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Abstract

Normalized Gaussian Network (NGnet) (Moody and Darken 1989) is a network of
local linear regression units. The model softly partitions the input space by normal-
ized Gaussian functions and each local unit linearly approximates the output within the
partition.

In this article, we propose a new on-line EM algorithm for the NGnet, which is derived
from the batch EM algorithm (Xu, Jordan and Hinton 1995) by introducing a discount
factor. We show that the on-line EM algorithm is equivalent to the batch EM algorithm
if a specific scheduling of the discount factor is employed. In addition, we show that the
on-line EM algorithm can be considered as a stochastic approximation method to find
the maximum likelihood estimator. A new regularization method is proposed in order to
deal with a singular input distribution. In order to manage dynamic environments, where
the input-output distribution of data changes with time, unit manipulation mechanisms
such as unit production, unit deletion, and unit division are also introduced based on the
probabilistic interpretation.

Experimental results show that our approach is suitable for function approximation
problems in dynamical environments. We also applied our on-line EM algorithm to a
reinforcement learning problem. It is shown that the NGnet, when using the on-line EM
algorithm, learns the value function much faster than the method based on the gradient
descent algorithm.
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1 Introduction

Normalized Gaussian Network (NGnet) (Moody and Darken 1989) is a network of local linear
regression units. The model softly partitions the input space by normalized Gaussian functions
and each local unit linearly approximates the output within the partition. Since the NGnet is a
local model, it is possible to change parameters of several units in order to learn a single datum.
Therefore, the learning process becomes easier than that of the global models such as the multi-
layered perceptron. In a local model, on the other hand, the number of necessary units grows
exponentially as the input dimension increases, if one wants to approximates the input-output
relationship over the whole input space. This results in a computational explosion, which is
often called the “curse of dimensionality”. However, actual data will often distribute in a lower
dimensional space than the input space, such as in attractors of dynamical systems.

The NGnet, which is a kind of “Mixtures of Experts” model (Jacobs, Jordan, Nowlan and
Hinton 1991 ; Jordan and Jacobs 1994), can be interpreted as an output of a stochastic model
with hidden variables. The model parameters can be determined by the maximum likelihood
estimation method. In particular, the EM algorithm for the NGnet was derived by Xu, Jordan
and Hinton (1995). In this article, we propose a new on-line EM algorithm for the NGnet.
The on-line EM algorithm is derived from the batch EM algorithm (Xu, Jordan and Hinton
1995) by introducing a discount factor. Although the derivation is straightforward, important
modifications are necessary for practical applications. We will discuss these points in detail
and propose a modified version of the on-line EM algorithm. We show that the on-line EM
algorithm is equivalent to the batch EM algorithm if a specific scheduling of the discount
factor is employed. In addition, we show that the on-line EM algorithm can be considered
as a stochastic approximation method to find the maximum likelihood estimator. A new
regularization method is proposed in order to deal with a singular input distribution. Unit
manipulation mechanisms based on the probabilistic interpretation are also introduced in order
to manage dynamic environments. These mechanisms are unit production, unit deletion, and
unit division. :

In order to investigate the performance of our new on-line EM algorithm, experiments for
function approximation problems are conducted for three circumstances. The first one is a
usual function approximation problem for a set of observed data. The second one is a function
approximation in which the distribution of the input data changes with time. This experiment
is performed to check the applicability of our approach to the dynamic environments. The
third one is a function approximation in which the distribution of the input data is singular,
i.e., the dimension of the input data distribution is smaller than the input space dimension.
In this case, a straightforward application of the basic on-line EM algorithm does not work,
because the covariance matrices used in the NGnet become singular. Our modified on-line EM
algorithm is shown to work well even in this situation.

Encouraged by these positive results, we applied our on-line EM algorithm to a reinforce-
ment learning problem. In the actor-critic model (Barto, Sutton and Anderson 1983), learning
of the value function for a current policy can be regarded as a function approximation problem
in a dynamic environment, since the policy changes with time as the learning proceeds. As
an example, we examined a task for swinging-up an inverted pendulum (Doya 1996). The
experimental result shows that the NGnet, when using our new on-line EM algorithm, learns
the value function much faster than the method based on the gradient descent algorithm.
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The paper is organized as follows. The NGnet and its stochastic model are explained in
Section 2. The batch EM algorithm is introduced in Section 3. These sections are based on
previous papers (Moody and Darken 1989; Xu, Jordan and Hinton 1995). The basic on-line
EM algorithm is derived in Section 4. The modifications of the basic on-line EM algorithm are
discussed in Sections 5, 6 and 7. The experimental results are shown in Section 8, and Section
9 sums up the paper.

2 Normalized Gaussian network

2.1 NGnet

The Normalized Gaussian Network (NGnet) model (Moody and Darken 1989), which trans-
forms an N-dimensional input vector z to a D-dimensional output vector v, is defined by the
following equations.

v= 3 W+ bNi(e) (212)
Ni(e) = (o) 32 G40 (2.1%)
Gi(z) = (27)™V2|3;| "2 exp [——;—(w — 1) 7z — )] - (2.1c)

M denotes the number of units, and the prime (') denotes a transpose. Gj(z) is an N-
dimensional Gaussian function; its center is an N-dimensional vector u; and its covariance
matrix is an (N X N)-dimensional matrix ¥;. |X;| is the determinant of the matrix ¥;. M(z)
is the i-th normalized Gaussian function. W; and b; are a (D x N)-dimensional linear regres-
sion matrix and a D-dimensional bias vector, respectively. Subsequently, we use notations:
W; = (W;,b:), and #' = (z',1). With these notations, (2.1a) is rewritten as

M ~
y =Y Ni(z)W:Z . (2.2)

i=1

The Gaussian function Gj(z) is a kind of radial basis function (Poggio and Girosi 1990).
However, the normalized Gaussian functions, N;(z) (i = 1, ..., M), do not have a radial symme-
try. They softly partition the input space into M regions. The i-th unit linearly approximates
its output by W;Z within the corresponding region. An output of the NGnet is given by a
summation of these outputs weighted by the normalized Gaussian functions. '

2.2 Stochastic model of NGnet

The NGnet (2.1) can be interpreted as a stochastic model, in which a pair of an input and
an output (z,y) is a stochastic (incomplete) event. For each event, a single unit is assumed
to be selected from a set of classes {i|i = 1,..., M'}. The unit index 7 is regarded as a hidden
variable. A triplet (z,y,¢) is called a complete event. The stochastic model is defined by the
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probability distribution for a complete event (Xu, Jordan and Hinton 1995):

1
202

1 . ~
P(z,y,il8) = (2n)" P 272|572 exp [—5(93 — ) S e — ) — o=y~ Wiﬂ's)z} :
- (2.3)
where 0 = {y;, 2,02, W; | ¢ = 1,..., M} is a set of model parameters. From the probability
distribution (2.3), the following probabilities are obtained.

P(i0)=1/M (2.4a)
P(z|i,0) = Gi(x) (2.4b)
P(yl|z,i,0) = (27) P26 P exp [ 21_2(3/ — W}:E)ﬂ . (2.4c)

These probabilities define a stochastic data generation model. First, a unit is selected randomly
with an equal probability (2.4a). If the ¢-th unit is selected, the input z is generated according
to the Gaussian distribution (2.4b). Given the unit index 7 and the input z, the output y
is generated according to the Gaussian distribution (2.4c), which has the mean W;z and the
variance o?2.

When the input z is observed, the probability that the output value becomes y in this

model, turns out to be

P(y|z, ) ZN P(y|z,1,0). (2.5)

i=1
From this conditional probability, the expectation value of the output y for a given input z is
obtained as:
Ely|z] = /yP (y|z,8)dy = ZN YWz, (2.6)
=1
which is equivalent to the output of the NGnet (2.2). Namely, the probability distribution
(2.3) provides a stochastic model for the NGnet.

3 EM algorithm

From a set of T' events (observed data), ({z},{y}) = {(z(¢¥),%(?)) | t = 1,...,T}, the model
parameter § of the stochastic model (2.3) can be determined by the maximum likelihood
estimation method. In particular, the EM algorithm (Dempster, Laird and Rubin 1977) can
be applied to models having hidden variables. The EM algorithm repeats the following E-step
and M-step. Since the likelihood for the set of observations increases (or does not change) after
an E- and M-step, the maximum likelihood estimator is asymptotically obtained by repeating.
the E- and M-steps.

¢ E (Estimation) step _
Let @ be the present estimator. By using 6, the posterior probability that the z-th unit
is selected for each observation (z(t),y(t)) is calculated according to the Bayes rule.

P(ilz(t), y(2), 8) = P(x(t), y(t), il6) /ZP t), ]0). (3.1)
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e M (Maximization) step _
By using the posterior probability (3.1), the expected log-likelihood Q(69, {z}, {y}) for
the complete events is defined by :

T M

Q(O18,{=}, {y}) = >_ > _ Plil(t), y(t),0)log P((t), y(¢), 6). (3.2)

t=1 i=1

On the other hand, the log-likelihood of the observed data ({z}, {y}) is given by

L0la}, () = 3o Platt) Z log (Z P(a z|9>) (33)

=1

Since an increase of Q(6]0, {z}, {y}) implies an increase of the log-likelihood L(8|{x}, {y})
(Dempster, Laird and Rubin 1977), Q(9|0,{z},{y}) is maximized with respect to the
estimator . A solution of the necessity condition 8Q/90 = 0 is given (Xu, Jordan and
Hinton 1995) by

pi = (z):(T) /(1)«(T) (
i = (2 = pa)(e = ) )o(T)/(Ds(T) = (o’ )i(T)/(1(T) — pa(T)11i(T) (3.4b
Wizz')(T) = (y&');(T) (

(3.

7t = S{ly ~ WtPH(T)[((T) = 5 [ D(T) ~ Te (Wil (7)) (D)

where Tr(-) denotes a matrix trace. A symbol (-); denotes a weighted mean with respect
to the posterior probability (3.1) and it is defined by

(H(2,9)(T) = 2 3 Fla(t), 9(0) Plila(t), 1), ). (3.5)

t=1

If an infinite number of data, which are drawn independently according to an unknown
data distribution density p(z,y), are given, the weighted mean (3.5) converges to the following
expectation value.

(f(z,9)):(T) =% E[f(z,y)P(ilz,y,9)),, (3.6)

where E[-], denotes the expectation value with respect to the data distribution density p(z, y).
In this case, the M-step equation (3.4) can be written as

g: = E[P(ilz,y,0)], (3.7a)
pi = ElzP(ilz,y,0)],/9: (3.7b)
Si = Blaz'P(il2,y,0)l,/9: — mati (3.7¢)
WiE[5# Pilz,y,0)], = Bly# Plilz,y,0), (3.74)
of = = (Elsl*Plile, v, 0), - Te(WiBy Plilz,v,0),) Jo,  (370)

where the new parameter set 6 = {u;, %, Wi, 02|i = 1,..., M} is calculated by using the old
parameter set § = {fi;, %, W, o2li=1,..,M}.
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At an equilibrium point of this EM algorithm, the old and new parameters become the
same, i.e., § = . The equilibrium condition of the EM algorithm, i.e., (3.7) along with § =6,
is equivalent to the maximum likelihood condition,

dL(6)/86 = 0, (3.8)
“where the log-likelihood function is given by

L(6) = E[logffjp(wyy,il@)]p- (3.9)

i=1

4 On-line EM algorithm

The EM algorithm introduced in the previous section is based on a batch learning (Xu, Jordan
and Hinton 1995), namely, the parameters are updated after seeing all the observed data
({z},{y}). In this section, we derive an on-line version of the EM algorithm. Since the
estimator is changed after each observation, let 6(¢) be the estimator after the ¢-th observation
(z(t),y(t)). In the on-line EM algorithm, the weighted mean (3.5) is replaced by:

L flz,y) > (T T)ZAT f(=(t), y(8))P(dz(t),y(1),0(t - 1)) (41a)
T)= (2 AT = (1= X0)/(1 = A7), (4.1b)

Here, the parameter A (0 < A < 1) is a discount factor, which is introduced for forgetting
the effect of the old posterior values employing the earlier inaccurate estimator. 7(T) is a
normalization coefficient and plays a role like a learning rate. The modified weighted mean
& - >; can be obtained by the step-wise equation:

L flz,y) > (1) =< fz,9) >: (¢ - 1) +n(t) [f(2(t), y(£)) Pi(t) - < f(z,y) > (¢ - 1)],
(4.2)
where Pi(t) = P(i|z(t),y(t),0(t — 1)). After calculating the modified weighted means, i.e.,
L1 (1), € z>; (1), < 2z’ > (1), < |y]? > (1), and K yZ' >; (1), according to (4.2),
the new estimator 6(¢) is obtained by the following equations.

(t) =K T >; (t)/ L 1>; (t) (43&)
(1) = [ oa > (8)] < 14 (1) = ()] (4.3b)
Wi(t) =< y& > (t)[< 28 > (1)) (4.3¢)
oHt) = 5 [ ol e (6) = Tr (Wile) < 3y >0 ()] / € 1> (0. (430)

This defines the on-line EM algorithm. In this algorithm, calculations of the inverse matrices
are necessary at each time step. A recursive formula for ¥; ' and W; can be derived, in which
there is no need to calculate the matrix inverse, by using a standard method (Jiirgen 1996).
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Let us define the weighted inverse covariance matrix of Z: ./L(t) = (K %' >; (t))™!. This
quantity can be obtained by the step-wise equation:

M) = g [V s ) (9

$71(¢) can be obtained from the following relation with A;(t).
Ri(t) < 14 (t) = ( _u:%_)lyf?l(t) . +f(;2@1"’(t()2( ) ) (4.5)

The estimator for the linear regression matrix, W;, is given by
Wi(t) = < yE > (t)A;(t) B ) (4.6a)
= Wi(t — 1)+ n(t)R(t)(y(t) — Wit — 1)E())Z () As(t). (4.6b)

Thus, the basic on-line EM algorithm is summarized as follows. For each observation
(z(t),y(t)), the weighted means, i.e., K 1>; (1), € = >; (1), < |y|2 > (), and < Zy' >; (1),
are calculated by using the step-wise equation (4.2). A;(t) is also calculated by the step-wise
equation (4.4). Subsequently, the estimators for the model parameters are obtained by (4.3a),
(4.3d), (4.5), and (4.6b).

5 Scheduling of discount factor

5.1 Time-dependent discount factor

In the previous section, we assumed that the discount factor A is a constant. If this is the case,
the estimators obtained by the on-line EM algorithm and the batch EM algorithm differ from
each other due to the presence of X in (4.1). Here, we assume that A is a function of the time
t, so that A7~* in (4.1a) is replaced by ITZ_,,;A(s). The normalization coefficient 7(7") (4.1b)
is redefined by

n(T) = (Z II A(S)) : (5.1)

t=1 s=i+1

It is calculated by the step-wise equation:

n(t) = 1+ At)/n(t —1))7". (5.2)

There is no need to redefine the step-wise equations (4.2), (4.4) and (4.6b), if the effective
learning coefficient 7(t) is calculated by (5.2).
The constraint, 0 < A(f) < 1, gives the constraint on 7(t):

12> n(t) > 1/t. (5.3)
If this constraint is satisfied, the equation (5.2) can be solved for A(t) as:

At) = n(t - 1)(1/n(t) - 1). (5.4)
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5.2 Equivalence between on-line and batch EM algorithms

In the next part, we show that the on-line EM algorithm defined by (3.1), (4.2) and (4.3) is
equivalent to the batch EM algorithm defined by (3.1), (3.4) and (3.5), with an appropriate
choice of A(t). '

It is assumed that the same set of data, {(z(¢),y(¢))|t = 1,...,T}, is repeatedly supplied
to the learning system, i.e., z(t + T) = z(t) and y(t + T) = y(t). The time ¢ is represented
by an epoch index £ (= 1,2,...) and a data number index m (= 1,...,T) within an epoch, i.e.,
t = (k— 1)T 4+ m. Let us assume that the model parameter 8 is updated at the end of each
epoch, i.e., when m = T, and it is denoted by 8(k). Let us suppose that A(t) is given by

1 otherwise (5'5)

/\(t)z{ 0 ift=(k-1)T+1
The corresponding 7(t) is given by n((k — 1)T + m) = 1/m. Then, the weighted mean <
f(z,y) >; (t) is initialized to f(z(1),y(1))P(ilz(1),y(1),8(k — 1)) at the beginning of an
epoch. At the end of an epoch, < f(z,v) > (kT) = (f(z,y)):(T) is satisfied for § = 6(k —1).
This shows that the on-line EM algorithm together with A(t) given by (5.5) is equivalent to
the batch EM algorithm. It should be noted that the step-wise equation (4.4) for A;(t) can
not be used in this case, since the equation (4.4) becomes singular for n(t) = 1.

5.3 Stochastic approximation

If an infinite number of data, which are drawn independently according to the data distribution
density p(z,y), are available, the on-line EM algorithm can be considered as a stochastic
approximation (Kushner and Yin 1997) for obtaining the maximum likelihood estimator, as
demonstrated below.

Let ¢ be a compact notation for the weighted mean, ie., ¢(t) = {K 1 >; (1), < = >;
(t), < zz’' >; (1), < y& >; (), < |y|> >; (t)li = 1,..., M}. The on-line EM algorithm, (4.2)
and (4.3), can be written in an abstract form:

56(t) = 6(t) — ¢t — 1) = n(t)[F (2(2), y(2),6(t — 1)) — $(¢ — 1)] (5.6a)

o(t) = H(a(1)). (5.6b)
t can be easily proved that the set of equations: -

¢= E[F(:L‘, Y, 9)]p (573')
6= H(¢) (5.7b)

is equivalent to the maximum likelihood condition (3.8). Then, the on-line EM algorithm can
be written as

8¢(t) = n(t)(EF (z,y, H(¢(t — 1)), — ¢(t — 1)) + n(t)¢(2(2), y(t), &(t — 1)), (5.8)

where the stochastic noise term ( is defined by

C(z(t),y(t), (¢ — 1)) = F(a(t),y(t), H(d(t ~ 1)) — B[F(e,y, H($(t — 1))l (5.9)



On-line EM algorithm 9

and it satisfies
E((z,y, )], = 0. (5.10)

The equation (5.8) has the same form as the Robbins-Monro stochastic approximation (Kush-
ner and Yin 1997), which finds the maximum likelihood estimator given by (5.7). The effective
learning coefficient 7(¢) should satisfy the condition

7(t) =2 0, iln(t) = 00, inz(t) < 00. (5.11)

Typically, 7(t), which satisfies the conditions (5.3) and (5.11), is given by

t—oo ]-

t — (1 0). .
7( ——-)at+b (1>a>0) (5.12)
The corresponding discount factor is given by
l1—a
A i t—r0c0 ] = )
(t) — pry P § (5.13)

namely, A(t) is increased such that A(t) approaches 1 as ¢t — oc.
For the convergence proof of the stochastic approximation (5.8), the boundedness of the
noise variance is necessary (Kushner and Yin 1997). The noise variance is given by

E(((z,y, $)°], = E[F(z,y, H(¢))’], — E[F(z,y, H($))]:. (5.14)

Both terms on the right hand side in (5.14) are finite, if we assume that the data distribution
density p(z,y) has a compact support. Consequently, the noise variance becomes finite under
this assumption. This assumption is not so restrictive, because actual data always distribute
in a finite domain. We can weaken this assumption such that p(z,y) decreases exponentially
as |z| or |y| goes to infinity.

It should be noted that the stochastic approximation (5.8) for finding the maximum like-
lihood estimator is not a stochastic gradient ascent algorithm for the log-likelihood function
(3.9). The on-line EM algorithm (5.8) is faster than the stochastic gradient ascent algorithm,
because the M-step is solved exactly. We have so far used the on-line EM algorithm defined by
(4.2) and (4.3), which is equivalent to the basic on-line EM algorithm defined by (4.2), (4.3a),
(4.3d), (4.4), (4.5), and (4.6b), if n(t) # 1. Therefore, the basic on-line EM algorithm is also
a stochastic approximation.

In practical applications, the learning coefficient 7(¢) given by (5.12) becomes too small for
a very large ¢, such that the parameters could not be changed significantly in a finite period.
In order to avoid this situation, 7(t) is often set at a small positive value 7,,;, for a very large
t. This clamp corresponds to A(t) = 1 — Npn. If the input and/or output distribution for the
observed data change with time, it is not necessary that 7(¢) converges to zero. This dynamical
situation will be considered later in our experiments.

6 Regularization

6.1 Regularization of the covariance matrix

We have assumed so far that the covariance matrix of the input data is not singular in each
region, namely, the inverse matrix for every ¥; (i = 1, ..., M) exists. In actual applications of
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the algorithm, however, this assumption often fails. A typical case occurs when the dimension
of the input data distribution is smaller than the dimension of the input space. In such a case,
¥; ! can not be calculated and A; diverges exponentially with the time ¢.

There are several methods for dealing with this problem. They are the introduction of
Bayes priors, the singular value decomposition, the ridge regression, etc. However, they are
not satisfactory for our purpose. Here, we will propose a simple new method that performs
well.

Let us first consider a regularization of an (N X N)-dimensional covariance matrix, ¥, for
the observed data. Its eigen values and normalized eigen vectors are denoted by &, (> 0) and
¥y (n =1, ..., N), respectively.

St = tath (n=1,...,N). (6.1)

The set of the eigen vectors, {¢,|n = 1,..., N}, forms a set of orthonormal bases. The condition
number of the covariance matrix 3 is defined by

v = émin/émaza (62)

where &min and &mq, are the minimum and maximal eigen values of ¥, respectively. So that
0 <wv <1 If v=0, the covariance matrix ¥ is singular. If v = 1, the covariance matrix 3
is regular and the calculation of its inverse is numerically stable. If 0 < v < 1, the covariance
matrix is regular and X! is given by

N
7= Y 6 (6.3
n=1

The inverse covariance matrix ¥~ (6.3) is dominated by &y, Which may contain a numerical
noise. As a consequence, the inverse matrix ¥ ~! becomes sensitive to numerical noises.

In order to deal with this problem, we propose the following regularized covariance matrix
Y. for the data covariance matrix 3.

Yr=3+alA’ly 0<a<l) (6.4a)
A? = Tr(Z)/N, (6.4b)

where Iy is an (N x N)-dimensional identity matrix. The data variance A? satisfies the
inequality
1 X
émaz 2 Az gy Z én 2 émaz/N- (65)
N n=1
The eigen values and eigen vectors of the regularized matrix X are given by (£, + aA?) and

1n, Tespectively. From the inequality (6.5), it can be proved that the condition number of the
regularized matrix X g satisfies the condition: '

vr > a/(N(1+ a)). (6.6)

Then, the condition number of X ¢ is bounded below and it is controlled by the small constant
a. The rate of change for the regularized eigen value is defined by :

R(fﬂ) = ((fn + OLAz) - fn)/fn = a(A2/§n) (6'7)
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From the inequality (6.5), the ratio (6.7) satisfies the condition:

R(&) > R(§maz) > o/N (6.8a)
R(&) < R(émin) < afv. (6.8b)

If all the eigen values of ¥ are the same order, ie., v & O(1), the rate of change becomes
small, i.e., R({,) =~ O(a), so that the effect of the regularization is negligible. If the data
covariance matrix ¥ is singular, i.e., v = 0, the zero eigen value of ¥ is replaced by aA2. Thus,
the regularized matrix X becomes regular and its condition number is bounded by (6.6). In
general, the eigen values, which are larger than their average, are slightly affected, while the
very small eigen values are changed so as to be nearly equal to aA?.

By introducing a Bayes prior for a regularized matrix Yz as

P(Sp) = (1/2)" exp (—(r/2)Tx(S3Y)) , (6.9)
one can get a similar regularization equation
Yp =%+ klp, : (6.10)

where the regularization parameter x is a given constant. However, it is rather difficult to
determine the value of k without knowledge of the data covariance matrix. It is especially
difficult for the NGnet, since there are M independent local covariance matrices ¥; (i =
1,...,M). The proposed method (6.4) automatically adjusts this constant by using the data
variance A2, which is easily calculated in an on-line manner.

If ¥ = 0, A becomes zero and the regularization (6.4) does not work. Therefore, if A? is
smaller than a threshold value A2, , A? is set to A2, . This prevents Xy from being singular
even when 3 = 0.

6.2 Regularization of on-line EM algorithm

Based on the consideration above, the i-th weighted covariance matrix is redefined in our
on-line EM algorithm as:

() = [(< o’ >4 (1) - ) < 1> () +a < A2 (Iy) / < 13> (1)]
(6.11)
where

< AT (1) =< Jo— (B> > (/N = (< e > (1) = |t < 13 (1)) /N (6.12)

The regularized £;* (6.11) can be obtained from the relation (4.5) by using the following
regularized A;:

Ai(t) = (< 28 > (1) + o < A7 >, (t)IN) . (6.13)
The ((N +1) x (N + 1))-dimensional matrix, Iy, is defined by

Iv= ( In 0 ) ijn; (6.14)
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where &, is an (N + 1)-dimensional unit vector; its n-th element is equal to 1 and the other
elements are equal to 0. The regularization term in (6.13) can be calculated in an on-line
manner. From the definition (6.12), < A? >>; (t) can be written as

K A7 > (1) =< AT > (= 1) + () (AF() Pi(t)— < A > (t — 1)), (6.15)
where A%(t) is given by

1) P()AF () = n(O)P@)|z(t) — ma@®)*/N + (1= n()palt) — gt — DI* < 1> (- 1()/N-)
6.16
The second term on the right hand side in (6.16) comes from the difference between < |z —

)2 >; (¢ — 1) and < |z — pi(t — 1)J* > (t — 1). Using (6.14) and (6.15), (6.13) can be
rewritten as

K0 = [a=no)R2 -1+ (2020 + T a0z @) r6)| 617

Un(t) = Val(t)é,. "~ (6.17b)

As a result, the regularized Ai(t) (6.13) can be calculated as follows. For a given input data
z(t), A;(t) is calculated using the step-wise equation (4.4). After that, A;(¢) is updated by

Rift) = Ai(t) ﬂ(t)l’i(t)Ai(t)fn(t)lfn'(t){\z’(t)’ (6.18)
1+ () Pi(t) 7 (t) As(t) n(t)
using the virtual data {7, (¢t)|n = 1,...,N}.

After calculating the regularized A;(¢) (6.13), the linear regression matrix W; is obtained
by using (4.6b), in which the regularized A;(t) is used. In the calculation of (4.6b), only the
observed data {(z(t),y(t))|t = 1,2, ...} are used and the virtual data {7,(¢)|n = 1,..., N;t =
1,2,...}, which have been used in the calculation of the regularized A;(¢), must not be used.
Therefore, equation (4.6a) does not hold in our regularization method. Since the regularized
Ai(t) is positive definite, the linear regression matrix W; at an equilibrium point of (4.6b)
satisfies the condition

W.E[&# Pilz,y,0)], = Ely# Pilz,3,0)),, (6.19)

which is identical to the maximum likelihood equation, (3.7d) along with § = 4. Although
the matrix E[Z&' P(i|z,y,0)], may not have the inverse, the relation (6.19) still has a meaning.
Therefore, our method does not introduce a bias on the estimation of Wi.

Let us compare our regularization method, (4.6b) along with (6.13), to the Bayes prior
method. By introducing a Bayes prior for W; as

P(W;) = (r/2m)P W40 exp (—(s/2) Te(WiW3)) (6.20)
the regularized equation for Wi is obtained:
W; =< y&' >; (88 + klyp1) . (6.21)

This equation is a regularized version of the equation (4.6a) instead of the equation (4.6b). At
an equilibrium point of the equation (6.21), W; satisfies

W; (E[#% P(i|z,,0)], + kIys1) = E[y&' P(ilz, y,0)],, (6.22)

implying that this Bayes prior method introduces a bias on the estimation of Wi
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7 Unit manipulation

Since the EM algorithm only guarantees local optimality, the obtained estimator depends on
its initial value. The initial allocation of the units in the input space is especially important
for attaining a good approximation. If the initial allocation is quite different from the input
distribution, much time is needed to achieve proper allocation. In order to overcome this
difficulty, we introduce dynamic unit manipulation mechanisms, which are also effective for
dealing with dynamic environments. These mechanisms are unit production, unit deletion,
and unit division, and they are conducted in an on-line manner after observing each datum

(z(2), y(t))-

¢ Unit production
The probability P(z(t),y(t),¢ | §(t—1)) indicates how probable the i-th unit produces the
datum (z(t),y(t)) with the present parameter 6(t — 1). Let 0 < Pproguece <K 1/M. When
max, P(z(t),y(¢), | 0(t—1)) < Pyroduce, the datum is too distant from the present units
to be explained by the current stochastic model. In this case, a new unit is produced to
account for the new datum. The initial parameters of the new unit are given by:

P+ = () | (7.1a
S = Xataln  Xaspn = Fimingy|e(t) — pl*/N (7.1b
031 = Pamaxl o7 ‘ (7.1c

W1 = (Warr1, bu) = (0, 9(2)), (7.1d

where 3; and (3, are appropriate positive constants.

)
)
)
)

e Unit deletion
The weighted mean < 1 >; (t), which is calculated by (4.2), indicates how much the
i-th unit has been used to account for the data until £. Let 0 < Paere < 1/M. If
&K 1>>; (t) < Pieiete, the unit has rarely been used. In this case, the i-th unit is deleted.

¢ Unit division
The unit error variance ¢Z(t) (4.3d) indicates the squared error between the i-th unit’s
prediction and the actual output. Let Dgyige be a specific positive value. If o2(t) >
Dg;ivige, the unit’s prediction is insufficient, probably because the partition in charge is
too large to make a linear approximation. In this case, the i-th unit is divided into two
units and the partition in charge is divided into two. The initial parameters of the two
units are given by:

pi(new) = pi(old) + BoyfEvr  paras(new) = pi(old) — fay/Ety  (7.2a)

N
Yt (new) = 7 (new) = 467 1Yy + > £ a1, (7.2b)
n=2
o(new) = o3y, (new) = o2 (old)/2 (7.2¢)
Wi(new) = Wy 1(new) = Wi(old), (7.2d)

where ¢, and v, denote the eigen value and the eigen vector of the covariance matrix
¥i(old), respectively, and & = &nae- B3 is an appropriate positive constant.
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Although similar unit manipulation mechanisms have been proposed in (Platt 1991; Schaal
and Atkeson 1997), these mechanisms can be conducted with a probabilistic interpretation in
our on-line EM algorithm.

Finally, we would like to comment on the extrapolation done by the NGnet after the learning
phase. If an input z that is far from all the unit centers is given, the output of the NGnet is
approximately W;Z, where 7 is the index of the closest unit to the input z. This implies that
the output of the NGnet linearly diverges as |z| — oo where the NGnet has never experienced
the training data. A simple way to prevent this undesirable behavior is given as follows. If
Zj{[__l Gi(z) < Gmin for a small threshold value Gy, the normalized Gaussian function Aj(z)
defined by (2.1D) is replaced by G;(z)/Gmin. This prescription, however, has not been used in
the following experiments, because the input spaces in those experiments are bounded.

8 Experiments

8.1 Function approximation in static environment

Applicability of our algorithm js investigated using the following function (N =2 and D = 1),
which was used by Schaal and Atkeson (1997).

y = max{e*1°zf, e~50%3, 1.25e*5(”?+23)} (-1 <z, < 1) . (8.1)

Figure 1 shows the function shape.

By sampling the input variable vector, z = (z;, z2), uniformly from its domain, we pre-
pared 500 input-output pairs, {(z(t),y(t))|t = 1, ...,500}, as a training data set. A fairly large
Gaussian noise N(0,0.1) is added to the outputs, where N(0,0.1) denotes a Gaussian distri-
bution whose mean and standard deviation are 0 and 0.1, respectively. Figure 2 shows the
function shape with the noise. The problem task is for the NGnet to approximate function
(8.1) from the 500 noisy data. We prepared 41 x 41 mesh grids on the input domain, and the
approximation accuracy was evaluated by means of the averaged squared error nM SE on the
grids (Schaal and Atkeson 1997). Here, nM SE was normalized by the variance of the desired
outputs (8.1). We compared the batch EM algorithm and the on-line EM algorithm. In this
experiment, the discount factor A(z) was scheduled for approaching 1 as in (5.13). Figure 3
shows the time-series of n M. SE. The abscissa denotes the learning epochs, and the 500 data
points were supplied once in each epoch. The same training data set was used through the
whole epochs. In the figure, we can see that both the batch EM algorithm and the on-line EM
algorithm are able to approximate the target function in a small number of epochs. Although
the so-called “overlearning” can be seen in both learning algorithms, it is more noticeable in the
batch EM algorithm than in the on-line EM algorithm. The number of the units used in both
algorithms was 50. In this task, the data distribution does not change over time. In this case,
it can be thought that the batch learning is more suitable than the on-line learning because
the batch learning can process the whole data at once. However, our on-line EM algorithm
has ability similar to the batch algorithm. In addition, our on-line EM algorithm achieves a
faster and more accurate approximation ability for this task than the RFWR (Receptive Field
Weighted Regression) model proposed by Schaal and Atkeson (1997).



On-line EM algorithm 15

8.2 Function approximation in dynamic environments

The on-line EM algorithm is effective for a function approximation in a dynamic environment
where the input-output distribution changes with time.

For an experiment, the distribution of the input variable z; in (8.1) was continuously
changed in 500 epochs from the uniform distribution in the interval [—1, —0.2] to that in the
interval [0.2,1]. At each epoch, the input variables were generated in the current domain.
In the applications of the on-line EM algorithm for such dynamic environments, the learning
behavior changes according to the scheduling of the discount factor A(t). When the discount
factor is relatively small, the model tends to forget the past learning result, and to quickly
adapt to the present input-output distribution. We show two typical behavioral patterns in
the learning phase.

1. Fast adaptation with forgetting past

In the first case, A(t) is initially set at a relatively small value and it is slowly increased,
i.e., the effective learning coefficient 7(t) is relatively large throughout the experiment.
The NGnet adapts to the input distribution change by means of relocation of the units’
center. During the course of this relocation, the units’ center moves to the new region,
and consequently the past approximation in the old region is forgotten. Figures 4(a) and
4(b) show the center and the covariance (,i.e., two-dimensional display of the standard
deviation) of all the units for the 50-th epoch and the 500-th epoch, respectively. The
dots denote the 500 input points in each epoch. We can see that the NGnet adapts to the
input distribution change by means of the drastic relocation of the units’ center. Figure
5 shows the time-series of nM SE on the current input region during the course of this
learning task. We can see that the error does not grow large throughout the task. In
this experiment, the number of the units does not change.

2. Slow adaptation without forgetting past

In the second case, A(t) is rapidly increased, i.e., 7(t) rapidly approaches to zero. The
NGnet adapts to the input distribution change without forgetting the past approximation
result. In Figure 6, the solid, dashed, and dotted lines denote the time-series of nMSE
on the whole input domain, nMSE on the current input domain at each epoch, and
the number of units, respectively. Figure 7 shows the center and the covariance of
all the units at the end of the learning task. Since the unit relocation is slow, the
model adapts to the input distribution change mainly by the unit production mechanism.
Consequently, the units in the region where no more input data appear remain, and the
function approximation on the whole input domain is accurately maintained.

8.3 Singular input distribution

In order to evaluate our regularization method, we prepared a function approximation problem
where the input variables are linearly dependent and there is an irrelevant variable. In such a
case, the basic on-line EM algorithm without the regularization method obtains a poor result,
because the input distribution becomes singular.

In this experiment, the output y is given by the same function as (8.1), while the input
variables are given by z = (21, 29, z3, T4, Z5) = (21, o, (T1 + 22)/2, (21 — 25)/2,0.1). When the
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input data are generated, a Gaussian noise N(0,0.05) is added to z3, 4 and z5. For a training
set, we prepared 500 data, where x; and x, were uniformly taken from their domain, and the
output y was added by a Gaussian noise N(0,0.05). For evaluation, a test set was prepared by
setting ; and x5 on the 41 X 41 mesh grids and the other variables were generated according to
the above prescription. During the learning, the same training set was repeatedly supplied. In
Figure 8, the solid, dashed, and dotted lines are the learning curves for a = 0.23, o = 0.1 and
a = 0, respectively. If no regularization method is employed (o = 0), the error becomes large
after the early learning stage. Comparing the cases of @ = 0.23 and « = 0.1, the regularization
effect seems fairly robust with respect to the parameter a value.

Let us consider another situation, where the input data distribute on a curved manifold.
We consider a 3-D input space. Each input datum (z1, s, z3) is restricted on the unit sphere,
i.e., 2 + 3+ 22 = 1. A function defined on this unit sphere is given by

(21, o, z3) = (cos ) cos by, cos by sin Oz, sin ;) (8.2a)
y = cos(f;) cos(f2/2) max {8;10(291“)2, g 50(02/7)" 1.258“5((291/")2+(92/")2)} , (8.2b)

where the range of the spherical coordinate is given by —n/2 < 6; < 7/2 and —7 < 0, < 7.
The output y does not include a noise. The function (8.2b) is similar to the function (8.1), but
it is changed so as to satisfy the consistency of the spherical coordinate. We prepared 2000
data points uniformly on the sphere. In each learning epoch, the same data set is repeatedly
used.

The covariance matrix of the whole input data is not singular. However, the covariance
matrix of each local unit is nearly degenerate, so that the calculation of the inverse covariance
matrix and the linear regression matrix may include a noise without the help of the regular-
ization method. In figure 9, the solid and dashed lines are the learning curves for a = 0.023
and a = 0, respectively. If no regularization method is employed (a = 0), the error does not
become small. Note, however, that the calculation of the inverse covariance matrices is possible
without the regularization, since the input data is not linearly degenerate. Our regularization
method (a = 0.023) provides a fairly good result compared to the basic method without the
regularization (@ = 0). The condition numbers defined by (6.2) with the regularization and
without the regularization are 0.0191 £ 0.0042 and 0.0071 £ 0.0038, respectively.

The local covariance matrix, ¥;, of each unit represents the local input data distribution
fairly well in our regularized method. It has two principal components which span the tangen-
tial plane to the unit sphere at each local unit position. The third eigen value is very small
and it is bounded below by the regularization term. In figure 10, receptive fields of the local
units are shown. The receptive field of each unit is defined by an ellipse whose axes correspond
to the two principal components of the local covariance matrix ;. The center of this ellipse is
set at the center of the local unit, ;. One can see that the receptive fields appropriately cover
the unit sphere. The average cosine between the eigen vectors, which corresponds to the third
eigen values of the covariance matrices, and the spherical normal vectors was 0.9966 £+ 0.0157.
This implies that the receptive fields are almost tangential to the unit sphere.

8.4 Reinforcement learning

We apply our new approach to a reinforcement learning problem. The task is to swing the
pendulum upward by a restricted torque controller and stabilize the pendulum near the up-
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right position (Doya 1996). An actor-critic model proposed by Barto et al. (Barto, Sutton &
Anderson, 1983) is used for the learning system. For the current state, z.(t), of the controlled
system, the actor outputs an control signal (action) u(¢), which is given by the policy func-
tion Q(z.(t)), i-e., u(t) = Q(z.(t)). The controlled system changes its state to z.(t + 1) after
receiving the control signal u(t). Following that, a reward r(z.(¢ + 1)) is given to the learning
system. It is assumed that there is no knowledge of the controlled system.

The objective of the learning system is to find the optimal policy function Q*(z.) that
maximizes the discounted future return defined by

Viz.) = f: yir(z(t + 1))

t=0

, (8.3)

zc(0)=z,

where 0 < 7 < 1 is a discount factor and V(z,) is called the value function. The value function
V(z.) is defined for the current policy function §2(z.) employed by the actor.
The Q-function is defined by

Q(ze,u) = YV (z(t + 1)) + r(z(t + 1)), (8.4)

where z.(t) = z. and u(t) = u are assumed. The value function can be obtained from the
Q-function:

V(ze) = Qze,u = Qz.)). (8.5)
The Q-function should satisfy the consistency condition
Q(ze(t), u(t)) = YQ(ze(t + 1), Qzc(t + 1)) + r(ze(t + 1)) (8.6)

The critic estimates the Q-function that satisfies the consistency condition (8.6). The Q-
function is approximated by the NGnet, which is called the critic-network. The input to
the critic-network is the current system state z.(¢) and the control signal u(t). The target
output for the critic-network is given by the right hand side of (8.6), in which the Q-function
is calculated using the current critic-network. After obtaining the new state z.(t + 1), the
parameters of the critic-network are updated using the on-line EM algorithm. This learning
scheme is different from TD-learning (Sutton 1988) or Q-learning (Watkins 1989), because it
directly uses the target Q-function value.

In the task for swinging up the pendulum, the control signal u(t) represents a torque which
is applied to the controlled system, i.e., the pendulum. The policy function is approximated
by an actor-network, which is a variation of the Normalized Gaussian Network:

u = Q(z.) = Upge - tanh (AX/IE wiNi(z.) + 6) , (8.7)

i=1

where a random noise ¢ is added in the training phase in order to explore the state space.

Since the maximal torque is fixed at wpq., the output of the actor-network is filtered through

the sigmoidal function, tanh(-). The centers of the units are fixed at the mesh grid points in

the input space. The covariance matrices are also fixed to the univariate covariance matrices

with the same variance. There is no linear term. Only the bias parameters w are updated by

the gradient ascent method so that the Q-function value increases (Sofge and White 1992):
0N 0Q

Aw %(wc(t)) . a—(wc(t),u(t)). (8.8)
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The reward for the inverted pendulum is given by
r(zc) = exp(—(6)*/24 — 6%/24), (8.9)

where 6 and 6 denote the angle from the upright position and the angular velocity of the
pendulum, respectively, i.e., z. = (6,8). «1(= 37/5) and ¢2(= 7/5) are constant values. The
reward (8.9) encourages the pendulum to stay near the upright position.

After releasing the pendulum from a vicinity of the upright position, the control and the
learning process of the actor-critic network is conducted for 7 seconds. This is a single episode.
The reinforcement learning is done by repeating these episodes. As the learning proceeds, the
initial position of the pendulum is gradually moved away from the upright position. In order
to see the learning performance, we prepared three testbeds.

¢ Basy initial setting: 0< 10| <37n/5,0< 0| <n/5
¢ Medium initial setting: 0< |4 <6n/57/5<|0] <2x/5
o Difficult initial setting: 0< |6 <9n/5,2x/5 < |8 <3x/5

After each episode, the actor-critic network is tested under the above three testbeds. Figure
11 shows the time-series of the success rate for the three testbeds. A success is determined
when the final reward is larger than 0.99. In order to achieve this reward value, the pendulum
should stay near the upright position, because the reward (8.9) includes a penalty term for
a large velocity. After about 100 episodes, the system is able to make the pendulum achieve
an upright position for the easy initial setting. After this learning stage, the success rate for
easy and medium initial settings slightly decreases, because the initial position at the training
session moves away from the upright position. In this learning period, the system is mainly
adapting to initial states fairly distant from the upright position. This adaptation is conducted
by relocation of the critic-network units. After 350 episodes, the system is able to make the
pendulum achieve an upright position from almost every initial state. Since the maximal
torque generated by the controller is limited, the system inverts the pendulum after swinging
it several times. According to our previous experiments, in which the critic-network is the
NGnet trained by the gradient descent learning algorithm, a good control was obtained after
about 2000 episodes. Therefore, our new approach based on the on-line EM algorithm is able
to obtain a good control much faster than that based on the gradient descent algorithm.

9 Conclusion

In this article, we proposed a new on-line EM algorithm for the NGnet. We showed that the
on-line EM algorithm is equivalent to the batch EM algorithm if a specific scheduling of the
discount factor is employed. In addition, we showed that the on-line EM algorithm can be
considered as a stochastic approximation method to find the maximum likelihood estimator.

A new regularization method was proposed in order to deal with a singular input distribu-
tion. In order to manage the dynamic environments, unit manipulation mechanisms such as
unit production, unit deletion, and unit division were also introduced based on the probabilistic
interpretation.
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Experimental results showed that our approach is suitable for dynamical environments
where the input-output distribution of data changes with time.

We also applied our on-line EM algorithm to a reinforcement learning problem. It has been
shown that the NGnet, when using the on-line EM algorithm, learns the value function much
faster than the method based on the gradient descent algorithm.

In forthcoming papers, we will discuss applications for the reinforcement learning in more
detail.
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data. ‘
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given by (8.1) for the input = = (zy, 22, T3, Ta, T5) = (T1, T2, (T1 +

z2)/2 + N(0,0.05), (z1 — z2)/2 + N(0,0.05), N(0.1,0.05)) Solid,
dashed, and dotted lines are the learning curves for a = 0.23,
a = 0.1, and a = 0, respectively.
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Figure 9 Learning processes for the function (8.2). Solid and
dashed lines are the learning curves for the cases of & = 0.023 and
a = 0, respectively.
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Figure 10  Receptive fields of the local units at the 50-th epoch
after learning function (8.2). The receptive field of each unit is
defined by an ellipse whose axes correspond to the two principal
components of the local covariance matrix ¥;. Ellipse center is set
at the center of the local unit, p;. This figure shows the 3-D view
of a hemisphere.
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Figure 11 Time-series of success rate. Abscissa denotes num-

ber of episodes used for training the actor-critic network. Dotted,
dashed and solid lines denote success rates for easy, medium and
difficult initial settings, respectively.
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