According to Parseval's theorem, the Euclidean distance between square-magnitude 

spectra is the same as that between the corresponding autocorrelation functions. One 

can thus use autocorrelation templates instead of spectral templates to build a vowel 

identification model. 
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Fig. 5 (a) Autocorrelation of vocal tract transfer function (AC Ftract). (b) Illustra-

tion of the convolution process by which AC Fwave is derived from AC Ftract in the 

case where F o = 150 Hz. Copies of AC Ftract are shifted and added to obtain ACF wave 

{ thin line in (c)]. The vertical dotted lines indicate multiples of the period, 6. 67 ms. 

The thick line in (c) is an adjusted template. 

A problem remains. The autocorrelation function of the impulse response of the 

vocal tract (AC Ftract) is not directly observable. Observable is the autocorrelation 

of the waveform (AC Fwave), that is related to (AC Ftract) by the following relation: 

00 

ACF⑭ ave(T) = AC Ftract(T)。Lb(T -kT) 
k=-oo 

(3) 

where o represents convolution. ACF切 aveis the result of convolving AC Ftract by 

a periodic series of delta functions with period Ti。.The convolution is illustrated in 
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[Fig. 5(b)]. Copies of (AC Ftract) are shifted to multiples of 0, and added up. Because 

of overlap between the shifted functions, ACF wave differs from AC Ftract, even in the 

region T < Ti。/2.The discrepancy depends on F。.
For this reason, AC Fwave cannot make a perfect match to the templates, even if 

the match is restricted to T < Ti。/2.However, if F。isknown, it is possible to adjust 
the templates to obtain a perfect match. This is done by adding up appropriately-

shifted versions of ACFtract [exactly as in the convolution illustrated in Fig. 5(b)]. 

In this way, an accurate match is obtained between the correct template and the ob-

served AC Fwave [Fig. 5(c)]. 
We can thus formulate an autocorrelation version of the missing-feature vowel 

perception model. The following steps occur when a vowel is recognized: (a) the 

ACFwave is estimated from the waveform, (b) the F。isestimated, (c) the AC Ftract 

templates are adjusted based on the F。,and (d) they are compared to the AC Fwave 

over the O -Ti。/2range of lags. 
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Fig. 6 Ilustration of the hypothetical case of a vocal tract with a transfer function 

band-limited to lags smaller than 3.33 ms. ACF wave is derived from AC Ftract by 

convolution, but the r < 3.33ms portion is unaffected by the convolution and re-
mains equal to AC Ftract• Template adjustment is unnecessary in this (hypothetical) 
case. 

The adjustment step would be unnecessary if AC Ftract were limited to Ti。/2,as 

illustrated in the top of Fig. 6. In that case, AC Fwave and AC Ftract would be equal 

for T < Ti。/2(thick line in the bottom of Fig. 6). Leaving out the adjustment stage is 

equivalent to assuming that such is the case. This is almost equivalent to the simple, 

smoothed-spectrum matching model discussed in Sect. 1.2, the difference being that 

in that case the magnitude spectrum was supposed to be band-limited, whereas here 

it is the squared magnitude spectrum. 
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The squared magnitude spectrum emphasizes the high-amplitude parts of the spec-

trum at the expense of others [Fig. 7 (a)]. Formant F 1 is well represented (accounting 

for the ripple that dominates AC Ftract), F2 less well, and higher formants hardly 

at all. The magnitude spectrum used in Sect. 1.2 is a slightly more balanced rep-
resentation [Fig. 7 (b)]. The log magnitude spectrum represents peaks and valleys 

in equal detail, whatever their amplitude[Fig. 7 (c)], and its inverse Fourier trans-

form, the cepstrum, is widely used in speech processing. The success of the cep-

strum in speech processing applications suggests that the log magnitude spectrum, 

and cepstrum, might be more useful substrates for pattern matching than the square 
magnitude spectrum and autocorrelation used in the present model. This weakness 

of the autocorrelation function is partly compensated for in the model of the next 

section, where autocorrelation functions are calculated within channels of a basilar-

membrane/hair-cell model. 
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Fig. 7 (a) Squared-magnitude of transfer function of /al 

function of la/. (c) Log-magnitude transfer function of la/. 

(b) Magnitude transfer 

An interesting feature of the autocorrelation model is that high-pass filtering in 

the lag domain can be applied to the autocorrelation function to factor out large-scale 

variations (such as spectral tilt, etc.). A similar operation in the cepstral domain 

(high-pass cepstral "liftering") is used effectively for the same purpose in speech 

recognition applications (Tohkura, 1987). 
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1 e-tra1n cmncidence version 2.3 Sp"k ・

In Section 2.1 we suggested that the spectral version of the model might be imple-

mented by frequency-domain processing within the auditory system, based a tono-

topic representation. Here we describe how the autocorrelation version of the model 

might be implemented by time-domain processing within the auditory system, based 

on the temporal structure of nerve fiber discharge patterns. 

Autocorrelation of nerve fiber discharge pattern has been suggested as a basis 

for pitch perception (Licklider, 1951; Meddis and Hewitt, 1991 a,b). In the model of 

Meddis and Hewitt(1991 a,b), autocorrelation functions (ACF) of auditory nerve dis-

charge probability were calculated within each channel of a model of basilar mem-

brane filtering and hair-cell transduction. ACFs for all channels were added up to 

form a summary autocorrelation function (SACF). The pitch was derived from the 

position of the highest peak in the SACF. Many aspects of pitch phenomena are well 

accounted for by that and related models (de Cheveigne, 1998). 

The SACF was also proposed as a substrate for vowel identification by Meddis 

and Hewitt (1992). In their model, vowels were identified by matching the "low-

lag" portion of the SACF (T < 4ms). A similar scheme was used with success by 

de Cheveigne (1997), also for vowel identification. 

Figure 8 (top) shows an array of autocorrelation functions calculated from the in-

stantaneous discharge probability functions produced by a model of peripheral filter-

ing and hair-cell transduction (Slaney, 1993). The model had 40 channels uniformly 

distributed on a scale of equivalent rectangular bandwidth (ERB) between 100 and 

10000 Hz. The stimulus was a single impulse response of the vocal tract correspond-

ing to the vowel /a/. The combination of vocal tract and basilar membrane filter has a 

much longer impulse response than the vocal tract alone, which explains the slow de-

cay of the ACFs in Fig. 8 compared to Fig. 5(b), particularly in channels tuned to low 

frequencies or near a formant. Due to the rectifying property of the hair-cell model, 

ACFs are never negative. The non-zero baseline value is due to the fact that the hair-

cell model parameters produced a relatively high spontaneous discharge probability 
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(probability of discharge in the absence of stimulation). 
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Fig. 8 Top: Autocorrelation of auditory nerve fiber discharge probability as a June-

tion of channel frequency, in response to a single impulse of the vowel/al Probabili-

ties were produced by a model of peripheral filtering and hair-cell transduction, with 

50 channels uniformly spaced between 100 and I 0000 Hz on a scale of equivalent 

rectangular bandwidth (ERB). Bottom: summary autocorrelationfunction (SACF). 

Figure 8 (bottom) shows the corresponding summary autocorrelation function 

(SACF) (normalized by dividing by the value at zero lag). The SACF decays to a 

value that is relatively high, due to the summation of non-negative ACFs respond-

ing to different frequencies and phases, and to the relatively high spontaneous rate. 

Compared to the autocorrelation of the waveform [ ACFtract, Fig. 5(b)], the SACF 

lacks the strong ripple at the period of Fl. This is due to the saturating properties of 

the basilar membrane model, that limit the response at high amplitudes, and there-
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fore equalize contributions of different channels. Compared to AC Ftract, the SACF 

is more affected by F2 and other components, and relatively less by Fl. 
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Fig. 9 Same as Fig. 8, in response to vowel la/ at F。=150Hz. 

Figure 9 shows the response of the model to the vowel /a/ at F。=150 Hz. Each 

channel shows a peak at multiples of Ti。,as does the SACF. Over the interval 0-Ti。,
the SACF resembles the SACF obtained in response to the impulse response (thick 

line). This justifies the choice made by Meddis and Hewitt (1992) to use the low-lag 

portion of the SACF for their vowel-identification model. 

There are nevertheless differences between the two SACFs, as we observed pre-

viously for the wave-form based autocorrelation functions. Analysis of these differ-

ences is complicated by the presence of the non-linear hair-cell transduction stage. 

Because of the non-linearity, within-channel ACFs in response to the periodic stim-

ulus cannot accurately be calculated as a convolution, as in Sect. 2.2. The conse-

quences of this difference need to be worked out. 
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It is customary to consider the SACF instead of on the full ACF array (Meddis 

and Hewitt, 1992), but this is not mandatory. Matching can be performed on the 

ACF array, or better still, on an array of "sub-SACFs" calculated over sub-bands 

wide enough to avoid gaps between harmonics at high F。.One advantage might be 

better discrimination, as the array is a richer pattern than the SACF. Another is the 

possibility to factor out spectral tilt and other transmission channel characteristics 

(within-channel compression or automatic gain control might serve this purpose). A 

third is that parts of the partial-SACF array can be weighted differently, to handle 

"missing features" in the spectral domain (Cooke et al., 1997; Morris et al., 1998). 

An expanded version of Meddis and Hewitt's (1992) concurrent vowel segregation 

model could be implemented in this way. The ACF or sub-SACF array is thus a 

flexible starting point for sophisticated models of identification and segregation. 

3 Discussion 

3.1 F。-dependencyof vowel perception 
F。affectsany spectral pattern that can reasonably be extracted from the waveform, 

making the search for F。-invariantfeatures a difficult goal to attain. Our model sidestepped 

this problem by making the pattern matching process itself also dependent on F。.It 

should be stressed that in doing so we dealt with only one source of F。-dependent
variability. Other sources are variations with F。ofthe shape of glottal pulses, changes 
in the height of the larynx induced by changes in F。,the covaration of F。rangeand 

vocal tract dimensions within a population of speakers, intrinsic F。ofvowels, etc. 
(Carlson et al., 1975; Assmann et al., 1982; Rosner et al., 1994; Neary, 1989; Miller, 

1989; Hirahara et al., 1992, 1993; Ainsworth, 1971). To the extent that an orderly 

relation exists between F。andvowel quality, and that listeners exploit it, complete 
insensitivity to F。isnot necessarily desirable in a vowel perception model. Although 

vowel identity changes little with F。(Neary,1989; Slawson, 1967), elevation of F。
is known to increase error rates in multi vowel identifying or matching tasks (Ryalls 

and Lieberman, 1982; Sundberg et al., 1982; Benkolken et al., 1990; Rosner et al. 

1994; Gott:fied et al., 1986). This is understandable, as at high F。sthe widely spaced 
sample points provide less information about the vocal tract, even if they are used op-

timally as here. Variation in time of F。mighthelp by providing information about 

the derivative of the spectral envelope at each sample point (McAdams and Rodet, 

1988). However Marin and McAdams (1991) looked for such an advantage of" enve-

lope tracing" in a concurrent vowel identification task, and failed to find any. Tran-

sitions between vowels and consonants may also be of use, particularly at high F。S
(Sundberg et al., 1982, Strange et al., 1976; Gottfried et al., 1986). In fact, there 

is evidence that vowels can be identified from the unvoiced parts belonging to the 
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consonant with which they are articulated (Bonneau, 1996). 

3.2 Perception in the absence of F。
The model uses F。toadjust templates and/or restrict matching to certain features. 

That is impossible when a reliable F。estimateis unavailable, such as for stimuli that 
are short or otherwise non-stationary, whispered vowels, etc .. Whispered vowels are 

nonetheless intelligible, and it is known that vowel identity can be perceived from a 

single period of the vowel, whereas F。estimationrequires several periods (Robinson 
and Patterson, 1995). A model that requires F。seemsto be in trouble. 

Actually, this is less of a problem than it seems. When the vocal tract is stim-

ulated by a single pulse or noise, the short-term spectrum reflects the shape of the 

transfer function in a relatively unbiased way. The adjustments provided by our model 

are not required. A bias appears when the excitation is periodic, but in that case F。
can be reliably estimated, and the "missing-feature" model can step in and make the 

necessary adjustments. The model would thus operate by default in an F。-independent
mode, and would switch to an F。-dependentmode as soon as F。isavailable. 

Transitions may aid identificaton: Summerfield et al. (1984) remarked that a 

long-duration vowel waveform sounds vowel-like at onset, but may then loose its 

identity, and partially regain it at offset (see also Carre and Lancia, 1975). 

3.3 Relation to other models 

The spectral-domain version of the model is quite similar to the "harmonic sieve" 

of Duifhuis et al. (1982; Scheffers, 1983). The harmonic sieve was proposed by 

Duifhuis as a means to select the components of a sound that should enter the calcula-

tion of its pitch. Scheffers used it to assign components of a mixed-speech spectrum 

to each voice. Moore et al. (1985), and Darwin and Ciocca (1992) showed that a 

harmonic sieve with a width of about 3% determined which components of a sound 

contribute to its pitch. Darwin and Gardner (1986) found that mistuning a compo-

nent of a vowel by 3% reduced its contribution to the vowel's quality. In all those 

cases the harmonic sieve played an important role in segregating the harmonic sound 

from competing components. Here we suggest that it also plays a role in handling 

the bias due to F。inthe identification of isolated vowels. 
The model of Scheffers (1983) and the PEAK model of Assmann and Summer-

field (1989) also sampled the excitation pattern at multiples of F。,but they used it to 

construct a spectral envelope by interpolation. Features were extracted from peaks 

and shoulders of this envelope (as determined by zeros in the first and second dif-

ferential respectively). Interpolation beween sample points can be seen as the result 

of smoothing the sampled excitation pattern with a triangular window of width 2F。.
As such it is similar to the spectral smoothing that we discussed in the Introduction, 
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and vulnerable to the same criticism. For example, applied to the spectral envelope 

of Fig. 2(a) or (b) the PEAK algorithm would find two formants, but applied to that 

of Fig. 2(c) it would find only one. The strength of that algorithm, according to our 

analysis, is that it samples the excitation pattern at multiples of F。.Its weakness is 

that it then attempts to derive invariant features (formant peaks or shoulders) rather 

than exploiting the sample points directly. Similar problems are likely to exist for 

other smoothing schemes, such as the second integration of Rosner and Pickering 

(1994) or the 3.5-bark integration scheme of Chistovich (1985). 

Perception is known to depend on spectral characterics near peaks more than 

near valleys. This gives an advantage to models that extract formant positions. Ours 

does not do so implicitely, but this does not necessarily mean that it gives peaks and 

troughs equal weight. All depends upon the representation. For example, the square 

magnitude spectrum emphasizes high-amplitude parts of the spectrum, and the same 

is thus true of the ACF, its Fourier transform. Indeed, the excessive weight of Fl is 

a weakness of this representation, as cues to F2 are weak, and cues to higher for-

mants almost non-existent. By calculating the ACF independently in several chan-

nels, the auditory system may possibly obtain a better-balanced representation, in a 

sense closer to the cepstrum. 

The present model is a way similar to the whole-spectrum model ofBladon (1982). 

It takes care of the problem of F。-relatedmismatch, without running into the prob-
lems related to spectral smoothing and integration. Most models can be seen as "bottom-

up", in that the signal processing module is responsible for producing the best pos-

sible "F。-invariant"representation to be matched to internal templates. The present 

model has more of a "top-down" flavor, in that the pattern matching module has the 

responsibility of producing F。-dependenttemplates to ease the match with the rep-
resentation derived from the waveform. In this sense, it is related to "analysis-by-

synthesis" models (Bell et al., 1961), and bears some relation to the ideas of Chis-

tovich (1985). 

The proposition that the F。ofa vowel might be useful for its identification seems 

to contractict results that show that the identification of a member of a concurrent 

vowel pair is no better when that vowel is harmonic rather than inharmonic (de Cheveigne 

et al., 1995, 1997). 

3.4 Application to Speech Recognition 

The reasoning of Sect. 2.2, based on the square-magnitude-spectrum I autocorrelation-

function Fourier transform pair, can be applied as well to the log-magnitude-spectrum 

I cepstrum pair. The useful information carried by the set of F。-spacedsamples of 

the log magnitude spectrum is entirely contained in the part of the cepstrum with lags 

(or "quefrencies") below t。/2= 1/F。.
When the cepstrum is used for speech recognition, it is common to limit it to 
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small quefrencies to avoid the influence of small-scale details of the log-spectral 

envelope, in particular those due to F。.Indeed, taking a cepstrum, setting to zero 

beyond a limit, and taking the transform back to the spectral domain is a process 

known as "cepstral smoothing". The limit is usually fixed. Our reasoning suggests 

that things might work better if the limit depended on F。.What is sure is that val-

ues beyond the the Nyquist quefrency Ti。/2are meaningless, as far as the spectral 

envelope is concerned. 

As in the case of the autocorrelation function, values of the cepstrum smaller than 

T。/2are distorted in a way that depends on F。.In contrast to the autocorrelation 

case, it does not seem possible to describe this distortion as a simple convolution, as 

in Fig. 5. Without a model of the distortion, it is not possible to petform the template 

adjustment that was suggested for the autocorrelation (except via table-lookup). This 

question needs more work. 

LPC analysis is also based on the autocorrelation function limited to small lags 

(Rabiner and Shaffer, 1978). The reasoning of Sect. 2.2 tells us that values of the 

ACF beyond the Nyquist lag are meaningless. The logical implication is that the 

limit used in the LPC calculation (and thus the LPC order) should be made to depend 

onF。.Variable-order LPC is not without problems. 

Missing-data techniques handle the effects of F。inthe recognition phase. Re-

mains the problem of F。inthe training phase. Cooke et al. (1994) report experiments 
in which a speech recognizer was trained on incomplete data. Such techniques might 

be applied to handle the effects of F。inthe training phase of a speech recognizer. 

Alternatively, if low-F。speechis abundant and representatitive, it might suffice fot 
training. 

3.5 Relation to PPS 

PPS (pitch-period smoothing) uses F。toprovide the best possible smoothing (de 

Cheveigne andBiem, 1998), as does Kawahara's (1997) STRAIGHT. PPS is equiv-

alent to the smoothing of Sect. 1.2, and is the best way of handling F。-relatedstruc-
ture in a bottom-up fashion. However top-down application of missing-feature tech-

niques (based on the present model) should potentially lead to better results. 

3.6 Some related results 

These results will be weaved into the discussion of some future version of this report. 

• Assmann and Neary (1987) matched synthetic vowel-like stimuli with various 
shapes to a continuum of synthetic vowels with variable Fl. 

In general, the matched Fl was best predicted from the weighted sum of the 

two harmonics of highest amplitude in the Fl region. The single highest har-
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monic, the weighted sum of the three highest harmonics, and LPC analysis 

gave less good predictions. 

In one experiment, Fl was represented by harmonic pairs. Both harmonics had 

the same amplitude, or either the lower or the higher harmonic was boosted by 

9dB.F。was125 Hz or 250 Hz. Results were similar for both F。s:the matched 

Fl corresponded to the weighted sum of the two harmonics, even when they 

were widely spaced (250 Hz+ 500 Hz, 500 Hz+ 750 Hz, etc.) and would have 

been resolved by peripheral filtering. 

• Beddor and Hawkins (1990) matched nasal to oral vowels, and found that the 
Fl of the matching oral vowel was intermediate between the Fl and the "cen-

troid" of the nasal vowel. It was closer to the sharp nominal Fl than to the 

blunt FN. 

They also matched two-formant vowels with close formants (similar to /o/, /a/, 

/u/) to single-formant vowels. The frequency of the matched single formant 

fell between the Fl and centroid of the two-formant vowel, and closer to its 

Fl. The dominance of Fl was greater than for nasal vowels, suggesting that 

the centroid is more important when formants are wide (FN) and less when 

they are narrow (F2). 

Finally, they matched two-formant vowels with either wide (150 Hz) or nar-

row (45 Hz) bandwidths to two-formant vowels with medium bandwidths (75 

Hz) (lo/ and /a/). The match for narrow-formant vowels corresponded to a 

match of centroid frequencies, but the match for wide-formant vowels was dif-

ferent. The difference was attributed to differences in "spectral shape", con-

sequence of the interaction between formants and harmonics (when the for-

mant falls between harmonics, the peak appears flatter and thus matches wide-

formant vowels better). 

叫..where harmonics are sufficiently prominent, their frequency is of prime im-

portance…" "When the lowest frequency spectral prominence is broad, what 
is important is…the general correspondance in shape of the entire region of 
spectral prominence…" 

• Carlson, Fant, and Granstrom (1975) determined the Fl boundary between 
Swedish /i/ and /el, for FOs between 100 and 160 Hz. The boundary increased 

(from about 300 to 350 Hz), regularly and with no jumps. It did not correspond 

to either the "most significant" or the loudest harmonic. The weighted sum of 

two most prominent partials was the best predictor (but it was not clear how it 

predicted a shift with FO…)． 

• Carre and Lancia (1975) remarked that formant information in stationary high-
F。voicesis poor, anf suggested that transients may provide the missing infor-
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mation. 

• Bladon (1982) points out that formants are "indeterminate", in particular be-
cause when measured (on a spectrogram), at high F。,they tend to follow a 

harmonic, and thus vary with F。whereasthe vowel timbre remains constant. 

They use this to argue against the adequacy of the formant, as opposed to a 

"whole spectrum" difference metric. 

• Sundberg and Gauffin (1982) state that singers may maintain vowel intelligi-
bility up to 500 Hz for isolated vowels, and I 000 Hz in a eve context. In 

soprano singing F0 may be as high as 1500 Hz. 

They performed an identification experiment with 6 isolated vowels (12 al-

lowed response categories) at F。sfrom 260 to 700 Hz. Identification rate fell 
asF。increased.

• Traunmtiller (1982) found that single-formant vowels were identified on the 
basis of that formant's frequency if F。<350 Hz, and on the basis of the fre-

quency of the second partial if F O > 350 Hz. 

• Baru (1982) had dogs discriminate between vowels /a/ and /i/ at fundamentals 
of 120 Hz and 240 Hz. Discrimination was as good at 240 Hz as at 120 Hz, 

and training at one F。transferredto the other. Dogs were also capable of dis-

criminating 120 Hz from 240 Hz, and training from one vowel transferred to 

the other (does it transfer from one dog to the other?). 

• Ainsworth (1975) notes that children's voices are about 1 octave above adult 

men, and their formant frequencies about 30 % higher. 

In an identification task with "h*d" words, a I-octave rise in F。causeda 3-4% 

increase of perceived formant frequency. Increase was roughly the same for 

nominal F。sof 120, 240 and 360 Hz (details are unclear). 
• Darwin and Gardner (1985) found evidence that harmonics other than the two 

largest affect the "effective Fl". Effective Fl co汀espondedwell with results 

of LPe analysis. 

• Assmann et al. (1982) found that inclusion of an F。-basedparameter improved 
discriminant analysis of sets of acoustic parameters of vowels. 

• Benolken and Swanson (1990) asked a soprano singer to produce 12 american 

vowels atF。sof 262 to 1047 Hz. Identification rate decreased from about 70% 
at 262 Hz to about 10% at I 04 7 Hz. 
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• Neary (1989) notes the covariation of F。(overa 1 octave range) and formant 

frequencies (over a 30 % range) between adult men and children. However 

he also notes that a) the coupling between source and tract characteristics is 

very loose (orthogonal to a first approximation), and b) in a given speaker the 

variation of formant frequencies with F。issmall. 

In an identification experiment investigating intrinsic (such as F。)and extrin-

sic (such as context) normalizaton effects, he found that an octave change in 

F。causeda 7-9% change in Fl and about 1.5% change in F2. 

Neary notes that resolution of individ叫 harmonicsposes a problem for both 

formant-based and "whole-spectrum" theories. He also notes that the 3.5 bark 

critical separation between formants has "no counterpart in general auditory 

psychophysics", and should be classed as a "speech mode" effect. 

• Ryalls and Lieberman (1982) synthesized nine diphthong vowels of American 
English at fundamentals of 100, 135, and 250 Hz. Error rates were similar 

at 100 and 135 Hz, and greater at 250 Hz, even for vowels synthesized with 

formant frequencies adequate for female voices (based on data of Peterson and 

Barney, 1952). 

Ryalls and Lieberman attribute poor identification at high F。tosparse sam-

pling of the spectrum. 

• Klatt (1982) insists on the conflict between the need for filters to be wide-band 
(to remove differences between male and female speech) and narrow-band (to 

obtain sufficient spectral resolution). 

• Miller (1989) proposes an "auditory-perceptual" model which scales formant 
frequencies based on the cubic root of F。•

• Hirahara and Kato (1992) found that perceptual phoneme boundaries between 
Japanese vowels were much more stable in an (Fl-FO) vs (F2-FO) plane than 

in an Fl vs F2 plane, when FO varied from 123 to 423 Hz). Clusters for male 

and female speakers also overlapped better in that space. 

They suggested that the effect of F。mightresult from the dependency on F。
of the strongest harmonic near a formant, but they did not give enough details 

to know whether this explanation works for all vowels, at all F。s.
• Hirahara, Cariani and Delgutte (1996) recorded from (he auditory nerve of the 
cat in response to Japanese vowels /e/ and /i/ (for which F。affectedthe bound-
ary). At low F。,Fl and F2 were evident in the population rate-place response, 

and also in temporal patterns of discharge. At high F。,individual harmonics 

were evident in both representations. 
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• Hirahara (1993) found that Japanese /i/-/e/ Fl boundaries were a function of 

F。.When F。wasvaried from 100 to 450 Hz, the Fl boundary shifted from 

about 320 to 540 Hz, but not linearly. It shifted from 320 to 400 Hz when 

FO increased from 100 to 150 Hz. It then remained stable at 400 Hz when FO 

increased from 150 to 250 Hz. Finally it increased from 400 to 540 Hz when 

F。increasedfrom 250 to 450 Hz. This is not what one would expect if Fl were 
strongly influenced by the strongest harmonic near Fl. 

Conclusion 

This paper addressed the problem of F。-invariancyof vowel perception, using missing-
feature pattern matching techniques. In voiced vowel production, the transfer func-

tion of the vocal tract is sampled at multiples of the F。.Values between these points 

are missing. Reliable pattern matching can nevetheless be performed if the missing 

data are ignored in the matching process. This can be done in the frequency domain, 

using a spectral representation, or in the time domain, using the autocorrelation func-

tion. The autocorrelation version of the model can be implemented physiologically 

as a two-dimensional array of delay lines and coincidence-counting neurons, that 

calculate autocorrelation functions within each channel of the peripheral filter bank. 
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