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Abstract 

In this paper, we examine unsupervised learning for sequence of sub-millisecond tempo-
ral coded information in a network of neurons, which are assumed to have high temporal 

resolution. The learning scheme is based on a spatially and temporally local one, i.e., 

unsupervised Hebbian learning. The input sequence is temporal information that needs 

an accuracy on the order of sub-milliseconds. Through the learning, segregation of the 

synaptic connections occurs to form systematic structures in the network. Namely, the 

network develops in a self-organizing manner. The trained network works like an "as-

sociative memory" of the learned sequence, namely, the network responds when a newly 

input sequence is similar to the learned sequence. Consequently, the assembly of neurons 

is able to learn and distinguish an input sequence that carries information on the order 

of sub-milliseconds, although the spike emission intervals of the neurons are on the order 

of milliseconds. 

ー
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1 Introduction 

Recently, a temporal structure of neuronal activities has been considered to play an important 
role in defining the function of neuronal assemblies. It has also been considered that the 
behavior of a single neuron is highly dependent on the timing of its input spikes (Singer and 
Gray, 1995; Vaadia et al., 1995; Hopfield, 1995; Fujii et al., 1996). These are called "temporal 
coding" hypotheses. 
According to Softky and Koch, highly irregular inter-spike intervals suggest that a cortical 
neuron behaves more like a coincident detector than an integrator of the input spikes (Softky 
and Koch, 1993; Softky, 1995). If this is so, the irregular inter-spike intervals themselves 

may carry information. This hypothesis obviously differs from the conventional one, in which 
the inter-spike intervals cannot provide information representation but the temporally collective 
behaviors of the spikes can. The hypothesis by Softky and Koch offers a new possibility to clarify 
the computation mechanism of cortical neurons. However, their model had some problems in 
physiological plausibility (Shadlen and Newsome, 1994; Softky, 1995), i.e., a single neuron 
doesn't seem to have the capability to resolve spikes in such a precise timing. 
Unsupervised Hebbian learning h邸 alsobeen much studied in the literatures. It is origi-
nally a temporally and spatially local change of the synaptic efficacy based on the correlation 
between pre-synaptic activities and post-synaptic activities. Synaptic changes, i.e., long-term 
potentiations (LTPs) and long-term depressions (LTDs), are physiologically assumed to corre-
late to the timing of input spikes to the synapses (Stanton and Sejnowski, 1989; Markram et al., 
1997). Unsupervised Hebbian learning may play an important role in the primary development 
of the neural circuits. There are spontaneously generated rhythmic activities in the retina, 
which induce synaptic segregation in the lateral geniculate nucleus (Meister et al., 1991; Shatz, 
1990). This implies that an autonomously produced sequence contributes to the development 
and segregation of the visual pathway. Similar wavy activities are considered to be related to 

the construction of "columnar" structures in the visual cortex (Toyama et al., 1996). 
On the other hand, Gerstner et al. (1996) devised a time-dependent learning rule for a leaky 
integrate-and-fire neuron model and proposed a solution to the longtime problem of how barn 
owls detect the location of a sound. A barn owl detects a sound's location by using the time 
difference between the sound signal input to the left ear and that to the right ear. This time 
difference is on the order of sub-milliseconds. Interestingly, their model is able to distinguish the 
input on the order of sub-milliseconds, which is much smaller than the spike emission intervals 

of neurons. Since their model aimed to process a single frequency of the sound, a single neuron 
was sufficient. 
Let us assume that the neurons, which are not necessarily in the auditory pathway, have a 
high temporal resolution. In the network of such neurons, then, information would be carried 

by the temporal sequence of spikes. Although a single neuron would be insufficient to process 
the sequence, a neuronal assembly is able to process it. Under this assumption, in this paper 
we intend to extend the single neuron model proposed by Gerstner et al. (1996) to an邸 sembly
of the neurons, i.e., a network. 

In our study, a network of leaky integrate-and-fire neurons is trained by repeatedly providing 
an input sequence, i.e, by "reverberation" (Hebb, 1949). The learning scheme is based on a 
spatially and temporally local one, i.e., unsupervised Hebbian learning. The input sequence 
is a temporal information that needs an accuracy on the order of sub-milliseconds. Through 
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the learning, the segregation of the synaptic connections occurs to form systematic structures 
in the network. These structures cooperatively become distributed representation of the input 

sequence. Consequently, the network is able to learn and preserve the sub-millisecond input 
sequence, although the spike emission intervals of the neurons are on the order of milliseconds. 

In addition, the trained network works like an "associative memory" of the learned sequence. 
Namely, the trained network responds when a newly input sequence is similar to the learned 
sequence. 

In the learning process, although each neuron independently and locally learns to select 

appropriate connections from the other neurons so as to preserve their own periodical spikes, 

the whole network preserves and distinguishes the input sequence, i.e., global information. 
Namely, the network develops in a self-organizing manner. 

This paper is organized as follows. Section 2 describes our examined model. The model is 

a network version of a single neuron model proposed by Gerstner et al. (1993; 1996). Section 3 

describes the unsupervised learning employed in our model. The learning scheme is a spatially 
and temporally local one, and it is equivalent to the time-window method devised by Gerstner 
et al. (1996). Section 4 shows the simulation results of our model, which are our main contri-

butions. In section 5, we will present several discussions on our examined model. Section 6 
summarizes the paper. 

2 Simulation Model 

This simulation model consists of a processing layer and an input layer. The processing layer 

is composed of 16 processing neurons. The input layer is composed of 16 input units. There 
are 10 additional white-noise input units. 

2.1 Input layer 

In this paper, we consider a situation where the input layer produces a regular spike sequence 
as shown in Figure 1. The same sequence is repeatedly produced. The sequence is composed 

of four spike timings. The intervals between the first timing and the second timing,, between 

the second timing and the third timing, and between the third timing and the fourth timing 
are 9T, 7T, and 8T, respectively, where T = 0.25[ms]. After 6T from the fourth timing, the 
first timing comes in its turn again. At every spike timing, four units among 16 input units 
simultaneously emit spikes. Therefore, the 16 input units are separated into four groups with 

respect to their spike timings, and each of the 16 input units emits a single spike during the 

single sequence whose time period is 30T = 7.5[ms). 
Each processing neuron is connected to each input unit. The m-th spike emitted by the 

j-th input unit arrives at the i-th processing neuron, according to the probability density: 

P(tli,j,m) = 
1 (t -Tfnー△屈）2
喜 exp[- Za']  (1) 

△炉 denotesthe transmission delay from the j-th input unit to the i-th processing neuron 
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and is assumed to obey a Gaussian distribution N(l.00, 0.01).1 T. ぶisthe m-th spike emission 
time of the j-th input unit. CY is the input jitter, which is set at 0.02[ms]. 
Besides the spikes from the 16 input units, every processing neuron also receives white-noise 

spikes, which are produced by 10 additional input units. They fire at the rate of one spike per 

millisecond, which is more frequent than the rate of the regular spikes. Since these spikes obey 

a uniform distribution, the distribution of their arrival time also becomes uniform. 

2.2 P rocess1ng layer 

The processing layer is a one-dimensional network of 16 neurons with a periodical boundary 

condition. Neurons are indexed by their spatial location. Neuron i is bi-directionally connected 

to its ten neighboring neurons i -5, …, i -1, i+ 1, …, i + 5. Each pair of connected neurons has 
four synaptic connections which are indexed by q. A spike from the i-th pre-synaptic neuron 

is transmitted through the axon to the j-th post-synaptic neuron with an ax:onal delay time of 

△ ii = 0.25• Ii -il[ms]. The spike provokes the synapses to release neurotransmitters, which 
evoke excitatory post-synaptic potentials (EPSPs) on the post-synaptic neurons. The time 

delay of the evoked EPSP via the qth synapse of the connection, △； r q'obeys N(0.9,0.18). 
Then, the transmission delay from the i-th pre-synaptic neuron to the j-th post-synaptic neuron 
via the q-th synapse becomes△'-!.=△呼＋△~~n q. 

””” It should be noted that the actual transmission delay is mainly due to the synaptic de-
lay. Although the actual ax:onal delays are small enough to be ignored in comparison with 
the synaptic delay, we set them to be relatively large in order to discriminate the neuronal 
connections and to easily see the simulation result, shown in Section 4. We have investigated 

the case for△行+1= 0.01 and△; t q ~ N(l.88, 0.57). These conditions are physiologically 
more plausible than those described above. The experimental results with these conditions are, 

however, almost similar to those shown in Section 4. 

2.3 Neuron model 

We adopt a leaky-integrate-and-fire model in order to describe the membrane property of the 

processing neuron. The leak in this model is strong, so neurons can detect spike's incident in 

a short period of time. We also define refractoriness after each spike emission. 

2.3.1 Membrane potential 

The membrane potential of the i-th neuron is defined as Vi = h叶 href,where hi and hrer represent 
an integration of EPSPs and a refractory potential, respectively. hi is given by (Gerstner et al., 

1996) 

d~ 門＝一h;~)+氾J,)exp [ー~]- (2) 

The summation is taken for tf < t. tf is the evoked time of the f-th EPSP in the i-th Jq Jq 

post-synaptic neuron by the j-th pre-synaptic neuron through the q-th synapse, and Ji} is the 

1In this article, N(a, b) denotes the Gaussian distribution whose mean and standard deviation are a[ms] and 
b[ms], respectively. 
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transmission efficacy of the synapse. If the j-th pre-synaptic neuron fires at t1, tjq = t1 +△炉
The membrane time constant, Tm, and the synaptic time constant of EPSP, Ts, are set at 
O.l[ms]. The membrane time constant value is small compared with the known physiological 
data (Shadlen and Newsome, 1994). According to Softly and Koch, however, cortical neurons 
should have a small time constant of Tm ::;; 0.2[ms] in order to observe plausible inter-spike 
intervals (Softky and Koch, 1993). This time constant value is smaller than the actual value. 
In this case, each neuron behaves more like a coincidence detector than an integrator. 
When the membrane potential Vi exceeds the threshold 0(= 3.3[i.u. ド）， an.action potential 
is provoked, and vi is reset to the resting potential. The generated action potential transmits 
through the axon. Since it is spatially and temporally localized and obeys an "all-or-nothing" 
rule, it is called a spike. 

2.3.2 Refractoriness 

In an actual nervous system, action potentials are generated when sodium and potassium ion 
channels open in turn and the membrane potential forms a sharp shape. A certain time is needed 
for a membrane to return to the resting state from the hyper-polarized state. Therefore, after 
a spike, neurons cannot fire for a while, which is called the absolutely refractory period. After 
the spike emission, hyper-polarizing ion current (IAHP) occurs, which is slow and long lasting. 
This results in a relative refractory period. 
Accordingly, we define the refractoriness in our model as (Gerstner et al., 1993) 

N 

h戸(t)= E latい (T)b(t -T -tf), (3) 

where t『isthe n-th spike emission time of the i-th neuron. Refractory function rJ(T) is defined 
by 

-oo (for O < 7 :S'Tref) 
?J(T) = { -~(for 冗ef<T). (4) 

The upper and lower definitions correspond to the absolute and relative refractoriness, respec-
tively. This refractoriness plays an important role in our model: a neuron is prohibited from 
producing spikes in a short interval. 

2.3.3 Dendritic back-propagation of action potential 

An action potential not only propagates down to the axon, but also propagates backward to 
the dendrite (Markram et al., 1997). After the i-th neuron fires at time t~, the n-th "back-
propagated" potential arrives at the synapse q, which is connected to the i-th neuron, at time 
岱=t~+ • tend q_△ fendq obeys N(0.05, 0.025). 

2We ignore the forward transmission delay in a dendrite. Even if the delay is considered, a similar discussion 
to that as follows can be made, though it becomes a little confusing. 
3i.u. = input units. 
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3 . Time-dependent Learning Rule 

At actual synapses, long-term potentiations (LTPs) are considered to be dependent on the 
voltage of the post-synaptic neuron (Artola and Singer, 1993). It is assumed that LTP occurs 
when a voltage nearly as high as the spike threshold of the post-synaptic neuron and a pre-
synaptic input simultaneously occur. Therefore, it seems that LTP at a synapse tries to grasp 
the temporal correlation between spike timings of the pre-synaptic neuron and the post-synaptic 
neuron. 

The time-dependent learning rule was first introduced by Gerstner et al. (1996). This rule 
is described only by the incident timing of action potentials. Not only the inputs from pre-

synaptic neuron but also the back-propagated action potentials enter the synapse (Markram et 
al., 1997). The time difference between the input spike from the pre-synaptic neuron and the 
back-propagation of the post-synaptic neuron determines the change in synaptic efficacy. 
Lett. and t~denote the arrival time of the f-th pre-input spike and that of then-th back-
Jq iq 

propagated act10n potential, respectively, at the q-th synapse transmitting the spikes from 
neuron j to neuron i. The time-dependent learning rule, introduced by Gerstner et al. (1996) 
1s given by 

F N 

JlJ = .Ii。＋区b+~W(tfq -tfq)]. 
/=1 n=l 

(5) 

J。isthe initial value of the efficacy. F and N are the numbers of spikes produced by the j-th 
and i-th neurons, respectively. Each efficacy value, Ji}, is additionally controlled so that it is 
not larger than its upper bound (=3.0[i.u.]). W(t) is a learning window defined by 

W(t) = { 0.3exp [命］
0.5 exp [一命]-0. 2 exp [-¼] 

(t =S 0) 

(t > 0) . 
(6) 

Namely, the synaptic plasticity depends on the difference between the pre-input time t. and 
Jq 

the post-back-propagation time tfq• 
Alternatively, we employ the following learning rule. Here, we assume that the learning 
process in a synapse is localized spatially and temporally and is defined by the timings of the 
pre-input spikes and the post-back-propagated action potentials (Gertner et al., 1996; Markram 
et al., 1997). Here, the locality of the learning process is emphasized. Each synaptic efficacy 
changes depending on the current synaptic state and also on whether there is a pre-input or 
post-back-propagated spike at the present time. First, for a synapse q between two neurons j 

and i we define three mternal state variables a 
ijq .. 
1'a界， and(Jiiq, which exponentially decay by 

themselves with time. 

a杓(t+△ t) 

a担(t十△t) 

f3ijq (t十△t) 

忍(t)・exp[舟］
a的(t)・exp[—叶

図

炉(t)•exp [-~] . (7) 
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When a spike from the j-th pre-neuron evokes an EPSP at the i-th post-neuron via synapse q, 
the following updating takes place. 

△砂=Ej3, △ Ji)=1+a杓(t)-a灼(t). (8) 

When an action potential from the i-th post-neuron back-propagates to the synapse q, which 
is connected to the j-th pre-neuron, the following updating takes place . 

.. 
△a四=Ea1, △a炉=Ea:2, △ Ji} = {Jijq(t). (9) 

In the experiments, we set Ta1 = 0.5, Ta2 = 5.0, T13 = 0.5, Ea1 = 0.5, Ea2 = 0.2, and玲=0.3. 
With these constant values, it can be proved that the learning rules (7), (8), and (9) are 
equivalent to (5) and (6). The proof is described in the Appendix. Although the learning rules 

(5) and (6) do not explicitly satisfy the time locality, our reduced learning rules satisfy the time 
locality. 

4 Simulation Results 

The network is trained by repeatedly providing the sequence shown in Figure 1. The sequence 
lasts 30T = 7.5[ms] and is represented by 16 input units. Since the 16 input units are separated 
into four groups by the spike emission timing, there are four spike timings in the provided 

sequence. 

4.1 Sequence preservation 

Figures 2(a) and 2(b) show the time-series of a neuron's EPSPs at the early learning stage 
(before learning), i.e., at T = 4, OOO[ms], and at the later learning stage (after learning), i.e., at 
T = 196, OOO[ms], respectively. In Figure 2(a), three spike emissions are observed where spike 
intervals are more than ten milliseconds. In this case, it is hard to discriminate sub-millisecond 
information. In Figure 2(b), on the other hand, spikes are generated almost precisely at a 

certain timing. 
Figure 3 is a spike raster diagram after learning, i.e., T = 196, OOO[ms]. The neuron index -1 
on the ordinate indicates the spikes received from the input units. The time intervals between 
'A'and'B','B'and'C','C'and'D', and'D'and'A'are 7T(= l.75[ms]), ST(= 2.00[ms]), 
6T(= l.50[ms]), and 9T(= 2.25[ms]), respectively. The spike timings of the 16 processing 
neurons were nearly regular and highly correlated with one of the four input timings from the 
input units. Although each processing neuron produces a spike once in about ten milliseconds, 
the network is able to precisely preserve the input sequence, which needs an accuracy on the 

order of sub-milliseconds. 
This accuracy is attained by forming local structures in the network. Figures 4(a) and 4(b) 
are spike transmission diagrams before learning and after learning, respectively. In these figures, 
each line connects the firing time of a pre-neuron to the EPSP evoked time on a post-neuron. 
In Figure 4(a), spikes are generated almost at random, and they are transmitted to all of the 
ten neighboring neurons. In Figure 4(b), on the other hand, spikes are generated regularly, and 
they are transmitted to certain parts of the neighboring neurons. Namely, several connections 
have survived among neighboring connections, and they form local systematic structures of the 
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neurons. These systematic structures not only help the post-synaptic neurons produce spikes at 
precise timings, but also preserve the order of the components in the learned sequence. Thus, the 

structures cooperatively preserve the sub-millisecond learned sequence and enable the network 

to regularly produce spike trains. Consequently, the self-organized network structure becomes 

a distributed representation of the input sequence conveying sub-millisecond information. 

4.2 Network properties 

We investigated properties of the trained network by providing newly input sequences and 

examining the network responses. 

The trained network is able to "associate" the learned sequence from a newly input sequence 
that is similar to the learned sequence. The new input sequences are variously prepared oh the 

condition that each input unit emits one spike in 30T(= 7.5[ms]). Figure 5 shows the response of 

the trained network for the new sequences. The abscissa and the ordinate denote the correlation 
between the learned sequence and the new input sequence and the number of spikes produced 
by the neurons of the network, respectively. We can see that the network responds to the 

input sequences having a large correlation value with the learned sequence. When the network 

responds to an input sequence, the output sequence produced by the network is similar to the 
learned sequence.4 When the new input sequence has a small correlation value (< 0.5) with 
the learned sequence, on the other hand, the network becomes quiet. These results indicate 
that the self-organized network structure is able to discriminate the learned sequence from 

adverse input sequences, and it works like an "associative" memory. It should be noted that 
the difference between the learned sequence and the new input sequences is on the order of 

sub-milliseconds. 
In order to further examine the association property of the trained network, we prepared test 

sequences, each of which had shifted spike timings from the learned sequence. The production 

algorithm of these test sequences is described in Figure 6. A test sequence is composed of 16 
input units. The spike timings of the input units are shifted from those of the learned sequence 

one-by-one. The shift index x counts the amount of the shift. When the shift index x becomes 

160, the spike timings for all of the input units are shifted by 10, and the input sequence 

becomes equivalent to the learned sequence; the only difference is the phase. In this case, the 
association becomes perfect, as can be seen in Figure. 7. When the shift index x of the test 

sequence deviates from O and 160, the spike timings in the test sequence are distant from those 

in the learned sequence. In such a case, the network does not respond satisfactorily (Fig. 7), 
implying that the network detects the timings of the input spike trains. 

Figure 8 denotes the response of the trained network for various values of the input jitter 
(J. The test sequence is equal to the learned sequence except for the jitter value. This figure 

shows that even if inputs are a little noisy, the trained network is able to associate the learned 

sequence and respond with a precise timing. Namely, the trained network is able to conduct a 

robust association against the noisy input. 
When the new input sequence is relatively distant from the learned sequence, the network 

no longer responds to the input. Figure 9 shows a sample spike raster diagram when a highly 

noisy input sequence, e.g., (J = 0.45[ms], is provided to the learned network. We can observe 

4Note that the output sequence is a distributed representation among the 16 processing neurons, as can be 
seen in Figure 3. 
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some quiescent periods. Figure 10 shows the length of the longest quiescent periods against 
the difference between the test sequence and the learned sequence. The abscissa denotes the 

shift index of test sequence described above. We can see that the quiescent periods are short 
when the test sequence has similar spike timings to the learned sequence and the association is 

properly done. 

4.3 Self-organization 

The properties shown above are realized by self-organizing network learning, which is achieved 

by selecting appropriate neuronal connections. After the learning, most of the neuronal con-

nections, i.e., synapses, can be categorized into two groups. 23% of the originally prepared 
synapses "survive" and acquire large synaptic efficacy values. These values are likely to be 

close to their upper bound value (= 3.0). 67% of the prepared synapses acquire nearly zero 
efficacy value; in other words, they can be regarded as "removed". Figure 11 shows the synap-
tic efficacy values as a matrix between the pre-synaptic and the post-synaptic neurons after 

learning. 
Figure 12 shows the efficacy change of the synapses on a single neuron (the 8-th neuron) in 

the course of the learning process. There are 66 synapses on the neuron. Some of the synapses 

are enhanced, i.e., the efficacy .f: もincreases,while others are suppressed, i.e., the efficacy .f: 為
decreases. Note that there are three kinds of connections. Initially, the synaptic efficacy values 
from the input units and from the white-noise input units are set at 1.0, and those from the 

processing neurons are set at 0.5. 
At the early learning stage, i.e., until 10,000[ms], the connections from the white-noise input 
units are potentiated to have the largest efficacy values among the three kinds of connections. 

This occurs because the firing rate of the white-noise input units is larger than that of the 

regular input units, and the spike emission of the processing neurons is almost at random in 

this stage. Since the white-noise inputs do not have any information in spike timing, they 
only work to lower the effective membrane threshold of the processing neurons, so that the 

processing neurons are encouraged to tune to the regular spikes provided by the input layer. 

Then, at the following learning stage, i.e., between 10,000[ms] and 80,000[ms], the synapses 
from the regular input units are gradually potentiated. 

Here, let us consider a situation where two processing neurons i and j are tuned to the 
two different input timings of the input layer. In this situation, the spikes from the processing 

neuron i will help the processing neuron j emit a spike when the transmission delay time from 
the i-th processing neuron and the j-th processing neuron is close to the difference between 

the two input timings. Therefore, the connection whose transmission delay is nearly as same 

as the input interval tends to be potentiated. The other connections will be depressed. These 

are competition between synapses b邸 edon their transmission delay time. At the later learning 

stage, i.e., between 80,000[ms] and 160,000[ms], appropriate connections from the processing 
neurons and from the input units are selected by the competition, and they are potentiated 

to the upper limit. Since each processing neuron produces its spikes by tuning to the regular 

inputs and some of the other processing neurons, the white-noise inputs are no longer important. 

Therefore, the connections from the white-noise input units are depressed to zero, i.e., "removed 

Accordingly, the contributing synapses to the neuron change in time, and the selection 
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depends on temporal correlation between input spikes and spikes produced by processing neu-
rons. Note that these selections are achieved by temporally and spatially local learning at the 
synapses. Figures 13(a) and 13(b) show the synaptic efficacy values before learning and after 
learning, respectively. 
Figures 14(a) and 14(b) show the schematic figures of tlie effective connections realized in 
the network before learning and after learning, respectively. Before learning, the neighboring 
neurons are connected to each other. After learning, some of the prepared connections have sur-
vived. These remaining connections are appropriate for the post-synaptic neurons to regularly 
produce their own spike trains. 

5 Discussion 

There have been many studies that aim to clarify the neuronal information representation and 
the computation in the brain by considering temporal structures of the spikes produced in the 
network. From this point of view, i.e., the so-called "temporal coding" viewpoint, the high 
irregularity of the cortical spikes implies that each neuron would have a precise time-resolution 
of the spikes (Softky and Koch, 1993). 
In this paper, we adopted the leaky integrate-and-fire neuron that posseses the precise time-
resolution, and investigated the unsupervised learning of their network. The model examined 
in this paper is based on the previous study by Gerstner et al. (1996) on the auditory pathway 
of barn owls. In this model, a single neuron is able to resolve its stational input with sub-
millisecond accuracy, and thus "learn" an auditory frequency conveyed by the stational input. 
In our study, we extended the stational input to an input sequence whose components convey 
temporal information on the order of sub-milliseconds. In order to deal with the input sequence, 
the learning of a single neuron is insufficient. The sequence should be preserved in the local 
structures of the network. Then, the network becomes a distributed representation of the 
learned sequence. 
The most important problem in our model is the very high time resolution of the neuron, 
i.e., the too small value for the membrane time constant, Tm・Its value, 0.2[ms], seems quite 
small in comparison with the known physiological value of 7 ~ 20[ms] for the typical neurons 
in the cortex. The lowest possible value is considered to be about 2[ms], which is observed in 
the auditory pathway (Reyes et al., 1994; 1996). Although the small membrane time constant 
was suggested by Softky and Koch in order to explain the high spike irregularity of the cortical 
neurons, this irregularity could be due to the effect of the inhibitory post-synaptic potentials 
(IPSPs) (Shadlen and Newsome, 1994; Softky, 1995). If we consider the effect of IPSPs in our 
examined model, the small membrane time constant could be improved. This consideration is 

our future work. 
In our model, the synaptic efficacy values are uniform before learning. However, some of 
the synapses are enhanced, and others are "removed" after learning. This structual formation 
in the network is achieved by repeatedly providing the input sequence. It might be related to 

the synaptic segregation that is observed in the development of neural circuits. 
In our model, the network becomes a memory of the input temporal sequence, by repeatedly 
providing the sequence, i.e., reverberation. Reverberation circuits were suggested by Hebb 
(1949), and a similar structure is observed in the entorhinal cortex, which holds the input 
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sequence for a certain period of time and provides information to the hippocampus (Iijima et 

al., 1996). 

6 Conclusion 

In our study, based on the assumption that a neuron can respond with precise timing, we 

considered the computational capacity of a neural network. A network of leaky integrate-and-
fire neurons was trained by repeatedly providing an input sequence, i.e, by reverberation. The 

learning scheme was based on a spatially and temporally local one, i.e., unsupervised Hebbian 
learning. The input sequence was temporal information that needs an accuracy on the order of 

sub-milliseconds. Through the learning, the segregation of the synaptic connections occurs to 

form systematic structures in the network. Namely, the network develops in a self-organizing 
manner. In addition, the trained network works like an "associate memory" of the learned 
sequence. Consequently, the assembly of neurons is able to learn and distinguish an input 

sequence that carries information on the order of sub-milliseconds, although the spike emission 
intervals of the neurons are on the order of milliseconds. 
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Appendix 

At the time t(< t', > tf, t『)， Jii(t)is described as 

Jij(t) -Ji。 '"'I+ W(t} -ti)+…+ W(t} -tf) 
＋ 

+'Y + W(t『-t})+…+ W(t『-t{'). 

At the time t'(> t, t『~,t心） the internal state variables can be described as 

(A.l) 
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即(t')

言知.exp [-t':.,ti l 
苔知.exp [-t':.,t'l 
芦'P・exp[-t'~tf] . (A.2) 

If a spike from the j-th pre-neuron evokes an EPSP on the i-th post-neuron at the time t'(> 
t, tf N 
J' 
も）， thesynaptic efficacy becomes 

N 

Jji(t') = Jij(t) +'Y +区W(t'-tf)
n==l 
N 

紐） +1+;{知.exp [-t'~1ff] -Ea2 . exp -t'~2tf 

iJ I 

[ l} 
Jii (t) +'Y + a:1 (t) -a名(t'). (A.3) 

If a spike from the j-th pre-neuron evokes an EPSP on the i-th post-neuron at the time t'(> 

t, tf, t『)， thesynaptic efficacy becomes 

F 

ふ(t') = Jji(t) +区W(t'-t『)
f=O 

F t1 -tf 
ふ(t)+区Er,・exp- 1 

Jji(t) +炉(t').
H [ Tp l 

(A.4) 

Then, by using the mathematical induction, we can prove that the learning rule (7), (8), and 
(9) are equivalent to (5) and (6). 



Figures 15 

• Figure 1 
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Figure 1: Training sequence is produced by 16 input units. There 
are four spike timings, and at each timing four input units emit 
spikes. 

• Figure 3 
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Figure 3: Spike raster diagram after learning. Ordinate denotes 
Neuron index. Neuron index -1 indicates spikes received from 

input units. Each circle'o'denotes a spike. 
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• Figure 2 
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Figure 2: EPSPs of the 2nd neuron. (a) Before learning (T = 
4, OOO[ms]), circle ('o') denotes a spike emission. (b) After learning 

(T = 196, OOO[ms]). Note that in each figure the ordinate denotes 
the EPSPs value, not the membrane potential value. 



Figures 17 

• Figure 4 
(a) Spike transmission diagram 
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Figure 4: Spike transmission diagrams. Abscissa denotes time, or-
dinate denotes neuron index. Each line connects firing time of pre-
synaptic neuron with EPSP "evoked" time of post-synaptic neuron. 
For observational simplicity, connections across the network bound-
ary, as with those between 0-th pre-neuron and 15-th post-neuron, 

are omitted. (a) Before learning (T = 4, OOO[ms]). (b) After learn-
ing (T = 196, OOO[ms]). Weak spike transmissions are also omitted. 
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• Figure 5 
Correlations between input and learned sequence 
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Figure 5: Network can associate learned sequence. Abscissa denotes 
the correlation between learned sequence and newly input sequence. 

We investigated many sequence patterns for each correlation value. 
Mark'o'and error bar denote mean and standard deviation for 
patterns. 

• Figure 6 

for(i=0-15) 
for(j=0-9) 
{Shift the firing time of 
the i-th input unit to Ti+T*j; 
Simulate the network response; 
Print x=lO*i吋、
y=nurnber of spikes, (Fig.7) 
y=the longest blank; (Fig.10)} 

Figure 6: Algorithm for preparing input sequences in Fig. 7 and 

Fig. 10. 
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• Figure 7 
Phase shift of input unit 

2500 

ド覧'。。 汽悶
2000 も0咤 0 

゜゜g も゚ ooo 

゜
。

•-= ち『1500 
0 0 

゜ ゜゜0 0 

゜ 0 0 ゚も

逸＇ ゜゜
屯 ゜ ゜゜ C゚b 

.i:::: -a, 1000 o〇o工o） o 0 O 

゜゚゜゚:lt. ゜Cl/) 

゜
0 も

゜゚ ゜
oo oo 

゜ ~ 0 000 0 

500ト O。。。

゜ ゜
゜

゜゚I 
I I g 迄磁笠芦
20 40 60 80 100 120 140 160 

x~shift index 

Figure 7: Network can associate learned sequence when spike tim-
ings of test sequence are similar to those of learned sequence. Ab-

scissa denotes shift index of test sequence described by algorithm 

in Fig. 6. Ordinate denotes number of spikes produced by neurons 

in network. 

• Figure 8 
Input jitter and its response 
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Figure 8: Network response against input noise. Abscissa denotes 

input jitter of test sequence. Ordinate denotes number of spikes 

produced in trained network. 
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• Figure 9 
Spike raster for an adverse input 
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Figure 9: Sample spike raster diagram when highly noisy input 
sequence is provided to trained network. 

• Figure 10 
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Figure 10: Abscissa denotes shift index of test sequence, which is 

described by algorithm in Fig. 6. Ordinate denotes length of longest 

quiescent period produced by network. 
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• Figure 11 
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Figure 11: Synaptic efficacy matrix. 

are illustrated by gray scale. 

Transmission efficacy values 

• Figure 12 
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• Figure 13 
(a) Weight matrix 
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Figure 13: Transmission efficacy values (weights) between pre-

synaptic and post-synaptic neurons. z-axis denotes雷J&/4,i.e., 
average synaptic efficacy value between pre-synaptic neuron i and 
post-synaptic neuron j. (a) Before learning. Neighboring connec-
tions keep their initial efficacy values. (b) After learning. Many 
connections are depressed to zero, and some connections are poten-

tiated to have large value. 
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• Figure 14 

Figure 14: Effective connections (a) before and (b) after learning. 

Some originally prepared connections survived. 
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