
TR-H-243

On-Line EM Algorithm for the Nomalized
Gaussian Network.

Masa-aki SATO and Shin ISHII

1998.4.6

ATR人間情報通信研究所
〒619-0288 京都府相楽郡精華町光台2-2 TEL: 0774-95-1011

ATR Human Information Processing Research Laboratories

2-2, Hikaridai, Seika-cho, Soraku-gun; Kyoto 619-0288, Japan

Telephone: +81-774-95-1011
Fax : +81-774-95-1008

c(株）ATR人間情報通信研究所

On-line EM Algorithm for
the Normalized Gaussian Network

Masa-aki Sato t and Shin Ishii計

t ATR Human Information Processing Research Laboratories
2-2 Hikaridai, Seika-cho, Soraku-gun, Kyoto 619-0288, Japan

TEL: (+81)-774-95-1039 FAX: (+81)-774-95-1008

E-mail: masaaki@hip.atr.co.jp

計NaraInstitute of Science and Technology
8916-5 Takayama-cho, Ikoma-shi, Nara 630-0101, Japan

Abstract

Normalized Gaussian Network (NGnet) (Moody and Darken 1989) is a network of

local linear regression units. The model softly partitions the input space by normal-

ized Gaussian functions and each local unit linearly approximates the output within the

partition.
In this article, we propose a new on-line EM algorithm for the NGnet, which is derived

from the batch EM algorithm (Xu, Jordan and Hinton 1995) by introducing a discount

factor. We show that the on-line EM algorithm is equivalent to the batch EM algorithm

if a specific scheduling of the discount factor is employed. In addition, we show that the

on-line EM algorithm can be considered as a stochastic approximation method to find

the maximum likelihood estimator. A new regularization method is proposed in order to

deal with a singular input distribution. In order to manage dynamic environments, where

the input-output distribution of data changes with time, unit manipulation mechanisms

such as unit production, unit deletion, and unit division are also introduced based on the

probabilistic interpretation.

Experimental results show that our approach is suitable for function approximation

problems in dynamical environments. We also applied our on-line EM algorithm to a

reinforcement learning problem. It is shown that the NGnet, when using the on-line EM

algorithm, learns the value function much faster than the method based on the gradient

descent algorithm.

ー

On-line EM algorithm 2

1 Introduction

Normalized Gaussian Network (NGnet) (Moody and Darken 1989) is a network of local linear
regression units. The model softly partitions the input space by normalized Gaussian functions
and each local unit linearly approximates the output within the partition. Since the NGnet is a
local model, it is possible to change parameters of several units in order to learn a single datum.
Therefore, the learning process becomes easier than that of the global models such as the multi-
layered perceptron. In a local model, on the other hand, the number of necessary units grows
exponentially as the input dimension increases, if one wants to approximates the input-output
relationship over the whole input space. This results in a computational explosion, which is
often called the "curse of dimensionality". However, actual data will often distribute in a lower
dimensional space than the input space, such as in attractors of dynamical systems.
The NGnet, which is a kind of "Mixtures of Experts" model (Jacobs, Jordan, Nowlan and
Hinton 1991 ; Jordan and Jacobs 1994), can be interpreted as an output of a stochastic model
with hidden variables. The model parameters can be determined by the maximum likelihood
estimation method. In particular, the EM algorithm for the NGnet was derived by Xu, Jordan
and Hinton (1995). In this article, we propose a new on-line EM algorithm for the NGnet.
The on-line EM algorithm is derived from the batch EM algorithm (Xu, Jordan and Hinton

1995) by introducing a discount factor. Although the derivation is straightforward, important
modifications are necessary for practical applications. We will discuss these points in detail
and propose a modified version of the on-line EM algorithm. We show that the on-line EM
algorithm is equivalent to the batch EM algorithm if a specific scheduling of the discount
factor is employed. In addition, we show that the on-line EM algorithm can be considered
as a stochastic approximation method to find the maximum likelihood estimator. A new
regularization method is proposed in order to deal with a singular input distribution. Unit
manipulation mechanisms based on the probabilistic interpretation are also introduced in order
to manage dynamic environments. These mechanisms are unit production, unit deletion, and
unit division.
In order to investigate the performance of our new on-line EM algorithm, experiments for
function approximation problems are conducted for three circumstances. The first one is a
usual function approximation problem for a set of observed data. The second one is a function
approximation in which the distribution of the input data changes with time. This experiment
is performed to check the applicabjlity of our approach to the dynamic environments. The

~hird one is a function approximation in which the distribution of the input data is singular,
1.e., the dimension of the input data distribution is smaller than the input space dimension.
In this case, a straightforward application of the basic on-line EM algorithm does not work,
because the covariance matrices used in the NGnet become singular. Our modified on-line EM

algorithm is shown to work well even in this situation.
Encouraged by these positive results, we applied our on-line EM algorithm to a reinforce-
ment learning problem. In the actor-critic model (Barto, Sutton and Anderson 1983), learning
of the value function for a current policy can be regarded as a function approximation problem

in a dynamic environment, since the policy changes with time as the learning proceeds. As
an example, we examined a task for swinging-up an inverted pendulum (Doya 1996). The
experimental result shows that the NGnet, when using our new on-line EM algorithm, learns
the value function much faster than the method based on the gradient descent algorithm.

On-line EM algorithm 3

The paper is organized as follows. The NGnet and its stochastic model are explained in
Section 2. The batch EM algorithm is introduced in Section 3. These sections are based on
previous papers (Moody and Darken 1989; Xu, Jordan and Hinton 1995). The basic on-line
EM algorithm is derived in Section 4. The modifications of the basic on-line EM algorithm are
discussed in Sections 5, 6 and 7. The experimental results are shown in Section 8, and Section
9 sums up the paper.

2 Normalized Gaussian network

2.1 NGnet

The Normalized Gaussian Network (NGnet) model (Moody and Darken 1989), which trans-
forms an N-dimensional input vector x to a fl-dimensional output vector y, is defined by the

following equations.

M

y=ど(Wix十bi)ぷ(x)
i=l

M

ぷ(x)三G心）/LG炉）
j=l

1
叩）三 (21rtN/叫|―1/2exp [-2(xー叫匂(x-μi)].

(2.la)

(2.lb)

(2.lc)

M denotes the number of units, and the prime (') denotes a transpose. Gi(x) is an N-
dimensional Gaussian function; its center is an N-dimensional vectorμi and its covariance
matrix is an (N x N)-dimensional matrix均 I副 isthe determinant of the matrix江ぶ(x)
is the i-th normalized Gaussian function. Wi and bi are a (D x N)-dimensional linear regres-
sion matrix and a D-dimensional bias vector, respectively. Subsequently, we use notations:

~ 三 (W.凸）， and烈三 (x',1). With these notations, (2.la) is rewritten as

M

y= I: ぷ(x)Wiる．
i=l

(2.2)

The Gaussian function Gi(x) is a kind of radial basis function (Poggio and Girosi 1990).
However, the normalized Gaussian functions, ぶ(x)(i=l,…，M), do not have a radial symme-
try. They softlY:_partition the input space into M regions. The i-th unit linearly approximates
its output by Wiるwithinthe corresponding region. An output of the NGnet is given by a

summation of these outputs weighted by the normalized Gaussian functions.

2.2 Stochastic model of NGnet

The NGnet (2.1) can be interpreted as a stochastic model, in which a pair of an input and
an output (x, y) is a stochastic (incomplete) event. For each event, a single unit is assumed
to be selected from a set of classes {iii= 1, ... , M}. The unit index i is regarded as a hidden
variable. A triplet (x, y, i) is called a complete event. The stochastic model is defined by the

On-line EM叫gorithm 4

probability distribution for a complete event (Xu, Jordan and Hinton 1995):

P(x, y, il0) = (21r)―(D+N)/2(]'「嘔1-1/2正 exp[—忙—佑）＇幻(x- 叫ー ~(y- 叩）2 l ,
(2.3)

where 0三{μゎ喜叶，訊 Ii=1, …, M} is a set of model parameters. From the probability
distribution (2.3), the following probabilities are obtained.

P(i¥0) = 1/M

P(ぉ¥i,0)= G心）
1

P(y¥x,i,0) = (21r)ーD/2 a門exp[-可(y-加）2] .

(2.4a)

(2.4b)

(2.4c)

These probabilities define a stochastic data generation model. First, a unit is selected randomly
with an equal probability (2.4a). If the i-th unit is selected, the input x is generated according
to the Gaussian distribution (2.4b). Given the unit index i and the inputぉ， theoutput y
is generated according to the Gaussian distribution (2.4c), which has the mean Wiるandthe
variance u ..
When the inputぉisobserved, the probability that the output value becomes y in this

model, turns out to be
M

P(y¥む，0)=区ぶ(x)P(y¥x,i, 0).
i=l

(2.5)

From this conditional probability, the expectation value of the output y for a given input x is
obtained as:

M

E[ylx]三jyP(ylx, 0)dy =どぷ(x)加，
i=l

(2.6)

which is equivalent to the output of the NGnet (2.2). Namely, the probability distribution
(2.3) provides a stochastic model for the NGnet.

3 EM algorithm

From a set of T events (observed data), ({ x}, {y})三 {(x(t),y(t)) ¥ t = l, …，T}, the model
parameter 0 of the stochastic model (2.3) can be determined by the maximum likelihood
estimation method. In particular, the EM algorithm (Dempster, Laird and Rubin 1977) can
be applied to models having hidden variables. The EM algorithm repeats the following E-step
and M-step. Since the likelihood for the set of observations increases (or does not change) after

an E-and M-step, the maximum likelihood estimator is asymptotically obtained by repeating
the E-and M-steps.

• E (.E~timation) step
Let 0 be the present estimator. By using 0, the posterior probability that the i-th unit
is selected for each observation (x(t), y(t)) is calculated according to the Bayes rule.

M

P(i¥x(t), y(t), 0) = P(x(t), y(t), i¥0)/ L P(x(t), y(t), j¥0). (3.1)
j=l

On-line EM algorithm 5

• M (.Maximization) step
By using the posterior probability (3.1), the expected log-likelihood Q(0l0, { x }, {y}) for
the complete events is defined by

T M

Q(010,{x},{y}) = LLP(ilx(t),y(t),0)logP(x(t),y(t),il0). (3.2)
t=l i=l

On the other hand, the log-likelihood of the observed data ({ x}, {y}) is given by

T T M

L(OI{ぉ},{y})=苫logP(x(t), y(t)l0) =臣（苔P(x(t),y(t), ij0)) .

Since an increase of Q(0j0, {ぉ},{y}) implies an increase of the log-likelihood L(O!{ x }, {y})
(Dempster, Laird and Rubin 1977), Q(0j0,{x},{y}) is maximized with respect to the
estimator 0. A solution of the necessity condition 8Q/80 = 0 is given (Xu, Jordan and
Hinton 1995) by

(3.3)

佑＝〈か(T)/〈1〉i(T) (3.4a)

I:i =〈(x-μi)(x -μi)'〉i(T)/〈1〉i(T)=〈xx'〉i(T)/〈1〉i(T)-µi(T)µ~(T) (3.4b)

囮醒〉i(T)=〈y判 (T) (3.4c)

叶＝炉〈ly-w;紆〉i(T)/〈1〉i(T)= i [〈IY伽(T)-Tr (w; 店y'〉i(T))]I〈1〉i(T),(3.4d)
where Tr(•) denotes a matrix trace. A symbol <•>idenotes a weighted mean with respect
to the posterior probability (3.1) and it is defined by

1 T
〈f(x,y)〉i(T)三一I:!(ぉ(t),y(t))P(加(t),y(t), 0).

T t=l
(3.5)

If an infinite number of data, which are drawn independently according to an unknown
data distribution density p(ぉ，y),are given, the weighted mean (3.5) converges to the following
expectation value.

〈f(x,y)〉i(T)T..::::_空E[f(x,y)P(ilむ,Y, 0)]p, (3.6)

where E[・]p denotes the expectation value with respect to the data distribution density p(x, y).
In this case, the M-step equation (3.4) can be written as

9i三 E[P(ilx,y, 0)]p (3.7a)

佑=E[xP(ilx, y, 0)]心 (3.7b)

~i = E[xx'P(ilx, y, 0)]心—µ凶 (3.7c)

Wぶ［蕊'P(ilx,y, 0)]p = E[yる'P(ilx,y,0)]p (3.7d)
1

CI-= -(E[IYl2P(ilx,y,0)]p -Tr(WiE[るy'P(ilx,y, 0)]砂） /gゎ (3.7e)
i D

where the new parameter~et 0 = {μ ゎ江飢，(Ifli= 1, …, M} is calculated by using the old
parameter set 0 = {佑，立，Wわけ『li=l,... ,M}.

On-line EM algorithm 6

At an equilibrium point of this EM algorithm, the old and, new parameters become t恥
same, i.e., 0 = 0. The equilibrium condition of the EM algorithm, i.e., (3.7) along with 0 = 0,
is equivalent to the maximum likelihood condition,

8L(0)/細=0, (3.8)

where the log-likelihood function is given by

M

L(0) = E[log~P(x, y, i¥0)]p・
i=l

(3.9)

4 On-line. EM algorithm

The EM algorithm introduced in the previous section is based on a batch learning (Xu, Jordan
and Hinton 1995), namely, the parameters are updated after seeing all the observed data
({ x }, {y}). In this section, we derive an on-line version of the EM algorithm. Since the
estimator is changed after each observation, let 0(t) be the estimator after the t-th observation
(x(t), y(t)). In the on-line EM algorithm, the weighted mean (3.5) is replaced by:

T

≪f(x, y)~i (T)三 71(T)I: 入T-tf(ぉ(t),y(t))P(加(t),y(t), 0(t -1)) (4.la)
t=l

T

rJ(T)三 (I:入T-t戸=(1-入）/(1-入り．
t=l

(4.lb)

Here, the parameter入(0<入<1) is a discount factor, which is introduced for forgetting
the effect of the old posterior values employing the earlier inaccurate estimator. TJ(T) is a
normalization coefficient and plays a role like a learning rate. The modified weighted mean
~ • ~i can be obtained by the step-wise equation:

≪f(x, y)≫i (t) =≪f(x, y)≫i (t -1) + rJ(t) [f(x(t), y(t))Pi(t)-≪f(x, y)≫i (t -1)],
(4.2)

where Pi(t)三 P(iJx(t),y(t), 0(t -1)). After calculating the modified weighted means, i.e.,
≪1≫i (t), <i尽:X≫i (t), <: 委~xx'»i (t), ≪JyJ2 : 含:>i(t), and≪yx'≫i (t), according to (4.2),
the new estimator 0(t) is obtained by the following equations.

叫t)=≪X忍 (t)/≪1≫i(t) (4.3a)

~;1(t) = [≪xx'≫i (t)/≪l≫i (t) -µi(t)µ~(t)] ー1 (4.3b)

囮t)=≪yゑI≫i(t)[≪ 韮I≫i(t)tl (4.3c)

1
忍＝万 [≪!Yl2≫i(t) -Tr (化(t)≪ るy'≫i(t))] /≪1≫i (t). (4.3d)

This defines the on-line EM algorithm. In this algorithm, calculat巫~:ms of the inverse matrices
are necessary at each time step. A recursive formula for江戸 andWi can be derived, in which
there is no need to calculate the matrix inverse, by using a standard method (Jurgen 1996).

On-line EM algorithm 7

Let us define the weighted inverse covariance matrix ofる： Ai(t) 三(~ 証I~i (t))ー1.This
quantity can be obtained by the step-wise equation:

1 -
ふ(t)= 1 -rJ(i) [ふ(t-1) -

Pi(t)ふ(t-1)る(t)る'(t)ふ(t-1)
(l/ry(t) -1) + Pi(t)x'(t)ふ(t-1)る(tJ・

幻 (t)can be obtained from the following relation withふ(t).

ふ(t)~1~i (t) = (幻(t) -I; □ (t)叫t))
―μれ(t)I;i1(t) 1 +μ り(t)I;i1(t)μi(t) .

(4.4)

(4.5)

The estimator for the lmear regression matrix, Wi, is given by

wi(t) =~yるI»i (t)ふ(t) (4.6a)

= Wi(t -1) + TJ(t)Pi(t)(y(t)―れ(t-1)る(t))る'(t)ふ(t). (4.6b)

Thus, the basic on-line EM algorithm is summarized as follows. For each observation
(x(t), y(t)), the weighted means, i.e.,≪1≫i (t), ≪x≫i (t), ≪jy/2 >>i (t), and≪xy': 含~i (t),
are calculated by using the step-wise equation (4.2). ふ(t)is also calculated by the step-wise
equation (4.4). Subsequently, the estimators for the model parameters are obtained by (4.3a),
(4.3d), (4.5), and (4.6b).

5 Scheduling of discount factor

5.1 Time-dependent discount factor

In the previous section, we assumed that the discount factor入isa constant. If this is the case,
the estimators obtained by the on-line EM algorithm and the batch EM algorithm differ from
each other due to the presence of入in(4.1). Here, we assume that入isa function of the time
t, so that入T-tin (4.la) is replaced by Il;=t+l入(s).The normalization coefficient rJ(T) (4.1 b)
is redefined by

T T
-1

~(T) 三（且且入(s))
It is calculated by the step-wise equation:

71(t) = (1十入(t)/77(t-1))―1_

(5.1)

(5.2)

There is no need to redefine the step-wise equations (4.2), (4.4) and (4. 6b), if the effective
learning coefficient'TJ(t) is calculated by (5.2).
The constraint, 0:::; 入(t):::; 1, gives the constraint on'TJ(t):

1 2:: 17(t) 2:: 1/t.

If this constraint is satisfied, the equation (5.2) can be solved for入(t)as:

入(t)= 17(t -l)(l/17(t) -1).

(5.3)

(5.4)

On-line EM algorithm 8

5.2 Equivalence between on-line and batch EM algorithms

In the next part, we show that the on-line EM algorithm defined by (3.1), (4.2) and (4.3) is
equivalent to the batch EM algorithm defined by (3.1), (3.4) and (3.5), with an appropriate
choice of入(t).
It is assumed that the same set of data, {(x(t), y(t))¥t = 1, …，T}, is repeatedly supplied
to the learning system, i.e., x(t + T) = x(t) and y(t + T) = y(t). The time t is represented
by an epoch index k (= 1, 2, ...) and a data number index m (= 1, ... , T) within an epoch, i.e.,
t = (k -l)T + m. Let us assume that the model parameter 0 is updated at the end of each
epoch, i.e., when m = T, and it is denoted by 0(k). Let us suppose that入(t)is given by

入(t)= { 0 if t = (k -l)T + 1
1 otherwise

． (5.5)

The corresponding rJ(t) is given by rJ((k -l)T + m) = 1/m. Then, the weighted mean≪
!(ぉ，y)彦汽 (t) is initialized to f(x(l),y(l))P(i匠(l),y(l),0(k-1)) at the beginning of an
epoch. At the end of an epoch, «f(ぉ， y)~i (kT) =〈f(x,y)〉i(T)is satisfied for 0 = 0(k-l).
This shows that the on-line EM algorithm together with入(t)given by (5.5) is equi:.7alent to
the batch EM algorithm. It should be noted that the step-wise equation (4.4) forふ(t)can
not be used in this case, since the equation (4.4) becomes singular for 71(t) = 1.

5.3 Stochastic approximation

If an infinite number of data, which are drawn independently according to the data distribution
density p(x, y), are available, the on-line EM algorithm can be considered as a stochastic
approximation (Kushner and Yin 1997) for obtaining the maximum likelihood estimator, as
demonstrated below.
Let </J be a compact notation for the weighted mean, i.e., <fJ(t) 三 {~1~汽 (t),~X), 汽

(t), ~xx': 彦>i(t), ~yる'~i (t), ~jyj2~i (t)ji = 1, ... , M}. The on-line EM algorithm, (4.2)
and (4.3) , can be written in an abstract form:

8¢(t)三 ¢(t)-¢(t -1) = 1J(t)[F(x(t), y(t), 0(t -1)) -¢(t -1)] (5.6a)

0(t) = H(¢(t)). (5.6b)

It can be easily proved that the set of equations:

cp = E[F(x, y, 0)]p
0 = H(</>)

(5.7a)

(5.7b)

is equivalent to the m訟 imumlikelihood condition (3.8). Then, the on-line EM algorithm can
be written as

6¢(t) = rJ(t)(E[F(x, y, H(cp(t -l)))]p―cp(t -1)) + rJ(t)((x(t), y(t), の(t-1)), (5.8)

where the stochastic noise term (is defined by

く(x(t),y(t), cp(t -1))三::F(x(t),y(t),H(cp(t -1)) -E[F(x,y,H(cp(t -l)))]p, (5.9)

On-line EM algorithm

，

and it satisfies

E[((x, y, </J)]p = 0. (5.10)

The equation (5.8) has the same form as the Robbins-Monro stochastic approximation (Kush-
ner and Yin 1997), which finds the maximum likelihood estimator given by (5.7). The effective

learning coefficient rJ(t) should satisfy the condition

'TJ(t)巳 0,
00

I: r,(t) = oo,
t=l

00

こが(t)< 00.
t=l

(5.11)

Typically, rJ(t), which satisfies the conditions (5.3) and (5.11), is given by

TJ(t)
t→ 00 1
）

at+ b
(1 >a> 0).

The corresponding discount factor is given by

入(t)ピ 1
1-a

at+ (b -a)'

(5.12)

(5.13)

namely, 入(t)is increased such that入(t)approaches 1 as t→ 00.
For the convergence proof of the stochastic approximation (5.8), the boundedness of the
noise variance is necessary (Kushner and Yin 1997). The noise variance is given by

E[((x, y, cp戸]P= E[F(x, y, H(cp))2]P -E[F(x, y, H(cp))];. (5.14)

Both terms on the right hand side in (5.14) are finite, if we assume that the data distribution
density p(x, y) has a compact support. Consequently, the noise variance becomes finite under

this assumption. This assumption is not so restrictive, because actual data always distribute
in a finite domain. We can weaken this assumption such that p(x, y) decreases exponentially

as JxJ or IYI goes to infinity.
It should be noted that the stochastic approximation (5.8) for finding the maximum like-
lihood estimator is not a stochastic gradient ascent algorithm for the log-likelihood function
(3.9). The on-line EM algorithm (5.8) is faster than the stochastic gradient ascent algorithm,
because the M-step is solved exactly. We have so far used the on-line EM algorithm defined by
(4.2) and (4.3), which is equivalent to the basic on-line EM algorithm defined by (4.2), (4.3a),

(4.3d), (4.4), (4.5), and (4.6b), if TJ(t) =I-1. Therefore, the basic on-line EM algorithm is also
a stochastic approximation.
In practical applications, the learning coefficient TJ(t) given by (5.12) becomes too small for
a very large t, such that the parameters could not be changed significantly in a finite period.

In order to avoid this situation, TJ(t) is often set at a small positive value T/min for a very large
t. This clamp corresponds to入(t)= 1 -'f/min• If the input and/or output distribution for the
observed data change with time, it is not necessary that TJ(t) converges to zero. This dynamical
situation will be considered later in our experiments.

6 Regul ar1zat1on

6.1 Reg 1 ・u ar1zation of the covariance matrix

We have assumed so far that the covariance matrix of the input data is not singular in each
region, namely, the inverse matrix for every~i (i = 1, …, M) exists. In actual applications of

On-line EM algorithm 10

the algorithm, however, this assumption often fails. A typical case occurs when the dimension
of the input data distribution is smaller than the dimension of the input space. In such a case,
幻 cannot be calculated andふdivergesexponentially with the time t.
There are several methods for dealing with this problem. They are the introduction of

Bayes priors, the singular value decomposition, the ridge regression, etc. However, they are
not satisfactory for our purpose. Here, we will propose a simple new method that performs

well.
Let us first consider a regularization of an (N x N)-dimensional covariance matrix, ~, for
the observed data. Its eigenvalues and normalized eigen vectors are denoted by~n (2: 0) and
叫 (n= 1, …, N), respectively.

区叫三品叫 (n = 1, …, N). (6.1)

The set of the eigen vectors, {叫nln= i, …, N}, forms a set of orthonormal bases. The condition
number of the covariance matrix I: is defined by

v三 'min/,maz, (6.2)

where emin and ema:i: are the minimum and maximal eigen values of :E, respectively. So that
0 ::; v s 1. If v = 0, the covariance matrix :E is singular. If v~1, the covariance matrix :E
is regular and the calculation of its inverse is numerically stable. If O < v~l, the covariance
matrix is regular and 1;-1 is given by

N

ゞ1= I: 品ー1叫汎． (6.3)
n=l

The inverse covariance matrix~-l (6.3) is dominated by tmin, which may contain a numerical
noise. As a consequence, the inverse matrix~-1 becomes sensitive to numerical noises.
In order to deal with this problem, we propose the following regularized covariance matrix

~R for the data covariance matrix~-

均 =I;+a:ぶIN

ぶ=Tr(I;)/N,

(0 < a < 1) (6.4a)

(6.4b)

where IN is an (N x N)-dimensional identity matrix. The data varianceぶ satisfiesthe

inequality
1 N

~ma:ll~ ぶ＝一~ ~n~ ~ma:ll/ N.
N n=l

(6.5)

The eigen values and eigen vectors of the regularized matrix均 aregiven by (も+aぶ） and
心n,respectively. From the inequality (6.5), it can be proved that the condition number of the
regularized matrix I:R satisfies the condition:

VR~a/(N(l + a)). (6.6)

Then, the condition number of I:R is bounded below and it is controlled by the small constant
a:. The rate of change for the regularized eigen value is defined by

R(~n) 三三 ((~n + 0'.~2) -~n)/~n = o:(~2 /~n), (6.7)

On-line EM algorithm 11

From the inequality (6.5), the ratio (6. 7) satisfies the condition:

R(•) ~R(ema:e)~a/N

R(品） ~R(emin)~a/v.

(6.8a)

(6.8b)

If all the eigen values of~are the same order, i.e., v~0(1), the rate of change becomes
small, i.e., R(品） ~0(a), so that the effect of the regularization is negligible. If the data
covariance matrix~is singular, i.e., v = 0, the zero eigenvalue of~is replaced by aぶ.Thus,
the regularized matrix翫 becomesregular and its condition number is bounded by (6.6). In
general, the eigen values, which are larger than their average, are slightly affected, while the
very small eigen values are changed so as to be nearly equal to a△乞

By introducing a Bayes prior for a regularized matrix均Bas

P(均） = (K/2)N exp (-(K/2)Tr(叩）），

one can get a similar regularization equation

~B =~+KIN,

(6.9)

(6.10)

where the regularization parameter K is a given constant. However, it is rather difficult to

determine the value of K without knowledge of the data covariance matrix. It is especially
difficult for the NGnet, since there are M independent local covariance matrices~i (i =
1, ... , M). The proposed method (6.4) automatically adjusts this constant by using the data
varianceぶ， whichis easily calculated in an on-line manner.

If~= 0, ぶ becomeszero and the regularization (6.4) does not work. Therefore, ifぶ is
smaller than a threshold value△盆釦ぶ isset to△ ~in. This prevents恥 frombeing singular
even when~= 0.

6.2 Regularization of on-line EM algorithm

Based on the consideration above, the i-th weighted covariance matrix is redefined in our
on-line EM algorithm as:

-1

~-;1(t) = [(≪xx': 拓 (t)-µi(t)µ~(t)«1~i (t) +a≪ △『 ~i (t)IN) /«1~ 万(t)]'
(6.11)

where

＜△ ~ ≫i (t)三≪Ix-μi(t)l2≫i (t)/N = (≪lxi2≫i (t) -lμi(t)l2≪1恥 (t))/N. (6.12)

The regularized~ □ (6.11) can be obtained from the relation (4.5) by using the following
regularizedふ：

ふ(t)= (戸戸>i(t) + a: ≪ △『 ~i (t応）―1.
The ((N + 1) x (N + 1))-dimensional matrix, JN, is defined by

，

!

n

~e n

~e

z
区
[
＝

＼

ー

）

0

0

I
N
o

／

ー

＼――
―
z

～ー

(6.13)

(6.14)

On-line EM algorithm 12

where en is an (N + 1)-dimensional unit vector; its n-th element is equal to 1 and the other
elements are equal to 0. The regularization term in (6.13) can be calculated in an on-line
manner. From the definition (6.12), ≪ △ 7≫i (t) can be written as

≪△？瓦 (t)=≪ △『 ≫i(t -1) + ry(t)(△ 7(t)Pi(t)-≪ △ 7≫i (t -1)), (6.15)

where△ t(t) is given by

ry(t)Pi(t)△『(t)= ry(t)Pi(t)jx(t) —叫t)l2/N + (1-ry(t))加(t)-μi(t -1)12≪1ぁ (t-1)/N.
(6.16)

The second term on the right hand side in (6.16) comes from the difference between≪Ix -
μi(t)l2≫i (t -1) and≪i:iり一 μi(t-l)j2 : 含:>i(t -1). Using (6.14) and (6.15), (6.13) can be
rewritten as

ふ(t)= [(1 -~(t))Ai1(t -1) +~(t) (る(t)る'(t)+ f, 互t)V.'(t))P;(t) l―1 (6.17a)
n=l

互t)三《込(t)盈 (6.17b)

As a result, the regularizedふ(t)(6.13) can be calculated as follows. F_'.or a given input data
叩），ふ(t)is calculated using the step-wise equation (4.4). After that, Ai(t) is updated by

ふ(t):=ふ(t)-
77(t)Pi(t)入i(t)iln (t) Vn1 (t)入i(t)

1 + 77(t)Pi(t)紺(t)ふ(t)叫t)'
(6.18)

using the virtual data {vn(t)¥n = 1, …:.zN}.
After calculating the regularized Ai(t) 56.13), the linear regression matrix Wi is obtained
by using (4.6b), in which the regularized Ai(t) is used. In the calculation of (4.6b), only the
observed data {(x(t), y(t))¥t = 1, 2, …} are used and the virtual data {vn(t)¥n = 1, …，N;t =
1,2, …}, which have been used in the calculation of the regularizedふ(t),must not be used.
'!'herefore, equation (4.6a) does not hold in our regularization method. Since the regularized
ふ(t)is positive definite, the linear regression matrix配 atan equilibrium point of (4.6b)
satisfies the condition

飢E[醒 P(ilx,y, 0)]p = E[yる'P(ilx,y,0)]p, (6.19)

which is identical to the maximum likelihood equation, (3.7d) along with 0 = 0. Although
the matrix E [る元'P(iJx,y, 0)]p may not have the inverse, the relation (6.19) still has a meaning.
Therefore, our method does not introduce a bias on the estimation of訊
Let us compare our regularization method, (4.6b) along with (6.13), to the Bayes prior
method. By introducing a Bayes prior for Wi as

P(Wi) = (/'i,/21「)D(N+l)l2exp (-(/'i,/2)Tr(WfWi)), (6.20)

the regularized equation for Wi is obtained:

Wi=く餌>d国'〉i+ K,]N+l)―1. (6.21)

This equation is a regularized version of the equation (4.6a) instead of the equation (4. 6b). At
an equilibrium point of the equation (6.21), Wi satisfies

飢(E[証 'P(ilx,y,0)]P+ ;;,JN+1) = E[y訂'P(ilx,y,0)]p, (6.22)

implying that this Bayes prior method introduces a bias on the estimation of飢．

。n-lineEM algorithm 13

7 Unit manipulation

Since the EM algorithm only guarantees local optimality, the obtained estimator depends on
its initial value. The initial allocation of the units in the input space is especially important
for attaining a good approximation. If the initial allocation is quite different from the input
distribution, much time is needed to achieve proper allocation. In order to overcome this
difficulty, we introduce dynamic unit manipulation mechanisms, which are also effective for
dealing with dynamic environments. These mechanisms are unit production, unit deletion,
and unit division, and they are conducted in an on-line manner after observing each datum

(x(t), y(t)).

• Unit production
The probability P(x(t), y(t), i J 0(t-1)) indicates how probable the i-th unit produces the
datum (x(t), y(t)) with the present parameter 0(t -1). Let O < Pproduce~1/ M. When
max巳iP(ぉ(t),y(t), i I 0(t-1)) < f>, 炒oduce,the datum is too distant from the present units
to be explained by the current stochastic model. In this case, a new unit is produced to
account for the new datum. The initial parameters of the new unit are given by:

μM+l=ぉ(t)

巧ぬ =xぬIN Xif+1 = /J1min已lx(t)-μ 氾/N
2 M 2
(J'M+l =ぁmaxi=l(J'i
WM+l三 (WM+I,bM+I) = (0, y(t)),

where /31 and /32 are appropriate positive constants.

• Unit deletion

(7.la)

(7.lb)

(7.lc)

(7.ld)

The weighted mean~1 忍 (t), which is calculated by (4.2), indicates how much the

i-th unit has been used to account for the data until t. Let O < Pdelete~l/M. If
~1~i (t) < Pdelete, the unit has rarely been used. In this case, the i-th unit is deleted.

• Unit division
The unit error variance CJ;(t) (4.3d) indicates the squared error between the i-th unit's

prediction and the actual output. Let Ddivide be a specific positive value. If CJ;(t) >
Ddivide, the unit's prediction is insufficient, probably because the partition in charge is
too large to make a linear approximation. In this case, the i-th unit is divided into two
units and the partition in charge is divided into two. The initial parameters of the two

units are given by:

叫new)=叫old)+/33喜妬 μM+i(new)=叫old)-/33喜口1 (7.2a)
N

巧わ(new)=~汽new)=4釘渇叫+I:~;1叫汎
n=2

叶(new)=咋+l(new)=叶(old)/2
Wi(new) = W年 1(new)= Wi(old),

(7.2b)

(7.2c)

(7.2d)

where品 and叫 denotethe eigen value and the eigen vector of the covariance matrix

叫old),respectively, and も =~/3ma:i:・3 1s an appropriate positive constant.

On-line EM algorithm 14

Although similar unit manipulation mechanisms have been proposed in (Platt 1991; Schaal
and Atkeson 1997), these mechanisms can be conducted with a probabilistic interpretation in
our on-line EM algorithm.
Finally, we would like to comment on the extrapolation done by the NGnet after the learning
phase. If an input x that is far from all the unit centers is given, the output of the NGnet is
approximately W. 点 wherei is the index of the closest unit to the input x. This implies that
the output of the NGnet linearly diverges as I叫→ oo where the NGnet has never experienced
the training data. A simple way to prevent this undesirable behavior is given as follows. If

四似G炉）:::; Gmin for a small threshold value Gmin, the normalized Gaussian functionぶ(x)
defined by (2.lb) is replaced by Gi(x)/Gmin・This prescription, however, has not been used in
the following experiments, because the input spaces in those experiments are bounded.

8 Exp er1ments

8.1 F ・unction approximation 1n static environment

Applicability of our algorithm _is investigated using the following function (N = 2 and D = 1),
which was used by Schaal and Atkeson (1997).

y = max{ e―10主e―50生1.25e―5(吋+zn} (-1:::; X1,X2:::; 1), (8.1)

Figure 1 shows the function shape.

By sampling the input variable vector, x三 (x1り砂）， uniformlyfrom its domain, we pre-
pared 500 input-output pairs, { (ぉ(t),y(t))lt = 1, …，500}, as a training data set. A fairly large
Gaussian noise N(O, 0.1) is added to the outputs, where N(O, 0.1) denotes a Gaussian distri-
bution whose mean and standard deviation are O and 0.1, respectively. Figure 2 shows the
function shape with the noise. The problem task is for the NGnet to approximate function
(8.1) from the 500 noisy data. We prepared 41 x 41 mesh grids on the input domain, and the
approximation accuracy was evaluated by means of the averaged squared error nM SE on the
grids (Schaal and Atkeson 1997). Here, nMSE was normalized by the variance of the desired
outputs (8.1). We compared the batch EM algorithm and the on-line EM algorithm. In this
experiment, the discount factor入(t)was scheduled for approaching 1 as in (5.13). Figure 3
shows the time-series of nM SE. The abscissa denotes the learning epochs, and the 500 data
points were supplied once in each epoch. The same training data set was used through the
whole epochs. In the figure, we can see that both the batch EM algorithm and the on-line EM
algorithm are able to approximate the target function in a small number of epochs. Although
the so-called "overlearning" can be seen in both learning algorithms, it is more noticeable in the
batch EM algorithm than in the on-line EM algorithm. The number of the units used in both

algorithms was 50. In this task, the data distribution does not change over time. In this case,
it can be thought that the batch learning is more suitable than the on-line learning because
the batch learning can process the whole data at once. However, our on-line EM algorithm
has ability similar to the batch algorithm. In addition, our on-line EM algorithm achieves a
faster and more accurate approximation ability for this task than the RFWR (Receptive Field
Weighted Regression) model proposed by Schaal and Atkeson (1997).

On-line EM algorithm 15

8.2 Function approximation 1n dynamic environments

The on-line EM algorithm is eザectivefor a function approximation in a dynamic environment
where the input-output distribution changes with time.
For an experiment, the distribution of the input variable x1 in (8.1) was continuously
changed in 500 epochs from the uniform distribution in the interval [-1, -0.2] to that in the

interval [0.2, 1]. At each epoch, the input variables were generated in the current domain.
In the applications of the on-line EM algorithm for such dynamic environments, the learning
behavior changes according to the scheduling of the discount factor入(t).When the discount
factor is relatively small, the model tends to forget the past learning result, and to quickly

adapt to the present input-output distribution. We show two typical behavioral patterns in
the learning phase.

1. Fast adaptation with forgetting past
In the first case, 入(t)is initially set at a relatively small value and it is slowly increased,
i.e., the effective learning coefficient rJ(t) is relatively large throughout the experiment.
The NGnet adapts to the input distribution change by means of relocation of the units'
center. During the course of this relocation, the units'center moves to the new region,
and consequently the past approximation in the old region is forgotten. Figures 4(a) and
4(b) show the center and the covariance (,i.e., two-dimensional display of the standard
deviation) of all the units for the 50-th epoch and the 500-th epoch, respectively. The
dots denote the 500 input points in each epoch. We can see that the NGnet adapts to the
input distribution change by means of the drastic relocation of the units'center. Figure
5 shows the time-series of nM SE on the current input region during the course of this
learning task. We can see that the error does not grow large throughout the task. In
this experiment, the number of the units does not change.

2. Slow adaptation without forgetting past
In the second case, 入(t)is rapidly increased, i.e., rJ(t) rapidly approaches to zero. The

NGnet adapts to the input distribution change without forgetting the past approximation
result. In Figure 6, the solid, dashed, and dotted lines denote the time-series of nMSE
on the whole input domain, nMSE on the current input domain at each epoch, and
the number of units, respectively. Figure 7 shows the center and the covariance of
all the units at the end of the learning task. Since the unit relocation is slow, the
model adapts to the input distribution change mainly by the unit production mechanism.
Consequently, the units in the region where no more input data appear remain, and the
function approximation on the whole input domain is accurately maintained.

8.3 Singular input distribution

In order to evaluate our regularization method, we prepared a function approximation problem
where the input variables are linearly dependent and there is an irrelevant variable. In such a

case, the basic on-line EM algorithm without the regularization method obtains a poor result,
because the input distribution becomes singular.
In this experiment, the output y is given by the same function as (8.1), while the input

variables are given by x三 (x1心2心3,四， X5)= (x1心2,(お1+ x2)/2, (x1 -x2)/2, 0.1). When the

On-line EM algorithm 16

input data are generated, a Gaussian noise N(O, 0.05) is added to x糾 x4and x5. For a training
set, we prepared 500 data, where x1 and x2 were uniformly taken from their domain, and the
output y was added by a Gaussian noise N(O, 0.05). For evaluation, a test set was prepared by
setting x1 and四 onthe 41 x 41 mesh grids and the other variables were generated according to

the above prescription. During the learning, the same training set was repeatedly supplied. In
Figure 8, the solid, dashed, and dotted lines are the learning curves for a= 0.23, a= 0.1 and
a = 0, respectively. If no regularization method is employed (a = 0), the error becomes large
after the early learning stage. Comparing the cases of a= 0.23 and a= 0.1, the regularization
effect seems fairly robust with respect to the parameter a value.
Let us consider another situation, where the input data distribute on a curved manifold.
We consider a 3-D input space. Each input datum (x1, x2心） is restricted on the unit sphere,
i.e., 吋＋吋＋吋=1. A function defined on this unit sphere is given by

(x1, 四，四） = (cos01 cos0ぁCOS釘sin的，sin01) (8.2a)

y = cos(佑）cos(02/2) max { e―10(2知）2'e-5o(02/1r)2'l.25e―5((2釘/1r)2+(知）2)}, (8.2b)

where the range of the spherical coordinate is given by -7T'/2 :::; 01 :::; 7T'/2 and -7T':::; 島＜冗
The output y does not include a noise. The function (8.2b) is similar to the function (8.1), but
it is changed so as to satisfy the consistency of the spherical coordinate. We prepared 2000
data points uniformly on the sphere. In each learning epoch, the same data set is repeatedly
used.
The covariance matrix of the whole input data: is not singular. However, the covariance
matrix of each local unit is nearly degenerate, so that the calculation of the inverse covariance
matrix and the linear regression matrix may include a noise without the help of the regular-
ization methqd. In figure 9, the solid and dashed lines are the learning curves for a = 0.023
and a= 0, respectively. If no regularization method is employed (a= 0), the error does not
become small. Note, however, that the calculation of the inverse covariance matrices is possible
without the regularization, since the input data is not linearly degenerate. Our regularization
method (a = 0.023) provides a fairly good result compared to the basic method without the

regularization (a= 0). The condition numbers defined by (6.2) with the regularization and
without the regularization are 0.0191土0.0042and 0.0071土0.0038,respectively.
The local covariance matrix, 江， ofeach unit represents the local input data distribution
fairly well in our regularized method. It has two principal components which span the tangen-
tial plane to the unit sphere at each local unit position. The third eigen value is very small
and it is bounded below by the regularization term. In figure 10, receptive fields of the local
units are shown. The receptive field of each unit is defined by an ellipse whose axes correspond
to the two principal components of the local covariance matrix江 Thecenter of this ellipse is

set at the center of the local unit, μi. One can see that the receptive fields appropriately cover
the unit sphere. The average cosine between the eigenvectors, which corresponds to the third
eigenvalues of the covariance matrices, and the spherical normal vectors was 0.9966土0.0157.
This implies that the receptive fields are almost tangential to the unit sphere.

8.4 R ・e1nforcement learning

We apply our new approach to a reinforcement learning problem. The task is to swing the
pendulum upward by a restricted torque controller and stabilize the pendulum near the up-

On-line EM algorithm 17

right position (Doya 1996). An actor-critic model proposed by Barto et al. (Barto, Sutton &
Anderson, 1983) is used for the learning system. For the current state, xc(t), of the controlled
system, the actor outputs an control signal (action) u(t), which is given by the policy func-

tion nに(t)),i.e., u(t) = n(叩(t)).The controlled system changes its state to糾(t+ 1) after
receiving the control signal u(t). Following that, a reward r(xc(t + 1)) is given to the learning
system. It is assumed that there is no knowledge of the controlled system.
The objective of the learning system is to find the optimal policy function n*(叩） that
maximizes the discounted future return defined by

00

V(叩）三互'Ytr(叩(i+l))l:i:c(O)=:i:c' (8.3)

where O <'Y < 1 is a discount factor and V(叩） is called the value function. The value function
V(叩） is defined for the current policy function O(xc) employed by the actor.
The Q-function is defined by

Q(xc, u) = 1V(況(t+ 1)) + r(xc(t + 1)), (8.4)

where叫(t)=叩 andu(t) = u are assumed. The value function can be obtained from the
Q-function:

V(xc) = Q(叩，u= n(叩））．
The Q-function should satisfy the consistency condition

Q(xc(t), u(t)) = ,yQ(xc(t + 1), n(xc(t + 1))) + r(xc(t + 1)).

(8.5)

(8.6)

The critic estimates the Q-function that satisfies the consistency condition (8.6). The Q-
function is approximated by the NGnet, which is called the critic-network. The input to
the critic-network is the current system state Xc(t) and the control signal u(t). The target
output for the critic-network is given by the right hand side of (8.6), in which the Q-function

is calculated using the current critic-network. After obtaining the new state xc(t + 1), the
parameters of the critic-network are updated using the on-line EM algorithm. This learning
scheme is different from TD-learning (Sutton 1988) or Q-learning (Watkins 1989), because it
directly uses the target Q-function value.

In the task for swinging up the pendulum, the control signal u(t) represents a torque which
is applied to the controlled system, i.e., the pendulum. The policy function is approximated
by an actor-network, which is a variation of the Normalized Gaussian Network:

u = !1(叩） = u=• -tanh (喜wぶ（叫＋€）， (8.7)

where a random noise E is added in the training phase in order to explore the state space.

Since the maximal torque is fixed at Umaz, the output of the actor-network is filtered through
the sigmoidal function, tanh(・). The centers of the units are fixed at the mesh grid points in
the input space. The covariance matrices are also fixed to the univariate covariance matrices
with the same variance. There is no linear term. Only the bias parameters w are updated by

the gradient ascent method so that the Q-function value increases (Sofge and White 1992):

en aQ
△ w (X一（叩(t)). ―-(叩(t),u(t)). aw au (8.8)

On-line EM algorithm 18

The reward for the inverted pendulum is given by

r(匹）= exp(-(奸/2ti-0勺2点）， (8.9)

where 0 and 0 denote the angle from the upright position and the angular velocity of the
pendulum, respectively, i.e., Xe三 (0,0). り(=31r/5) and位(=1r /5) are constant values. The
reward (8.9) encourages the pendulum to stay near the upright position.
After releasing the pendulum from a vicinity of the upright position, the control and the
learning process of the actor-critic network is conducted for 7 seconds. This is a single episode.
The reinforcement learning is done by repeating these episodes. As the learning proceeds, the
initial position of the pendulum is gradually moved away from the upright position. In order

to see the learning performance, we prepared three testbeds.

• Easy initial setting:

• Medium initial setting:

• Difficult initial setting:

〇三闊I::; 紅/5,0 ::; 101 ::; 7f /5

〇こ闊I::; 伽 /5,1r/5::;101::; 加 /5

〇::;101 ::; 枷 /5,21r/5::; 101::; 31r/5

After each episode, the actor-critic network is tested under the above three test beds. Figure
11 shows the time-series of the success rate for the three test beds. A success is determined
when the final reward is larger than 0.99. In order to achieve this reward value, the pendulum
should stay near the upright position, because the reward (8.9) includes a penalty term for
a large velocity. After about 100 episodes, the system is able to make the pendulum achieve
an upright position for the easy initial setting. After this learning stage, the. success rate for
easy and medium initial settings slightly decreases, because the initial position at the training
session moves away from the upright position. In this learning period, the system is mainly
adapting to initial states fairly distant from the upright position. This adaptation is conducted
by relocation of the critic-network units. After 350 episodes, the system is able to make the
pendulum achieve an upright position from almost every initial state. Since the maximal
torque generated by the controller is limited, the system inverts the pendulum after swinging
it several times. According to our previous experiments, in which the critic-network is the
NGnet trained by the gradient descent learning algorithm, a good control was obtained after

about 2000 episodes. Therefore, our new approach based on the on-line EM algorithm is able
to obtain a good control much faster than that based on the gradient descent algorithm.

9 Conclusion

In this article, we proposed a new on-line EM algorithm for the NGnet. We showed that the
on-line EM algorithm is equivalent to the batch EM algorithm if a specific scheduling of the
discount factor is employed. In addition, we showed that the on-line EM algorithm can be
considered as a stochastic approximation method to find the maximum likelihood estimator.
A new regularization method was proposed in order to deal with a singular input distribu-
tion. In order to manage the dynamic environments, unit manipulation mechanisms such as
unit production, unit deletion, and unit division were also introduced based on the probabilistic

interpretation.

On-line EM algorithm 19

Experimental results showed that our approach is suitable for dynamical environments
where the input-output distribution of data changes with time.
We also applied our on-line EM algorithm to a reinforcement learning problem. It has been
shown that the NGnet, when using the on-line EM algorithm, learns the value function much
faster than the method based on the gradient descent algorithm.
In forthcoming papers, we will discuss applications for the reinforcement learning in more
detail.

REFERENCES 20

References

[1] Barto, A. G., Sutton, R. S., & Anderson, C. W. (1983). Neuronlike adaptive elements
that can solve difficult learning control problems. IEEE Transactions on Systems, Man,
and Cybernetics, SMC-13, 834-846.

[2] Dempster, A. P., Laird, N. M., & Rubin, D. B. (1977). Maximum likelihood from incom-
plete data via the EM algorithm. Journal of Royal Statistical Society B, 39, 1-22.

[3] Doya, K. (1996). Temporal difference learning in continuous time and space. In
D. S. Touretzky, M. C. Mozer, & M. E. Hasselmo (Eds.), Advances in Neural Information
Processing Systems 8 (pp. 1073—1079), Cambridge, MA: MIT Press.

[4] Jacobs, R. A., Jordan, M. I., Nowlan, S. J., & Hinton, G. E. (1991). Adaptive mixtures
of local experts. Neural Computation, 3, 79-87.

[5] Jordan, M. I., & Jacobs, R. A. (1994). Hierachical mixtures of experts and the EM algo-
rithm. Neual Computation, 6, 181-214.

[6] Jurgen, S. (1996). Pattern Classification: A Unified View of Statistical and Neural Ap-
proac~es, New York: John Wiley & Sons.

[7] Kushner, H. J., & Yin, G. G. (1997). Stochastic Approximation Algorithms and Applica-
tions, New York: Springer-Verlag.

[8] Moody, J., & Darken, C. J. (1989). Fast learning in networks of locally-tuned processing
units. Neural Computation, 1, 281-294.

[9] Platt, J. (1991). A resource-allocating network for function interpolation. Neural Compu-
tation, 3, 213-225.

[10] Poggio, T., & Girosi, F. (1990). Networks for approximation and learning, Proceedings of
the IEEE, 78, 1481-1496.

[11] Schaal, S., & Atkeson, C. G. (1997). C onstruct1ve mcremental learnmg from only local
information. preprint.

[12] Sofge, D. A., & White, D. A. (1992). Applied learning-optimal control for manufacturing.
In D. A. White & D. A. Sofge (Eds.), Handbook of Intelligent Control (pp. 259-282), New
York: Van Nostrand Reinhold.

[13] Sutton, R. S. (1988). Learning to predict by the method of temporal differences. Machine
Learning, 3, 9-44.

[14] Watkins, C. (1989). Learning from Delayed Rewards, Ph. D. thesis, Cambridge, England:
Cambridge University.

[15] Xu, L., Jordan, M. I., & Hinton, G. E. (1995). An alternative model for mixtures of experts.
In G. Tesauro, D. S. Touretzky, & T. K.Leen (Eds.), Advances in Neural Information
Processing Systems 7 (pp. 633-640), Cambridge, MA: MIT Press.

FIGURES 21

1.5

≫0.5

-゚0.5
1

x゚2 ー1 ー1
x1

Figure 1 Function shape of equation (8.1).

1.5

>-0.5

-゚0.5
1

-0.5

x2 ー1 -1
x1

Fi?ure 2 Function shape of equation (8.1) with a Gaussian
n01se whose mean and standard deviation are O and 0.1, respec-
tively. This figure shows the noisy function values on the mesh
grids, while the training data are randomly sampled from input

domain. Therefore, this figure does not directly show the training
data.

FIGURES 22

0.1

0.09

0.08

7

6

5

0

0

0

．

．

0

0

0

山

SII¥IU

0.04

0.03

............... ..

0.02

0.01

゜゚
5

10 15 20 25 30 35 40 45 50

Episodes

Figure 3 Learning processes of batch EM algorithm (dotted
line) and on-line EM algorithm (solid line). 500 training data are
supplied once in each epoch. Ordinate denotes squared error nor-
malized by variance of desired outputs. Error is evaluated on 41 x 41
mesh grids on input domain.

Online EM ([ー1-0.2] -> [0.21])
0.05

0.045

0.04

5

3

5

3

0

2

9

0

0

0

0

UJ SV¥IU

0.02

0.015

0.01

0.005

゜0 50 100 150 200 250 300 350 400 450 500 Episodes

Figure 5 Learning process of on-line EM algorithm which

quickly adapts to dynamic environment with forgetting past. Or-
dinate denotes nM SE evaluated on current input domain at each
epoch.

FIGURES

epoch=50, -0.88<x1 <-0.08

0.8

0.6

0.4

0.2

没。

-0.2

-0.4

-0.6

-0.8

ー1
ー1 -0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8 1

x1

(a)

epoch=500, 0.2<x1 <1.0

0.8

0.6

0.4

0.2

'.:i 0

-0.2

-0.4

-0.6

-0.8

ー1
-1 -0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8 1

x1

(b)

Figure 4 Dynamic relocation of the units for dynamic envi-

ronment. Each ellipse denotes receptive field of a unit; ellipse cor-

responds to covariance (i.e., two-dimensional display of standard

deviation). Ellipse center is set at center of the unit, μi. Dots de-

note 500 inputs in current epoch. (a) At 50-th epoch. (b) At 500-th

epoch.

23

FIGURES 24

3

2.5

2

.-

5

1

ーQ
f
;
/
9
S
B
8
#
 /
 w

SfAIU

0.5

/、--、-------、.、/
／ヽ.I - - ヽ

ーーー＼ ＼ ＼ ／ ／ ／ / ／ ＼ ＼

゜0 20 40 60 80 100 120 140 160 180 200 Episodes

Figure 6 Learning process of on-line EM algorithm, which
slowly adapts to dynamic environment without forgetting past.
Solid, dashed, and dotted lines denote nM SE on whole input・do-
main, nM SE on current input domain at each epoch, and number
of units, respectively, (unit number is normalized by its initial value

30 f or convemence).

［一1-0.2]-> [0.2 1) (nMSE=0.011946, #Base=66)

0.8

0.6

0.4

0.2

毀。

-0.2

-0.4

-0.6

-0.8

ー1
ー1 -0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8 1

x1

Figure 7 Receptive fields after learning without forgetting past.
At end of the learning, the input data distribute in region: 0.2~
X1~1.

FIGURES 25

0.5

0.45

0.4

0.35

3

5

.

2

゜
゜UJ SV¥IU
0.2

0.15

0.1

0.05
¥-_________________________________ _

゜゚
10 20 30 40 50

Epochs
60 70 80 90 100

Figure 8 Learning processes of the case where the output is

given by (8.1) for the input x三 (xi,X2心3,X4ぶ） = (xゎX2,(x1 +
叫/2+ N(O, 0.05), (x1 -x2)/2 + N(O, 0.05), N(O.l, 0.05)) Solid,
dashed, and dotted lines are the learning curves for a: = 0.23,
a: = 0.1, and a: = 0, respectively.

0.1

0.09

0.08

0.07

6

5

0

0

．

．

0

0

山

Sf/llU

0.04

0.03

0.02

0.01

゜゚
5

10 15 20 25

Epochs
30 35 40 45 50

Figure 9 Learning processes for the function (8.2). Solid and
dashed lines are the learning curves for the cases of a= 0.023 and
a = 0, respectively.

FIGURES 26

0.5

゜
sx

-0.5

1

1

[

-

/。
c:::::::,'------

f O 0 ロバ
ロ ~C) 。
＼こ
｀こ

0

~0/
ここ乙

-0.5

゜0.5
x2

-0.5

1 ー1 x1

Figure 10 Receptive fields of the local units at the 50-th epoch
after learning function (8.2). The receptive field of each unit is
defined by an ellipse whose axes correspond to the two principal
components of the local covariance matrix泣.Ellipse center is set
at the center of the local unit, μi. This figure shows the 3-D view
of a hemisphere.

・_,.—ァ·-·--· 一・~c:::ニ~=

0.9

0.8

0.7

ー • ／

ー／

I I

6

5

4

o
o
i

゜
e
1
B」

s
s
a
o
o
n
s

ー
,＇ --、／

✓ I

＼ -,
、~/

＼
I

0.3

0.2

0.1

ー

ー

ー

ー

ー

I

ー

．．．．．．

0゚ 50 100 150 200 250 300 350 400 450 500
Episodes

Figure 11 T" 1me-senes of success rate. Abscissa denotes num-

ber of episodes used for training the actor-critic network. Dotted,
dashed and solid lines denote success rates for easy, medium and
difficult initial settings, respectively.

