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Chapter 1 

Introduction 

Man is a meeting-point of various stages of reality 

-Rudolf Eucken-

ー



1. 1 Background 

Will it be possible to talk to your computer ? This question summarizes the paradigm of automatic 

speech recognition. 

The building of a machine which simulates the human perception process has been, and still 

is, the dream of many researchers worldwide. In addition to the straightforward economic oppor-

tunities that would result from speech recognition applications, such as voice dialing, automatic 

dictation, and more sophisticated human-machine interactions, a computer that can perceive hu-

man speech would also be useful for the handicapped. Automatic transcription of TV program 

will be available for the deaf and people without arms will find themselves suddenly capable of 

performing any basic task that usually requires the use of hands. Obviously, using our voice in 

place of our hands will have revolutionary effects on our way of living. 

However, from the design of a simple "phonetic typewriter" to the realization of a "perceptual" 

machine, various difficulties are in the way to realizing these goals. The most fundamental and 

certainly the most difficult task is to find out what "perception" is. The mystery is that, we 

use. our perceptual abilities on a daily basis without being able to understand this fundamental 

concept. The debate over whether. this "self-perception" is possible is beyond the scope of this 

report. However, since it is in the human nature to try to simulate nature, pattern recognition, 

which means for instance, recognizing a shape, or being able to distinguish a dog from a cat, or one 

person voice from another one, is one aspect of these human capabilities that has been to target of 

many simulation attempts by computers. 

The human perception process is an astounding pattern recognizer. It seems therefore natural to 

study the baseline process which permits a given person to recognize thousands of words, even when 

uttered in a very noisy environment. However, pattern recognition research, based on perceptual 

simulation, is limited due to the fact that the physiological and the biological aspects of the human 

perception process can not be investigated in vivo. The field of psychoacoustics, which considers 

the human being as a black box and tries to comprehend the inherent perceptual processes by 

analyzing responses to selected stimuli, sometimes produces conflicting perceptual models. So far, 

a good model of human perception is thus still awaited. 

Instead of waiting for the final theory of "what cognition is", researchers have preferred the use 

of mathematical tools in the pattern recognition field, assuming that despite the lack of a clear 

perceptual theory, a few problems may be solved by classical mathematical models. In particular, 

pattern recognition through classification is one of the problems that a computer should be able 

to solve. Classification, that is, the assignment of events or objects to prescribed categories, is the 

first step toward the building of a perceptual machine. There is a wide area of literature covering 

the subject that has led to a theoretical formulation of pattern recognition and proposed solutions 

to particular problems. Speech recognition by machine can be viewed as one particular aspect of a 

more general machine-based theory of pattern recognition. 
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Figure 1.1: Feature-points of /a/ and /i/ in the two-dimensional formant space. Note that these are 
fictional formant values for illustration purpose. 

1.2 . An Example 

To illustrate the point, let us suppose that we want to design a machine that can distinguish 

between two sounds, for instance the two vowels /a/, /i/. First, we need a transducer (in this 

case a microphone), that converts the sound waves into an electrical signal that can be stored for 

further precessing. From the waveform coming out of the transducer, we need to extract some 

special parameters which are characteristic of the two sounds and remove unwanted parameters. 

Here, expertise comes to our help because it has been established, due to investigations in speech 

production and perception, that vowels are characterized by specific peaks in their spectrum called 

formants and that vowels are distinguished by the values of their formants. Thus, it suffices to 

extract, for example, the first and second formants, Fl and F2 respectively, from the waveform and 

use these parameters as being representative of the sounds. This process is called feature extraction. 

The output of the feature extraction process (here the first and second formant values, which could 

be stored in a feature-vector for convenience), are passed on to the classification stage, which makes 

the final decision regarding the identity of the sounds. 

We can see that the speech waveforms are now represented by points in a two-dimensional 

feature-space spanned by the values of Fl and F2. The classifier acts on the feature space by 

finding the boundary which separates the point belonging to /a/ from those belonging to /i/ and 

thus, devises a classification rule. For instance, as illustrated in Fig. 1.1, the classifier would 

consider as belonging to /a/ all feature-points that fall below the boundary line while others are 

classified as /i/. Clearly, the job of the classifier is much easier if the feature-points of /a/ and 
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/i/ are well separated in the feature-space. This illustrates the importance of features in a pattern 

classification problem. 

The example above has shown three main elements that form the basis of a pattern recognizer: 

the transducer, the feature extractor and the classifier. The transducer (or receptor), takes the 

input and converts it into a form suitable for processing. The feature extractor (or pre-processor, 

attribute detector, property filter), extracts the relevant information and the classifier uses this 

information to assign the input to one of the prescribed categories. This is the basic model of a 

pattern recognition which does not depend on the framework of application. 

1.3 Speech Recognition 

Speech recognition is one aspect of the human capability of processing various types of information. 

The basic model of the pattern recognizer, described above, can be used for recognizing acoustic 

patterns. However, due the complex nature of the speech signal, this basic model is usually adapted 

for this particular application. 

1.3.1 Model of a speech recognizer 

Within this report, we consider the model illustrated in Fig. 1.2. 

This model is composed of a front-end processing module and a back-end processing module. 

The front-end processing module takes an input from the environment. This input I is obtained 

by a transducer and is passed trough a signal measurement phase which produces a form S of the 

signal, suitable for further processing. S can be considered as the practical input to the recognizer, 

which first transforms S into a representation X by the feature extraction module. X can be 

considered to be a compact representation of both S and I and is the input to the evaluation (or 

classification) process. For illustration, I is the sound pressure, represented as a waveform, and S 

is its digital representation, either in the time-domain or spectral domain. X is thus the feature 

representation (filter bank outputs, cepstral coefficients, …）． 

The above illustration characterizes most speech recognition schemes. In general, however, S 

and X are represented in different ways. Usually, the representation of S and X falls into one of 

the category below. 

R-1 continuous and sequential representation. This is the case when the signal is a waveform or a 

sequence of spectral vectors. 

R-2 Discrete and symbolic representation. This is the conceptual level, in which the signal is 

represented as an abstraction. For instance, an utterance is represented by its transcription. 

The symbolic representation is the input to most speech understanding systems. 

R-3 summarized representation, which is between the two previous levels. 

In this report, Sand X are of the form R-1, whereas the output the recognizer is of the form R-2. 
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Figure 1.2: General model of the speech recognition process by machine. 

1.3 .2 Statistical pattern recognition 

The X-space is the input space of the pattern classifier. As said before, pattern recognition is an 

essential aspect of human intelligence, and can be viewed as associating continuous and sequential 

representation with symbolic representation (modeled as category or class). The human pattern 

recog:μizer is an information processing scheme, based on overall judgment which deals in an im-

pressive manner with the uncertainty and ambiguity encountered in the real world. The human 

pattern recognizer comprises an essential aspect of logic, which enables knowledge to be acquired 

by induction and deduction. 

The British philosopher David Hume, in his Treatise on Human Nature published in 1739, ar-

gued that knowledge is acquired from experience. In 1787, this idea was partly refuted by the 

German Philosopher Immanuel Kant in his Critique of Pure Reason, in which he stated that al-

though all knowledge begins with experience, it does all arise out of experience. It seems, however, 

that most designers of pattern recognition systems are faithful disciples of David Hume, since 

"knowledge" acquisition is usually simulated by an artificial pattern recognizer, in which the train-

ing of the recognizer is done in a supervised manner by using examples, through an algorithm which 

lets the recognizer learn the correspondence between a pattern and a category. Due to ambiguity 

and uncertainty, added to the fact that in a real world situation, patterns are noisy, the correspon-

dence between a pattern and a category can be expressed in terms of probability or statistics. The 

Bayesian decision-theoretic approach, which assigns a cost to a given decision, is the fundamental 

framework of statistical pattern recognition. That is, the recognizer makes a decision to assign a 

pattern to a category based on 1) the feature representation of the pattern and 2) the statistics 

of the category. This is the framework of statistical pattern recognition, which is the basis of most 

state-of-the-art speech recognition systems. 
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1.3.3 Signal representation 

In speech recognition, the signal S is time-dependent. That is, a particular speech utterance is 

simply represented as a waveform s(t), which is digitized and presented in the form s(n), where n 

refers to a sample. The speech signal is usually assumed to be quasi-stationary within a 10 to 30 

ms interval, which enables the use of an analysis window. Shifting the window along the speech 

utterance results in the representation X, where X = {互…匹・・巧}is a sequence of frame-vector 

叫， andT is the length of the sequence. 

In most speech recognizers, Xt contains short time spectral features, which means that time-

domain features are rarely used in most state-of-the-art speech recognition systems. This is due to 

the fact that 1) acoustic contexts are transcribed into the frequency domain (that is why it is possible 

for a human expert to read a spectrogram) and 2) it has been shown that the human auditory system 

performs some sort of spectral analysis [More, 1986]. The drawback of this approach is that the 

temporal resolution is usually lost, which has led to the search for a general time-frequency analysis 

method, such as the Wiener-transform and the Wavelet transform. 

1.3.4 Acoustic phonetics 

Linguists hold that any natural spoken language is based on a finite set of elementary sounds called 

phonemes. A phoneme is a linguistic unit which escapes clear definition. It is mainly characterized 

by its effect. That is, replacing a phoneme within a word changes the sound of the word. Each 

language has a specific set of phonemes which can be described by Jacobson's distinctive feature 

theory [Jacobson et al., 1961]. The Jacobson theory characterizes each phoneme using binary 

features, such as the presence or absence of voicing, nasality, or the constricting of some place in 

the vocal tract and has been used in speech recognition [R. de Mori and Laface, 1984]. This means 

that articulatory parameters determine the phonemic type. 

The acoustic representation of the phoneme varies highly with the speaker and the context of 

the phoneme (place within the utterance, neighboring phonemes), meaning that the phonemic-

acoustic correspondence is not a one-to-one mapping: the same phoneme displays various acoustic 

representations according to the speaker, the context and the background noise. This lack of a 

one-to-one correspondence is perhaps the fundamental problem in speech recognition. Phonemes 

are usually classified into two broad classes: vowels and consonants. 

Vowels 

Vowels are one of the most interesting linguistic categories in speech recognition. It can be argued 

that accurate speech recognition heavily depends on accurate vowel recognition. 

Vowels provide a good framework for the analysis of a given feature representation. During the 

production of a vowel sounds the vocal tract is essentially fixed and is excited by a quasi-periodic 

pulse caused by the vibration of the vocal cords. The rate of vibration determines the fundamental 

frequency of the vowel sound whose perceptual effect is known as the pitch. The vowel type is 
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determined by the shape of the vocal tract and the position of the jaws, tongue and lips. In some 

languages, such as French, the velum also contributes to the vowel sound. 

An important observation is that the shape of the vocal tract determines the corresponding 

vocal-tract filter and consequently, the corresponding frequencies of resonance. Vocal-tract fre-

quencies of resonance are what was previously referred to as formants. Formants appear as peaks 

in the vowel spectrum and are considered to be one of the most reliable features for vowel recogni-

tion. 

Consonants 

Broadly defined, consonants are non-vowel sounds. A more precise definition categorizes consonants 

according to the manner of articulation (the degree of constriction in the vocal tract, the position of 

the tongue, the nasal opening) and the place of articulation (the location of the obstruction within 

the vocal tract). Stops, such as /p/, ft/, /k/, /b/, /d/, /g/, are produced by a total obstruction of 

the vocal tract. The fricatives (/s/,/sh/,/h/), are produced by a narrow constriction of the vocal 

tract. Nasals (/ m /, / n /) are also produced by constriction of some point of the vocal tract. Liquids 

(/ l /, / r /) and glides (/ j /, / w /, also called semi-vowels) are characterized by a gliding transition 

between adjacent phonemes. Affricates (/ch/, /ts/) can be seen as a combination of fricatives and 

stops [Flanagan, 1972; Fant, 1973; Rabiner and Juang, 1993]. 

In general, it is not an easy task to derive features for each specific consonant-class, which 

makes the knowledge-based approach difficult to be carried out in practice. 

1.3.5 Acoustic modeling 

In speech recognition, the back-end decision relies on pre-stored knowledge, which, in the approach 

taken in this report, is stored in the form of acoustic models or templates, as shown in Fig. 1.2. 

In most state-of-the-art speech recognizers, a language model, which is a model of the inherent 

structure of the language in use, helps in the final decoding of the utterance. This model of speech 

recognition represents most speech recognition systems that rely on a phonetically-based approach 

to speech recognition. The acoustic-phonetic approach to speech recognition has the following 

characteristics. 

• Each phoneme is represented by a parameterized model Mi. For P phonemes in the language, 

there are P phonemic models M = {M1, …Mi, …Mp}, which are used in classification stage. 

• The structure of the model is a finite state automaton. Thus, 狐={Mi,1, ... , Mi,q, …狐，Qふ
where Mi,q denotes the model parameters in the state q of model Mi, and where Qi is the 

number of states in M か

• A phoneme model is constructed using exemplar data. 
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• The final categorization is determined by the task. For word recognition, the number of classes 

is the same as the number of words in the vocabulary and for phoneme recognition, it is the 

number of phonemes. 

In the above framework, an important point is the use of a similarity measure between a feature-

vector of an utterance and a state within a model. The overall utterance is decoded by performing 

a global measure between the utterance and the states of all phonemic models, and the best match 

is chosen. Usually, the global measure is performed by Dynamic Programming, based on a local 

similarity measure. The similarity measure and the type of model determine the framework of the 

recognition system. Most similarity measures belong to one of the following cases: 

• A model for each category is reduced to an exemplar utterance and the similarity measure is 

a distance (Euclidean, Mahalanobis, Itakura-Saito). This is case is illustrated by the classical 

Dynamic Time Warping-based (DTW) pattern matching approach. 

• The parameters in a model state are prototype feature-vectors and the similarity measure to 

a state is an Lp-norm of distances to the prototype feature-vectors within the state. This is 

the prototype-based recognizer. 

• Each model state is associated with a probability function and the parameters of the state are 

simply the parameters of the probability function. The similarity measure of a given feature-

vector is simply the output of the probability function for the particular feature-vector. This 

framework is widely known under the Hidden Markov Model(HMM) instantiation. 

Most acoustic modeling schemes are a simple variant of the three categories presented above, 

which are characterized by the same fundamental structure, namely a finite state automaton, but 

with difference in similarity measures. For instance, in the last case, with a probability as a 

similarity measure, the probability can be discrete (Discrete Hidden Markov Models), modeled by 

a mixture of probability density functions (Continuous Hidden Markov Models) [Rabiner, 1989], or 

implemented by an Artificial Neural Network (Hybrid NN/HMMs) [Morgan and Bourlard, 1990; 

Haffner et al., 1991]. 

Within this report, all acoustic-modeling approaches which fall into the above categories are 

considered essentially equivalent because the structural architecture is fundamentally the same. In 

particular, the prototype-based classifier was used in most of the experiments described in this 

report, because of the flexibility in choosing any distance measure as a state-distance measure. 

1.4 Feature Extraction in Pattern Recognition 

In this report, the focus is on the feature extractor and the classifier, and in particular, on their 

interaction. In general, feature extractor design is more difficult: the same classifier structure can 

be used for a wide range of task whereas the feature extractor design depends on the problem at 

hand. Usually, the feature extractor designer relies on a priori knowledge (as in the example shown 
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above), the statistics of the data or both. On the other hand, the same classifier's architecture 

is used across different tasks. This is one factor that has led to the separate design of classifiers 

and feature extractors with two schools of thought: one which focuses on optimizing the feature 

extractor and one which focuses on designing the classifier. 

The construction of the feature extractor falls into one of the following schemes. 

S-1 Expertise-based Feature Extraction which relies on knowledge or statistical analysis about 

what constitutes the relevant information within the input pattern S. The knowledge usually 

derived from previous investigations in the area of expertise. 

S-2 Embedded Feature Extraction, where the feature extractor is considered part of the recognizer 

and designed jointly with the back-end classifier. 

S-1 is the conventional approach to feature extraction in most pattern recognition tasks, and 

speech recognition in particular. The design is done by a procedural scheme (in the form of an 

algorithm) based on a priori knowledge or statistics of the data, which are supposed to be optimum 

in some sense. In S-2, a family of feature extractors is considered in the form of parameterized 

feature extractors and the optimum feature extraction process is obtained by optimizing the feature 

extractor parameters using training data. 

1.4.1 Expertise-based Feature Extraction 

The Expertise-based Feature Extraction scheme (EXFE) is the conventional way to perform feature 

extraction in the speech recognition framework. The feature extraction is done through various 

sub-tasks to obtain the final representation and then this representation is used to optimize the 

classifier. In this framework, the feature extractor and the classifier are designed according to 

separate criteria. 

The Expertise-based Feature Extraction scheme suffers from the following shortcomings: 

• The EXFE scheme needs some form of knowledge concerning the task. In speech recogni-

tion, this knowledge usually comes from research regarding speech production (articulatory 

phonetics), perception (acoustic phonetics), and spectral analysis. This knowledge is far from 

complete, resulting in the sub-optimality of the EXFE method. 

• EXFE is only specified for certain tasks, and thus cannot be easily adapted to general appli-

cation. For instance, features that are believed to be efficient in recognizing voiced sounds are 

inappropriate for capturing unvoiced characteristics (e.g., LPC-based models). 

• EXFE is usually done through a sequence of procedures. Thus, errors at each step are accu-

mulated and cannot be corrected at the final stage. 

• The optimization done at each step does not guarantee optimization of the overall process. 
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• Optimization of the feature extractor is usually done without considering the classification 

stage, meaning that the overall recognition system is far from optimal: the design of the 

classifier is based on a criterion different from the criterion used in the design of the feature 

extractor. 

The EXFE scheme is the standard feature extraction method in the speech recognition field. 

Although standard systems have been effective to some extent, they are undoubtedly characterized 

by the shortcomings listed above. Some of these shortcomings may be overcome by the Embedded 

Feature Extraction scheme. 

1.4.2 Embedded Feature Extraction 

The Embedded Feature Extraction (EMFE) scheme adjusts the feature extraction based on some 

criterion to be optimized. The feature extractor is "trained" by means of exemplar data. This 

assumes a parameterized form of feature extraction. Consequently, for the method to be applicable 

to a given task, the feature extraction should have some degree of freedom, subject to being 

represented by a few parameters within the system. 

The Embedded Feature Extraction scheme is able to overcome some limitations encountered in 

EXFE methods. The EMFE scheme makes it possible to achieve optimality (at least locally) of 

the overall process for an appropriate choice of criterion to be optimized. EMFE can be applied to 

any task, assuming that a parameterized form of feature extraction is available. More importantly, 

it enables a better match of the feature extraction process to the classification stage. Also, EMFE 

allows the implementation of an adaptive feature extraction process, in which the feature extraction 

is adaptively optimized. Clearly, adaptive feature extraction inherits the advantages of adaptive 

systems, such as adaptability to the real world environment, asymptotic optimality, and other 

general capabilities. 

EMFE applications have mainly been found within the framework of Artificial Neural Networks 

(ANN), simply because the architecture of such systems embeds feature extraction and classifica-

tion. Subspace methods (SM) also provides a similar framework. However, for standard speech 

recognizers, the EMFE approach has raised little interest. This may be due to one of the following 

reasons. 1) early work on speech recognition had focused on a knowledge-based approach (e.g., 

spectrogram reading) in deriving speech features and later research on the matter, by ignorance or 

laziness, has followed the same path. 2) EMFE may be computationally costly, especially for large 

vocabulary recognition tasks 3) standard feature extraction techniques have been satisfactory to 

some extent. 

1.5 Report Goal 

The goal of this report is to introduce a formalism for Embedded Feature Extraction based on 

minimizing the system's errors through discriminative training and present application to selected 

speech feature extraction frameworks. 
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In the speech recognition field, feature extraction can be carried out in numerous ways. State-

of-the art systems uses features based on an estimation of the spectrum. Across various spectrum 

estimation techniques, Linear Predictive Coding (LPC) and Discrete Fourier叫 nsform(DFT) are 

the most popularized techniques. LPC spectrum analysis originated from speech coding and was 

extensively used in the 70's and early 80's [Makhoul, 1975]. However, the trend nowadays is towards 

DFT-based analysis, performed through the Fast-Fourier'fransform (FFT) algorithm. This may 

be due to the FFT better immunity to noise and the possibility to implement a perceptual scale by 

the warping of the frequency through simple weighting of the DFT bins. In this report, the current 

trend is followed. That is, in all experiments in this work, the features are based on FFT. 

The focus is therefore to re-design FFT-based feature extraction techniques by means of Embed-

ded Feature Extraction (EMFE) techniques. The criterion for optimization is simply the same cri-

terion used in back-end classification, within the statistical pattern recognition framework. Among 

various methods available to implement a statistical pattern recognizer, here, the focus is to achieve 

the recognition of the input pattern through discriminative training aiming at minimum error. The 

discriminative training approach has known considerable success recently through the Minimum 

Classification Error/Generalized Probabilistic Descent method (MCE/GPD) formalism [Juang and 

Katagiri, 1992a], which is the framework of our work throughout this report. Discriminative Fea-

ture Extraction (DFE) optimizes the feature extractor through a discriminative training criterion 

aiming at minimum classification error. 

The immediate consequence of the Discriminative Feature Extraction approach is that the pat-

tern recognizer is designed in such a manner that the feature extractor is matched to the classifier, 

both aiming at a single purpose, which is to minimize the errors occurring in the back-end classifi-

cation process. This approach departs from the common practice in which the feature extractor is 

fixed and the focus is on the classification stage, which completely overlooks the interaction between 

the features and the classification process. 

Another concern in this report is to improve over expertise based on empirical knowledge or 

physiological motivations by making use of data as a basic source of our knowledge. The goal is 

not to resolve the problem of finding general features given a recognizer structure, but rather to 

question the use of separate criteria in the selection of a given parameterization method, given a 

classifier structure. 

Consequently, throughout this report, the resulting features are compared to standard knowl-

edge concerning the task. There is no reason why statistically optimized features and knowledge-

based features should agree. However, it can be argued that the two frameworks can influence each 

other. For instance, knowledge-based feature extraction can be used as a starting point for feature 

optimization and analysis of the EMFE-based features can provide new insight in speech analysis. 
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1.6 Report Overview 

As described above, the goal of this report is to introduce a framework of achieving joint op-

timization of the front-end processing system with the back-end classification system aiming at 

minimizing the error rate of the overall recognizer. This is the Discriminative Feature Extrac-

tion (DFE) scheme, which is described through a theoretical formulation, followed by practical 

applications in selected speech recognition tasks. 

1.6.1 Part I: review of basic concepts 

Basic concepts of statistical pattern recognition, the paradigm of feature extraction and standard 

speech recognition techniques are reviewed in the first part of report, which is composed of chapter 

2 to chapter 3. Basic concepts describing the field of automatic speech recognition are also reviewed 

in Appendix A. 

In the first part of chapter 2, the concept of minimum error is reviewed through the Bayes 

theoretic-decision approach and its consequences for optimal feature extraction are outlined. In 

the second part of chapter 2, it is argued that two approaches can be adopted depending on the 

choice of a design criterion: criteria that focus on estimating the probability distribution or criteria 

which directly consider the discrimination of an input pattern. Thus, classical error criteria, such 

as the Maximum Likelihood estimation (MLE), the Mean-Squared Error (MSE) and the Maximum 

Mutual Information (MMI), are reviewed in light of their discriminant capacities. 

Chapter 3 studies the usefulness of discriminant features in the conventional recognizer design 

by describing an experiment in which discriminant features are derived by the MSE criterion and 

the acoustic models are estimated by the MLE criterion. Contrasting MSE-derived discriminant 

features with classical cepstral features shows how making use of discriminant features can signifi-

cantly improve performance, even in the classical framework of recognizer design. This chapter can 

also be viewed as an introduction to speech recognition techniques. 

1.6.2 Part II: formalization 

The second part of the report, which comprises chapters 4 through 6, is concerned with the theo-

retical formulation of the Discriminative Feature Extraction method. 

The first part of chapter 4 introduces the concept of Discriminative Feature Extraction as a 

useful extension of MCE/GPD formalism of discriminative training applied to feature extraction. 

Consequently, the MCE criterion is reviewed and the GPD algorithm is described. It is shown 

how its use directly minimizes the error rate of a recognition system. Links between the MCE 

criterion and the Bayes error are discussed, providing a framework of comparison between the 

MCE criterion and other discriminant criteria, such as MMI, CFM, and MSE. The second part 

of chapter 4 discusses links between the DFE approach and other approaches, such as Artificial 

Neural Network and Subspace Methods, which, similar to the DFE method, aim at the integration 

of the feature extractor and the classifier. 
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Chapter 5 discusses the asymptotic behavior of a DFE-based recognizer and, in particular, the 

link between the use of a finite number of data in practical application of DFE and minimization of 

the probability of error. The MCE criterion is to minimize the expected loss. However, in practical 

applications, only the empirical loss, defined over a finite set of data, is accessible. Consequently, 

the problem of minimizing the expected loss, based on a finite data set is discussed. In particular, 

this chapter studies a reasonable criteria, for which a minimum of the empirical loss is a good 

estimate of the minimum of the expected loss. 

Chapter 6 is concerned with the algorithmic part of the DFE process. In this chapter, various 

optimization methodologies within the DFE framework are described. In particular, the IGPD and 

MGPD algorithms are suggested as alternative to GPD. Also, a method for an appropriate choice 

of the M CE loss function is proposed. 

1.6.3 Part III: applications 

The third part of the report, that is, chapters 7 to 9, focuses on DFE experiments within the 

context of various speech-oriented feature extraction techniques. 

In chapter 7, the DFE method is applied to cepstrum liftering. Cepstrum liftering is a standard 

speech feature extraction process that was extensively studied in the 1980s. DFE-derived lifters 

are compared with classical lifter design. 

In chapter 8, DFE is applied to the re-design an FFT-based filter bank. Most speech param-

eterization relies an filter bank to extract meaningful spectral parameters. However, the selection 

of filter bank parameters, such as center frequencies or bandwidths, has a direct influence on the 

efficiency of the filter bank. Consequently, DFE is applied to the optimization of various filter bank 

parameters in the context of vowel recognition and word recognition tasks. 

Finally, in chapter 9, the DFE-approach is applied to readjusting Mel frequency Cepstral Co-

efficients (MFCC), which constitutes the most widely used speech parameterization techniques in 

the speech recognition area. 

Chapter 10 presents the summary of the report in English and Chapter 11 presents a summary 

in French. 

13 



14 



Part I 

Review of Basic Concepts 
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Chapter 2 

Feature Extraction in Statistical 

Pattern Recognition 

Sensational new breakthrough 

切 ImprobabilityPhysics 

-Douglas Adams-

In this chapter, we review the formulation of a statistical pattern recognizer. Pattern recognition 

based on statistical methods requires two processes: a feature extraction process and a classification 

process. Feature extraction is the process whose goal is to find salient parameters which ch紅 acterize

a given category and form a feature space. Classification is the class-label assignment process for 

each feature pattern produced by the feature extraction process. A recognizer is then composed 

of a feature extractor and a classifier. Optimal recognizer design can be realized within the Bayes 

decision-theoretic approach. 
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2.1 Introduction 

In this chapter, we review the formulation of statistical pattern recognition. It was seen in the 

introduction that designing a recognition system requires the processing of data in some way before 

classifying them. This processing step was termed feature e① traction, because it is used to ease 

the classifying task by extracting key components from the input data, which are called features. 

Then, a classifier is supposed to perform classification by detecting the label (i.e., class) of the 

corresponding features. 

Feature extraction is perhaps one of the fundamental problem underlying the pattern recogni-

tion field because it is the first step encountered when building up a recognizer. As emphasized 

previously, the purpose of the feature extractor is to identify, within the data, what information 

is important for performing accurate classification. The feature extraction process is expected to 

discard the information irrelevant to the task while keeping the right information. For instance, in 

designing a word recognition system, the feature extractor may discard information such as speaker 

identity, speaker stress, speaking rate, which are present in the speech waveform, but not related to 

the recognition of the word. However, in a speaker recognition task, information about the identity 

of the speaker is the useful information in contrast to the meaning of the utterance. 

It is postulated that the following properties are required for a good feature extractor: 

• The features must be compact so as to enable fast analysis in real time applications. Di-

mensionality reduction is also required due to a~unexpected problem called the "curse of 

dimensionality". This is the compactness property of the feature extractor. 

• The features must contain the maximum relevant information, which means minimizing the 

loss of discriminant information. This is the maximization property of the feature extractor. 

• The feature extractor must discard information irrelevant to the classification task. That is, 

the feature extractor must produce "clean" features according to the task at hand. This en-

sures the robustness of the recognizer to "contaminated" data. This is the cleanness property 

of the feature extractor. 

The above properties should be realized within the task at hand and describe the ideal feature 

extractor according to this task. In practice, as we shall see, the feature extractor may be far from 

this ideal. Furthermore, in our knowledge, there is no method of estimating how a designed feature 

extractor approximates this ideal feature extractor. This is unfortunate, because if such a method 

was available, it would open the way to devising an algorithm which iteratively improves a given 

feature extractor towards the ideal model. 

In most pattern recognition approaches, feature extraction design falls into two categories: 

• Expertise-based Feature Extraction (EXFE). 

• Embedded Feature Extraction (EMFE). 
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EMFE is based on optimizing a criterion while EXFE is generally implemented by means of an 

algorithm. In this chapter, an overview of EXFE techniques is presented. Most EXFE are based on 

expertise and/or data statistics. Expertise means empirical knowledge of the task at hand due to 

scientific or natural information. Statistical analysis uses statistics on the exemplar data in order 

to determine the invariance and/or the discriminant information between classes. 

Features derived from expert knowledge of the task are highly dependent on the current avail-

able knowledge. This knowledge is usually incomplete, meaning that the features may lack the 

"necessary information" for the task. Furthermore, expertise-based feature extractors can only be 

used within the specific task at hand. Thus, in speech recognition, features based on a human 

auditory system, may not be of any use in image recognition. In contrast, statistically-based fea-

ture extraction methods display a wide variety of standard algorithms, which do not depend on 

a specific task, but only require appropriate data. Thus, image and speech processing may share 

similar dimensionality reduction techniques. The first section of this chapter is spent in reviewing 

standard statistically-based feature extraction methods. 

After features are obtained, their accuracy is tested in the classification stage. The optimal 

criterion for testing the accuracy of the feature extraction process is the probability of error of the 

classifier. In statistical pattern recognition, the probability of error can be theoretically tackled 

within the Bayesian framework. However, in practical pattern recognition applications, there is no 

direct access to the probability of error, hence, it is estimated by the classifier error rate on a given 

set of testing data. The second part of this chapter describes the main framework for classifier 

design. Classifier design is usually done via optimization methods: a parameterized architecture is 

chosen and a search for the right parameters is done through optimization of an error criterion. 

2.2 Formulation of Statistical Pattern Recognizer 

s
 

Figure 2.1: Model of a Recognizer. The Recognizer can be viewed as a modular system in which the 

feature extractor and the classifier are intertwined. 

The model of a recognizer is illustrated in Fig 2.1. It is a modular system, in which the feature 

extractor collaborates with the classifier. We are given an input space n s• Each element s of ns 

belongs to a certain category (or classりamonga series of M categories { C j} jE{l, …，M}・That is, 

几 isa labeled space. Formally, the label represents the fact of belonging to one of the classes of 

{ C j} jE{l, ... ,M}. s is either a vector or a sequence of vectors of fixed dimension d. This is based on 

1 We shall use the term class or category in describing input data of the same label. 
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the assumption that in most pattern recognition, a numerical representation of the input data can 

always be realized. 

2.2.1 Recogmzer formahzat10n 

For each input-datum s, the goal of the pattern recognizer is to find the label of s, which means 

recognizing to which category the pattern belongs. Consequently, the recognition task is reduced 

to a classification task. In speech recognition, as briefly seen in the introduction, the recognition 

involves more post-processing after the classification of acoustics units. However, for simplicity, we 

assume throughout this chapter that recognition is reduced to classification. The pattern recogni-

tion process can be represented as a mapping: 

R : {}5→ C = {Cj}jE{l, ... ,M}, 

which assigns each input data s of n s to its corresponding class. 

2.2.2 Feature extractor formalization 

(2.1) 

Before recognition, the feature extraction transforms the input data s into a suitable-for-classification 

representation x, which bears the necessary information required to accurately classify s. Thus, 

the feature extractor process :F, is also a mapping: 

:F : ns→ nx, (2.2) 

where [Jx = :F([Js) is the space spanned by the transformed input data. [Jx is referred to as the 

feature space and inherits the labeling information of [J 8. That is, each feature-sample x = :F(s) 

has the same label as s. 

2.2.3 Classifier formalization 

The classifier C = (a IF) is a decision rule a(・), conditioned on the feature space広 produced

by F. a(・) describes the assignment of a feature-sample x into one the classes C j・Hence, it is 

represented as 

a ; nx→ C = { Cj }jE{l, …，M}・ (2.3) 

(2.3) is equivalent to the partitioning of the feature space [} x into M regions R = {Rj hE{l, ... ,M}, 

where 

冗j= {x E nx, a(x) = Cj}, (2.4) 

Given a feature extractor :F, a classifier is uniquely characterized by its decision rule a(・), which 

yields the regions Rj. In later sections, the classifier C is referred to by its decision rule a(・), when 

there is no confusion about the feature space on which classification is performed. 

Let R(C) = R(al:F) represents the partitioning derived by the classifier a(-), given the feature 

extractor :F. We have the following definition. 
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Definition 1 Given F, two classifiers a叶） and a2 (・) are equivalent in F if and only if R(a1 IF) = 
冗(a叶F).

2.3 Bayesian Decision Theory for Optimum Recognizer Design 

When designing a recognizer, one would expect the recognizer to make the smallest number of errors 

in the classification stage. Therefore, the selection criteria for pattern recognition design should be 

the minimization of the probability of error or error rate of the recognizer. Bayes decision theory 

provides a framework for optimal classification formulation. This section describes the Bayesian 

decision theory and shows how it relates to optimal recognizer design. For simplicity, a pre-designed 

feature extractor x = :F(s) is assumed, and focus is on formalizing the probability of error of the 
classifier. 

We have seen that the classifier design is related to the choice of the decision rule a(・). One 

method to devise such a rule is to make use of decision theory and, in particular, Bayesian decision 

theory. Decision theory, which is related to game theory, was pioneered in the 30s, by Neyman 

and Pearson [Neyman and Pearson, 1933] in their work regarding hypothesis testing and the use 

of the probability of error as selection criteria for classifiers. A general formalization was made by 

Wald [Wald, 1950], which introduced the notion of loss and risk in the selection of the decision 

rule. Bayes decision theory is formulated as follows. 

Let l(a(x) = CjlC砂bethe loss incurred when assigning the feature vector x belonging to 

category Ck to category Cj. The expected loss, given this loss definition, is 

M 

R(a(x) = C炉） = I:c(a(x) = CjlC砂Pr(C占）， (2.5) 

with Pr(C叶x)being the a posteriori probability of category Ck, given x. In Bayes terminology, 

this expected loss is called the conditional risk incurred in the classification of x [Duda and Hart, 

1973]. The optimal classifier should minimize the overall risk defined as 

£=  j R(a(x)lx) Pr(a(x)jx)p(x)dx, 
flx 

(2.6) 

where p(x) = I: 晶1Pr(Cいp(叫C砂isthe probability density function of x and Pr(Ck) the a 

priori probability of Ck・Clearly, the risk is minimized if R(a(x) = C叶x)is the smallest for every 

feature-sample x. Thus, the general form of the Bayes rule is 

a(x) = Cj if 
R(a(x) = Cjlx) < R(a(x) = C叶x)for all k ::f-j. (2.7) 

That is, assign x to the category which yields the smallest risk. The classifier performing the 

selection rule of (2. 7) is referred to as the Bayes minimum risk classifier. 

2.3.1 The minimum error rate classifier 

Given a feature-sample x, one would expect a good classifier to minimize the error made in assigning 

a class label to x. Statistically, it means minimizing the average probability of error, which is the 
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error rate of the classifier. In Bayesian decision theory, the error rate is defined along the following 

lines [Duda and Hart, 1973]. The errors are numbered by using a loss of following form: 

e(a(x)~C1IC,)~{ l j c/c k 
0 j = k. 

(2.8) 

This loss assigns the value of 1 to an incorrect decision while a correct decision incurs no loss. 

Consequently, the risk in classifying x as Cj is reduced to 

R(C』x)= 1-Pr(C』x) (2.9) 

and the Bayes decision rule to minimize this risk has the following form: 

a(x) = cj if Pr(C外x)> Pr(C叶a:) for all k -/= j. (2.10) 

In this context, the overall risk£is simply the probability of error defined as 

M 

£Bayesに]=I:/ Pr(C占）l(x E Ck)l(Pr(Cklx)ヂm?,xPr(C位）p(x)dx. (2.11) 
k=l [lx 

where 1 (・) is the indicator function. That is, 

l(P) - {~ 
if Pis true 

otherwise. 
(2.12) 

Note that the probability of error is a functional of the feature extractor :F. Since the feature space 

flx is determined by :F, the probability of error may be expressed in the form EBayes⑫ ]. 

The decision rule of (2.10) is widely know as the "maximum a posteriori" (MAP) rule. This 

rule ensures that the classifier minimizes the probability of error. EBayes[:F] is the lowest error 

rate achievable by a classifier when using the feature extractor :F. Implementation of the MAP 

rule requires knowledge of the a posteriori probabilities Pr(C叶x),which are usually not available 

directly. A classical method is to make use of the Bayes rule 

Pr(C』x)=
Pr(Ci)p(叫Cj)

p(x) 

and then implement the MAP rule in the following form: 

(2.13) 

aBayes(の） = Cj if 
Pr(Cj)p(xlCり>Pr(Ck)p(x!Ck) for all k =/= j, (2.14) 

which makes use of the prior probability Pr(Ck) and the class-conditional probability densities 

p(x[Ck) in the optimal decision rule. Observing that Pr(Cj)P(叫Cj)= Pr(x,Cj) and that p(x) 

does not have a contribution in the decision process, the following decision rule are equivalent to 

(2.14): 

aBayes(x) = Cj if 
Pr(x, Cj) > Pr(x, Ck) for all k # j. (2.15) 

The classifier C Bayes performing the decision rule of (2.14) is referred to as the Bayes etas-

紅fierand its error rate is the lowest error rate achievable on a given set of features. R Bayes = 

冗(aBayes (・)IF) refers to the partioning of the Bayes classifier, given the feature extractor宍
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2.3.2 M" . 1mmum error criteria for feature extractor design 

Given a set of features (i.e., a pre-defined feature extraction F), the Bayes classifier's error rate is 

the smallest error rate achievable on this feature set. This provides a framework for the optimal 

design of the classifier and the feature extractor. 

Ideal feature extractor for minimum-error 

The map rule, as given in equation (2.14), sets up the framework for ideal feature extractor design. 

That is, it suffices to choose as features the a posteriori probabilities Pr(C叶s),thus producing 

a feature vector of dimensionality M. The dimensionality of this feature vector can be further 

reduced by observing that 
M 

L Pr(Ckls) = 1, 
k=l 

thus, producing a feature vector of dimension M -l. The classifier is reduced to a simple "max" 

operator on the feature vector. This is the ideal feature set for classification [Fukunaga, 1972]. 

Note that the above feature extractor is realized without information loss. The above example 

illustrates the fact that when the classifier structure can be extremely simplified by making use of 

a "good" feature extractor. 

Bayes error estimation for feature extractor design 

Let us suppose that the Bayes error rate can be estimated on any feature set. Let us further 

make the assumption that the input data are noiseless (which is rather unrealistic in the speech 

recognition context). Since, any feature extraction method does not add new information in the 

input data, the best feature extractor is thus the identity function巧 [Fukunaga,1972] (no feature 

extraction algorithm is performed on the input-data). That is, given any feature extractor左

£Bayes [F]~ £Bayes [左i:]. (2.16) 

(2.16) may signify that raw input data should be fed to the Bayes classifier in order to achieve the 

smallest possible Bayes error. This approach can be taken if the input data are of lower dimension. 

For higher dimensional data, direct estimation of the Bayes error is usually infeasible. Furthermore, 

phenomena, such as the curse of dimensionality (as we shall see in later sections) requires the input 

data to be passed through a feature extraction process. The best feature extractor is therefore the 

one which yields the smallest Bayes error. That is, given competing feature extraction processes 

巧， forj = {1, ... , K}, 

choose :F k if k = argminjEBayes[巧］． (2.17) 

(2.17) provides a straightforward method for optimal feature extraction design, provided that there 

is access to the Bayes classifier performance. This means re-designing the feature extractor after 

each test along the lines provided by the Bayes minimum error criteria, and discarding the "bad" 

feature extractor. In practice, this approach cannot be carried out simply because the Bayes error 

23 



is usually not available and should be estimated. The accuracy of the estimation depends on the 

training features, which leads to a vicious circle [Duda and Hart, 1973]. Furthermore, in certain 

applications such as speech recognition, estimating the Bayes error costs the design of an overall 

system. Consequently, the feature extractor is usually designed by other means, mainly based on 

EXFE techniques, as described in the next section. 

2.4 Statistical Feature Extraction 

In the previous section, it was seen that the Bayes error is the best criteria to use in the design 

of a feature extractor. In most cases encountered, such an approach cannot be carried out either 

because of the dimensionality of the data or because an estimate of the Bayes error is not available. 

In that case, one would like to maximize the "quality" of features, even when a direct estimate 

of the Bayes error is not available. Various literatures [Duda and Hart, 1973; Fukunaga, 1972], 

describe standard techniques for pre-processing data and performing feature extraction, without 

direct access to the Bayes error estimate, but only by making use of the information derived by 

performing statistical analysis of exemplar data S, drawn from the input space ns, according to a 

ese methods are re erred to as statistical feature extract10n and are certain probability Pr(s). Th f 

part of the EXFE techniques. 

Statistically-based feature extraction provides a wide range of methods which can be applied 

across various pattern recognition tasks, and which are sometimes quite different from each other. 

Statistically-derived EXFE can further be sub-divided into non-discriminant feature extraction 

processes and discriminant feature extraction processes. Non-discriminant feature extraction means 

that the input data s is treated without explicit knowledge of the class information of the data. It 

is a general process that can be run on the input data for simple purposes, such as dimensionality 

reduction or normalization. 

Usually, the non-discriminant part and discriminant part are intertwined, without clear bound-

aries between them. Very often also, the feature extraction is simply reduced to the non-discriminant 

part. Even if this approach is clearly sub-optimal, it may be satisfactory for simple classification 

problems. 

2.5 Non-Discriminant Feature Extraction Techniques 

This section describes a few non-discriminant feature extraction approaches, viewed as a form 

of pre-processing that are used in various pattern recognizers, such as image processing, character 

recognition and speech processing. As said before, pre-processing is a sub-process within the feature 

extraction process, which does not assume the class-information of the data and whose purpose is 

mainly to reduce the dimensionality of the data and/or perform some sort of data normalization. 

Thus, pre-processing enables the achievement of a compact feature extractor. Within this section, 

the standard methods that are applied across various pattern recognizers are reviewed. 
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Suppose we are given a data set S = {sn} of size N, for n = {1, ... , N}, where S is drawn 

from ns. The feature extractor transforms S by performing the mapping X = F(S), such that 
the resulting features must have a lower-dimensionality without loss of the general specificity of 

the data set S. The maximization property of the feature extractor requires that the features 

should include as much information as possible. However, reducing the feature dimensionality is 

advisable for two main reasons. First, a lower-dimensional feature reduces the complexity of the 

back-end system and is suitable for real-time processing. Second, the curse of dimensionality puts 

a boundary on the dimension of the feature-vector, given a data set. 

2.5.1 The curse of dimensionality 

When designing a recognizer, one is given a set of design data taken from the input space {J s・

Given the task at hand, one is tempted to include as much information as possible in the features 

so as to produce as good a feature as possible. For instance, in the vowel recognition task described 

in the introduction, it may be useful to choose as features the formant frequencies, the energies of 

the signal, the relative energies per band, the shift rate of the formant frequencies, the number of 

zero crossings per time unit, and more. 

In practice, this approach is not efficient because the link between the quantity of training data 

and the dimension of the data influences the "sparcity" of the data [Bellman, 1961a]. It has been 

noted in various classification tasks that the performance of a system increases with the dimension 

p of the feature-sample and starts decreasing when preaches a certain value Pth, which depends on 

the given set of data and is empirically determined. Consequently, the feature extractor designer 

is constrained to choose p < Pth. This phenomenon is known as the curse of dimensionality and 

can intuitively be grasped by the observation that the size of the data set must compensate for the 

higher dimension of the data. 

2.5.2 Data normalization 

It may happen that the range of values within the data vectors s is rather large. In that case, it 

is necessary to perform a kind of data rescaling, which puts data within a specific range. Among 

various methods available, we here describe a simple data normalization process. For an input data 

[ T Sn = Sn,I, sn,2, ... , sn,d] , a typical rescalmg process performs a normalizing of each data sn, so 

that the data may have uniform variance. Let百andEs= (恥） be the mean and variance of the 

data set, 

-s 

Es 

1 
N 

NLSれ 9

n=l 

1 
N 

N-1 
L(snー百）(snー百）T

n=l 

(2.18) 

(2.19) 
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for n E {1, ... , N}, where Sn is the n-th input pattern. A simple feature normalization can be 

obtained by 

Sn i - Si 
Xi= 

， 

図ii'

producing a given feature set which has zero means and a unit standard deviation. 

(2.20) 

The procedure above is a simple implementation of a more general linear transformation process 

known as "whitening", which performs 

叫 = A―1/2ザ (sn-s) (2.21) 

where T is the matrix form by the eigenvectors of~s and A is the diagonal matrix of the eigenvalues 

[Fukunaga, 1972]. 

2.5.3 Principal component analysis 

Linear transformation of the data is a standard technique for data pre-processing. The feature 

extraction F process is represented as matrix T, which performs the following transformation: 

whereエ＝互四，．．．，％］
T 

［ 

x=Ts, (2.22) 

is the corresponding feature-vector to the mput vector s. 

To keep as much information as possible while reducing the dimensionality of the data by the 

transformation T, one interesting criteria is that the resulting features should be as less correlated 

as possible. Correlated features means that somehow the same information is duplicated within 

the input data. Consequently, producing decorrelated features realizes the squeezing of meaning-

ful information into a few parameters. An estimate of the degree of correlation is given by the 

covariance matrix of the data. 

Let 1J8 = (咋） be the covariance matrix of the input data. The dependence between the data-

component Si and Sj is estimated by唸 幼=0, for i-/= j means that the features of index i and j 

are independent, thus carrying non-redundant information. The "importance" of the information 

carried by the component Si is measured by唸 Theideal case is to find a transformation which 

results in a diagonal covariance matrix. Such a transformation can be obtained by the principal 

component analysis (PCA). PCA is a special case of a broader feature transformation method 

called the Karhunen-Loeve expansion method. Hence, it is sometimes referred to as the discrete 

Karhunen-Loeve expansion. The PCA method is described below. 

Let Ex be the covariance matrix of the corresponding features set. Es and Ex are linked by 

the following relation: 

TEsTT = Ex, (2.23) 

Since E 8 is a positive definite matrix, its eigenvectors form a basis of the original space spanned 

by s. For Ex to be a diagonal matrix, simply choose as T the matrix which is formed by the 

eigenvectors of E8. The PCA procedure is as follows: 
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1. Find the eigenvalue入iof the covariance matrix Es by finding the root of the characteristic 

polynomial defined as 

P(入） = det {Es —入I}

where I is the unit matrix of the same dimension as :I:8. 

2. Find the corresponding eigenvectors Vi by solving in v, the equation .'E 8v =入iV,for i E 

{1, .. , . , d}. 

3. Replace each叩 by両 sothat they form an orthonormal base. 

4. The transform matrix is simply formed from the eigenvectors: T = [v1, v2, ... , v砂

The eigenvalues入iare the variances of the features Xi- A higher variance is an estimate 

of the "usefulness" of the information carried by the corresponding features. Consequently, a 

dimensionality reduction is achieved by only selecting the p eigenvectors, corresponding to the p 

highest eigenvalues. This process can be viewed as a projection of the features onto the space 

spanned by the chosen eigenvectors. 

The geometrical meaning of the principal component analysis process is that it realizes a rotation 

of the system of coordinates so that the new system is aligned along the direction of maximum 

variances of the data, which is represented by the eigenvectors. It has been shown [Fukunaga, 1972] 

that principal component analysis is the best projection, in the Mean Squared Error sense or the 

Minimum Entropy sense (if the data obey a normal distribution), to a lower dimensional feature 

space. 

In speech recognition, for better performance, various type of features are usually included in 

the feature vector, which is likely to lead to higher computational cost. In such cases, the PCA 

transformation has been used to reduce the dimensionality of the speech feature vectors and to 

obtain less correlated features [Rajaseharan and Doddington, 1985]. A comparative study made 

by Paliwal [Paliwal, 1992] has shown that in certain cases the PCA transformation is capable of 

increasing performance. 

2.5.4 Indep endent component analysis 

In the derivation of the PCA transformation, only second-order statistics (covariance matrix) are 

used. Second-order statistics are appropriate when data obey a Gaussian distribution. However, 

for non-Gaussian data, useful information is derived from higher order statistics [Fukunaga, 1972]. 

Using PCA in this case is not the optimal approach for dimensionality reduction. This has led 

to the use of non-linear PCA techniques, usually used within the framework of artificial neural 

network [Bishop, 1995]. 

Recently, the Independent Component Analysis (ICA) has been proposed as an alternative 

to PCA, well-suited to non-Gaussian data [Comon, 1994]。 TheICA transformation focuses on 

expressing the input data as a linear combination of statistically independent components, and has 
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been shown to be a more meaningful representation than PCA [Karhunen et al., 1997]. The main 

drawback of the ICA technique is that, unlike the PCA transformation, estimation of the basis 

vectors is not straightforward. ICA has been mainly applied to signal source separation and image 

processing. See [Comon, 1994] for further readings regarding PCA. 

2.6 Discriminant Feature Extraction Techniques 

In the previous section, the feature extraction process was reduced to a pre-processing system whose 

role was to normalize and/or reduce the dimensionality without consideration of the classification 

process. In this section, the feature extractor tries to find the right parameters which may be useful 

for accurate classification. Thus, the feature extractor takes the form F(slC), where C represent 

knowledge of the classification task to be performed. As said before, the information given by C 

sometimes takes the form of expertise and/or is derived trough statistical analysis of exemplar data 

S taken from the original input space ns, according to a given probability p(s). 

Incorporation of expertise in the design of the feature extractor highly depends on the frame-

work, within which, the pattern recognizer is performed. In this section, the focus is on the use 

of data statistics for including class knowledge in the design of a feature extractor. In particular, 

when using a linear transformation as feature extractor. 

A straightforward manner to incorporate class knowledge is to let this knowledge be taken 

from the classification process. This also provides a straightforward way to test the accuracy of 

the feature extraction process and select the most appropriate one, since the probability of error is 

the best criteria for choosing a feature extractor. However, in general, an analytical form of the 

probability of error as a function of the number of features, is not available, which would allow a 

straightforward optimal design of the feature extraction process. The probability of error must be 

estimated by 1) test samples and 2) a classifier. The classifier is first optimized on a training set, 

such as S. Then, the percentage of misclassified test samples, called the classifier empirical error 

rate, is taken as an estimate of the probability of error. For the test to be valid, the training and 

testing set must be statistically independent. 

Estimating the probability of error is sometimes prohibitive: one should first design a classifier 

structure on which to test the data and rerun the process when the feature set is not satisfactory. 

Instead, indirected estimation is usually performed, based on the data set, by defining "class-

separability criteria", which ensures that the features are somehow "clustered" in the feature space. 

The a priori assumption is that the clustered features are somehow easy to be classified. Below, 

the main framework of linear feature extraction which uses a "class-separability" measure based on 

the data set is reviewed. It is supposed that we are given a data set S = {ふ},for j E {1, ... , M}, 

where Sj E [Js is labeled as belonging to Cj. Mis the number of classes. Cj contains Nj samples, 

and the number of data in the whole data set is N = I; 似Nj.The feature extractor is required 

to transform the data set S into a feature set X = {ふ},for j E {1, ... , M}, whereふ=:F(S外

We suppose for simplicity that the dimensionality of S is d and the dimensio叫 ityof X is p. 
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2.6.1 Feature selection 

Separability-measure-based feature extraction design uses a cost J to select the best feature extrac-

tor. The cost is assumed to provide an estimation of the corresponding feature "quality". Again 

the best features are those that yield the lowest probability of error when using an equivalent Bayes 

classifier. However, the estimate of the probability of error may be extremely prohibitive: one has 

to estimate the posterior probability in the given feature set using either a classifier or any non-

parametric method available. Instead, separability criteria based on available data maybe a faster 

test. 

Having an available separability criterion J may enable one to perform a feature selection 

process. "Feature selection" is an alternative term which is widely encountered in the pattern 

recognition area the term feature selection is sometimes used without serious concern regarding 

their meaning). Feature selection usually refers to the process of reducing the dimension of the 

feature vectors by simple truncation or a pick up-and-discard approach: from the original feature-

vectors, discard feature-values believed to be irrelevant to recognition. In brief, given an input 

pattern of dimension d, feature selection chooses the "best" subset of size p, from the set of features, 

so as to maximize a criteria J. 

Feature selection usefulness is met when one tries to minimize the overall cost of acquiring 

a pattern. Consequently, a mechanical procedure which automatically extracts the p necessary 

features out of dis usually carried out. Andrews [Andrews, 1968] derives a mechanical process which 

picks up features at random and chooses them statistically. This method was not successful because 

the probability of finding good features is extremely low. Moreover, this method is computationally 

expensive: Cover and Van Campenhout [Cover and Van Campenhout, 1977] have shown that to 

determine the p features of d input patterns, one needs to examine all possible subsets of size p. 

Some heuristics may be used but with no guarantee of optimality. [Devijvier and Kittler, 1982] 

provides a good survey on search algorithms for feature selection. 

The feature selection approach is usually taken within problems where data are redundant and 

when one does not need sophisticated data pre-processing. However, for most pattern recognition 

tasks involving sophisticated data-processing as well as a high number of data, such a simple 

approach to feature extraction is not efficient. 

2.6.2 Separability criteria for discriminant analysis 

Statistical discriminant analysis makes use of specific notions such as the total covariance matrix, 

within-class covariance matrix, and between-class covariance matrix to describe the clustering and 

scattering properties of a given set of features. 

Let the sample mean and covariance of feature setふ begiven by 
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:Ej = I: (x -町(x-西）T_ 

年ふ
(2.25) 

The total covariance matrix is simply the variance across the whole feature set and is defined as 

1 
昆r=―I:(x-x)(x一元）

T 
(2.26) 

N s 

where元 isthe mean over the whole set of data X. The within-class covariance matrix attempts to 

describe the scatter of features within their specific classes, and is defined as 

M 

:!Jw = I: 昆・ (2.27) 
j=l 

Contrary to the within-class covariance matrix, the between-class covariance matrix expresses the 

scatter of the group/class of features, where a group/class of features is represented by its mean. 

The between-class covariance matrix is defined as 

Es 立ー Ew
M 

LNi包—元）（町立）T
j=l 

(2.28) 

(2.29) 

(2.30) 

In discriminant analysis, various criteria, which are functions of the above matrices, are used to 

grasp the "quality" of data in terms of separability. These criteria are supposed to be an increasing 

function of the "size" of the between-class covariance matrix while decreasing with the "size" of 

the within-class covariance matrix. "size" refers to a scalar function of the corresponding matric'es 

such as the determinant or the trace. Typical criteria, as provided by [Fukunaga, 1972], are listed 

below. 

l. J1 = Tr(Eb-l E砂

2. h= det(Ea) det(Eb) 

3. み =Tr(Ea) -μTr(E砂， whereμ1s a Lagrange multiplier. 

4. J4 = Tr(E砂
Tr(E砂＇

where {Ea, 1叫 isone of the pairs { E圧 Ew},{EB,1祈},and {Ew, 1祈｝．

2.6.3 Linear discriminant analysis 

It was shown that the PCA transformation finds the direction of maximum variance. However, the 

PCA transformation does not consider discrimination. For classification, we are more interested 

in a linear transformation which performs discrimination. Such a transformation should preserve 

the class separability of the data and find a suitable system of coordinates in which the class are 

presented as clusters. 

Linear discriminant analysis (LDA), which is described here, transforms the input data S, using 

a linear transformation T which maximizes one of the above J criteria in the feature space. 
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A simple case 

Let us suppose momentarily that T is simply a projection onto a one-dimensional space. The 

purpose is to find a one-dimensional subspace which realizes separability of the original data, 

according to a criterion to be defined later. The data-vector s is transformed into 

x=Ts. 

The sample mean and covariance of Sj are given by 

函＝長 I:s, 
J SEふ

昆(s) = L (sー百j)(sー百］汀．

SEふ

(2.31) 

(2.32) 

(2.33) 

For clarity, let us further simplify the problem into a 2-class problem. In the ideal case, two 

categories are separable if their probability density functions do not highly overlap. In a one-

dimensional case, this can be achieved if the mean百i= T函 and西 =T函 ofthe two classes, in 

feature space, are further apart and/or the data are not too scaterred. i.e, relatively small variances 

err and CTi, 
An estimate of this class separability is given by the Fisher's linear discriminant, defined by 

J = 
（両一巧）2

叶+a-r . (2.34) 

The greater the Fisher's discriminant, the higher the class separability as expressed by the corre-

sponding features. Let us express the Fisher's discriminant as a function of T. It is straightforward 

that 

where 

（両一巧）2 = T叫 (s)が，

吋＋吐=TEw(s)TT 

EB(s) 

Ew(s) 

（函一函）（函ー函）T, 

E1(s) + E2(s), 

are the between-class covariance matrix and within-class covariance matrix, respectively. 

Consequently, the Fisher linear discriminant criterion takes the form 

J(T) = 
T叫 (s)TT

TEw(s)TT' 

(2.35) 

(2.36) 

(2.37) 

(2.38) 

(2.39) 

which is the classical expression of a generalized Raleigh quotient, quite well-known in mathematical 

physics [Duda and Hart, 1973]. It is of common knowledge that J is maximized if T satisfies 

工叫s)T=入Ew(s)T
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for a parameter入.If .1Jw(s) is nonsingular, (2.40) is widely known in the form 

S畠(s)応 (s)T =入T, (2.41) 

which can be re-written as 

瓦尉(s)(可ー窃）＝泣T, (2.42) 

since :E瓜s)Tis in the same direction as (函一函） • (2.42) means that the solution is the line-space 

of direction of :E翫(s)(函一函）， whichis a classical result. 

Multiple-class linear discriminant analysis 

Here we consider the case of an M(> 2)-class problem. If Tis the projection into a one-dimensional-

space, the Fisher's discriminant (known in this context as the F ratio), is expressed as 

F 

1 M 

M-1 
塁·—討）2
j=l 凶；

Variance of the means 

Mean of variances 

(2.43) 

(2.44) 

where巧 andO"j represents the mean and variance of class Xj and the mean over the whole data 

set, respectively. 

The F ratio is clearly sufficient for evaluating a single feature. When more than one dimension 

is involved, which is usually the case in more complex problems, the F ratio is far from being 

satisfactory. One method may be to rank each feature using the F ratio and then pick the best 

ones, based on this ranking. However, this method is rather risky since the basic assumption is 

that features are uncorrelated. Decorrelated features may be achieved by the PCA technique in 

an earlier stage. However, it has been shown that the PCA technique does not maximize class 

separability. A criterion somehow equivalent to the F ratio is clearly in need. This criterion 

is provided by simply extending the notions of within-class covariance matrix and between-class 

covariance matrix to higher dimensional features. 

It is straightforward to show that, in the feature space, the within-class covariance matrix 

1Jw (x) and between-class covariance matrix 1J夙x)are given by 

Ew(x) 

S夙x)

T.Ew(s)TT, 

TE瓜s)TT.

(2.45) 

(2.46) 

Again, Ew(s) and叫 (s)are the within-class covariance matrix and the between-class covariance 

matrix in the data space. 
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Among the various candidate criteria that could be optimized, the J1 criteria, which was defined 

as 

み(T) Tr(E畠（紐B(a:;))

吋(TEw(s)が）―1(T叫 (s)が）｝，
(2.47) 

(2.48) 

is usually a convenient choice because of the invariant properties of the trace function across linear 

transformation。 Inthat case, the optimal transformation T is given by the eigenvalues of the matrix 

E尉(x)叫 (x)[Fukunaga, 1972]. Again, this is a classic result. 

LDA has been extensively used in speech recognition as a convenient means to enhance the 

speech representation and reduce the dimensionality. This framework was initiated by [Hunt and 

Lefebvre, 1986] for reducing the dimensionality of the feature vectors derived from a cochlear 

model. The method was later applied to transform the output of a filter bank based on the Mel 

scale (a perceptual frequency scale which attempts to mimic the Human discrimination of pitch)。

The technique, dubbed IMELDA for Integrated Mel-scale representation using LDA, was shown to 

perform better than competing speech representations [Hunt and Le£ もbvre,1989]. 

2. 7 The Classification Paradigm 

Given a feature extractor :F, the optimal classifier is the Bayes classifier. Consequently, the goal 

of classifier design is to achieve an equivalent Bayes classifier. This equivalence can be measured 

numerically by the error rate of the system, by performing a comparison with the Bayes minimum 

error rate. 

Estimation of the Bayes error rate can be done via parametric approaches or non-parametric 

approaches from available design samples. The latter is essentially useful when the feature is of 

low-dimension. The Parzen window or k-nearest-neighbor classifier [Duda and Hart, 1973] are 

widely used non-parametric approaches to error rate estimation. For higher dimensional features 

or when the data set is processed on-line, the k-nearest-neighbor classifier and the Parzen window 

estimation can no longer be carried out. Instead, in most cases, a parameterized structure is 

chosen as a classifier and the estimation of the parameters is done through design data. Bayes 

error estimation, through classifier design, can be divided into two groups: 

• Methods that rely on estimating a posteriori probabilities Pr(C炉）．

• Methods that focus on estimating the Bayes'classifier region RBayes• 

The first group relies on the design samples Xj of class Cj to estimate a posteriori probabilities 

Pr(Cj Ix). This training method constitutes the family of probability estimation techniques. The 

second group is the family of discriminative training approaches which relies on the observation 

that accurate estimation of the Bayes classifier region can result into the implementation of a 

classifier equivalent to the Bayes classifier, even though a posteriori probabilities are unknown. The 
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observation is that application of the Bayes classifier decision in (2.10) only requires knowledge of 

the class-menbership of the token but not knowledge of the class properties. Discriminative training 

approaches tries to estimate the Bayes region冗jby making use of information from all competing 

classes, thus, estimating the boundaries between all classes Ck and Cj fork I j. Discriminative 

training, which is one of the focus of this report is best described in chapter 4 through the eyes 

of a recent framework called the Minimum Classification Error/Generalized Probabilistic Descent 

method (MCE/GPD). 

211 o・ ・ . . 1scnmmant functions for classifier design 

Implementation of the Bayes classifier requires the knowledge of prior probabilities and class-

conditional probabilities. However, in practical pattern recognition system, those probabilities are 

rarely known, meaning that the Bayes rule cannot be used directly. However, if knowledge of the 

situation is available in the form of design data, those data can be used to estimate the classifier. 

A convenient way to represent the classifier is to make use of the concept of discriminant function 

[Duda and Hart, 1973]. 

The classifier CA is parameterized by a parameter set A and characterized by a set of discrim-

inant functions {g心；A)}iE{l, ... ,M}・gや；A) indicates the degree to which a given token x belongs 

to class Ci. The corresponding decision rule is 

a(x; A) = Ci if 9i(缶；A)= max斑 (x;A).
k 

(2.49) 

A represents the set of parameters that has to be adjusted to achieve the efficiency of the decision 

rule. That is, tuning of the classifier is achieved by choosing A so as to optimize a criterion believed 

to lead to optimal classification. For convenience, we gather the discrimination functions into a 

discriminant vector g(ぉ；A)= [g心； T A), g2(x; A), ... , g叫x;A)] . 

As said earlier, two approaches are usually taken for estimating the classifier. The first ap-

proach uses g心；A) as an estimate of the a posteriori probability function of Cゎgivenx. This 

approach focuses on modeling each category. In this case, the decision of (2.49) leads to a minimum 

error classifier, if the true probability is obtained [Duda and Hart, 1973; Fukunaga, 1972] .Due to 

substantial development of estimation techniques, this approach is widely used in pattern recog-

nition systems. Again, for this approach to be valid, two requirements should met 1) the form of 

probabilities should be known. That is, the model should be in co~plete agreement with the source 

2) design resources should be available to achieve unbiased estimation. In most practical situations 

however, the form of the probabilities distribution is unknown. 

The second method uses gi(x; A) as a possibility measure; the discriminant function is not 

required to be a probability but simply a means to achieve a class-membership decision. This ap-

proach was extensively studied in the 1960's, using linear discriminant function classifiers [Duda and 

Hart, 1973]. More recently, distances to references of a given category [McDermott and Katagiri, 

1991], or log-likelihood have been used as discriminant functions. 
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The second approach is also practical for implementing a discriminative training of the classifier. 

Discriminative training focuses on finding differences between categories instead of trying to fit a 

model to a given category. Discriminative training is based on the observation that the application 

of the Bayes rule only requires knowledge of the category which has the maximum a posteriori 

probability but not the actual value of this probability. Within this approach, the concept of loss is 

usually used for evaluating the performance of the system. Design is done through the minimization 

of the loss function. 

True probability density functions 

Bayes region 1 Bayes region 2 

Figure 2.2: Estimation of probabilities density functions for two classes. Discriminative approaches 

focus on estimating Bayes region boundaries. 

Fig. 2.2 illustrates the two approaches. In this figure, estimating the probabilities failed to ac-

curately separate the two classes due the difficulty to accurately modeling the probability densities. 

The. discriminative training approach attempts to directly estimate the boundary between the two 

Bayes regions, which can be achieved without the discrimination functions being of a probability 

form. 

2.8 Probability Estimation-based Training 

Probability estimation techniques try to estimate a posteriori probabilities 

Pr(C炉）＝
Pr(Cj)p(xlCj) 

p(x) . 

Since p(x) does not contribute to the Bayes decision, focus is on estimating Pr(Cj) and p(xlCり）．

In general, prior probabilities Pr(Cj) can easily be tackled. In speech recognition for instance, 

the prior probabilities are given by a language model, which provides the prior probability of 

words, in a word-based recognition model or phoneme in the phoneme-based recognition model. 
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Estimation of the class-conditional densities p(xJCj) is more challenging and can be approached 

through parametric and non-parametric approaches. The non-parametric techniques try to estimate 

p(xJCj) as a function, using design samples, while the parametric techniques assume a model of 

the probability function and then estimate the parameters of the model. The most popular non-

parametric techniques are those based on Parzen window estimation and k-nearest neighbor. Duda 

[Duda and Hart, 1973] and Fukunaga [Fukunaga, 1972] provide a good coverage of these techniques. 

Here, we focus on parametric estimation techniques. 

Probability density estimation derives an error function E, which is function of the discrim-

ination functions 9i and whose minimization yields the discrimination function to estimate the 

class-condition probabilities. Maximum Likelihood Estimation (MLE), which is the most popu-

lar probability estimating method is described below. Other methods include Bayesian inference, 

which considers the classifier parameters A as a random variable and takes into account higher 

order statistics (at least seconf order) of the models. Bayesian inference has been applied to speech 

recognition and speaker adaptation [Gauvain and Lee, 1991; Huo and Lee, 1997]. 

2.8.1 Maximum likelihood estimation 

Maximum likelihood estimation (MLE) is perhaps the most popular approach to class-conditional 

probability estimation. Its use is widespread in the speech recognition community because, coupled 

with the Expectation-Maximization algorithm (EM), it offers a simple and efficient method to 

classifier design. Here, the MLE philosophy is described. For more details concerning MLE, the 

reader is referred to [Duda and Hart, 1973; Fukunaga, 1972]. In the MLE estimation, the form of 

the class-probability is usually assumed, and only the parameters of the model (i.e., mean, variance) 

are unknown. However, use of discrete probabilities is also reported in the litterature [Fukunaga, 

1972]. Discrete probability distributions do not need for an assumed form of the probabilities, 

which is indeed a risky assumption, but do require a large amount of training data for accurate 

estimation. Nowadays, however, in the speech recognition area, a form of the probability density 

function is usually assumed. Mixtures of Laplacian probability functions and mixtures of Gaussian 

probability functions have been extensively used [Huang et al., 1990]. 

Let the unknown parameters of the class Ci be represented as Ai-The class-conditional prob-

ability density function is thus p(xlCi; Ai)- Consequently, the discriminant function are defined 

as 

9i(x; ふ） = p(叫Cj;的）Pr(Cj). (2.50) 

Given the set of designed dataえ'i= {x1, …，XNJ for category Ci, the likelihood is defined as 

M 

Pr(ふ；Ai)= IT p(叫Ci;ふ）． (2.51) 
k=l 

This likelihood corresponds to the parameterized probability to producing the training vectors Xか

Note that (2.51) relies on the assumption that the feature-data are independent from each other. 

The maximum likelihood estimate of these parameters is the value of Ai which maximizes the 
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likelihood Pr(ふ；ふ）. In practice, for easier manipulation, it is more convenient to consider the 

negative log of the likelihood as the error function to minimize, which gives 

N; 

MLE叫ふ）＝一log(Pr(ふ；ふ））＝ーLlog(p(xklCi; ふ））． (2.52) 
k=l 

MLEN;(ふ） is the empirical objective function, defined on a finite number of data, to be minimized. 

The MLE-based objective function is calculated over the whole feature space and is a functional of 

the parameter of category Cぶ

MLE(Ai) = -j log(p(xlC凸）p(x)dx. 
nx 

(2.53) 

Nadas [Nadas, 1983] has shown that if the assumptions made in the model about the form of 

the true data distribution are correct and enough training data is available, then the maximum 

likelihood estimate is the best estimate of the true parameters. 

In speech recognition, the Expectation-Maximization (EM) re-estimation technique [Dempster 

et al., 1977], is a widely used approach of MLE implementation, in particular when estimating 

mixture densities in the states of a hidden Markov model. In this context, the EM re-estimation 

takes the form of the Baum-Welch algorithm, or the Viterbi algorithm (see Chapter 3) [Lee, 1989; 

Huang et al., 1990; Rabiner, 1989]. 

It is useful to compare maximum likelihood estimation with the discriminative training ap-

proach, which is the basis for most of the work presented in this report. The essential aspect of 

MLE is that it is targeted at modeling the data categories. In contrast, discriminative training is 

concerned with separating the categories. 

MLE can generate an optimal classifier if the correct form of the probability is known and 

enough training data is available. In that situation, MLE can perfectly estimate the densities, 

thus enabling direct implementation of the Bayes decision rule. However, when the form of the 

distributions is not known (which is usually the case in practical applications), or when the amount 

of training data is insufficient, the resulting estimated model is not guaranteed to produce an 

equivalent Bayes classifier. 

2.9 Discriminative Objective Functions 

Although estimation of the posteriori probabilities could be done through statistical algorithms, 

the certainty of the optimality of the estimation is not guaranteed. For instance, in most cases 

encountered in the speech recognition field, the form of the probability density functions is not 

known and design data are sometimes limited. 

Instead, given the set of design samples to be classified, we can focus on minimizing an ob-

jective function targeting accurate class separation. If class separation is achieved, (i.e., the class 

boundaries are accurately estimated), the estimated classifier may generate the same partitioning 

as the optimal Bayes classifier even though the corresponding probabilities functions are unknown. 
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A way to achieve this is to work out a minimizable objective function whose optimization im-

plements discriminative training. Various objective functions have been proposed in the literature, 

including Mean-Squared-Error (MSE), Maximum Mutual Information (MMI) and the Kullback-

Leiber divergence measure. Our focus is on the recently proposed Minimum Classification Error 

learning, which is explained in the Chapter 4. Here, we overview the MSE and MMI criteria. 

2.9.1 M ean-squared error cnter10n 

The MSE criterion is a widely error criterion in signal processing. An interesting feature of the 

MSE criterion is that it is both a discriminative training approach and a probability estimation 

procedure. 

MSE as discriminant objective function 

The discriminative properties of MSE are as follows. Each class Ci is represented by a vector t in 

the space spanned by the decision vector g(x; A). The MSE-based error, which corresponds to an 

input feature-pattern x (belonging to C吐 is

£MsE(x; A) = II g(尤；A) -tk 112 
M 

= I:(g心；A) -tki)叫
i=l 
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where tk = [tkl, tk2, …tkM戸isthe target-vector, given the input featureの. The empirical MSE-

based objective function over the whole training set is defined as 

1 N 

MSEN(A) =一 LRMsE(叫； A). 
N 

n=l 

(2.56) 

The objective function is the expected MSE-based error over the feature-space. Its definition is 

MSE(A) = / / fMsE(x; A)p(x, C)dxdC. (2.57) 

The MSE criterion can be viewed as a regression of class vector representatives t k with the feature-

vector x. Thus, if the family of vector tk are taken to be an orthonormal base, i.e., 

tj伍＝伽

then the MSE criterion can be viewed as creating clusters around the point h, in the space spanned 

by g(x; A), where each cluster corresponds to a specific class. Consequently, the MSE criterion 

is discriminant. More discussion related to the MSE's discriminative capacities are provided in 

Chapter 4. 

The mean squared error (MSE) criterion has found a widespread application in feed-forward 

neural network trained using "Back-propagation" [Hinton et al., 1986]. Special architectures, well 

suited to speech processing have been proposed [Waibel et al., 1987; Haザneret al., 19叫 with

somehow better results than MLE trained classifiers. 
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MSE estimates a posteriori probabilities 

The link between MSE and the Bayes error is indirect. However, it has been established that 

with sufficient parameters, minimizing the MSE makes gや；A) into an estimate of the a posteriori 

probabilities Pr(Cilx) [Richard and Lippmann, 1991; Geman et al., 1992]. The reasoning is the 

following: it is assumed that N → oo. The target corresponding to 9i(x; A) is thus a random 

variable ti. The error in (2.57) is simply the expectation of the error and can be written as 

M 

MSE(A) = j j [ご他(x;A)-ti)2] p(ti,x)dtidx. (2.58) 

It is straightforward to show that (2.58) can be re-written as 

M 

MSE(A) = J J [ L(gや；A)-< tilx >)2] p(tilx)p(x)dt心 (2.59)
i=l 

+jj 
M 

［苫(<t玉＞ー <t池 >)p(店）l p(の）dtidx. (2.60) 

From Eq. (2.60), we can see that MSE(A) is minimized for parameters A*, yielding 

叫x;A*)=< tilx >, for i = {1, ... , M}. 

<t北>and < t? Ix > are defined as 

< tilx > 

<t白x>

J tip(tや）dti 

ft已p(tilx)dti.

(2.61) 

(2.62) 

(2.63) 

The term < tijx > is the conditional expectation of the target, given a feature vector x. For a 

classification problem, in which a target ti is assigned to a discrimination function, the conditional 

expectation of the target has the form 

M 

<t北＞ L tiPr(t心）． (2.64) 
k=l 

Now, choosing 

ti=紐 forXE  Ck, (2.65) 

where紐 isthe Kronecker symbol, yields < t北>=Pr(t北）， meaningthat MSE is minimized if 

the output gi(尤；A) is equal to Pr(C叶x).The same result is valid if the error is the cross-entropy 

error criterion [Bishop, 1995]. 

Note that the MSE estimation of a posteriori probability requires that 

• There is an unlimited number of training samples 

• There is a sufficient number of training parameters A. That is, the classifier has sufficient 

complexity to learn the form of probability. 
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The MSE criterion has been mainly applied in Artificial Neural Networks (ANN) as classifier, even 

though it is a general framework for classifier design. In an ideal situation, an ANN trained using 

MSE may learn the posterior probabilities P(C心） and be able to implement the Bayes decision 

rule perfectly if it has a enough weight (e.g., hidden nodes). 

2.9.2 Maximum mutual information 

The maximum mutual information (MMI) criterion has been proposed as an alternative to overcome 

some of the problems associated with MLE, i.e., MLE with an incorrect probability form. The use 

of MMI has produced improvements in recognition accuracy in several speech recognition systems 

using hidden Markov models or feed-forward neural networks [Bahl et al., 1986; Brown, 1987; 

Normandin, 1991; Haffner, 1994]. 

The MMI criterion derives from information theory, originally proposed by Shannon. The 

mutual information between a feature-vector x and a category Ck is defined as 

I且x;A)
Pr(Cふ x;A)

log 
Pr(Ck; A) Pr(x; A) 

log 
p(xlCk;A) 

Pr(x; A)・ 
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Let the random variable C represents a category, given the random variable X (representing 

a feature-vector), conditioned on the parameter set A. Let J be the random variable representing 

the mutual information between X and C. The MMI criteria attempts to find a value for A 

that provides as much information as possible about the class random variable C, given the input 

pattern random variable X. The MMI's objective function is thus defined as the expected value of 

J. That is, 

MMI(A) = j j I(口）p(x, C)dxdC 

= L Pr(C = C,X = x)log 
Pr(C = C,X = x;A) 

む，C

(2.68) 

(2.69) 

M 

I:Pr(Ck) J log 
p(xlCk;A) 

i=l 
ck Pr(x; A) 

p(叫Ck)dx.

MMI(A) is known as the mutual information between C and X and is a symmetric function of C 

andX. 

MMI and conditional entropy 

The entropy of a random variable C is defined as: 

H(C;A) =— I:Pr(C = C;A)logPr(C = C;A). 
C 
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The entropy can be viewed as a measure of the uncertainty in the random event C, conditioned by 

the parameters A. A similar measure of the uncertainty in the random event C given the outcome 

of another random event X is the conditional entropy of C given X: 

H(CIX;A) =一 LPr(C = C,X = x;A)logPr(C = CIX = x;A). (2.72) 

C,x 

The difference between the two entropies above measures the amount of information provided 

by X about C, which is simply the MMI criterion. That is, 

MMI(A) = H(C;A) -H(CIX;A). 

We note in passing that H(CIX; A) can also be expressed as a Cross Entropy to be minimized 

[Haffner, 1994]. 

In speech recognition, the acoustic model that determines H(C; A) is usually given. Thus, min-

imizing the conditional entropy is equivalent to maximizing mutual information I(X; A) [Brown, 

1987]. Usually, the true probability Pr(C,x) is unknown, so MMI(A) is maximized by choosing A 

which yields the maximum value of I, 訊x;A)for all X and ck・

Contrasting the error function MMI(A) with the maximum likelihood criterion (2.52) shows the 

difference between maximum mutual information and maximum likelihood. While MLE is only con-

cerned with maximizing the class-dependent a posteriori probability Pr(C叶x;位）， MMImaximizes 

the difference between P(xlCk; A) and the density probability p(x; A) =~ 炉Pr(C砂p(叫Ck;A),

enabling the maximum mutual information criterion to be "discriminative". The advantage of the 

MMI approach comes from the fact that even if the assumed form of the probabilities is incorrect, 

maximizing the model-based mutual information between the feature x and classes C may result 

in an equivalent Bayes classifier [Brown, 1987]. Nadas [Nadas et al., 1988] has shown that in some 

cases the use of MMI even with an incorrect form of probability converges to an optimal solution 

given sufficient training data, whereas the use of MLE does not. However, in practice, maximizing 

the MMI criterion is considerably more fastidious than maximizing the likelihood. This is due to 

to consideration of all the task categories, not just the correct category, for each training token. 

Typical optimization methods include gradient-based search, even though an EM-like re-estimation 

procedure has been proposed and used [Normandin, 1991]. 

A limitation of MMI training is that there is still no a direct link between optimizing the 

MMI criterion and minimizing the probability of classification error, which is the goal of optimal 

classifier design. This is especially evident when using an incorrect model. Indeed, as shown 

above for MLE, there are situations where although a classifier is efficient enough to separate the 

categories optimally, training the same classifier using MMI fails to produce the optimal solution, 

even with large amounts of training data [Gopalakrishnan et al., 1988]. The fact that MMI is 

maximal when the true probabilities are learned suggests that the approach shares the limitations 

of MLE and that the discrimination power of the MMI learning is far from sufficient, since as said 

before, the classifier does not need to learn the true probabilities to implement the Bayes rule. 
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2.10 Conclusion 

We have seen in this chapter that in classical pattern recognition, feature extraction is based on 

expertise or data statistics. From the output of the feature extractor, an equivalent classifier 

to the Bayes classifier is estimated. Design of classifiers is usually achieved through parametric 

techniques. A classifier structure is assumed and a search for the right parameters is done by 

optimization of an objective function. Given a pre-chosen feature extractor, the optimal classifier, 

that is, the one which achieves the lowest error rate (probability of error) is the Bayes classifier. 

The Bayes classifier assigns the incoming feature vector x to the category C j of highest a posteriori 

probability Pr(Cjlx). The Bayes error is the ideal criterion for testing the validity of the designed 

feature extractor. However, in most cases, the Bayes error is not available and must be estimated 

through parametric or non-parametric methods of classifier design. 

Bayes error estimation can be divided into two strategies: those that rely on direct estima-

tion of the posteriori probabilities, such as the Maximum Likelihood Estimation (MLE) and those 

that focus on estimating the Bayes regions. Even if the MLE is an efficient way to estimate these 

probabilities, given a preset form of the distribution, in most cases, the form of the distribution is 

unknown, which makes the MLE approach impractical for achieving minimum error. The alterna-

tive is the concept of discriminative training, which focuses on estimating the boundaries dividing 

the categories. Several approaches can be used within the framework of discriminative training. 

The most popular approaches use the Mean-Squared Error (MSE) or Maximum Mutual Informa-

tion (MMI). However, both approaches, albeit being discriminant are not a monotonic function of 

the probability of error. 

Estimation of the Bayes error is usually prohibitive or unrealisable. Consequently, most feature 

extractor designs rely on a priori knowledge or make use of a separability criterion on the input 

data. In this approach, there is a clear mismatch in the target of the objective function between 

the feature extractor and the classifier, meaning that the overall recognizer is not optimal. The 

feature extractor should minimize the information loss in the process, which can be realized when 

the feature extraction design criterion is the probability of error. A feature extraction which aims 

at the probability of error can be designed by the Embedded Feature Extraction Scheme using an 

appropriate error criterion. 
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Chapter 3 

Discriminant Features Improve 

Maximum Likelihood-based HMM  

Performance: a Simple Experiment 

He created Man and taught him articulate speech 

-The Koran-

The goal of this chapter is to show that simple, discriminant features can improve the performance 

of a system, even in the context of a non-discriminant criterion for acoustic modeling. It describes 

an experiment in which the MSE criterion is used to derive discriminant features for acoustic 

modeling based on MLE. This chapter also serves as an introduction to classic叫speechrecognition 

techniques. 
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3.1 Motivation 

In Chapter 2, it was assumed that the recognition system is reduced to classification. However, 

speech recognition is more than a simple classification task, even if the classification of acoustic 

speech units is a necessary step to the recognition of the whole utterance. In most state-of-the art 

speech recognition systems, hidden Markov modeling has been the framework, within which, both 

steps (that is, classification of acoustic units and utterance recognition), are linked in an elegant 

formalism: a hidden Markov model (HMM) enables both the classification of speech sounds at the 

frame level while its structure permits to capture the dynamic of the speech sounds and performs 

a recognition scheme based on the Bayes decision-theoretic framework. 

Hidden Markov models of speech units are robust in coping with coarticulation, which is an 

important obstacle to continuous speech recognition. However, they have shown a tendency in 

misclassifying acoustically similar speech units. This is partly due to the use of Maximum Likelihood 

Estimation on non-discriminant features, which are unable to discriminate acoustically similar 

sounds. Consequently, using discriminant features in the HMM framework is one method for 

overcoming this deficiency. 

An approach for deriving such features is to make use of embedded feature extraction tech-

niques, based on a discriminant criterion. ・Due to the proven discriminant capabilities of a feed-

forward Neural Network for stati~pattern classification, the approach.here is to use the Time-Delay 

Neural Network (TDNN) structure as a parameterized feature extractor, trained using the Min-

imum Squared Error Criterion (MSE). The resulting features are then used to estimate HMM 

by Maximum Likelihood. This approach was originally proposed in [Sugiyama and Biem, 1991; 

Biem and Sugiyama, 1992]. 

The proposed recognizer is as follows: segmental acoustic units are classified by a Neural Net-

work, which provides the discrimination features required in the recognition stage, based on HMM. 

To fully understand the process and motivation, the use of HMM in modeling speech signals is first 

reviewed, followed by a description of the Time-Delay Neural Network. Lastly, the experimental 

procedure is explained in details. 

The aim of this chapter is twofold: show the utility of discriminative features in the conven-

tio叫 frameworkof recognizer design, based on the widely-known Maximum Likelihood Estimation 

(MLE) approach for estimating acoustic models, and serve as a practical introduction to state-of-the 

art speech recognition techniques. 

3.2 Hidden Markov Modeling of Speech 

Hidden Markov modeling is a standard stochastic technique for modeling time sequences. Orig-

inally, HMMs were applied within mean-stream statistics, before their potential application to 

speech recognition was discovered and proposed [Jelinek, 1972]. Since then, hidden Markov mod-

eling is the most extensively used technique for acoustic modeling of speech. Here, the theory of 
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Transition 

＼ 
Output probabilities 

Figure 3.1: Example of Hidden Markov Model with three states and loops. 

HMMs is described, in particular discrete HMMs, and discuss its application to speech recognition. 

3.2.1 The theory of hidden Markov models 

A discrete hidden Markov model is a collection of states with the finite alphabet of input observation 

symbols [Rabiner, 1989]. Each state is linked with others via a set of transitions, where a transition 

is characterized by two sets of probabilities: the probability of taking this transition and the 

probability distribution to emit one symbol from the finite alphabet of symbols. Concretely, an 

HMM is specified by : 

• The number of states in the model Q, which comprises an initial state S1, and a final state 

SF・

• The alphabet size P, which is the number of discrete symbols in the alphabet. 

• The set of transition probabilities A = (aij) where aij is the probability of taking the transition 
from state Si to state Sj. 

• The symbol probability distribution for each transition i→ j. That is, a given matrix B = 
伽(k))where bij(k) is the probability of emitting the symbol k when taking the transition 

i→ j. 

The Fig. 3.1 shows an example of an HMM with 3 states. 

The above HMM definition concerns the discrete case (use of discrete probabilities). Hence, 

the use of an alphabet of discrete symbols. Most systems nowadays use continuous Hidden Markov 

Models (CHMM) where the output probabilities are probability density functions. The main ad-

vantage of discrete HMMs over continuous HMMs is that there is no assumption to be made 

concerning the form of the probability distributions [Brown, 1987]. However, mixed results have 
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been reported when comparing the two approaches. For instance, Brown [Brown, 1987] has shown 

that discrete HMMs performed better than continuous HMMs in the E-set task. On the other hand, 

Gupta [Gupta et al., 1987], reported high performance of continuous HMMs in a large vocabulary 

(60.000) word recognition task. It seems that for small-size classification tasks, discrete HMMs is 

more efficient. 

Stated briefly, an HMM is a Finite State Machine (FSM), whose state transition is a 1st-order 

Markov process and which generates a sequence of symbols at each transition. In speech processing, 

the observations are a sequence of frame-vectors吋＝｛匹互・・，巧},which are the output of the 

feature extractor. The key concept is to find the HMM structure, which has generated a given 

sequence (at least likely to have done so). Let St be the state occupied by Xt, where t refers to the 

time-sequence in the frame domain. A and B are then defined as : 

aij = Pr(St+1 = }!St = i), 

妬(k) = Pr(xt = klSt+l = j, St= i), 

(3.1) 

(3.2) 

in which the states S = (St) are hidden and only記f,the sequence of output symbols are observable. 

It goes without saying that the parameters A, B must satisfy the following properties, as they are 

probabilistic distributions, 

aij ＞ 0, 

妬(k) ＞ 0, 

Laij 1, 
j 

L bij(k) ＝ 1, 
k 

as well as the Markov assumption: 

Pr(St = }IBt-1 = i, St-2 = k, …) = Pr(St = jlSt-1 = i). 
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(3.7) 

The above Markov assumption describes a first order Markov chain, in which the values of St lies 

between 1 and Q. 

3.2.2 The Forward algorithm 

Given an HMM and a sequence of observations, the Forward algorithm is a method to effectively 

compute the probability of the model to producing the sequence of observations. It is a recursive 

procedure that is described below. 

Let us consider an HMM M = (Q, P, A, B) and the set of observations x『={匹四，．．，巧}of 

length T. To compute the probability of this HMM producing the observation記r'wemust sum 

the probabilities over all paths of length T, where a path ¥[r is a sequence of states S1, …, S広

Pr(x『IM)= L Pr(x『tw)Pr("iITIM). 
on all paths屯

(3.8) 
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The forward algorithm provides a recursive procedure which enables a faster computation of 

(3.8) than the obvious straightforward computation of the summed individual path probabilities. 

The process is as follows. Consider the forward variable at (i) defined as 

叫i)= pは『，St=ilM). (3.9) 

叫i)is the probability that the Markov process is in state i at time t, after generating the obser-

vations x『andis computed recursively as follows:: 

l. ao(S1) = 1. 

ao(i) = 0 if i # S1 (initial state). 

2. at十1(j)= I:at(i)aij・妬（叩） for t > 0. 
i 

Consequently, 

Pr(x『IM)=呵 (SJ),

which is the probability of the ;model M producing the sequence of observations x『,where ar(Sけ
is computed in the last state. The forward algorithm is the key for implementing the decision rule 

of the HMM classifier. Given a sequence of observations, the forward algorithm enables to choose 

among competing HMM, the one with the highest probability of producing the given observations. 

By using the Bayes'rule, 

Pr(M国）＝
Pr(x『IM)Pr(M)

Pr(吋）

one can implement the Bayes classifier, based on the assumption that Pr(M国） = Pr(wlx『)，

where w is the acoustic unit being modeled by M. 

3.2.3 The Viterbi algorithm 

Given a set of observations, generated by an HMM, one would like to know which state sequence 

has produced the given observations. The forward algorithm, however, does not provide this 

state sequence since the probability is computed over all possible state paths. Instead, the Viterbi 

algorithm [Bellman, 1961b; Viterbi, 1967], which performs a dynamic programming along the states 

of the models, is used to compute the single most likely state sequence that produced the given 

observations. The procedure is as follows。

Let us define: 

叫i)= max Pr(釘，．．．，叫，S1,S2,--。,St= ilM), 
on all path of length t 

(3.10) 

where Vt(i) is the highest probability along a single path of length t, after generating the first t 

observations and ending in state Sか附(i)is also computed recursively. The state i which maximizes 

(3.10) is kept using a function c.pt defined below. The procedure is as follows: 
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1. vo(O) = 1. 

vo(i) = 0 for i # 0. 

2. Vt(j) = ffif"X(Vt-l(i)aij妬(xt))fort> 0. 

I.Pt(j) = argmfx(Vt-1(i)aij) fort> 0. 

3. Sr = arg max(町 (i)).
1、

The most likely path sequence is then obtained by backtracking, i.e., 

ふ=I.Pt+l (St+1)-

The Viterbi algorithm is used for segmentation and for recognition, when the use of the forward 

algorithm is time-consuming. 

3.2.4 The Forward-Backward algorithm 

The Forward-Backward algorithm, also known as the Baum-Welch algorithm, enables to re-estimate 

the HMM parameters from the training data. i.e., to optimize the model parameters so that the 

model matches the observed data, in the Maximum Likelihood sense. That is, given an HMM M, 

the Forward-Backward algorithm produces a better model M, such that 

Pr(x『IM)2:: Pr(x『IM),

which then enables an iterative re-estimation procedure to be carried out. 

Let us consider at(i), defined above, and the backward variable f3t(i) defined as: 

出(i)= Pr(叫 +1,叫 +2,…,町!St=i,M). (3.11) 

店(i)is the probability that the model is in state i and will generate the future sequence Xt+1, ... , xr. 

店(i)can be computed recursively as follows: 

l. 術 (i)= 1 if i = Sf・ 

else /Jr(i) = 0. 

2. 店(i)= I: 知 1(j)ai心（知1).

Let us define: 

孤i,j)= Pr(St = i, St+l = j佃『，M),

the probability of being in state i at time t and in state j at time t + l. 

訊i,J)= ・・ 年 (i)aij妬（叫+1)f3t+i (j) 

Pr(x『IM)
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can be viewed as the probability of taking the transition i→ j during the observation sequences吋

Consequently, the expected number of times for taking the transition i→ j during the observation 

sequence吋,is simply 
T 

こ叫i,j). 
t=l 

Given some initial parameters, the following re-estimation formulas are used to update the 

parameters at each iteration: 

T 

どt(i,j)

• 的＝
t=l expected number of transitions from i 

＝ T expected number of transitions from i→ j . 

LL,t(i,k) 

t=l k 

L "Yt(i,j) 
・妬(k)= Xt=k = expected number of times of taking the transition i→ j and emitting k 

T. expected number of times of taking the transition i→j ・

" I・・ム 'rt¥i,J) 

t=l 

The above formulas produce a new HMM .M = (A, B, P, Q) where A= (的） and f3 = (妬(k)).

An important theorem proved by Baum [Baum, 1972] states that : 

Pr(x『IM)2: Pr(x『IM).

That is, the likelihood is maximized at each iteration, which leads to an efficient way to generate 

the a "good" model, in the Maximum Likelihood sense, from the training data. The procedure for 

training the HMMs is thus as follows: 

1. Guess an initial set of parameters. 

2. Compute aij and妬(k)from this set according to the re-estimation formulas. 

3. Replace a by a and b by b 

4. Stop if the likelihood of the observation do not change according to some threshold. 

3.2.5 HMM  application to speech recognition 

In acoustic-phonetic modeling approach to speech recognition, the standard method is to assign 

a model to each phone or phoneme and, in the case of discrete HMMs, build a codebook for 

each phone/phonemes. In the latter approach, each frame of the speech wave is represented (in 

the feature extractor domain) by the closest prototype from the codebook, in the sense of a pre-

defined distance (the prototypes of the codebook has the same dimension with the incoming feature-

vectors). The codebook is produced by a Vector Quantization algorithm, which selects a set of 

prototypes from the training data, according to a minimum distortion criteria [Linde et al., 1980]. 
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Even if the vector quantization process does introduce some noise (quantization noise), it has been 

shown that little accuracy is lost [Shikano et al., 1986]. 

The vector quantizer performs in the feature-space. That is, the raw speech is first converted 

into multi-dimensional real feature vectors. Many different speech features are used in HMM. In the 

early 80s, when discrete HMMs were the most widely spread modeling technique, the most common 

parameters were Linear Predictive Coding (LPC) of speech, filter-bank or LPG-based cepstrum 

coefficients, first order differential cepstrum coefficients, power, and first order differential power 

[Sugiyama, 1981]. Various ways are offered to use all the knowledge brought by these features. One 

method, adopted by Furui [Furui, 1986] is to put different feature types into multi-dimensional 

vectors and find the suited composite metric distance to produce the codebook. Another method, 

proposed by Gupta [Gupta et al., 1987] is to build different codebooks for each kind of parameters 

and train the HMM using several codebooks. In this case, there is no longer a single homogeneous 

symbol in the HMM alphabet, but a vector of different symbols. The recursive computation of the 

forward variable is replaced as follows: 

叫 1(j)=~ 叫i)aijII妬（副），
i C 

where c refers to a codebook label. The output probability of emitting multiple symbols is then 

computed as the product of the probability of producing each symbol. The underlying assumption 

is that different features are statistically independent, which is indeed a risky assumption in HMM 

modeling. The use of a composite distance may reduce the distortion, but using several codebooks 

leads to a higher computational cost. 

For recognition, the Forward algorithm is used (the model with highest probability is chosen) 

or the Viterbi algorithm, when faced with computational problems. If sub-word units (such as 

phonemes) are used to train HMM, then the recognition of a word is just a concatenation of the 

sub-word models. The efficiency of HMM comes from the fact that, there is no special care about 

dealing with segments boundaries, since across segmental information are absorbed in the states of 

the models, which enables to deal with the coarticulation problem in an efficient manner. 

3.3 Connectionist approaches 

Connectionist methods are the most recent approach to speech recognition. Said briefly, knowledge, 

constraints, and procedures are distributed across many simple computing units. Such systems are 

us叫 lynamed Neural Networks because of the similarity with the nervous system. That is, Neural 

Nets (NN) have been studied with the motivation of mimicking the nervous system. Concretely, NN 

are simply an amount set of computational units linked together in such a way that they provide 

a distributed processing system [Hinton et al., 1986]. They have been used for various problems in 

speech recognition and image recognition. 

The basic unit or neuron model of a Neural Networks is shown in the Fig 3.2. Given a set of 
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X1 

> 

XN 

A Neural Network Unit 

y=F信叫Xi)

Figure 3.2: The basic unit of a Neural Network without threshold. 

input unit (xi)iE{l, ... ,n}, the NN unit output y is defined as 

n 

y = F(L戸 i- 0), 
i=O 

where F is a the transfer function of the unit and 0 is a threshold. That is, the NN unit computes 

the weighted sum of the inputs and pass the result through a non-linear function, usually a sigmoid 

function (see Chapter 6 for the definition of a sigmoid). The NN unit can be viewed is a classifier, 

which splits the input space into two subspaces. 

There are different types of Neural Networks, depending on the architecture as well as on the 

learning algorithm used. The concern here is about feed-forward networks usually called multi-layer 

perceptrons (MLP). The MLP architecture includes an input layer, one or more hidden layers, and 

an output layer. For classification, the output layer consists of M nodes which correspond to an 

M-class problem. For recognition, generally, the largest output is considered as the main product 

of the network. The discrimination function corresponding to class Ck is simply the weighted sum 

of the outputs of the previous layers. That is, 

狐 (x,A)= F (t□w繹 (x;A')). (3.13) 

Again, F is the transfer function, Yj(x; A') is the output of j-th node of the hidden layer feeding 

the output layer, Wkj is its connection to the output node of Ck. A'represents the set of the other 

weights. Usually, an NN is trained in a supervised manner. That is, by mean of the an objective 

function which describes the error. The most widespread error criteria is certainly the some of 

squared-error on the training data: 

M 

MSE(A) = ! L L(g心；A)ーち（允））2
2 

X j=l 
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where N is the total number of training data and tj(x) is the target corresponding to class Cj , 

when input x is presented to the NN. Again, for a classification problem, 

ち（記） "= bjk for記 ECk 

where伽 isthe Kronecker notation. 

The learning process is usually based on gradient search, in which, the weights are adjusted 

according to the errors so as to produce the desired output. This process is widely know as back-

propagation because the derivatives of the error are back propagated through the network and the 

weights are adjusted accordingly [Hinton et al., 1986] (see Appendix B). 

3.3.1 Neural Networks for speech recognition 

In speech recognition, the classification properties of Neural Nets are used to discriminate speech 

units. For accurate speech modeling, various problems must be overcome when choosing the ar-

chitecture of the network to use. The first decision concerns the choice of the number of nodes. A 

layered network must have sufficient interconnections between units, according to the task, so as to 

be able to approximate complex decision regions [Lipmann, 1987]. However, the number of weights 

shall be sufficiently smaller than the amount of training data, so as to force the Neural Network 

to encode the training data by extracting regularities. This is usually done by an empirical study 

and tradeoff between the required accuracies and the number of data available. 

For speech recognition applications, the network should be able to find the relationships between 

time-dependent events as well as be able to discover the invariance across those events. Among var-

ious proposed Neural Network architectures for dealing with these problems, the recurrent Neural 

Network [Robinson and Fallside, 1990] and the Time-delay Neural [Waibel et al., 1987] explicitly 

consider time-dependency within their architecture. 

3.4 TDNN-Features for HMM-based Phoneme Recognition 

It was shown in chapter 2 that a classifier trained with MSE can estimate a posteriori probabilities 

and that, given an M-class problem, the a posteriori probabilities are the best features for classi-

fl.cation. Hence, local acoustic properties can be reduced to a few number of parameters, that are 

discriminant since the features gather information about competing categories. 

Based on the above assumption, the method presented here is the use of the Time-Delay Neural 

Networks (TDNN), trained with MSE, as a feature extractor for hidden Markov modeling. That is, 

the HMM theory is applied to modeling feature-vector sequences produced by the TDNN. Pattern 

classification using TDNN has proved to be a powerful way to classify speech units [Sawai et 

al., 1989]. Sawai's results for large vocabulary have confirmed previous TDNN-based experiments 

[Waibel et al., 1987], which showed a good discrimination ability for the stop consonants /b/, /d/ 

and / g / and also high performance on the recognition of all phonemes. 
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X1 

>-

TONN Unit 

Figure 3.3: The basic TONN unit. The TONN unit introduces delay within each input so as to keep 

track of past events. 

MSE-based TDNN training can be viewed as implementing an embedded feature extraction 

scheme, which results in two advantages: compactness of information and accurate acoustic mod-

eling. First, a description of the TDNN architecture is needed to fully understand the proposed 

approach. 

3.4.1 TDNN architecture for continuous speech recognition 

The TDNN architecture described in this section is the same as in [Sawai et al., 1989] and was aimed 

at scanning Japanese phonemes. That is, the overall architecture was optimized to discriminate 

phonemes. Accurate phoneme accuracies is a big step toward realizing a robust speech recognizer. 

The TDNN description is as follows. 

The TDNN basic unit is a modified version of the standard basic unit of a standard Neural 

Network (see Fig. 3.3). The basic unit, used in many neural networks, computes the weighted 

sum of its inputs and then passes this sum through a non-linear function (a threshold or a sigmoid 

function)[Lipmann, 1987]. However, the TDNN's unit _is modified by introducing several delays 

D1 through D N, which are assigned to each input unit. As shown in the Fig. 3.3, a delay is 

also characterized by its own weight, which enables to track past events. For instance, given for 

N = 2 and 16 number of input units, 48 weights are required to compute the weighted sum of the 

input corresponding to current, previous and previous-to-previous acoustic event. Throughout this 

chapter, a sigmoid function, is used as a non-linear transfer function. 

Large phonetic TDNN 

The TDNN used in the experiments of this chapter was composed of subnets and is fully described 

in [Miyatake et al., 1990; Sawai, 1991). It is a 4 layered, modular structure in which each subnet 

was trained to recognize a set of confusable phonemes. For example, one subnet was trained to 

recognize the stop consonants /b/,/d/,/g/ (a BDGnet), another subnet was trained to recognize 
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the voiceless stops /p/, /t/, /k/. In total, the TDNN was composed of subnets trained to recognize 

the voiced stops /b/, /d/, /g/, the voiceless stops /p/, /t/, /k/, the nasals /m/, /n/ and the syllabic 
nasal (denoted here as /N/), the fricatives /s/,/sh/,/h/ and /z/, the affricates /ch/,/ts/, the 

liquids and glides / r /, / w /, / y /, the set of vowels /a/, / i /, / u /, / e /, / o / and the silence represented 

by /Q/. The network was specially designed to spot the phonemic contain of a given utterance, 

which may result into a vocabulary-free, large vocabulary recognition system [Miyatake et al., 1990] 

Each subnet was trained only within each respective phonemic group and without knowledge 

of other groups, using shifted training tokens to enhance the time-shift invariance properties of 

the network. After training each subnet, the whole network has to be trained for improving 

the discrimination capabilities. The training was performed after concatenating the subnets one 

after another and running a fast back-propagation algorithm [Haffner et al., 1989]. The resulting 

architecture is the Large-phonetic TDNN (LTDNN) as shown in Fig. 3.4. This figure is taken 

from [Sawai, 1991] and shows the characteristic of each subnet in term of number of weights and 

delays. The input layer is composed of 240 units (16 Mel spectral coefficients times 15 frames). 

Each node in the input layer has 3 delays (represented by the hashed region). The boxes in the 

first layer represents the TDNN subnets, each trained to discriminate within its specific phonemic 

class. It can be seen that all subnets in the first hidden layer comprises 8 nodes with 13 delays and 

nodes in the second hidden layer has 9 delays with the number of nodes depending on the subnet. 

The third and last hidden layer has 24 nodes and 5 delays and is role is to gather and "glue" the 

different subnets. Each node in this layer is linked with all the nodes of the previous layer. The 

output layer is comprised of 24 nodes with each node being connected to only one node of the third 

hidden layer. The final decision is made by summing the output of the second hidden layer over 

the duration of th~speech utterance. 

The output of the LTDNN is a vector o = [o1, o2, …，024] T, of 24 dimension, where Oi is the 

output of the LTDNN, which corresponds to the i-th phone-category. This output is simply a 

"compact" representation of the information gathered by the third hidden layer. Consequently, 

the output vectors enable to represent the acoustic information into few, discriminant parameters. 

This approach can be related to the one proposed in [Bimbot et al., 1990], in which the TDNN are 

use to discriminate phonetic features. 

TD NN training 

For optimization, the us叫 backpropagation algorithm was carried out within each subnet. As said 

before, the back propagation is simply a gradient descent of the mean-squared error as a function 

of the weights (see Appendix B). The weights were randomly initialized with small values so that 

they range between -1 and 1. The output of all the units were computed, starting at the input 

layer and working forward to the output layer. The output was compared to the desired output 

and the derivatives of the errors were back propagated through the network. This procedure was 

repeated many times until the network produced the desired output. 

Since the LTDNN had to cope with speech through its delays, the usual back-propagation 
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Figure 3.4: Large-phonetic TDNN composed of TDNN subnets aimed at discriminating within each 
phonemic class. Each subnet is characterized by each own set of delays and number of weights {from 

[Sawai, 1991]). 

procedure were slightly modified. Conceptually, the back-propagation procedure is applied to 

speech pattern that are stepped through in time. For the LTDNN, each collection of the unit is 

duplicated for each one frame-shift in time and then the back-propagation is applied to all the 

shifted copy as if they are separate events. This yields different error derivatives, corresponding 

to each time-shifted connections. Moreover, instead of changing the weights on the time-shifted 

connections separately, each weight is updated by the average of all corresponding time-delayed 

weight changes. This process was applied to all connections and all time-shift, which in practice 

needed many iterations to reach convergence. 
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3.4.2 Database 

The speech data was taken from a large vocabulary database of 5240 common Japanese words 

uttered in isolation by one male native speaker in a soundproof booth and digitized at a 12kHz 

sampling rate. The database was split into two sets: the training set (2620 utterances) and the 

testing set (2620 utterances). The entire database was phonetically labeled by hand and used to 

extract the center segment corresponding to a given phoneme. 

3.4.3 Experimental procedure 

The speech wave is preprocessed by the LTDNN and the result is a 24 dimensional vector whose 

elements are the activation values of the output units of the optimized LTDNN. Consequently, each 

value in the vectors represents an activation of the output unit of the LTDNN. After collecting the 

outputs corresponding to all utterance in the database, these vectors are used as features for HMM 

(codebook production and HMM training). This is the feature extraction phase which makes use 

of the optimized LTDNN for scanning the phonemes contained a word [Sawai et al., 1989]. 

The procedure (block diagram) is shown in Fig. 3.5 and is as follows. 

Figure 3.5: The architecture of the recognition process (from [Sugiyama and Biem, 1991]). 

1. Sample the speech utterances at 12 kHz. All utterances consist of words spoken by a male 

professional announcer (5240 words in total). 

2. Compute 256 FFT coefficients every 5 ms. Average by every two frames, which gives a frame 

rate of 10 ms. 

3. Compute 16 Mel-scale spectrum coefficients from the FFT coefficients. The Mel-scale is a 

frequency scale, which tries to approximate human perception of frequency. 

4. Normalize all the values between -1 and +1 among 15 frames. 

5. In case of LTDNN training, pass 15 frames of 16 spectrum coefficients as input in the LTDNN 

network (which makes use of information about data labeling). Consequently, the input to 

the LTDNN is 240 (16 times 15) dimensional vectors. 

6. Collect the set of training features and the testing features from the LTDNN output, corre-

sponding to the whole set of utterance. 
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7. Process the sequence of features vectors according to the phoneme labeling information. 

8. Train the HMM by the available discriminant features. 

Stated briefly, the raw speech, taken from the database (one male speaker), was first sampled 

at 12kHz, Hamming-windowed and 256 FFT coefficients were computed every 5 ms. Two con-

secutive frames are then averaged to produce 256 averaged FFT coefficients. From these FFT 

coefficients, the Mel-scale spectrum coefficients (see chapter 8) are computed and 15 frames (one 

frame is equivalent to 16 Mel-scale coefficients) are passed on to the LTDNN as an input token. 

All the coefficients of an input token were normalized between -1 and + 1 by subtracting from 

each coefficient the average coefficient energy computed over all 15 frames of an input token. To 

enhance the sensibility to time-shift, a sequence of overlapping tokens are derived from a segment, 

by moving the token centers from the start of the hand-labeled segment boundary to the end of 

the segment boundary. This process is fully explained in [Miyatake et al., 1990]. 

Finally, the output was obtained by summing the last units of the second layer over time. The 

normalized values were used as input to the LTDNN and the output of the LTDNN was collected 

in the form of sequence of vectors of 24 dimensions per token. 

After LTDNN optimization, the output of the LTDNN for an utterance was collected. Repeating 

this process over the whole database created the feature set to be used for acoustic modeling by 

HMM. 

3.4.4 Label generation of HMM  training 

The LTDNN has been optimized for phonemic discrimination. However, the feature-vector se-

quence, output of the LTDNN over the word utterance, most be labeled to extract the phonemic 

segment for HMM training. 

An output vector of the LTDNN is equivalent to 150 ms of speech wave. For a word utterance, 

the window is shifted every 10 ms and starts at the beginning of the word, which includes some 

silence. The features file containing the features-vectors scanned from the LTDNN output units, 

should processed to extract the right sequence of fra:11-es, corresponding to a given phoneme. This 

is done using the simple formulas: 
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where Ji and h are the indexes of the first and the last frame respectively (in the LTDNN output 

domain), corresponding to the phonemic segment. b and e refer to the beginning and end of the 

speech segment corresponding to the phoneme in the speech waveform; a is the end of the silence 

within the utterance and w is the size of the LTDNN window (150 ms) with s being window shift 

size (5 ms). 
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3.4.5 HMM  phoneme models 

An important choice concerns the topology of the Hidden Markov Model and the tying of probability 

distributions [Rabiner, 1989]. For phoneme modeling, at least two states are needed to capture the 

beginning and end of a phonemic sound. Two more states were added to model the middle part of 

the sounds, which is usually characterized by highly varying spectral characteristics. Consequently, 

each phoneme-HMM (discrete model) consisted of 4 states (including the last state), with loops in 

the three first states. The architecture is shown in Fig. 3.6. 

0 0 0 
0----0----0----0 

Figure 3.6: The HMM structure for phonemic modeling. 

Before parameter estimation, the transition probabilities were initialized to be equal to 0.5 

(uniform transition probabilities) and the initial values of the observation probabilities were set 

equal to the number of observations of one code divided by the total number of codes. The Baum-

Welch algorithm was used to train the models. During training, the probabilities approach zero 

when running the Forward computation and usually after hundred frames or so, these probabilities 

may underflow the computer floating point representation. To solve this problem, probabilities 

values were simply represented by their logarithms. 

3.4.6 VQ codebook generation 

Again, the Vector Quantization technique codes each frame of the speech data into a pre-stored 

reference vector. The set of reference vectors is called a codebook. In other words, all the speech 

frames are represented by this codebook. For computational ease, the number of codes in the 

codebook is, in many cases, a power of 2(2りsuchthat bis the number of bits per vector. Obviously, 

speech recognition performance depends on the "quality" of the codebook. Generally the codebook 

is generated by a splitting procedure that minimizes the total distortion. The algorithm used to 

produce the codebook is the LBG (Linde, Buzo, Gray) [Linde et al., 1980], which splits the training 

data into 2,4, ... , 256 partitions, generating a centroid for each partition as the average of the vectors 

in the partition. The clustering process is shown in Fig. 3. 7. A centroid represents a region of 

the feature-space, and all feature-vectors of a given region are represented by the centroid of this 

region. 
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Centroid 
VQ regions 

Figure 3.7: VQ partitioning into regions. A region is represented by a centroid. 
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Figure 3.8: VQ distortion as a function of the codebook size. 
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As displayed in Table 3.1, the codebook was processed from 216 common Japanese words, 

taken from a special database. This database was different from the database used for training and 

testing. 

Table 3.1: Number of VQ training samples. 

training words I 216 words 
training frames 18281 frames 

Several codebooks of different sizes (64,128,256) were generated in order to observe the recogni-

tion rate as a function of the codebook size. The metric associated with the codebook production 

model is simply the Euclidean distance: 

24 

D(v1心） = L(v1(i) -v叫））2

i=l 

where v(i) is the i-th element of the vector that corresponds to the activation of the i-th phoneme. 

We note in passing that this metric is similar to the metric used within the MSE criteria. 

The target in producing the codebook is to minimize the average distortion over the training 

set. The average distortion as a function of the number iterations is displayed in the Fig. 3.8. In 

this figure, it can be seen that average distortion is a decreasing function of the codebook size. 

One of the shortcoming of the VQ procedure is the fact that the algorithm does not take into 

account the probability distribution of the data: some categories may be over-represented while 

others are not. For instance, knowing that the Japanese language is composed of 23 phonemes, it 

may seem that a codebook of size 32 is sufficient to have a representation of each phoneme in the 

language. However, this is not the case, when we examine the 32-sized codebook in Fig. 3.9. In 

this figure, each row corresponds to a prototype vector, in which the dot/column position relates 

to the corresponding phonemes. The first prototype corresponds to the activation of the /m/. 

There is no prototype for /d/ or /p/, which may be due to the rather limited number of /p/ and 

/ d/ examples in the database. Increasing the codebook size from 32 to 64 enables to represent all 

the Japanese phonemes. For more efficiency, codebooks of size 128 and 256 were also generated 

(Fig. 3.10). Generally, the codebooks are redundant, which is due to lack of consideration for the 

probability density functions of the data in the VQ algorithm. 

60 



TDNN+VQ codebook plotting codebook/mau.ph.vec32.216 
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Figure 3.9: Values of VQ codes (32 codes). 
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TDNN+VQ codebook plotting codebook/mau.ph.vec128.216 

b d g p t k IQ. n N ssh h z ch ts r w り a i u e o Q 

一一 一 一 ----日
一一 一 — 一一 一

一一一 一一 一 一一 一一 一一一 一一--
一 一一． 
一 一 一一一一一 一一一一一 一 一一一 一 一 一一— 一 一一一一 ＝ 
一 一 一一 一 一

一
一一 一一 一一 一一 一 一

一 一---
一一 一— 一 一 一一一 一
一 一--

一一 一
l!!!!I 

-一-
一一 一一一 一一一 一 一

一 一 一- ＝ 
一一 --一

一 一一 一
一一 - 一一

-
一 一 — 一一 一一

一一一一一 一一 一 一一 一 一
一 一— 一 一一 一

Figure 3.10: Values of VQ codes (128 codes). 
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3.4.7 Fuzzy vector quantization 

The Fuzzy Vector Quantization (FVQ) [Tseng et al., 1987] is a variant of the Vector Quantization 

(VQ) algorithm that produces the observation alphabet used in HMM. The Vector Quantization 

algorithm stores a set of reference vectors (codewords): v1, v2, …, vp and those vectors are used as 

alphabet in the HMM. In standard use of VQ, a speech input vector Xi is replaced by to one of 

the Vj using a pre-chosen distance d(匹 叫 Incontrast, the FVQ maps an input vector叩 intoan 

mass vector Oi = (mi1, mi2, …, miP) where, 

叫＝［ご（二〗::i口r
The vector Oi minimizes the function: 

T G 

LL疇d(x凸），
i=l j=l 

thus taking into account distances to competing reference vectors. G is the number of fuzzy and 

F > l is a constant called the degree of fuzziness. When F = l, the. decision is known as Hard (Hard 
VQ). The Fuzzy vector quantization is an attempt to "soften" the vector quantization approach 

by enabling competing prototypes to be included in the matching distance. In contrast to the 

standard VQ technique, the relative number of prototypes belonging to a given category are likely 

to influence the final decoding. Consequently, the Fuzzy VQ can viewed as an attempt to take into 

account the probability distribution of the data within the VQ process. 

Let us consider a set of observations x『.According to the FVQ algorithm, each叫 isnow 

a probabilistic mass vector. Consequently, the Forward algorithm and the Forward Backward 

algorithm are modified by replacing bij(Xt) with: 

G 

叫 (xt)= L mtk妬（か，
k=l 

which is the probability of observing Xt when taking the transition i→ j. 

3.4.8 Prebmmary experiment on the /b, d, g/ task 

The system was first tested on the recognition of / b, d, g / phonemes. The same / b, d, g / task (and 

database) on which the TDNN became known for in [Waibel et al., 1987]. The /b, d, g/ sounds 

are categorized as voiced stops and characterized by a short duration, albeit bearing spectral 

peak in their structures. They bear acoustically similar structures which makes them difficult to 

discriminate by Maximum Likelihood-based approaches. 

Table 3.2 shows the number of token used for training the 3 HMM. Note that the testing and 

training conditions are rather well balanced. 

63 



Table 3.2: Training and testing data of the /b, d, g / task. 

number of tokens number of frames 

Phoneme Training Testing Training Testing 

b 227 218 1632 1558 
d 202 179 1475 1330 

g 259 251 1877 1785 

VQ  distortion and recognition rate 

The Fuzzy-VQ (FZVQ) algorithm and the Hard-VQ (HDVQ) were both implemented. For the 

FZVQ, we chose the number 1.6 as the fuzziness value, setting the number of fuzzy to 6. The 

results, as a function of a codebook size, are shown in Table 3.3. 

Table 3.3: Recognition rate based Fuzzy-VQ on the /b,d,g/ task using TONN-features. 

b 
codebook size FZVQ HDVQ 

64 98.6 97.7 
128 98.2 98.2 

256 98.6 97.7 

Iterations = 7 

Fuzziness = 1.6 
Number of fuzzy = 6 

d 
FZVQ HDVQ FZVQ 

96.6 96.6 95.6 
97.2 97.2 95.6 
97.2 96.6 96.0 

g Average rec. rate 
HDVQ FZVQ HDVQ 

95.6 96.9 96.6 

96.0 97.0 97.1 
96.8 97.3 97.0 

The recognition performance differs according to the algorithm in used (HDVQ or FZVQ), even 

though both methods display rather competing results. 

Contrasting the performance against the size of the codebook is useful to comprehend the 

utility of the codebook size. The lowest average distortion was produced in the codebook of size 

256. However, it can be observed that the highest recognition rate, when using HDVQ, occurred 

with the codebook of size 128, which confirms the fact the recognition rate is not an monotonic 

function of the distortion. The same analysis is valid when using FVZQ in recognizing /b/. This 

actually make sense, if one keeps in mind that reducing the distortion is not directly link with 

error minimization. The highest average recognition rate (97.27%) is achieved by FZVQ, with a 

codebook size of 256. On average, these results show the effectiveness of FZVQ in contrast to the 

HDVQ. 

Comparison with standard features 

Here, the performance of standard features on the same task is examined. Standard features consist 

of 3 different speech parameterization methods: the first is the Weighted Likelihood Ratio (WLR) 
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(using a 12-order cepstrum and autocorrelation coefficients) with a codebook of size 256, the second 

is the power with a codebook size of 64, and the third is the△ cepstral (differential cepstrum) with 

codebook size 256. That is, the resulting features vectors is composed of 37 (12 + 12 + 12 + 1) 

parameters. Each codebook was generated from the same 216 words used in the LTDNN-generated 

codebook. 

The WLR-based distance measure [Sugiyama, 1981] has been developed to be sensitive to 

spectral peak such as formants. The distance is defined "aS 

12 

d2 wlr = L(r/f) -r/rl)(ci(f) -c/rl), (3.17) 
i===l 

where Ti is an autocorrelation feature and Ci is a cepstral feature. The labels f and r correspond 

to an input frame and a prototype of the codebook, respectively. The delta cepstral parameters 

try to capture frame transition dynamics. It is an attempt to overcome the Markov assumption 

which states that the output probability of the frame depends only on the current state whereas 

it is acknowledged that frame spectral characteristics depend on neighboring frames [Furui, 1986]. 

The delta cepstral distance is simply an Euclidean distance between delta cepstra. That is, 

12 

d2△ cep = L(△ c/f)―△ c/r)戸． (3.18) 
i=l 

Similar to the d2△ cep, the power distance d2 pow is also an Euclidean distance between the power of 

the two corresponding frames. 

Since a feature vector is composed of non-homogeneous parameters, a proper distance need to 

be defined. As proposed by Furui [Furui, 1986], the distance used here was defined as 

d = td2wzr + (1-t)d2△ cep + d2△ cep, (3.19) 

where tis a controlling parameter, here chosen to be equal to 0.5. The features presented above focus 

on trying to capture "interesting phenomena" within the waveform and uses a priori knowledge, 

while TDNN-features focus on discrimination. 

Table 3.4: Comparison of recognition rates in the /b, d, g / task. 

HDVQ: Hard-VQ with 256 size codebook 

FZVQ: Fuzzy_: VQ with 256 size codebook 
Features Feature size b d g Average rate 

LTDNN-features (HDVQ) 24 97.7 96.6 96.8 97.0 

LTDNN-features (FZVQ) 24 98.6 97.2 96.0 97.3 

Cepstral features 37 95.6 97.2 94.4 95.6 

Mel-energies on LTDNN 16 98.2 98.3 99.6 98.7 

Table 3.4 shows the comparative result of different features. Clearly, even with the lowest 

dimension, discriminant features achieves better performance than classical features. TDNN results 
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are also displayed on the same table. As expected the TDNN performance is the best, which seems 

to confirm that the MSE-trained TDNN displays higher discrimination than MLE-trained HMM. 

A fairer comparison with the TDNN should be done by using the output of the third layer as 

features, which enables a comparison of the TDNN last layer's classifier ability with the HMM 

classifier, using the same feature type. Again, the aim of this investigation is about continuous 

speech recognition, which is better tackled within the HMM framework than with Neural Network. 

The results obtained on the /b, d, g / task suggest that it is possible to use the discriminant power of 

the TDNN (in the form of discriminant features), to improve the HMM performance at the acoustic 

level. 

3.4.9 Recognition of all Japanese phonemes 

Encouraged by the results from this first experiment, the system was applied to additional consonant 

clusters, which cover the entire phoneme set for the Japanese language. Each of the phoneme 

clusters was treated in a manner similar to the phonemes /b/,/d/ and jg/. TDNN results were 

kindly provided by Dr. H. Sawai. 

The recognition rates are shown in Table 3.5, which displays the results of LTDNN-features 

using the Fuzzy-VQ-based algorithm and cepstral features for all the Japanese phonemes. Clearly, 

the discriminant features, extracted from the LTDNN, achieve a higher score than conventional 

cepstral coefficients for all phonemes except fr/, which may be due an insufficient number of fr/ 

representatives in the codebook. However, generally, these results confirm the ones obtained in 

the smaller /b, d, g / task and provide a rather simple example of how making use of discriminant 

features can significantly improve the performance of a speech recognizer. 

Comparison with LTDNN 

Although the prime goal was to improve the recognition accuracies of the HMM at the acoustic level, 

a simple comparison with the LTDNN accuracies on the same task is examined. Using LTDNN's 

classification result as features for HMM, can be viewed as a form of post-processing of the output 

of the LTDNN. The main reason for this comparison is to investigate how this post-processing 

scheme compares to the result without post-processing. 

Here, recognition rates calculated within each phonemic cluster is contrasted with the per-

formance of the system that considers all phonemes as a possible recognition candidates. These 

recognition schemes are motivated by the training of the LTDNN, which, as shown previously, was 

trained using subnets aiming at discriminating within each phonemic class. The performances are 

shown in Table 3.7 for Hard-VQ and in Table 3.6 for Fuzzy-VQ. 

In Table 3.6, the LTDNN-HMM system shows a higher recognition rate on the nasals /m/, /n/, /N/, 

the fricatives / s/, / sh/, /h/, /z/ and the vowels /a/, /i/, ju/, /e/, /o/ than the LTDNN. This is a 

rather surprising result because post-processing is expected to introduce a non-optimality within 

the system since the LTDNN-HMM system was not globally optimized under the same criteria (as 
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Table 3.5: Recognition result for all phonemes using Fuzzy VQ. 

LTDNN-features (size 24) Cepstral features (size 37) 

phoneme errors recognition average recognition average 

/token rate(%) rate(%) rate(%) rate(%) 

b 8/218 96.3 88.5 

d 9/179 95.0 92.6 97.2 88.3 
g 34/251 86.5 79.4 

p 3/33 90.9 60.0 

t 29/400 92.8 94.3 94.5 81.9 
k 3/400 99.3 91.4 

m 6/400 98.5 75.5 

n 0/260 100.0 99.5 86.4 85.9 
N 0/151 100.0 92.2 

s 0/400 100.0 95.2 

sh 0/310 100.0 100.0 99.4 88.3 
h 0/214 100.0 91.3 
z 0/116 100.0 67.4 

ch 1/134 99.3 99.4 97.2 97.2 

ts 1/212 99.5 97.2 

r 130/400 67.5 78.8 

w 0/72 100.0 88.9 98.7 92.3 
y 1/159 99.4 99.4 

a 1/400 99.8 98.2 
1 4/122 96.7 84.2 

u 7/223 96.2 98.4 72.7 89.4 

e 4/400 99.0 94.7 

゜
1/400 99.8 97.2 

done within the LTDNN structure) and thus should be largely less optimal than the LTDNN. As 

expected, however, the LTDNN has the average best performing over the whole set. 

Contrasting HZVQ and HDVQ, the recognition results using Hard-VQ HMM are shown in Table 

3. 7 and show that the Fuzzy-VQ algorithm performed better than the standard VQ algorithm in 

average. This is similar to the result obtained on the smaller / b, d, g / task. 

At last, an average comparison of LTDNN -features, cepstral features and the LTDNN is sum-

marized in Table 3.8. 

Discriminant features provides higher recognition rate than the conventional cepstral parameters 

(7.1 % increase in recognition rate) as well as a better dimensionality reduction in both approaches 

(HDVQ and FZVQ), which again, clearly confirms the importance of using discriminant features 

in pattern recognition task. 
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Table 3.6: Recognition rates within phonemic-categories: comparison using Fuzzy VQ. 

LTDNN-HMM-FZVQ LTDNN 

phoneme I errors recognition average average 

/token rate(%) rate(%) rate(%)) 

b 3/218 98.6 

d 5/179 97.2 I 97.2 II 98.6 

g 10/251 96.0 

p 2/33 93.9 

t 24/400 94.0 I 95.8 II 98.7 

k 2/400 99.5 

ID 3/400 99.3 

n 0/260 100.0 I 99.7 II 96.6 

N 0/151 100.0 

s 0/400 100.0 

sh 0/310 100.0 I 100.0 II 99.3 

h 0/214 100.0 

z 0/116 100.0 

ch I 0/134 100.0 I 99.7 II 100.0 

ts 1/212 99.5 

r 120/400 70.0 

w 0/72 100.0 I 90.0 II 99.9 

y 0/159 100.0 

a 1/400 99.8 

1 1/122 99.2 

u 4/223 98.2 I 99.3 II 98.6 

e 2/400 99.5 

゜
0/400 100.0 
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Table 3. 7: Recognition rate within phonemic-categories: comparison using Hard-VQ. 

LTDNN-HMM-HDVQ LTDNN 

phoneme I errors recognition l average average 

/token rate(%) rate(%) rate(%) 

b 8/218 96.3 

d 9/179 95.0 I 92.7 II 98.6 

g 33/251 86.9 

p 5/31 84。8

t 30/400 92.5 I 92.2 II 98.7 

k 3/400 99.3 

m 11/400 97.3 

n 0/260 100. I 98.6 II 96.6 

N 2/151 98.7 

s 0/400 100.0 

sh 0/310 100.0 I 99.4 II 99.3 

h 1/214 99.5 

z 2/116 98.3 

ch I 1/134 99.3 I 99.4 II 100.0 

ts 1/212 99.5 

r 132/400 67.0 

w 0/72 100.0 I 83.0 II 99.9 

y 4/159 100.0 

a 1/400 99.8 

1 3/122 97.5 

u 8/223 96.4 I 98.5 II 98.6 

e 4/400 99.0 

゜
1/400 99.8 

Table 3.8: Average recognition rates for the 4 feature types 

LTDNN-features (HDVQ) 95.6 

LTDNN-features (FZVQ) 96.l 

Cepstral features (FZVQ) 89.0 

Mel energies (LTDNN) 98.6 
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3.4.10 n・ ISCUSSlOll 

The main goal in this chapter was to show how simple discriminant features can be used to improve 

performance, in the conventional framework of speech recognizer design. It seems obvious to use 

time derivatives in order to take into account the high variability of speech in the time axis. This 

experiment shows that performance highly depends on the quality of features. The features used 

here were produced through an MSE-based feature extraction system and consisted of few data 

in the sense that LTDNN-generated vector is composed of values ranging between O and 1. It 

was managed to represent one speech unit (a phoneme) by just a few values, even though the 

performance still depends on the codebook size of the discrete HMM. 

This research was primarily aimed at continuous speech recognition. Again, the HMM has 

shown an ability in coping with the variability of speech in time axis. The performance of the 

HMM in phoneme recognition was improved by making use of discriminant features, which is a 

first step towards achieving better performance in continuous speech. 

The proposed system can also be viewed an as integration of the Neural Network and HMM 

under a system which takes advantage of both systems. Several approaches have been proposed 

to try to combine HMM and NN while keeping the advantages of the two systems in order to 

improve overall speech recognition performance. Some studies have to do with the connectionist 

interpretation of HMM algorithms [Niles and Silverman, 1990; Bridle, 1990; Young, 1990]. Others, 

as in the approach described here, have tried to use the discriminant power of NN for accurate 

recognition by HMM [Morgan and Bourlard, 1990; Katagiri and Lee, 1990; Weiye and Compornelle, 

1990]. [Morgan and Bourlard, 1990] and [Weiye and Compornelle, 1990] have used NN to estimate 

frame probabilities within HMM states. Katagiri and Lee [Katagiri and Lee, 1990] have replaced the 

standard use of a codebook by a discriminant codebook generated by Linear-Vector Quantization. 

Even if the above approaches have achieved reasonable results to some extent, the prime goal in 

this chapter, was to introduce a rather simple method to derive discriminant features and show 

how they can significantly improve recognition performance at the acoustic level: the focus is on 

the front-end. 

One drawback, so to say, within this framework is that the criterion on which the feature 

extraction is optimized (MSE) is not the same criterion used to optimize the HMM classifier (MLE). 

An optimal approach is to optimize the LTDNN and the HMM together under a single criterion 

as was done by Bengio [Bengio et al., 1995]. This can also be carried out under the framework 

proposed by Bottou and Gallinari [Bottou and Gallinari, 19叫 whichdescribes a back-propagation-

like algorithm for optimizing different system structures under a single criterion. However, an 

appropriate optimization criterion must be chosen, which can reduce the errors of the system more 

directly than MLE or MSE. Chapter 4 proposes such a criterion and describes a methodology for 

extracting discriminative features in a more efficient manner. 
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Formalization 
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Chapter 4 

Discriminative Feature Extraction 

for Minimum Error 

Everything should be made as simple as possible 

but not simpler 

-Albert Einstein-

Practical recognizers (recognition systems) are modular systems, consisting of a feature extractor 

(feature extraction module) and a classifier (classification module). The process of feature extrac-

tion is traditionally based on some objective that is different from the minimization of recognition 

errors. This chapter introduces the formalism for Discriminative Feature Extraction. The Discrim-

inative Feature Extraction is described as a framework for designing the overall speech recognizer 

in a unified manner, so as to minimize the errors of the overall recognition system. 
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4.1 Introduction 

Feature extraction is a process which converts each input pattern to salient features, while clas-

sification is a process which associates a class label to the input pattern as represented in the 

feature space. Finding the right features for best classification results has been a debate over years. 

Statistics-based methods such as principal component analysis and the Karhunen-Loeve expansion 

have been extensively studied in a wide range of pattern recognition applications [Duda and Hart, 

1973]. Scientific knowledge has also been well utilized. For instance, in the speech recognition 

area, features that bear psychoacoustic or physiological significance based on studies in the hu-

mans auditory system and hearing process have often been discussed [Seneff, 1986; Ghitza, 1991; 

Pathasarathy and Cooker, 1992; Shroeter and Sondhi, 1994]. Other mathematical models such as 

linear predictive coding (LPC) have received equal enthusiasm in speech analysis and representa-

tion [Itakura, 1975]. As seen in the first chapter, conventional features have to deal with the fact 

that there is little or no design consistency between the feature extraction and the classification 

task. 

Given the observation space ns ands E ns, a conventional feature extractors Fe, performs 

x=左(s),based on a criterion which is different from the classification criterion. 

Briefly stated, conventio叫 approachesimply that 

1. There is no optimal interaction between feature extractor and classifier because the feature 

extraction criteria may not be consistent with the error criteria used in selection of the clas-

sifier. 

2. Knowing that the probability of error is the best estimate of a performance of a system, 

classical error criteria have no direct link with minimum-error classification. 

Although the conventional way has led to successful results to some extent, it is obvious that 

there is still plenty of room for improvement. Due to the lack of interaction between the feature 

extractor design and the classifier design, the conventional way does not guarantee that a resulting 

feature representation is the best for the post-end classification process. 

For optimal pattern recognition achievement, feature extractor and classifier have to be chosen 

so that both participate in the optimal labeling of the original data: the feature extractor should be 

selected based on its discriminant abilities, given the data which could be realized by a supervised 

choice of the feature extractor, given the data. An objective function directly related to the error 

rate is the ideal criterion to select the feature extractor as well as the classifier, leading to an 

optimal recognizer. 

In this chapter, a framework for the design of practical and transparent recognizer in which 

the feature extractor is optimally matched to the classifier, is described. This approach has been 

referred to as Discriminative Feature Extraction (DFE) [Biem and Katagiri, 1993b; Katagiri et 

al., 1993] since its basis is a recent discriminative learning methodology, called the Minimum 

Classification Error/ Generalized Probabilistic Descent method (M CE/ G PD) [Katagiri et al., 1990; 

74 



Juang and Katagiri, 1992a]. The DFE concept is simple and quite natural; that is, assuming that 

the "best" features, given a task and a recognizer structure, are the ones that yield the lowest recog-

nition (classification) error rate, DFE embeds all the adjustable parameters of the feature extractor 

and the classifier in a unified smooth (at least the first differentiable with respect to the adjustable 

recognizer parameters) functional form that is suitable for a practical gradient-based optimization 

algorithm, and searches for optimal parameter values through the GPD algorithm [Biem et al., 1993; 

Biem et al., 1997]. 

The first section of this chapter is concerned with the formalism of the DFE method as an 

extension to the MCE/GPD's theory of discriminative training applied to feature optimization. 

Consequently, the MCE criterion is described in details and compared to the Bayes error. The 

GPD is introduced as an efficient optimization technique. Comparison between the MCE criterion 

and other discriminative criteria is given in the last section. 

4.2 Feature Extraction Based on Minimum Classification Error 

In this section, the Discrimination Feature Extraction (DFE) approach is introduced as a joint op-

timization of the feature extraction and the classifier by discriminative training aiming at minimum 

error. 

4.2.1 Formalization 

The pattern recognizer is assumed to be a modular system consisting of a front-end feature extractor 

and a back-end classifier. The first step is to parameterize the feature extractor with a set of 

parameter 8. Let s be the measured signal or observed pattern. The feature extractor with 

parameter 8 is a function which maps s to a corresponding feature pattern a::; i.e., :Fe(s) =工．

The feature patternェisthe input accepted by the classifier a(・) which operates under the following 

decision rule 

a(x) = Ci if i = argmaxgj(x;A), 
］ 

(4.1) 

where gj(x; A) is the discriminant function which indicates the degree to whichの belongsto Cj 

and is defined by the classifier parameter (set) A. In certain context (e.g, distance-based classifier), 

the decision rule should be based on the minimum value of the discrimination function. However, 

to avoid confusion, the formulation of (4.1) is kept. 

As said before, the feature extractor Fe is traditionally determined by empirical means in-

dependent of the classifier design {gパx;A)}. In other words, the parameter 8, is selected in-

dependently of the classification task. The purpose here is to integrate the function of feature 

extraction with the classifier function. Obviously, substituting x by Fe(s) in (4.1), provides equiv-

alent integrated classifier design defined by a set of discriminant functions {gj(Fe(・); A)} in which 

9j(Fe(s); A)= gj(s; <I>) with equivalent parameter set <I>. That means working directly with a rec-

ognizer defined by a super parameter set <I> . This is likely to be more effective without assuming 
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Figure 4.1: Model of a DFE-based Recognizer. The Recognizer can be viewed as a modular system in 

which the feature extractor is parameterized. 

separability <I> = { 8, A}. 

In the DFE framework, the recognizer makes the classification decision by the rule 

a(s) = Ci if i = argmaxgj(s; <I>), 
J 

(4.2) 

where 9j(s; <I>) is the discriminant function which indicates the degree to which s belongs to Cj and 

is defined by the super-parameter (set)屯 Obviously,the decision framework of (4.2) permits the 

feature extractor to participate in the classification decision, enabling the feature to be discriminant. 

Hence, the name Discriminative Feature Extraction (DFE) was chosen to describe this process. For 

clarity, the assumption of a modular design is maintained throughout this report. i.e., <I>= {e, A}, 

<I> refers to the overall recognizer, e represents the feature extractor and A refers to the classifier. 

Fig. 4.1 illustrates this modular approach to pattern recognition in the DFE framework. 

Contrary to conventional methods, features in the DFE framework are generated while focusing 

on the final performance of the recognizer, assuming an interaction between classification and 

feature extraction. This ensures that the designed recognizer will itself map an observation input 

to a more suitable feature pattern for an easier classification. 

The DFE formalism can be regarded as if the classifier directly acts on the input space, with 

a discriminant function of the form {g氏和(・);A)},which helps reducing its complexity. The 

implication of substituting A by <I> on the Bayes error is that the Bayes error is now defined on 

the input-space fls, which enables to control the loss of information during the feature extraction 

process. 

The first question arisen is which parametric family of feature extraction functions is of interest. 

The answer to this question relies on our empirical knowledge, which helps determining the degree 

of freedom in the design of the feature extractor structure. In most of the cases, this degree of 

freedom can be represented by a set of free parameters in the feature extraction, which are subject 

to optimization. 

4.2.2 Minimum Classification Error estimation 

The key contribution of the DFE training is to make possible the joint optimization of the trainable 

parameters of the feature extractor and the classifier for a single objective function. The feature 

extraction operation :F(・) is embedded in the discriminant function g氏）， whichenables this joint 
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optimization by back-propagating the derivative of the objective function to the feature extractor 

according to the chain rule of differentiation calculus. 

The natural question concern the choice of the objective function to be considered. Again, 

as seen before, the best criterion for the pattern recognition design is the pro'bability of error or 

error rate. Hence, error minimization seems to be the natural target in the design of the pattern 

recognition. 

In chapter 1, various design strategies were reviewed. In this chapter, the recently proposed Min-

imum Classification Error/Generalized Probabilistic Descent method, widely known as MCE/GPD 

is introduced, since MCE/GPD has been the main framework for DFE implementation. 

MCE/GPD refers to minimizing the Minimum Classification error (MCE) objective function 

within the family of the discriminative training approaches known as the Generalized Probabilistic 

Descent methods (GPD). GPD was originally proposed by Katagiri in [Katagiri et al., 1991b] as a 

framework for realizing discriminative training by use of the probabilistic descent theorem proposed 

by Amari [Amari, 1967]. Amari's probabilistic descent was concerned with the classification of static 

pattern which was rather impractical for dynamic pattern such as speech. [Katagiri et al., 1991b] 

extended the probabilistic descent method to the Generalized Probabilistic Descent suitable to 

handle dynamic patterns. The new framework provided 1) a new probability measure for dynamic 

patterns 2) a functional form for discrimination, which makes use of the discrimination functions 

3) a cost (or lost) function that approximates the empirical error rate 4) an optimization procedure 

with proof of convergence. In a latter paper by Juang and Katagiri [Juang and Katagiri, 1992a], 

it was shown that GPD asymptotically approximates the Bayes error. The method was dubbed 

Minimum Classification Error (MCE), with the term GPD reserved for the optimization scheme. 

Although, the two terms GPD and MCE are sometimes used interchangeably, throughout this 

report, the latest terminology is followed. That is, MCE refers to the objective function and GPD 

to the training scheme. 

Minimization of the error rate requires somehow that a tractable form of the error rate be 

available and suitable to minimization by standard method such as gradient descent. However, 

as seen before, the 0-1 loss f(a(x) = C』C砂isan intrinsically discontinuous classification loss: 

classification is either correct or incorrect, which makes gradient-based methods inapplicable. 

In an earlier attempt to directly minimize the error rate, corrective training [Bahl et al., 1988] 

has been proposed as an error correction strategy designed to deal with the misclassification problem 

encountered in the MLE-based approach. In corrective training, the parameters of the competing 

models are "corrected" heuristically if the likelihood of the correct model is not the best. Even if 

clear gains have been obtained comparatively to MLE, the lack of a rigorous theoretical framework 

is a fundamental problem in this approach. 

The MCE's response to error minimization is simply to use a smooth approximation to the zero-

one classification loss function, which is close to zero when no error is detected and close to one 

when there is an error. Again, such a loss function is referred to as MCE loss and its minimization 

is thus a direct way of minimizing the actual number of misclassifications (empirical error rate). 
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Asymptotically, as is shown below, minimizing the smooth zero-one loss function yields a classifier 

equivalent to the Bayes classifier [Juang and Katagiri, 1992a]. 

Misclassification measure 

The first step in defining the smooth 0-1 error function is the notion of misclassification measure. 

The misclassification measure is a value whose sign indicates the correct or incorrectness of a 

classification decision. Consequently, for a given classifier parameter set A and a given feature 

pattern x, the misclassification measure should depend on the relative values of the discriminant 

functions. In a first attempt to define such a measure, Amari [Amari, 1967], proposed the following 

misclassification measure, for a feature pattern記 ofcategory C炉

1 
叫 x;A)=― L (gj(の，A)-g心；A)). 

Nk 
jEAk 

(4.3) 

where the setふ ={jjgj(x; A) > gkはA)}consists of the Nk categories whose discriminant 

function value is higher than that of the correct category Ck. dk is assumed to be zero when the 

setふ isempty. This misclassification is clearly motivated by the decision rule of (4.1). Its value is 

positive for incorrect classifications, and zero otherwise. This misclassification measure, however, 

have few shortcomings. 1) For a 2-class problem, in the context of simple distance-based classifier, 

Amari's misclassification measure is smooth with regard to the recognizer parameter A. However, 

in most cases, the setふ isnot fixed and changes according to A, thus within a learning algorithm 

which updates A, Amari's discrimination measure displays discontinuity 2) this misclassification 

measure does not provide any gradual information concerning "how bad" a given decision is, which 

might be desirable in certain circumstances. 

Consequently, Katagiri in [Katagiri et al., 1991a; Katagiri et al., 1991b] and Juang and Katagiri 

[Juang and Katagiri, 1992a] suggested the following misclassification measure: 

叫:,,;A)~-g心；A)+ [ M~I 互臼；A)r, (4.4) 

for a feature pattern x that belongs to category C1;; and is presented to the classifier during training. 

M is the number of categories involved and v is a positive constant. 

Misclassification measure in the DFE framework 

In the DFE framework, 

d訊x;A)= dkげe(s);A)= dk(s; <I>), 

which gives the following expression for the misclassification measure: 

叫 s;<I>) = -gk(s;<I>)+g瓦(s;<I>), (4.5) 

where g万(s;-:I?) represents the competing discriminant function to category Ck・ 

Various MCE approaches can be implemented by the selection of g后(s;-:I?) as shown below. 
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Soft MCE 

The general form as proposed by Katagiri in [Katagiri et al., 1991b; Katagiri et al., 1991a] is 

叫s;<I>)= [ M~1 互約(s;<I>)'r 
For v = l, g,;(s; <I>) is simply the average over the competing categories to the correct category. 

Thus, learning estimates the boundaries between the correct category and other categories as 

represented by their average, which might be an appropriate misclassification measure when the 

number of training data is relatively small, and a form of smoothing is required. This form of 

misclassification measure is said to be "soft" and is referred to as soft MCE. 

For a large v, g万(s;剥 isclose to the value of the discriminant function of the best incorrect 

category. That is, 

which is the strict A1CE case. 

Strict MCE 

g万(s;<I>)~ ~axgj(s; <I>), 
J# 

(4.6) 

The strict MCE attempts to discriminate against the most competing category. The competing 

category is thus defined as 

g訊s;<I>)= maxgj(s; <I>). 
足 k

In this implementation, learning occurs for the two closest competing models i.e., a direct com-

parison of the correct category with the best matching incorrect category (which is thus represented 

by the subscript石） in a manner similar to a two-class problem. Consequently, during training, MCE 

estimates the classification regions by comparing pair of competing models. Clearly, the sign of 

this misclassification measure directly reflects the classification decision for all classes. 

The strict MCE case is close to the 0-1 classification scheme, since comparison with the most 

competing incorrect category directly evaluates the wrongness or goodness of a classification deci-

sion. In this context, the misclassification measure is a monotonic function of the error. However, 

in practice, the strict MCE case can also result into a model that overfits the training data. That 

is, a good performance on the training may result in poor performance on the testing set. This 

is the well-known generalization problem, which may be alleviated by the soft MCE scheme. By 

controlling v, one is given various degree of discriminative training implementations, which shows 

the flexibility of the MCE-based discriminative training formulation. 

MCE loss function 

It was seen that for a feature pattern x, the minimum error loss is 

厄；A)= {: 
if x is incorrectly classified 

otherwise. 
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Figure 4.2: The MCE loss function is a continuous approximation of the 0-1 loss function. 

The MCE approach approximates this ideal loss by a smooth, differential function and then apply 

this function to the misclassification. That is, for an input feature-data x belonging to category 

Ck, the MCE loss is defined as 

fk(x; A)= f(d訊x;A)). (4.8) 

This loss definition, which depends on the feature-data x and the classifier A, directly embeds the 

classification decision through the use of the misclassification measure. The concept of the MCE 

loss is illustrated in Fig.4.2. The MCE loss is a continuous approximation of the minimum-error 

loss function as derived from the Bayes decision-theoretic approach. 

Extension of MCE to DFE is simply made by replacing the feature-data x by its corresponding 

input-data s. That is, in DFE framework, the loss is defined as 

仇(s;<I>) ＝ f(dkげe(s);A))

f(dk(s; <J?)). 

(4.9) 

(4.10) 

The above DFE loss embeds both the classification decision and the feature extraction, enabling 

DFE to gather the overall recognizer resources for a single objective. The subscript k in defining 

the loss signifies that the loss can be made class-dependent. A general form of the loss is defined 

as 

£(s池） ＝ 
M 

こ仇(s;<I>)l(s EC砂
k=l 

(4.11) 

Objective function 

The objective function of DFE is the expected loss: 

.C(<I?) ＝ 

＝ 

Es [f(s; <I>)] 
M 

胃心insf(s; <I>)p(slC砂ds,
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where Pr(Ck) and p(slCk) are the class a priori and conditional probabilities, respectively. Min-

imization of£(~) is the target of the DFE's estimation. That is, finding the parameter~* such 

that 

が=arg minw£(<l>). (4.14) 

The uniqueness of a set of parameter satisfying (4.14) depends on the structure of the recognizer. 

e.g., the set {gj(s; <I>)} and the input space fl8. 

Note that, in contrast to classical use of MCE, the DFE's objective function is defined over the 

original input space and is a functional of the recognizer parameter set whereas the classical MCE's 

objective function is restricted to the classifier parameter set and depends on a particular feature 

extractor. The classical MCE's objective function is 

£ェ(A) = E畔 (x;A)]
M 

—予Pr(Ck)i。xf(x; A)p(xjCk)dx. 
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4.3 MCE Estimation and Bayes Error Rate 

This section investigates the link between MCE's estimation and the Bayes error rate. For simplic-

ity, the classical MCE formulation is used by expressing both MCE and Bayes error rate on the 

feature space nx. 
The error rate of the Bayes minimum-error classifier resulting from the maximum a posteriori 

rule is 
M 

砂 ayes⑫ ]=互liklPr(x,Cりl(xEC砂dx, (4.17) 

where 

硝~) = {x E如 Pr(x,Ck) =I= maxPr(x, Cj)}, 

This error rate can be re-written as 

M 

£Bayes四＝互J。xPr(x, Cい1(エEC訊Bayes(x,Ck)dx, 

in which RBayes(x, C砂isthe 0-1 cost incurred for a correct/incorrect classification i.e., 

lnoyes(x, Ck)~{ 0 if Pr(x, Ck)~max; Pr(x, Cり
1 otherwise. 

(4.18) 

In the MCE formalism, .eBayes(x, Ck) is implemented as the 0-1 step function applied to the 

misclassification measure of the Bayes minimum-error classifier. That is, 

紐ayes(X,Ck) = 1 (dkは）＞〇），

where 

叫x)= -Pr(x, Ck)+ i:n:axPr(x, Cj), 
J,J# 
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4.3.1 Approximating the Bayes error 

In practice, the joint probabilities Pr(x, C砂arerarely known and the classifier relies on its discrim-

inant function gk(x; A) to estimate the Bayes classifier discriminant function. Thus, in practice, 

the discriminant measure of a feature-pattern x of class Ck is expressed as 

dk(x; A)= -gk(記；A)+ i:nax g・(x; A). 
J,J#k 

J (4.19) 

The above formalism of the misclassification error is adopted, instead of the general formalism in 

(4.4) because it permits a direct comparison between competing class. Let us express the Bayes 

classifier error rate in the form 

M 

E Bayes立］＝麟xPr(x, Ck)l(x E C砂1(Pr(x, Ck) -I mlxPr(x, Cリ）曲， (4.20)

which is the smallest error possible given the classification task and the set of features Dx, Given 

a classifier of parameter set A, the error rate of the classifier, conditioned by use of discriminant 

functions {g心；A)}, is 

M 

噂』＝互lnxPr(x, Ck)l(x EC砂1(gk(x; A) -I myxg心；A))曲

M :::::; Lfn Pr(工， Cいl(xEC叫 (d心；A))dx . (4.21) 
k==l 

位 (A). (4.22) 

The loss£(d妖工；A)) approximates 1 (gk(ぉ；A) -I maxj gパx;A)) and the approximation can be 

made arbitrary closer by controlling the smoothness of the loss as seen above [Juang and Katagiri, 

1992a]. That is, ら [!1』canbe made arbitrary closer to E Bayes [叫 providedthat 

1 (肌(x;A)I~ ↑ xg心；A)) = 1 (Pr(x, Ck) f m;xPr(x, Ci)) (4.23) 

for all x and for a certain parameter set A. Note that (4.23) does not require that g訊x;A)= 

Pr(x, Ck), and thus makes it possible to realize an equivalent Bayes classifier without probability 

estimation. Consequently, the target of MCE is simply to estimate the sign 

-Pr(x, Cり+i;naxPr(xぶ），
J,J-/-k 

which might be easier than estimation of Pr(x, C砂

The MCE objective function位 (A),defined in (4.16) is almost equal toら [D』. There is 

equality if C(dk(x; A)) = 0 for dk(x; A) < 0, which can be realized for an appropriate choice of the 

loss function. By definition, we have the following inequality 

Cx(A)~ ら [n叶こ丘ayes[[}』. (4.24) 

The above relation shows that the minimum value ofら[!?』 isthe Bayes error£Bayes [ !?』.Thus, 

minimizing位 (A),with respect to A is equivalent to lettingら[!? x] getting closer to£Bayes [ !?』,
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with equality if (4.23) is realized. Consequently, the MCE framework enables the design of an 

equivalent Bayes classifier in a more direct manner. Estimation of the Bayes decision rule, is 

done through minimization of an objective function which approximates the Bayes classifier error 

rate. MCE is therefore a reasonable target for implementing the Discriminative Feature Extraction 

approach. 

The monotonicity of the loss is an important propriety, within the MCE framework because 

it enables the MCE criterion to be a monotonic function of the errors as expressed through the 

misclassification measure. Note that the monotonicity of the loss is only guaranteed in the context 

of the strict MCE. 

4.3.2 Effect of loss smoothing 

In the MCE framework, a discrete 0-1 loss function is replaced by a smooth approximation. This 

can be viewed as replacing the minimum-error risk by a different risk, given a feature-space, which 

seems to contradict the original target of achieving minimum error. This section tries to find out 

the effect of this smoothing on the minimum-error goal achievement, which means investigating 

the link between the Bayes error rate£Bayes [ !J x] and the Bayes riskら [!J』,which makes use 

of the smooth 0-1 cost function. Again, for simplicity, the Bayes error rate is expressed on a 

fixed feature set nx and assume for a fixed set of classifier parameters A. It is supposed that 

the probabilities Pr(x, C砂areknown and that for a class Ck, the misclassification measure is 

叫x)= -Pr(x, Ck)+ maxj,#k Pr(x, Cj)-

In the MCE framework, £Bayes(x, Ck) is approximated by£A(x, Cい=£(d以x;A)) through a 

classifier of parameter set A. Suppose£Bayes(x, Ck) is replaced by a smooth version such as 

h(x, Ck)= a(x, A)fBayes(x, Ck)+ /3(x, A) (4.25) 

where the term a(x, A) i= 0, which depends on the classifier parameters A and on the input token 

x, assigns a gradual value to the correct/incorrect decision represented by£Bayes(x, Ck)-Such a 

loss is referred to as a Minimum error consistent loss or simply consistent loss when there is no 

risk of confusion. The Bayes risk, corresponding to the smooth 0-1 cost function is 

M 

ら［叩＝互lnxPr(x,C砂l(xE Ck)ハ(x,C砂dx. (4.26) 

For simplicity, let us suppose that /J(x, A) = 0 for all x and A, which can always be done by simple 

translation of the loss form in (4.25). (4.26) can be re-written as 

M 

賃互=I: j Pr(記， Cいl(xE Ck)a(x, A)f Bayes(尤， Ck)dx.
k=l [}x 

(4.27) 

Let us further assume that a(ぉ， A)-/= 0 is smooth enough such that there is a I-differentiable 

one-to-one mapping f A satisfying 

BfA(x) 

ax = a(x,A), 
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叫 (x)
where denotes the Jacobian of the function z = f A位）. The smooth Bayes risk in (4.27) 邸

can then be re-written as 

ら［叫 ~tt⑫)Pr (!;;:'(z), C,) 1 (! 応） E C,) l Bayes (!;;:'(z), C,) dz, (4.29) 

which gives 

ら[flx] E j Pr ((叫(Ck))1 (z E f A(C砂） £Bayes((z八 (Ck))dz 
k=l 伍(ilx)

= E j Pr(z, Ck)l(z EC叫 ayes(z,Cいdz
k=l f A (ilx) 

E Bayes[! A (ilx)]. 

(4.30) 

(4.31) 

(4.32) 

f A (Ck) = Ck since z and x have the same label. f A is basically a feature extraction process 

unto the space n z = f A⑫)  • In words, (4.32) means that if (4.28) is fulfilled for a consistent loss 

function, the MCE objective function on the feature space nx is equal to the error rate of the Bayes 

minimum error classifier on a new set of features f2z = f A (nx), where the feature extractor f A is 

entirely determined by the smoothness of the loss and the parameters A (the classifier structure). 

Clearly, if a(x, A) is equal to one, both error rate become equal. The degree of discrepancy between 

the two Bayes risk is controlled by the smoothness, more precisely, by the degree of approximation 

of the 0-1 loss and the optimization scheme, which set the parameter A. 

Consequently, MCE offers the possibility to achieve the Bayes classifier performance by selecting 

A such that f A (n x) = (n x), given an optimal estimation of the Bayes classifier discriminant 

function dk(x) = -Pr(x, Ck)+ maxJ,#k Pr(x, CJ). 

4.4 Generalized Probabilistic Descent 

The target in the DFE paradigm is to find the optimal values of both 8 and A. Thus, DFE 

treats both 8 and A as adjustable parameters, while the original MCE implementation treats 

only A as adjustable parameters for recognition. Any optimization method could be used for this 

purpose. Here, the Generalized Probabilistic Descent method is described as an adaptive, descent 

optimization which updates the recognizer parameters 8 and A every time a training sample is 

presented. Again, the Generalized Probabilistic Descent (GPD) was first described in [Katagiri 

et al., 1990], with further development made in [Juang and Katagiri, 1992a; Juang and Katagiri, 

1992b]. 

The training aims at reducing the ultimate error measure.i.e., the expected loss 

£(<I>) Es [£(s; 列
M 

冒仇）Ins£(s; <I>)p(s[Ck)ds 
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where it is assumed that the expectation for our observation sample space {}5 exists. Note that in 

the DFE framework, the objective function is simply a function of the overall recognizer parameter 

in contrast with the pure MCE case, where it depends on both the classifier parameter set and 

a preset feature-space. Again, P(Ck) and p(s!Ck) are the class a priori and class-conditional 

densities probabilities. Usually, these probabilities are unknown and must be estimated from a 

body of training data. GPD belongs to the family of stochastic gradient descent methods, which are 

sometimes referred to as "on-line back-propagation" in the Neural Network terminology. The key 

contribution of stochastic gradient algorithms is the fact that the objective function in (4.34) can be 

minimized without having the knowledge of the probabilities P(Ck) and p(slC砂.The particularity 

of the GPD algorithm, in contrast to other stochastic-based gradient descent methods, is its focus 

on generalizing the Probabilistic Descent theorem of Amari [Amari, 1967] to a general, smoother 

form, applicable to variable-length sequence of pattern. 

4.4.1 Probabilistic Descent Theorem 

In the late 60s, Amari [Amari, 1967] introduced the Probabilistic Descent Theorem (PD), which 

was originally applied to static pattern. Again, the overall loss£(4>), which is a functional defined 

over the input space as the expectation of the local loss is 

£(<I>)= E[f(s; <I>)]. (4.35) 

The recognizer parameter <1? are adjusted according to 

<I>r+l =如 +8虻， (4.36) 

where⑲＝坪(s,Cふ①け isthe correcting term, which depends on the input pattern s, its label 

Ck, and the current parameter炉

Amari's probabilistic descent theorem, in the DFE paradigm, is as follows: 

Theorem 1 Givens E Ck, if the parameter adjustment謹 (s,Ck出） is of the form 

謹 (s,Ck, <I>)=ー EU▽£(s,<I>), 

where E is a small positive number and U is a positive definite matrix, then we have 

E[8£(剥l::; o. 

Proof: 

First note that 

E[V£(s, <I>)] = E[8<I>(s, Ck, <I>)]. V£(<I>). 

From equation (4.37), we have 

E[8c:f?(s, Ck, 動）］＝一EU▽E[C(s; 虹）]=EU▽ £(c:f?) 
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(4.39) 

(4.40) 



which gives, 

E[v'£(s; <I>)]=▽ E£(s, <I>)] =▽ £(<I>), 

and then 

E[o<l?(s, C知侶）］＝一EU▽£(<I>). (4.41) 

Injecting the above expression into (4.39) gives, 

E[8.C(<I>T)] =一EU立（い立(<I>)= ー€立(<J?)TU▽£,(<I?) :S 0. (4.42) 

The basic idea behind the above proof is to choose the small increment 8<!? such that a first 

order Taylor expansion is valid. To see that, let us express£(s, <I?) into its Taylor expansion. 

1 
£(s; 屯＋砂） =£(s; <I?)+▽知直）T 8<!? + -8<!? T H(x, <I? 十μ⑲)8<!? (4.43) 

2 

with H being the Jacobian of£(s; <I?) with respect to <I? and O s; μs; l. Using, 

謹 (s,Ck,<I>)=一€▽R(s; <I>)TU切 (s;<I>),

we have 

f(s;<I>+砕） = f(s; <I>) -E II v'f(s; <I>) 112十E2凡(s,μ), (4.44) 

where R2(s,μ) is the Lagrange remainder and 11112 denotes the expression R(s;4l)Tv'1!,(s;4l), which 

is a norm. Thus, the above theorem is based on neglecting the remainder and letting 

E[f(s心+8<I>)],:::; E[f(s; <I>)] -E [11▽ f(s; <I>) 112]' (4.45) 

which decreases at each iteration. 

Theorem 2 (Probabilistic Descent) Assume that Er is a positive time series satisfying 

00 

i) L行→• oo, (4.46) 
T=l 

and 
00 

ii) LE~ く 00. (4.47) 
T=l 

Then, updating 1> according to 

叫T+ 1] = <l>[Tj +⑲  [Tl, (4.48) 

with 

⑲ (s, Ck, 虹）＝一crU▽f(s, (恥）， (4.49) 

will produce a sequence of parameter vectors <I>T that converges to a local minimum of£(<Ii), with 

the probability of one. 
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A classic proof of this result, which makes use of the Doob's theory of Martingales, can be 

found in [Doob, 1953; Fu, 1968]. Bottou in [Bottou, 1991] also furnishes detailed explanations. 

The above theorem provides sufficient conditions for a stochastic gradient descent algorithm to 

converge. The objective function does not have to be of the MCE form. Condition i) means that 

the GPD algorithm will indefinitely learn as long new training data are fed to the recognizer. ii) 

implies that E7 is a decreasing sequence that converge to zero. A simple example of a training 

rate sequence satisfying i) and ii) is行＝卓.Stated briefly, the probabilistic descent theorem 

then guarantees that asymptotically (infinite repetition), the recognizer is optimal. Due to the 

randomness introduced by the token-by-token learning phenomenon, the GPD algorithm is more 

likely to avoid local minima than the deterministic gradient. 

The important point of this result is that, even though the expected loss£(<I>) is not directly 

calculated, it can be minimized by using the derivative of the local loss C(s; <I>) for each incoming 

examples. 

4.5 Application of MCE to Speech Processing 

As show.n above, the goal of MCE is to directly minimize the error rate of the system. In most 

MCE applications, the optimization scheme is carried out by the Generalized Probabilistic De-

scent algorithm, which, as described previously, belongs to the family of stochastic descent training 

algorithms. Application of MCE/GPD for various recognizer structures with emphasis on Neu-

ral Network was described in [Katagiri et al., 1991a] before detailed formalization in [Juang and 

Katagiri, 1992a]. 

4.5.1 Application to speaker recognition 

In speech processing, speaker recognition refers to the process of guessing the identity of the talker. 

This process is usually classified into speaker identification (identification of the speaker identity) 

or speaker verification (verifying a claimed identity). MCE has been applied to both. The input 

to the system is a test utterance and the output of the system is the speaker identity. Application 

of MCE to speaker recognition is reported in [Liu et al., 1995]. 

For reducing the difficulty encountered in multi-speaker-based speech recognition systems, a 

speaker adaptation process is sometimes carried out. This consists in mapping the speaker voices 

to a "standard speaker". Application of MCE to speaker mapping was made by Sugiyama and Kuri-

nami [Sugiyama and Kurinami, 1992] using NN. [Matsui and Furui, 1995] describe the application 

of MCE to speaker adaptation using HMM. 

4.5.2 Application to word spotting 

Word spotting consists in detecting the presence of a word within a flow of speech. Thus, it 

includes both detecting the word occurrence and taking a decision regarding the identity of the 

87 



word. Usually, detection is made by making a comparison with a threshold, which in the con-

ventional framework of design, is determined empirically. The Minimum SPotting Error learning 

(MSPE), suggested in [Komori and Katagiri, 1995], introduces a framework in which the threshold 

is optimized by MCE. 

4.5.3 Application to speech recognition 

MCE has been extensively applied to speech recognition using various architectures. Those appli-

cations can easily be found in the speech literature. Few early works on MCE application to speech 

are presented. See [McDermott, 1997] for further detailed explanations. 

Use of MCE/GPD within a dynamic-programming based recognition framework was described 

by Komori and Katagiri [Komori and Katagiri, 1992] and Chang and Juang [Chang and Juang, 

1992]. McDermott and Katagiri [McDermott and Katagiri, 1992] implemented MCE/GPD within 

a prototype-based speech recognition framework. Hidden Markov models implementation was done 

by Rainton and Sagayama [Rainton and Sagayama, 1992] and Chou and colleagues [Chou et al., 

1992]. 

Again, the common ground in all MCE implementations is to optimize the classifier so as to 

directly minimize the classification error rate. 

4.6 Links between MCE and Classical Discriminative Objective 

Functions 

Various discriminative training approaches have been proposed in the literature. Unlike MCE, 

most of them are not a monotonic function of the classification error even if a relation with the 

MCE formulation of discriminative training can still be investigated. MCE devises an elegant 

framework for discriminative training, which includes some other discriminative training methods 

as special cases. Among various implementations, only 3 discriminative objective functions, namely, 

Maximum Mutual Information (MMI), Classification Figure of Merit (CFM) and Minimum Squared 

Error criterion (MSE), are discussed. 

4.6.1 MCE and MSE 

As was stated in Chapter 2, the MSE criterion is a well-studied error criterion with main properties 

available in the literature [Duda and Hart, 1973]. Our concern is mainly to show the relationship 

with the MCE criterion. Let g(x; A)= [g心；A), …，9M(x; A)]T be the decision vector. The MSE 

criterion is defined as 

RMsE⑫; A) llg(x;A)-t(x) 112 
M 

I:(g心；A)ーち(x))2
j=l 
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where t(x) = [t心），…，iM(x)]Tis the target vector corresponding for input x. For a classification 

problem, 

ち(x)=似 for x ECか (4.52) 

where伽 isthe Kronecker notation. This means that the target vectors t(x) are an orthonormal 

base of the space spanned by the decision vectors g(x; A). For convenience, the target vector basis 

of Ck is referred to as tk. Each class is thus represented by one of the tk. 

Geometrical interpretation of M CE and MSE 

The geometrical interpretation of the MSE as shown in eq. (4.51) is that MSE tries to create 

clusters around the vector-points tk. The decision vector g(x; A) of feature-vector x of category 

Ck is made similar, in the sense the Euclidean norm, to tk, which represents category Ck in the 

space spanned by the decision vectors g(x; A). 

Making use of the target vectors tk, the MCE criterion, expressed through the misclassification 

measure, can be re-written as 

d訊x;A)
T - -g(x; A) tk +~axg(x; A 

J,J-:pk 

-g(允；A)伍 +g(x;A?杜

T t-) J (4.53) 

(4.54) 

where t万refersto the target vector of the best incorrect category, given x. The MCE loss is a 

difference of dot products involving the representatives of the two competing classes. Expanding 

the dot product gives 

dk(x; A) - II g(x; A) II II tk II cos ak+ II g(x; A) 1111 ty; II cos ay; 

II g(x;A) II (-cosak + cosa訂，

(4.55) 

(4.56) 

where ak and a;; 匹 ferto the angle between g(x; A) and tk and to g(の；A) and t炉 respectively.

Minimizing the MCE loss is thus equivalent to letting cos ak→ 1 and/or cos a;; → ー 1.That is, 

minimize the angle between g(x; A) and tk and/or maximize the angle between g(x; A) and t;; ・

Thus, MCE discrimination relies on "direction" optimization whereas MSE focuses on "norm" 

optimization. 

MSE's discriminant term 

For a feature data x belonging to Ck and assuming the target function given in (4.52), the MSE 

criterion can be re-written as 

M 

£MsE(x; A) = (g心；A)-1戸+L 9j(x;A)2, 
j=l,j=j:k 

which, by adding and subtractingふgives

fMsE(お；A) = （卯(:v;A) -~-½) 2 + F喜~,(い:v;A) -½+>
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-(繹(x;A)一D+F喜)恥(x;A)-D  +喜（約は， A) 一~)'+予
Let町（①；A) = gj(x; A) -½- According to (4.59), the MSE criterion can be written as 

I M M LI LI 2 M 
£MsE(s; A) = -g且x;A)+ 9j(x; A)+ 9j(x; A) +―. (4.59) 

4 j=l,#k j=l 

discriminant term d心；A) distortion term 

Equation (4.59) shows that the MSE criterion is composed of two terms: a discriminant term 

叫x;A) and a distortion term. Because of this distortion term, the MSE criterion is less related 

to the minimum error criterion albeit being discriminant. For classification problems, the non-

monotonicity of the MSE often leads to unoptimality. That is, the MSE criterion can display cases 

where the value of the MSE criterion is small for a given input data while the data is still being 

mis-recognized [Hampshire and Waibel, 1990]. 

4.6.2 MCE and CFM 

The Classification Figure of Merit (CFM) was proposed for feedforward Neural Networks by Hamp-

shire and Waibel [Hampshire and Waibel, 1990]. It is an attempt to bridge the gap between the 

MSE criterion and the non-monotonicity of MSE to the recognition errors. For a feature-data x of 

category Ck, the CFM criterion is defined as 

1 
M 

CcFM(エ；A) = I: sig(冒 (x;A)), 
M-1 j=l,j# 

(4.60) 

where 

▽ kj(x; A)= 9k佃；A) -9j(x; A) for j = {1, ... , M}; j # k 

and sig is the sigmoid function [Hampshire and Waibel, 1990]. 

The CFM form of (4.60) is not a monotonic function of the errors for M 2: 3. Thus, a variant 

of CFM has been proposed, which considers the smallest▽ kj(x; A) and neglects the other terms. 

This variant of CFM (CFM2) is the same as the strict MCE case when using a sigmoid function 

as the loss. Thus, it can: be argued that CFM2 is a special case of MCE. 

4.6.3 MCE and MMI 

Similar to the MCE criterion, the MMI criterion does not focus on estimating the Bayes probabilities 

but rather tries to minimize the average uncertainty of a class-labels, given input feature-data 

[Brown, 1987]. ・For a feature-data⑦ of category Ck, the mutual information Ik(x; A) between the 

feature-data x and the category Ck, given the classifier parameter set A is defined as 

I心； A)~logp(wlCぃ A)~ log (喜Pr(C;;A)p(wlC;;A)),

90 

(4.61) 



where p(xlCk; A) and Pr(Cj; A) are the class-conditional probabilities and a priori probabilities 

conditioned on the classifier parameter set A. However, the right side of (4.61) takes the summation 

over all classes, including the correct class, whereas~CE considers incorrect categories only. Thus, 

MMI, from the view point of MCE does not directly tries to separate the competing categories. 

A different version of MMI, which considers the summation only over "confusing categories" 

has been proposed [Brown, 1987]. This approach may be closer to the MCE formulation. However, 

the general version of MMI is not directly related to the minimum error criterion, albeit being a 

discriminative training error criterion. 

The link between MCE and MMI is as follows. First, the discrimination function of class C j is 

defined as 

gj(x; A)= log (p(xlCj; A)). 

Second, due to the use of log probabilities, the misclassification measure is defined as 

叫 x;A)= -g心） +log¥ 
(I  !!.._ 
M-1 6 

j=l,j=/=k 

e叩 (X;A))ツ

(4.62) 

where v is a positive parameter. It is straightforward to show that (4.62) can be re-written as 

叫x;A)~~[log C喜~k長(:Z:;A)-,以:z:;A)))-log(M-!)] (4.63) 

For v = 1, assuming equi-probability of the a priori probability (Pr(Cj) =訂）， wecan express the 

mutual information as a function of the MCE loss using the discriminant measure of (4.62). 

h(x;A) ＝ 

＝ 

-log (e(d心；A)+log(M-1)) + l) + log(M) 

-log (e(h(C(d心；A)))+log(M-1)) + 1) + log(M), 

(4.64) 

(4.65) 

where h(・) = c(-)-1, is the inverse function of the MCE loss, (which is defined since the mapping 

d→ f(d) is a continuous one to one mapping). h(・) being a monotonic one-to-one mapping, it can 

be seen that the MMI cost is a monotonic function of a soft MCE cost function. Thus, minimizing 

MCE is equivalent to minimizing the MMI criterion under following assumptions 1) all classes 

have equal a priori probabilities 2) the discrimination measure considers averaging over incorrect 

categories. For MCE and MMI to lead to the same minima in the parameter space, the MCE loss 

shall simply be the identity function. That is, h(d) =din (4.65), which can be achieved by using 

a piece-wise linear function. 

MMI is equivalent to soft MCE, thus MMI is not a monotonic function of the error that the 

system makes. As said earlier, Gopalahrishan [Gopalakrishnan et al., 1988] described a case where, 

the MMI criterion, despite being able to separate categories, asymptotically failed to realize the 

optimal minimum error solution. 
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4. 7 Joint Optimization of Feature Extraction and Classification 

Several attempts have been made to integrate feature extraction and classification. Most of them are 

included in the ANN paradigm [Intrator, 1990; Morgan and Bourlard, 1990; Biem and Sugiyama, 

1991; Lowe and Webb, 19叫 Thesubspace method (SM) is also a well-formulated, traditional 

approach [Oja, 1978]. However, these attempts, unlike the DFE approach, are often specific to 

a particular recognizer structure rather than based on a general framework of applicability. Fur-

thermore, in most cases, optimality of the overall recognizer in terms of error minimization is not 

guaranteed. 

4.7.1 Subspace methods 

Recognition-oriented feature design has been most extensively studied in the Subspace Methods 

(SM) paradigm, especially for character and image recognition [Oja, 1978]. In SM, the recognition 

(classification) decision is made by measuring the angle between a pattern (vector) to recognize and 

a class model for every class. In particular, a rec~gnizer based on this method is defined by (lower-

dimensional) class subspaces, each assumed to represent the salient features of its corresponding 

class. There is no distinction between the feature extraction process and the classification process 

in this framework. Given an input sample, the recognizer computes the orthogonal projection of 

the input onto each class subspace and then classifies the pattern to the class giving the maximum 

projection value. 

The performance of SM-based recognizers relies on the quality of the class subspaces. The 

most fundamental algorithms for designing the subspaces have been the Class Featuring Informa-

tion Compression (CLAFIC) method [Watanabe et al., 1967] and the Multiple Similarity Method 

(MSM) [Iijima, 1989], where each class subspace is designed by running Karhunen-LoもveTransfor-

mation or Principal Component Analysis over the design data of its corresponding class. Obviously, 

this class-by-class design does not directly guarantee recognition error reduction: the recognition 

result of design samples is not reflected in the subspace design. These methods have been improved 

over time, aiming at increasing the recognition accuracy. CLAFIC has been extended to the Learn-

ing Subspace Method (LSM) [Kohonen et al., 1979]; LSM was later reformed as the Compound 

Similarity Method (CSM). In these new versions, subspaces are trained iteratively (adaptively) 

according to the recognition result of each design sample; i.e., when an input design pattern is 

misrecognized, the subspace of the true class and that of the most likely but incorrect class are 

adjusted so that projection onto the true class subspace increases and projection onto the compet-

ing incorrect class subspace decreases. This discriminative iteration actually contributes towards 

improving the accuracy. However, the training mechanism remains intuitive, and its mathematical 

optimality in terms of error minimization has yet to be clarified. 
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4. 7.2 Minimum Error Learning Subspace 

Let us assume that similar to SM, a feature is represented by the subspaces of the original pattern 

(vector) space. Given this assumption, DFE can easily be applied to the design of an SM-based 

recognizer. However, in this framework, the class subspace works as a class model such as a set of 

prototypes. It is possible to formulate a discriminative training method for this recognizer structure 

by directly using MCE/GPD. The resulting method is Minimum-Error Learning Subspace (MELS), 

which can be viewed as an application of the DFE approach to subspace configuration [Watanabe 

et al., 1996]. It has also been shown that the conventional LSM is an intuitive implementation of 

MELS [Watanabe and Katagiri, 1995] 

4.7.3 Feature extraction properties of Neural Networks 

Despite its prime use as a classifier, NN do provide an appreciable framework for feature extraction. 

For various NN-like architectures, such a Feed-Forward network or Radial Basis Functions (RBF) 

[Girosi and Poggio, 1989], the output of each layer can be viewed as features for the next layer 

meaning that the NN are simply a cascade of feature extractors, with the last layer acting as the 

classifier. This is the internal representation of the NN scheme [Rumelhart et al., 1986]. The 

internal representation corresponds to discriminant features because the local feature extraction 

process is optimized while targeting the classification task. 

Various feature extraction processes can be implemented by appropriate choice of the target 

function t・. 

Dimensionality reduction 

Efficient dimensionality reduction can be achieved by Neural Network in a manner similar to prin-

cipal component analysis. The method consists of squeezing the inputs unto a lower-dimensional 

representation within the hidden layers. A non-linear principal component analysis can be derived 

by minimizing the sum-of-squared error between the input and the output. That is, (ち（エ） =xリ
for x = [x1, ... , x訊 wherep is the dimensional on the feature vector x. The error function takes 

the form 

d 1 
MSE(A) =— I:I:(gパx; A) -Xj)2 

2 
X j=l 

(4.66) 

where Xj is the j-th component of x and p is the dimension of the input data. This form of 

input-to-input mapping is known as the auto-associative mapping. If the network consists of 3 

layers, with one input layer of p nodes, and is at the minimum of the error function, the output of 

the input layer are simply the projection unto the p-dimensional subspace generated by the p first 

eigenvector of the input data [Bourlard and Kamp, 1988]. 
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Discriminant analysis 

It has been established that Neural Network performs some form of discriminant analysis at the 

output of the hidden layer which feeds the output layer, trained for classification task with the 

mean-squared error criterion. 

Gallinari [Gallinari et al., 1991] has shown that a Neural Network with linear units at the last 

hidden layer maximizes the cost 
detEs 

J=  
detEw' 

if trained for classification with MSE. Again, EB and Er are the between class covariance matrix 

and within class covariance matrix, in the space spanned by the output of the last hidden layer. 

Asoh and Otsu [Asoh and Otsu, 1989] empirically demonstrated that nonlinear nodes of the last 

hidden layer give greater values of 

J = Tr(E心 w―1)

when trained with the MSE criterion. Lowe and Webb [Lowe and Webb, 1991] extended Gallinari's 

results by introducing the weighted sum of error squared criterion which takes into account the 

prior probability of each class, leading to the general result that, minimizing the sum-'of-squared 

criterion maximizes the criterion 

J=  Tr(叫均）

at the last hidden units, where+ represents the pseudo-inverse [Bishop, 1995]. 

NN-based feature representation approach is one example of Embedded Feature Extraction 

scheme. The essential shortcoming of the conventional NN approaches are 1) the design objective 

function are usually inconsistent with the minimum recognition error criterion. 2) the simple use 

of a general network structure, which mainly consists of weighted sum calculations, is often than 

insuffici~nt to handle the complex nature of various kind of patterns such as speech utterances 3) 

most applications required already pre-processed data. Although, thanks to Kolmogorov'theorem, 

a Neural Network can theoretically perform any mapping [Girosi and Poggio, 1989; Kurkova, 1991; 

Lin and Unbehauen, 1993], still in practical applications, data should be passed through a pre-

processing stage. 

Use of Neural Network as feature extractor 

In the previous chapter, a method in which an NN is used as feature extractor for discrete HMM 

was described. The NN and HMM, however, used different criteria for their optimization scheme, 

which is clearly far from the DFE approach presented here. A more efficient scheme would be to 

use the NN are a non-linear feature transformation, optimized jointly with the HMM classifier. 

Joint optimization of NN and HMM, has been reported in the literature. In an early work by 

Bridle [Bridle and Dodd, 19叫 jointoptimization of an HMM, implemented within a connectionist 

interpretation of HMM, called Alphanet [Bridle, 1990], and a linear transformation were jointly 
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optimized aimed at speaker-dependent continuous phoneme recognition. However, this experiment 

did not show substantial improvement over the baseline approach. 

Bengio and his colleagues in [Bengio et al., 1990b; Bengio et al., 1990a] have jointly optimized 

a set of NN and HMM for the recognition of plosive sounds using the MLE and MMI criterion. 

In their work, the feature extractor consists of three NN, of which two have been especially pre-

trained to perform plosive recognition and the third network was deterministically preset to perform 

a PCA transformation. The results of this quite elaborate platform shows a clear improvement over 

baseline approaches, using the MMI criterion. 

A simpler non-linear transformation offeatures has been investigated by [Johansen and Johnsen, 

1994]. The current speech frame is appended to the output of an MLP, whose input consists of 

the current frame, the last two past frames and the next two future frames. The overall system is 

globally trained with the MMI criterion and achieved 22% improvement in recognition rate on a 

TIMIT broad-class phone recognition task. 

4. 7.4 Feature selection based on performance 

DFE as described above, is not the first attempt to use the performance of the recognizer to value 

the quality of features. 

Paliwal [Paliwal, 1992] made a study where each individual feature is ranked according the its 

performance on the training set aiming at recognizing telephone-based isolated alpha-digit in a 

multi-speaker recognition mode. For a p-dimensional feature vector, this experience is the same 

performing p tests and then choosing the best feature according to the ranking. Paliwal used a 

38 dimensional feature set, composed of 12 LPC cepstral parameters, their first derivatives, and 

their second derivatives and made a comparative feature ranking based on the F-ratio and the 

error rate figures of merit which shows a clear discrepancy between F-ratio-valued features and 

their performance rankings. Furthermore, Paliwal showed that some manually selected feature 

subsets may outperform the F-ratio-based selection. This later result shows that, unlike the DFE 

approach, features ought to be uncorrelated for the ranking to be of any significance. 

Similar to [Paliwal, 1992], Bochieri and Wilpon [Bocchieri and Wilpon, 1993] used a statistical 

information based on mismatch between transcribed output of the Viterbi alignment of HMM and 

the correct transcription of the utterance, aiming at phone recognition. This method was shown to 

be related to the between-class and within-class scatter measure computed for a single-component 

of the feature vector. The main drawback of this approach is its incapacity to dealing properly 

with deletions errors when applied to continuous speech. 

Other works have directly attempted to apply linear discriminant analysis for improving acoustic 

modeling in speech recognition. Doddington [Doddington, 1989] has used a "confusion data model" 

at the state level (provided by a Viterbi alignment) to discriminate between true distribution and 

acoustically similar distribution across all the HMM states. 
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Figure 4.3: General model of speech recognition system design by DFE. 

4.8 Application of DFE to Speech Recognition 

Since the suggestion of the DFE approach was made in [Biem and Katagiri, 1993b; Biem et al., 1993; 

Katagiri et al., 1993] and applied to a particulars speech recognition tasks, the DFE method has 

enjoyed various implementations. Below, an overview of some works is presented. 

In the context of speech recognition, the simple model of the pattern recognizer as defined 

previously should be adapted. The dynamics of the speech signal should be taken into account 

when optimizing the overall recognizer. 

A speech recognizer design by DFE is illustrated in Fig. 4.3. The MCE criteria is used to 

jointly optimize the feature extractor and the acoustic models, which perform classification. The 

language model can be integrated in the design by relying on it during the computation of the 

discriminant functions. The feature extractor can take various forms. It can be parameterized 

LPG-based model, a filter-bank, a linear or an NN-based transformation or a combination of these. 

In this report, the feature extraction is considered a standard speech parameterization process 

such as a filter bank so as to have a straightforward comparison with conventional speech parame-

terization process. Again, as have been suggested through various works, one can use a linear or a 

non-linear mapping as feature extractor. If the linear transformation is constrained to keep certain 

characteristics (for instance, positive-definiteness), DFE can be applied through a decomposition 
technique such as the singular value decomposition or the Cholesky factorization. 

4.8.1 Shared feature extractor 

Feature extraction is usually a shared module by all categories. That is, the output of the feature 

extraction is compared against the models of all categories. Here, some applications of DFE in this 

context are introduced. 
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Optimizing dynamic cepstrum lifters 

Bachianni and Aikawa [Bachiani and Aikawa, 1994] have used the DFE method to optimize the 

dynamic cepstral lifters for HMM-based phone classification. The lifter were implemented with a 

TDNN, whose delays permits a straightforward implementation of the dynamic lifters. 

Optimizing feature weighting 

Hernando [Hernando et al., 1995] and his colleagues have used a DFE-like approach to optimize 

the weighting given to various features in a continuous HMM framework. 

Interesting work by [De la Torre et al., 1996] has been done in this area. [De la Torre et al., 

1996] have applied various DFE strategies to optimizing the weighting of various feature streams 

for semi-continuous HMMs. They have proposed the Single Gaussian DFE (SGDFE), which pre-

supposes a Gaussian model for each class, and perform a DFE run based on this supposition. Since 

the models are $ingle Gaussians, this approach may help to reduce the computational burden in 

the DFE optimization. The estimated features can then be used for MLE or MCE .training or as 

the starting point of an overall DFE process. Obviously in this approach, the feature extractor is 

not fully embedded in the recognition system. However, the results show a clear improvement over 

the baseline MCE and MLE. In [De la Torre et al., 1997b], the same approach has been applied 

to feature reduction using a linear transformation. [De la Torre et al., 1997a] shows application of 

DFE to speech recognition in noise, which shows the robustness of the DFE recognizer to noise. 

Unlike the works presented in this report, or in [Biem and Katagiri, 1994; Biem et al., 1995; 

Biem and Katagiri, 1997a; Bachiani and Aikawa, 1994], most research within the DFE framework, 

has been done using linear transformations or using NNs as a non-linear transformation, which is 

certainly the right approach for improving performance. However, this approach does not always 

permit an easy analysis of the resulting feature extractor nor set up the framework of comparison 

with fundamental speech parameterization methods, which is one main goal of this report. 

4.8.2 Category-dependent feature extractors 

Feature extraction can be viewed as a process that forms a metric in measuring a class membership 

of an input pattern. This is motivated by the fact that the definitions of class identity can be 

different from one class to another. In that situation, it may be appropriate to use a class-dependent 

feature extraction. That is, the feature representation does not have to be common to all classes; 

i.e., each class can have its feature extractor mapping, which is then viewed as a metric that is 

suitable for representing its identity as effectively as possible. Within the DFE framework, this 

approach enforces the discriminative capabilities to the feature extraction process. 

A recognition decision rule of this framework then is as follows: 

a(s) = ck if k = argm↑ xgj・（厄(s;A)),
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where :F ei (・) is a class-specific feature extractor. 8 j is the parameter set of class C j. Note that 

for each class the feature extractor is embedded in its corresponding discriminant functionふe.9j(•) 

[Watanabe et al., 1996]. 

Discriminative metric design 

Based on the above assertion, DFE was applied to designing a metric for each class. This method 

has been referred to as Discriminative Metric Design (DMD) [Watanabe et al., 1995]. 

The DMD approach is similar to the SM case, which shows individuality of the class metric, 

though the feature representation is strictly limited to subspaces. Among many possibilities, DMD 

in particular was implemented by using quadratic discriminant functions [Watanabe et al., 1995] and 

its utility shown in a comparative experiment against a multi-template Learning Vector Quantizer 

(LVQ). 

Again, DMD is as a particular case of DFE, in which the feature extractor is reduced to a 

class-dependent metric and where focus is on the metric describing the matching between pat-

tern [Watanabe et al., 1996]. However, in practice this approach can lead to higher number of 

parameters, leading to poor performance if relatively few data are available. 

Use of class-dependent, linear transformation 

Most applications of class-dependent feature extraction have made use of a linear transformation as 

feature extractor. In the HMM framework, the linear transformation is usually assigned to HMM 

states, to capture local spectral events. This approach can be likened to the use of class-specific 

covariance matrix in which the covariance matrix is trained with MCE. 

Euler in [Euler, 1995] has used the DFE-approach to optimize a linear transformation aiming at 

recognizing spelled letters by HMM. In the work of [Ayer et al., 1993], an initial LDA transformation 

is optimized using a discriminative criteria for the recognition of the British Telecom Laboratories 

(BTL) E-set. The BTL E-set is defined as the set of the E-sounding letter {"B", "C", "D", "E", 

"G", "P", "T" and "V"} and considered to be a particularly difficult task. Ayer's result of 96% 

accuracy seems to the best result so far in this database. 

Application of DFE on the TIMIT database was done by Rathinavelu and Deng [Rathinavelu 

and Deng, 1996] using HMM for classifying phonemes. In their work, they have used a state-based 

linear transformation, which also integrates dynamic features. The linear transformation is initially 

set to perform a DCT transform from the output of a Mel filter bank (see Chapter 8). Their results 

have shown a clear improvement over the baseline MLE and MCE approach . Using 5 mixtures 

context independent HMM, MLE achieved 66.6 %, MCE realized 80.51% and DFE gave 82.19%, 

which is one the best classification result achieved so far in the TIMIT database, using the reduced 

39 phonemes set. 

The approach described in [Watanabe and Katagiri, 1997] is quite similar to [Rathinavelu 
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and Deng, 1996] but applied to continuous speech recognition. The DMD (or DFE using class-

dependent linear transformation) is here applied to the ATR 5240-word database and has shown 

an improvement over classical use of MCE (from 90.73% to 93.95% of phoneme accuracy). 

Use of class-dependent, non-linear transformation 

Use of NN as a non-linear feature extractor for HMM was investigated by [Rahim and Lee, 1996] 

aiming at speaker-independent telephone-based connected at digit recognition in which the input 

to the feature extractor are cepstrum coefficients. In this work, two approaches were investigated. 

The first approach makes use of a single NN as feature extractor for sub-word HMM. The second 

approach makes use of 12 NNs as a feature extractor assigned to each digit and to a noise model. 

This approach has shown a clear improvement over a baseline ML-based HMM and MCE-based 

HMM, with the best result being achieved in the context of 12 NNs. In this case, the DFE approach 

reduced the word and string error rate to 16% and 25% over MCE performance using HMM. 

Is class-dependent DFE the best ? 

Paliwal and colleagues in [Paliwal et al., 1995] have made a comparative study of various implemen-

tations of DFE configurations. The task in their work was a simple classification of static pattern 

and the feature extraction was reduced to a linear transformation. The classifier was a distance-

based classifier. The configurations that were investigated are: 1) MOE-optimization of the linear 

transformation while the classifier is untrained. 2) MOE-optimization of the linear transformation 

while the classifier is re-adjusted according to the previously trained transformation. 3) Classifier 

and linear transformation are optimized jointly by MCE. 4) same as (1) but with a class-dependent 

transformation. 5) Same as (3) with class-dependent linear transformation. The best result on 

the testing set was achieved by configuration (3) which is the simultaneous optimization of the 

overall recognizer, using a shared (single) feature extractor. However, it will be inappropriate to 

conclude from this experiment since this was a rather simple task with a limited number of training 

data. Nevertheless, these results point out the fact that in the framework of DFE implementation, 

making use of multiple or single feature extractor or single feature extractor should be carefully 

investigated according to the task and the recognizer structure as well as the number of training 

data available. 

If enough data are available, for overall general optimality, a shared feature extractor can be 

used to optimize basic speech parameterization such as filter bank parameters for extracting overall 

discriminant parameters and the class-dependent transformation can then be used in the next stage 

to select class-specific informations. This optimal DFE design is illustrated in Fig. 4.4. This figure 

has been adapted from [Watanabe and Katagiri, 1997]). 

99 



Feature extraction .................. .. 
S→ --=- :F<s) ヨ►X

Input ヽ•••….. ………'Input 
Pattern Feature 

t
 

I
 

u
 

s
 

e
 

R
 

‘
 

••••••••••••••••• 

-．
 

.

』

S
已
c
d
m
o
u" 

．
 

．
 
．

．

 

．．．．．．．．．．．．．．．． 

.-------------------------------------------------, ： 

＇ 
; 「 「 1~=•1 圧一五正}—屯占；

I ・---------------------------c王三::>----------------・
Figure 4.4: Optimal optimization of a pattern recognizer by DFE. 

4.9 Conclusion 

In this chapter, the pattern recognition concept was formalized and the discriminative training 

concept was introduced as an efficient design method for the overall recognizer. The concept of 

recognizer design assumes that the feature extractor takes the raw input data and creates a feature 

space on which classification is made. 

The aim is to let a front-end feature extraction process collaborate with a classification pro-

This is realized through the representation of 

the overall recognizer as a modular system in which a parameterized feature extractor module 

and a parameterized classifier are subject to optimization for minimum error achievement using a 

discriminative training algorithm. This Discriminative Feature Extraction method can be viewed 

as an extended application of the Minimum Classification Error/Generalized Probabilistic Descent 

method introduced in [Juang and Katagiri, 1992a]. 

cess for direct minimization of the classification. 

Consequently, in this chapter, the Minimum Classification Error/Generalized Probabilistic De-

scent (MCE/GPD) formalism, which have been shown to provide a framework of discriminative 

training aiming at minimum error, was described. GPD, which is a stochastic gradient descent tech-

nique, enables the minimization, up to a local minima, of the MCE objective function. MCE/GPD 

approach is to approximate the discrete 0-1 minimum error by a smooth, at least first differentiable 

form. Thus, the objective function within the MCE/GPD scheme is a close approximation to the 

actual error rate that the system makes. Minimizing the MCE criteria is therefore equivalent to a 

direct minimization of the error rate. 

In the DFE framework, the feature extraction participates in the classification process and all 

system resources, that is, the feature extraction process and the classification process, are optimized 

jointly for the single purpose of reducing the misclassifications of the system. This ensures that the 
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feature extraction is optimally matched to the classification process, given a recognizer structure. 

DFE can be applied within two schemes. A single feature extractor-based scheme, which may 

be suitable to extract the general discriminant properties of the task and a class-dependent feature 

extractor-based approach which add more the discriminant capabilities to the recognizer. 
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Chapter 5 

Expected loss and empirical loss 

Accuracy is a costly thing 

-」onasC. Nader-

In DFE, the target is to minimize the expected loss. The GPD process is bound to fi.nd at least a 

local minima of the expected loss for an infi.nite run of the algorithm. In practice, the recognizer is 

designed through a fi.nite set of data. The designer ends up minimizing an empirical loss defi.ned 

over the fi.nite set of data, which is different from the initial target. In this chapter, we discuss 

the following issues: 1) what is the link between the empirical loss and the expected loss ? 2) is a 

minimum of the empirical loss "close" to a minimum of the expected loss ? 
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5.1 Introduction 

The objective function of DFE is simply the expected or ideal cost£(<I?) defined as the expectation 

of the loss over the observation space fl s: 

M 

虚） = Ei。sPr(s, Ck)l(s EC叫(s;<I>)ds, (5.1) 

which can be minimized using the GPD algorithm. That is, for each in coming input data, update 

the recognizer parameters according to 

<I>[T + 1] = <I>[T] -E7Uv'£(s連）， (5.2) 

where the learning rate should theoretically obey the stochastic constraints: 

00 

こ后 oo, (5.3) 
-r=l 
00 

LE~ ＜ oo, (5.4) 
T=l 

for leading to the minimization of the expected loss. 

In practice, one only has access to a finite set of training data and the classifier is designed 

through this set of data, which are drawn from the observation space ilx according to a probability 

p(s). On the other hand, the GPD algorithm is only asymptotically efficient. That is, optimality 

is realized for an infinite number of examples, which is not possible in practice. This leads to the 

problem of minimizing the loss£(Cl)), using a finite set of data. 

Let S be the set of training data available S = { sn} of size N, for n = {l, ... , N}. The feature 

extractor :F(s; 8) preprocesses S by performing the mapping X = :F(S; 8) where X = {叫｝，

叫=:F(sn; 8) and 8 is the parameter set of the feature extractor. 

An objective function based on the training set S of size N is the empirical loss function: 

1 N 

£疇）＝一I:£(sk; <I>). 
N 

k=l 

(5.5) 

The empirical loss£N(cp) is directly accessible and can be used as an indirect link to the expected 

lost value. In particular, within the MCE framework, the empirical loss yields values close to the 

empirical error rate. This can be easily seen from (5.5) by noting that .£(s k; cp) approximates the 

0-1 lost. For system designers in the speech recognition society, the above observation is rather of 

importance because, the empirical error rate is usually chosen as an estimate of the performance of 

the system. Actually, in the speech recognition society, researchers compete in terms of error rate 

(meaning empirical error rate), over standard databases. It is a common observation that speech 

system designers sometimes end up over-training a particular method for a given database. 

As indicated above, the empirical loss has values close to the empirical error rate's values of the 

recognizer on a given set of training data. Fig 5.1 illustrates the evolution of the empirical error rate 
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Figure 5.1: Empirical error rate and empirical loss as a function of epochs for a letter recognition task 

using classical MCE with a deterministic gradient optimization. 

and the empirical loss邸 (4l)for a letter recognition task using classical MCE with a deterministic 

gradient descent. The loss function used here is a mixture of error functions defined in Chapter 

6, section 6.2.2. The curves displays the same evolution during learning. The difference between 

the two curves is mainly due to positive misclassification measures values, as the loss function is 

almost equal to zero for negative misclassification measures. As learning goes on, there are fewer 

and fewer positive misclassification measures and, consequently, the two curves become closer in 

values. 

Since the empirical error rate is usually taken as an estimate of the classifier error rate, the 

empirical loss is in turn an estimate of the classifier error rate. Given a training set of size N, the 

natural question that arises is how good is this estimate. 

This chapter discusses the minimization of the expected lost given a finite number N of input 

data. Again, we have seen in Chapter 4 that the expected loss is an approximation of the probability 

of error of the recognizer. Now, assuming that this approximation, which depends on the choice 

of the loss function, is consistent with the minima of both functions, the focus is to examine the 
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validity of these estimated minima. 

As previously stated, the goal is to minimize the expected lost, given the training set of size 

N and we only have access to the value of the empirical loss. So far in our knowledge, there is no 

algorithm, which, relying on a finite number of data, will ultimately minimize the expected loss. 

Thus, an inductive approach should be carried out. That is, focus is on minimizing the empirical 

loss and estimating the resulting probability of error, given the data set. 

The reader is introduced to some mathematical statements establishing relationships between 

the empirical loss defined on a finite set of samples and the expected lost, followed by an investiga-

tion of the degree of confidence attached to these estimations. This investigation is mainly based 

on the pattern recognition theory developed by Vapnik [Vapnik, 1982]. 

5.2 Simple links between the empirical loss and the expected 

loss 

Given a parameter set巫linksbetween the empirical loss応 (<I>)and the expected loss£(<I>) are 

investigated by considering the framework in which input training data are randomly chosen from 

the observation space n s, according to a given probability distribution p(s). A data-vector can be 

represented by a random variable s (For simplicity, the same notation for a data vector s and the 

corresponding random variable is used.) 

5.2.1 Law of Large Numbers 

The first and obvious relation between the expected loss and empirical loss is given by the strong 

Law of Large Numbers. The strong Law of Large Numbers affirms the convergence in probability, 

of an averaging sum to its expectation when the number of samples increases. For a fixed <I>, 

given that s is a random variable, if we consider£(s; <I>) as a random variable, £(<I>) is simply 

its expectation and .CN(<I>) represents its averaging sum. For a fixed屯 thestrong Law of Large 

Numbers leads to the following assumption: 

Pr (』巴OO応 (<I?)=£(り）） = 1, for any <I?. (5.6) 

The strong Law of Large Numbers means that increasing the number of tokens makes .CN(<l>) to 

be close to .C(g)), which is not a surprising result. The interesting fact is that (as we show later) 

within a degree of confidence, it is possible to let the values of .CN(<I>) be close to the values of .C(<I>) 

with a certain precision by use of an appropriate choice of the number of tokens. This is certified 

by the weak Law of Large Numbers, which in this context, can be mathematically written as: 

Ve> 0 lim Pr {1£N⑲) -£(<I>)I > c} = 0, for any屯
N→ +oo 

(5.7) 

Given any small positive number c:, the distance between LN(<Ii) and£(<Ii) can be made smaller 

than c: by increasing the number of data. Unfortunately, the weak Law of Large Numbers does 
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not provide an estimate of the convergence rate. An upper bound of the right part of (5.7) as 

a function of the number of data N is needed. Inequalities, such as the Bienaime-Chebyshev's, 

although providing such a bound, requires the estimation of the variance. 

5.2.2 Hoeffding inequality 

The Hoeffding inequality [Hoeffding, 1963] provides an upper bound which does not require variance 

estimation (the only assumption is a have a bounded random variable). In the MCE framework, 

considering that O :=:; £(s; <I>) :=:; 1, the Hoeffding inequality gives 

咋 >0, Pr{Iら (<I>)-.C(<I>) I > E} :S 2e―2召N,for any <I>. (5.8) 

The above equation could be rewritten more practically as 

Pr{応 (<I>)-£(<I>) I ::; c} > 1 -2e―2召N,for any <I>. (5.9) 

The right term of (5.9) does not depend on <I> and decreases exponentially to O for larger N. 

Consequently, given a fixed cl>, .CN(cI>) converges exponentially to£(cI>) in probability. This result 

could then be used to estimate the value of the expected lost, given a parameter set cl>. Moreover, 

there is no relation whatsoever with the type of classifier used. In practice, this result could be 

used as follows. Suppose a system trained in the MCE framework using N = 100. Using (5.9), it 
is 86% probable (1 -2e―:;:: 2(0げT= 0.86) that the value of the empirical loss is equal to the value of 

the ideal loss assuming a 10% error (c = 0.1). 
We shall be aware that the Hoeffding inequality shows convergence in probability。 Thatis, 

in practice, .CN(cI>) converges to .C(cI>) with fluctuations whose amplitudes depend on the task at 

hand as well the recognizer structure. The obvious question is whether minimizing the empirical 

loss results in a minimization of the expected loss. This question is not answered by the Hoeffding 

inequality, which only provides convergence results for a fixed value of cl>. 

5 .3 Estimating a Minimum of the Expected Lost 

The main goal in the MCE estimation is to find at least a local minimum of£(<I>). The Hoeffding 

inequality does not, however, give information about how close we are to the minima of the expected 

lost, given a estimated minima of the empirical lost: a parameter set <I> which yields a minimum 

value of the empirical lost will not automatically yields a value of the expected lost close to the 

minimum. However, we have the following proposition. 

5.3.1 Uniform convergence in Probability 

Proposition 1 Ifら(・)converge uniformly to£(・) in probability. i.e., 

咋＞〇N~~oo い｛悶Pl£疇）― .C(<I>)I2: E} = 0 (5.10) 
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then a local minimum of the empirical loss converges in probability to a local minimum of the 

ideal loss as N→ 00. 

Proof: 

To simplify we suppose, there is only one minima infw£(<I>) of the expected lost1. ¥/ c, there is a 

N such that c~supq, 1£N(<I>) -£(<I>)I . For such N, let us define虹 as£,N(弘） = infw£, パ<I>),a 

local minimum of the empirical loss function . It is straightforward that 

jLN(<I>e) -L(気）l<c 

and 

I inf£N(<P) 一 inf£(<P)I~c.
<I> <I> 

Hence 

1£(<I?e) -inf£(<I?)j S j£(<I? 砂ー LN(<I?e)I+ I inf LN -inf£(<I>)j S 2c (5.11) 
<I> <I> <I> 

□. 
The meaning of the above proposition is that if the empirical loss approximates the expected 

lost in a uniform manner, then minimizing the empirical loss would be equivalent to finding a 

parameter set which is close to the minimum of the expected lost. The problem then is to find 

at least the sufficient conditions which realize the uniform convergence in probability of the em-

pirical lost towards the expected lost. An interesting theory has been developed by Vapnik and 

Chervonenkis [Vapnik and Chervonenski, 1971] and Vapnik [Vapnik, 1982] which shows detailed 

convergence proofs concerning uniform convergence of a random variable towards its mean under 

certain conditions. We here provide a little study of this theory and present application within the 

MCE framework. 

5.3.2 Vapnik and Ch ervonensk1 d1mens10n 

Let us consider a recognizer structure R = {g j (s; <I>)}. Let us assume that the loss function is a 

binary lost of the 0-1 form. Given a fixed architecture of the recognizer, a precise recognizer is 

characterized by a parameter set <I>. Thus, the overall recognizer can simply be represented by 

its binary loss function R = { f b (s; <I>)}, where仇(s;<I>) has value in {O, l}. Clearly, a specific <I> 

defines a partioned space. The regions of this space represent a class of events. Let {訊）} be 

the partitioning provided by a given parameter set <I>. Given N data taken from the input space, 

there are at most 2N separations or dichotomies that can be done on this data set. Let dR(N) 

be the maximum number of separations or dichotomies of the data set realizable by the recognizer 

structure across all possible values of <I>. Vapnik and Chervonenkis [Vapnik and Chervonenski, 

1971] have shown that there exist a number dvc(R), that can be finite or infinite, such that: 

1Therefore, the proposition hold in the vicinity of a local minima. 
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if N ::; dvc(R) then 

if N > dvc(R) thendR(N) :S I:f~1(R) (~)-

昧(N)= 2N (5.12) 

(5.13) 

dvc(R) is called the capacity or VG dimension of the recognizer R and is noted VCdim(R). Its 

value depends on the recognizer structure and the underlying feature space. In words, the VC-

dimension of a recognizer structure is the maximum number of data taken from the input space, 

for which all possible dichotomies can be obtained, by using the architecture of R. Note that the 

above definition supposes that the final decision of the recognizer is of the 0-1 form. 

For a more general decision scheme, that is, for a more general loss function f(s; ≪I>), [Vapnik 

and Bottou, 1993] give the following definition. First, define a new binary loss function as 

lb(s; <I>) = 1((£(s; 全）一 e)~o) for~E [~ 帳f(s;<1>), ~~f f(s; <l>)]. (5.14) 

The VC dimension corresponding to C(s; <I>) is simply the VC dimension of the same recognizer when 

using Cb(s; <I>). This generalizes the VG-dimension to any loss function. In the MCE framework, 

the value of l are contained in the interval [O, 1]. 
An interesting result [Vapnik, 1982] is that for a finite value of VCdim(R) = h: 

Examples of VC-dimension 

Nh 
dR(N) ::; 1.5可 for N > h. (5.15) 

There is no algorithm which computes the effective value of VCdim(R), given a classifier structure. 

A classical case is that the capacity of linear discriminators in an I dimensional space is equal to 

I+ 1. 

However, few results have been obtained for feed-forward architectures. Baum and Haussler 

[Baum and Haussler, 1989] have shown that a Multi-Layer Perceptron of N nodes and W weights 

has a capacity lower that 2Wlog2(eN), where e is the Neper number and that the VG-dimension of 

a completely connected two-layer feedforward network composed of I input units and L1 first-layer 

units is no more than 21号.Bartlett [Bartlett, 1993] emphasized these results by showing that the 

VG-dimension of a feedforward architecture of I connections from the input units to the other units 

is greater that I + 1. Consequently, the VG-dimension of such an architecture increases linearly 

with the number of input units. 

5.3.3 Uniform convergence of the empirical loss 

For a recognizer of finite VC-dimension, an interesting theorem demonstrated by Vapnik [Vapnik, 

1982] shows the uniform convergence of the empirical loss to the expected loss. Given recognizer 

R, the theorem, within the MCE framework, is as follows: 
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Theorem 1 (Vapnik and Chervonenski) if VCdim(R) = h and N > h, then 

Pr{悶Pl応 (if>)-L(if>))I ?_ 2f□ 7二}~V (5.16) 

The proof of this theorem can be found in [Vapnik and Chervonenski, 1971] and [Vapnik, 

1982]. Here, only a sketch of this proof is presented. First, Vapnik and Chervonenkis [Vapnik and 

Chervonenski, 1971] show the following result: 

叫 Plら (<l>)-£(<l>) I 2: C}~ 峠 (2N)e―召N/Sfor N 2: 2/c2 (5.17) 

The above result is valid for any recognizer structure and does not require a finite VC dimension. 

Even if the right side of (5.17) is independant of屯itsconvergence rate remains quite unclear due 

the term喰(2N).Consequently, a sufficient condition to achieve uniform convergence in probability 

of the empirical error rate to their expected loss is then to have a suitable bound of峠(2N)by a 

polynomial such as dR(N)~ 炉 +1 for all N, which is the case when the classifier has a finite 

VG-dimension h as seen previously. Thus, if VCdim(R) is finite and according to (5.15), we have 

the following more practical bound: 

P {sup 1£ 疇）ー .C(<I>)I2: s} ::; 6 
(2N)h ー召N/4

e 
<P h! 

for N > h, (5.18) 

which, when using the Stirling formula (ln(h!)~hln(h)-h), gives the form written in the theorem. 

Using the above theorem, we have the following estimate of a local minima of the expected lost. 

Pr { ¥.c(<I>』-1££(<IS)I Sc DN,hッ ~4r□三□可}:>1-v with叱=inf£N (<I>) . 
cp 

(5.19) 

(5.19) means that, with probability 1-v, a minima of the empirical loss is a minima of the expected 

loss, within an interval of confidence equal to D N,h,v, which depends on the training size N, the 

capacity of the recognizer h and the degree of trust 1 -v. Given a certain trust 1 -v and a capacity 

h, the interval of confidence D N,h,v can be decreased by increasing the training size N. 

5.3.4 Use of V C  dimension within MCE 

The Vapnik and Chervonenski theorem affirms the uniform convergence of the MCE's empirical 

loss to the MCE's expected lost when the number of tokens increases as soon as the capacity h 

of the recognizer R is of finite VC dimension. Consequently, within the MCE framework, for a 

recognizer of finite VC dimension, the following statement are true. 

• A minimum value of the empirical loss is an estimate of a local minimum of the expected loss. 

• The estimate can be improved by increasing the number of data 

• The estimate can be improved by decreasing the capacity of the recognizer. 
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Within the MCE framework, the loss R(s; <I>) is bounded by O and 1. The only requirement 

therefore is to use a classifier of finite VC dimension. Again, according to (5.11), the following 

assumption is true for recognizer of VC dimension h, trained within the MCE framework: 

Pr { IL(飢）ー 1閑江('P)IS4~=2£} ::,1-v (5.20) 

where q>e denotes a parameter set which yields a minimum value of the empirical loss and infq; £(q>) 

is the closest minimum of the expected lost. 

This result can be used as follows: suppose, we have reached a local minimum of the empirical 

loss represented by屯e using the N training tokens. Assuming that the capacity of our system 

is greater that h, we can affirm with probability 1 -v that q>e realizes a minimum value of the 

expected lost assuming an error of c, which means 

1£(気）一 i閑に(q>)I:SC 

where 

c = 2V h(ln 芋 ~-1)-ln~.

If the capacity h is unknown, a bound based on the Hoeffding inequality can be used, i.e., 

c:=2臼~-
5.4 Comparing DFE and Classical MCE/GPD 

5.4.1 Empirical error rate 

MCE/GPD is equivalent to using DFE with a fixed feature extractor. Consequently, the empirical 

loss of the DFE should be smaller than MCE/GPD's after optimization. Let us formalize this 

rather obvious result. The empirical loss of the recognizer can be written as 

1 N 

応 (<I>={8,A}) =―L C(sk; e, A). 
N 

k=l 

(5.21) 

DFE tries to find 

q°?* argminq, ら (<I>) (5.22) 

whereas classical MCE/GPD search for 

A* = argmin心N(8c,A), (5.23) 

where 8c is a parameter set describing the conventional feature extraction scheme. It is straight-

forward that 

inf£, N ({ e'A}) ::::; inf£, N ({ e C'A}) 
{0,A} A 

(5.24) 

for all N. Consequently, assuming accurate optimization, DFE always yields a smaller empirical 

error rate than classical MCE/GPD. 
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5.4.2 VC-dirnension 

Let R{ q)} be a recognizer structure and C(A) its classifier module. Since A C q), we have 

VCdim(R) 2:: VCdim(C). (5.25) 

That is, the VC dimension of a DFE-based recognizer is higher than the corresponding classifier. 

Thus, DFE requires more training data than classical MOE in order to achieve a good estimate 

of the minimum of the expected loss. This is intuitively true if one considers the fact that a DFE 

recognizer yields more parameters to train. 

5.5 Conclusion 

In this Chapter, use of a finite number of data in the design of a DFE based system was investigated. 

This study was motivated by the fact that the MCE criterion tries to minimize the expected loss 

defined over an infinite number of data. In practice, one only has access to the empirical loss 

defined over a finite set of data. Thus, the link between optimizing an empirical loss and the effect 

on the expected loss was investigated. 

In light of the above, it can be argued that, in practice, when training a system under MCE, the 

only requirement is then to use a recognizer of finite VC dimension since the loss function is already 

bounded by O and 1. This ensures that a minimum of the empirical lost is a reasonable estimate 

of a minimum of the expected lost, with a certain degree of confidence. Given a trust 1 -v, the 

lower the capacity of the recognizer, the faster the convergence of a minimum of the empirical loss 

to a minimum of the expected lost when the number of tokens increases: more training tokens are 

needed, for a system showing a high capacity to reach a given precision c: of closeness to the true 

mm1ma. 
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Chapter 6 

Optimization of DFE-based 

Recognizers 

Ask and it will be given you 

seek and you will find 

knock and it will be opened to you. 

-」esusof Nazareth-

This chapter discusses various optimization methodologies that can be carried out within the DFE 

framework. The study concerns an optimal choice of the MCE loss function and optimization 

algorithms that can be used in practice. In particular, the Modular Generalized Probabilistic 

Descent (MGPD) and the Incremental Generalized Probabilistic Descent (IGPD) are proposed as 

alternatives to overcome the le紅 ninginstability of the Generalized Probabilistic Descent method 

in the DFE framework. 
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6.1 Introduction 

Learning in the MCE framework is of the utmost importance for accurate achievement of robust 

minimum-error oriented speech recognizers. Various learning methodologies have been adopted in 

the design of MCE-based speech recognizers, including simulated annealing [Imai and Ando, 1992], 

batch-based gradient descent [Rainton and Sagayama, 1992] and GPD-based optimization [McDer-

mott and Katagiri, 1992; McDermott and Katagiri, 1994]. Gradient-based methods are the most 

widely used technique due to their efficiency in term of speed and the attractive formalism they 

carry. In particular, GPD provides an elegant theorem which guarantees accurate local optimiza-

tion, given certain conditions on the choice of the learning rate and the positive definite matrix 

[Katagiri et al., 1991b]. Again, GPD is only asymptotically efficient. That is, optimality is achieved 

for an infinite number of training examples, drawn according to a certain distribution. 

One reason which may explain the difficulty in choosing the learning rate in GPD-based opti-

mization, may be due to the saturation property of the loss function (the smooth approximation 

of the 0-1 cost). The chosen loss function usually displays an area where training does not occur 

even when the token is misclassified. In that situation, one may need to compensate this effect by 

a larger learning rate, which cannot be achieved by GPD since the learning rate depends only on 

the iteration index and decreases at each iteration [Katagiri et al., 1990]. 

In practice, one must experimentally find the optimal learning parameters (learning rate and 

positive definite matrix) according to the task involved. The positive definite matrix is usually set 

to the unit matrix [McDermott and Katagiri, 1994], or a to diagonal matrix when different king of 

parameters are involved [Chou et al., 1992]. However, these choices are far from optimality when 

a complex error surface is encountered. In particular, in the DFE framework, training is highly 

sensitive to an accurate tuning of the unit matrix because of various parameters sometimes having 

diverging in且uenceson the direction of the gradient descent. Furthermore, the time spent in the 

tuning of the training parameters is proportional to both the complexity of the recognizer structure 

and the complexity of the task. In DFE-based speech recognizer, where the recognizer is expected 

to simultaneously learn the right features and accurately classify them, the number of trials to 

be tested before convergence increases with the structure of the feature extraction module. The 

complexity of the error surface adds to the burden of finding the right training parameters. That is, 

due to the complexity of the structure as well as the statistical distribution of speech patterns, the 

error surface is likely to have a larger number of local minima, in which a simple implementation 

of a gradient-descent based algorithm could be easily trapped. 

One way to tackle the complexity of the error surface in the DFE framework is to make use of 

higher order derivatives. Higher order derivatives may provide local information about the slope 

of the error surface which can be used to locally tuned the learning rate [White, 1989]. A popular 

approach within this framework is to make use of second-order derivatives with respect to each 

recognizer parameter and then perform the Newton algorithm (or a derived-Newton algorithm) 

[Battiti, 1992]. However, computing second-order derivatives is extremely costly in computing time, 
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thus usually an algorithm that approximates these derivatives is usually carried out [Watrous, 1987; 

Becker and Le Cun, 1989]. 

Another approach is to iteratively adjust the learning rate. The learning rate adjustment is 

thus based on a memory of the previous learned examples which provides some insight about "how 

much" have been learned and "how much" remain to be learned. Furthermore, each parameters 

could be assigned it own learning rate [Jacobs, 1988], which may solve the problem of the optimum 

choice of the positive definite matrix encountered in the GPD paradigm. A private learning rate 

for each parameter is particularly attractive in the discriminative training framework, since it 

extends the discriminative learning to the the spaced spanned by the learning parameters, thus 

adding more discriminative power. However, since speech recognizers usually include a high number 

of parameters, assigning a learning rate for each parameter maybe computationally costly. A 

tradeoff is to let the parameters that model a category share a learning rate, which is then updated 

iteratively. 

Here, two methods of training in the DFE framework are proposed: the modular Generalized 

Probabilistic Descent method (MGPD) and the Incremental Generalized Probabilistic Descent 

(IGPD). Evaluation of the proposed algorithms is described in the context of recognizing single 

vowel frame in a multi-speaker mode. The algorithms are compared against the classical use of 

GPD. For each algorithm, optimization of a classical MCE-based recognizer (only the classifier 

module is optimized) is also investigated. The recognizer is a simple distance classifier fully de-

scribed in Chapter 8 and the feature extraction is a filter bank process, where the center frequency, 

the bandwidth and the gain of each filter are free parameters (see Chapter 8 for full description of 

the filter bank). 

Before applying any learning paradigm, first a convenient MCE loss function shall be chosen. 

The first part of this chapter is concerned with the selection of an optimal loss function, given a 

task. 

6.2 Choice of Loss Function in MCE 

Various approximations of the smooth error count measure are given in the literature. Here, we 

describe few, chosen functions that were used throughout this report. A subsequent discriminative 

measure is simply represented by d, without the class-label subscript. 

6.2.1 Classical MCE losses 

Sigmoidal loss 

One of the widely used 0-1 approximation is the sigmoid function. The sigmoid is widely used 

in feed-forward neural network as the neuron transfer function. Its shape and the shape of its 

derivative are both shown in the top-left of Fig. 6.1 and are defined as : 

R(d) = 
1 

1 + e-a(d-(3) (6.1) 
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Sigmoid 
loss(d)=slgmold(d) =11(1 + exp(-3'd)) 

0.1 

-2 ー1

Exponential 
lo誌 (d)=1-e平 (1.5"x)

0.5 1.5 

Piece-wise 
]! 

ー

Misclassification measure (d) 

Figure 6.1: Various .loss functions and their derivatives. 

£'(d) =直(d)(l-£(d)) (6.2) 

with a large positive a. One can see that this loss approximates an ideal binary loss function well 

and is indefinitely continuous. The sigmoid loss focuses its learning to the value of d that are close 

to (3. Thus, one has the freedom to control the region where the learning must occurs. 

Exponential-based loss 

The exponential-based approximation is not as widely used as the sigmoidal loss function but 

provides a good approximation to the 0-1 step wise function. Its shape is shown in the top-right of 

Fig. 6.1 and it is defined as 

f(d) 

f'(d) 

(1 -exp(-ad))l(d > 0), 

a exp(-ad)l(d > 0). 

a:2:0 (6.3) 

(6.4) 

The exponential loss has a discontinuity at the origin. However, it is convenient means to derive 

an analytical form of the loss when d is a logarithm. 

Piece-wise linear loss 

The piece-wise linear loss is defined as 

闊 ~{~d+Ql)/(Ql+ Q2) 

1 

if d < -QI 

if -QI :S d < Q2 

if d~Q2. 

(6.5) 

116 



and shown in Figure 6.1. This loss is discontinuous at a finite set of points, and thus can broadly 

be considered differentiable. The slope can be controlled by the parameters Ql and Q2. 

6.2.2 MCE loss as a distribution function 

Most MCE studies have used the sigmoid as MCE loss function. Indeed, the sigmoid seems a 

convenient choice when the misclassification measures are mainly located around the zero area. 

Even in such case, one is still face with the choice the optimal parameter a. Here, we present 

a new MCE loss function, which is believed to be quite general and can be used in most tasks. 

Furthermore, is is shown how to automatically select the loss parameters given the data. 

A recognizer structure <Ii establishes a mapping s→ d8, between a data and its corresponding 

misclassification measure d8. This induces a probability measure Pr(・; <Ii) on the space spanned by 

the value of d8, which is the space of real numbers R. Having this in mind, C(ds) can be viewed 

as the distribution function of the probability measure Pr{ X < dsn; <Ii} defined on R, where X is 

a random number on the real axis. This :1iewpoint is inspired by the fact the loss C(・) satisfy the 

requirements of a distribution function. That is, 

• The loss has its values between O and 1. 

• The loss is a monotonically increasing function. 

• The loss limits are O and 1, for d8→ -oo and d8→ oo, respectively. 

With the above assumption in mind, the derivative of the loss is simply the probability density 

function. 

Loss parameter estimat10n 

Given that the loss function is viewed as a probability measure, the estimation of loss parameters 

can be done by any probability estimation technique available. The use of the EM algorithm is 

straightforward. In this context, the derivative of the loss can be modeled as a Gaussian mixture, 

which gives 

f'(d) 言c,~exp (-(d~ びj)2) (6.6) 

Le凶 (d,μiぶ）． (6.7) 
i=l 

The corresponding loss is simply the anti-derivative function, which obeys the MCE requirement 

of a loss. The following loss is one such a loss: 

L 

扉） = LCi ( l d-附 1

i=l 2erf (⑪ぴi)+う）． (6.8) 
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Figure 6.2: Error-function-based losses and derivatives. The histogram represents the misclassification 

measures of a database of 150 samples. Top figures: 1 mixture loss function and its derivative 

estimated by EM. Bottom figures: 3 mixtures loss function and its derivative estimated by EM. 

where erf(・) is the widely known Error function and is defined as. 

erf(d) = * fod exp(一炉）dy. (6.9) 

The error-function-based loss basically shares the same properties with the sigmoid. The definition 

of (6.8) introduces the loss as mixture of L error functions, with parametersμ ぃびiand Ci, which 

control the location, the width and the contribution of each error function within the loss definition. 

Fig. 6.2 shows examples of error-function-based losses estimated by the EM algorithm on the 

set of misclassification measures, for the one and the three mixture cases. The one mixture case 

is essentially equivalent to using a sigmoid. Using three mixtures generates an asymmetrical loss 

function which matches the data in the MLE sense. The MLE estimation automatically finds the 

right parameters of the loss, thus relieving the designer of the burden of loss tuning. In this specific 

example, the MLE estimation was carried over the whole data set. An alternative is to consider 

only positive misclassification measures, for learning to occur for misclassified tokens only. Note 

that, the process of loss estimation can be also be carried out sequentially during learning (for 
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instance, after an epoch). 

6.3 Minimizing the empirical loss by GPD 

After an appropriate choice of loss, minimization of the empirical loss£ 州<I>), given a data set 

of size N can be carried out, by any method available. Minimization of応 (<I>)can be done by a 

simple gradient descent which performs the following iteration: 

<P[r + 1] 峠 ]-E▽£,N 

N 

的］一 ~L ▽f(sk; <l>), 
N 

-r=l 

‘
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where全[r]denotes the current status of the parameters set at iteration T and E is the training rate. 

This iterative process, known as deterministic gradient descent method, has been widely applied 

in various Minimum Error-based classifier optimization including Neural Networks [Sugiyama and 

Kurinami, 1992] or Hidden Markov Modeling of Speech [Rainton and Sagayama, 1992]. However, 

performing the deterministic gradient descent could become impractical when the number of train-

ing samples N increases. Furthermore, the above gradient descent method, although efficient in 

minimizing the empirical error rate, does not have a clear link on the minimization of the expected 

loss, in contrast to the GPD algorithm. As seen in the previous chapter, minimization of the 

expected loss is guaranteed for a recognizer of a finite VC dimension. 

6.3.1 Choice of the learning rate 

In GPD-based gradient descent learning, performance usually depends on an accurate choice of the 

learning rate. In theory, as seen before, the learning should obey the stochastic constraints: 
00 

LE T  ＝ oo, (6.12) 
T=l 
00 

こ己 ＜ oo, (6.13) 
T==l 

for leading to the minimization of the expected loss . 

In practice, infinite training is not possible. Similar to other MCE/GPD applications, DFE 

simply tries to reduce the classification errors over the given finite training pattern set by mini-

mization of the empirical loss. The constraint learning rate of (6.13) should be somehow simulated 

for this finite case. 

The basic ideas behind the above constraints are: 1) the training rate should be a decreasing 

function of the number of iterations 2) the training rate should never be null if there is an incoming 

data. Various training rate are here proposed based on the observation above. One classical 

example is to choose 

ET 
(1) €。

aT + b' (6.14) 
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where the parameters a and b are chosen such that 

ぶ＝€。 (1-h) (6.15) 

for a finite number of iterations N = NP  and P being the number of epochs. That is, P is the 

number of times the whole training set is presented to recognizer during the training process. 

Sometimes, a fast learning is needed for the first iterations. Thus, Darken [Darken et al., 

1992], proposed the "search-then-converge learning rate", which is defined for an infinite number 

of iterations as 

a T 

(2) 
1+--

E7 = E。 €。 T。

l+a-r T 
2 ・

ご言十 T寄

This learning scheme obeys the following properties: 

心～€。 when T≪T,。

亭～竺 when T≫T,。
T 

(6.16) 

(6.17) 

(6.18) 

which means that the learning rate is approximately constant (equal to E。)for iterations which are 

much smaller that r,。anddecreases linearly at rate a for iterations which are far greater than T。.
For a finite number of N iterations, this learning scheme could be approximated by 

(2) (2) 
(3) ET —EN 

€ 
T ＝ (2) (2). 

€。一 EN

(6.19) 

Fig. 6.3 shows the behavior of the two types of learning for a fixed number of iterations. 

Fig. 6.4 displays the empirical error surfaces using the 0-1 loss and its approximation by 

a sigmoid. Also shown in the figure are the curves along the surface during batch and GPD 

learning. The error surfaces are computed from a two-class problem that consists of classifying 

one-dimensional data. Data were generated artificially by computer, simulating two sources of 

overlapping Gaussian distributions with means -0.5 and 0.3 and a variance of 0.5. The parameters 

of the classifiers are thus simply a configuration of two values (referred to as classl and class2 in 

the figure), representing each category. The error surface is generated by plotting the value of the 

overall error for each configuration. The minimization problem consists of finding the configuration 

which locates a valley of the error surface. 

From this figure, it can be seen that the 0-1 loss-based error surface is piecewiese discontinu-

ous. The sigmoid-based error surface smoothes out the discontinuity of the 0-1 error surface thus 

permitting the use a gradient descent as optimization method. GPD or stochastic gradient descent-

based learning is shown in the bottom figure and deterministic gradient descent is shown in the 

middle figure. The deterministic gradient descent proceeds by "jump" along the error surface in 

the direction of minimum gradient whereas the stochastic gradient descent proceeds by little steps. 
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Figure 6.3: Different types of learning rates. 
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Figure 6.4: Error surface and minimization. The error surface is due to one-dimensional data generated 

by computer simulating two sources of Gaussian densities centered at -0.5 and 0.3 with a standard 

deviation of 0.5. Each class is represented by its means, referred to as "classl" and "class2". Top: 

0-1 loss-based error surface. Middle: Error surface using a sigmoid approximation of the error and 

the curve traced by the estimated configurations during the deterministic gradient descent learning. 

Bottom: Same as middle but with a curve which shows the evolution of the GPD learning. 
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6.4 Modular Generalized Probabilistic Descent method 

The learning rule of (5.2) carries in a compact form the interaction between the classifier's parameter 

and feature extractor's parameter. However, in practice, if both parameters are different in nature, a 

straightforward use of (5.2) may lead to instability (no immediate convergence). It may be useful, in 

light of better comprehension of the interaction of the feature extractor process to run a modular 

optimization scheme according to the type of parameters. This is done through an appropriate 

choice of the positive definite matrix U according the type of parameters to be optimized. That 

is, let U = [Ul, U2] such that (5.2) is replaced by 

A[T+l] 

8[T+ 1] 

A[T] -E-rUl▽心(s;A[T], 8[T]) 

8[T] -P-rU勾糾(s;A[T], 8[r]) 

A[T] -€rU1▽心 (x; A[T]) 

0[T] -PrU汐叫:(x;A[T]) 
T 紅 (s没） (6.20) 

80 

where c7 and p7 are small positive numbers, representing the classifier learning rate and the feature 

extractor learning rate, respectively. The two positive matrices are usually set to the unit matrix 

or set to match the sensitivity of each parameters to the corresponding learning rate within each 

module. Since, this version of GPD considers the modularity of the system, it is referred to as 

Modular GPD (MGPD) or selective optimization. 

MGPD permits a more flexible application of GPD in the DFE framework and enables to use 

different convergence speed for the classifier parameters and the feature extractor parameters which 

would permit more adaptability and interaction between the two sets of parameters. The relation 

between c7 and p7 is crucial for accurate learning. The use of p7 = J(c7) where f(・) is a monotonic 

mapping called the modulating function is advisable. This is equivalent to an adaptive learning 

speed between the feature extractor and the classifier. However, the use of higher order functions 

might also be appropriate. Few suggestions are: 

• PT = apn(年） where a< 1. 

・朽=alog(pn(己） + 1). 

where Pn(巧）＝巧qn(c7)and qn is a n-th order polynomial with n = 0 or n 2: 2. 

A variant of this training approach is to train separately, classifier and feature extractor (sep-

arate optimization). Within this framework, one can train first feature extractor, using the initial 

classifier parameters models and then update the classifier or vice-versa. This method is similar to 

the "relaxation" method [Culioli, 1994], in which an objective function is optimized sequentially 

along each axis. 

If we assume that the parameter set of the classifier and the parameter set of the feature ex-

tractor are hyperplane generating the overall recognizer parameter space, modular optimization 

and separate optimization can be viewed as using different direction for reaching the minima of the 

error surface. The separate optimization optimizes along the hyperplanes whereas modular opti-

mization optimizes across the hyperplanes. The two methods (modular optimization and separate 

optimization) are merely equivalent in term of convergence but may not lead to the same minima 
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in the parameter space for a complex error surface. In particular, as pointed out in [Culioli, 1994], 

for a non differentiable objective function, the separate optimization can easily be caught in the 

intersection line between the two hyperplanes without reaching the true minima. 

The modular optimization is convenient in practice for a straightforward optimization of the 

overall recognizer. It enables the achievement of a more flexible interaction between the feature 

extractor and the classifier as well as accelerates the overall training convergence. That is, in this 

framework, one can control the convergence speed and convergence nature for each of the module. 

However, the modulating function f(・) which sets the link between the two sets of parameters 

during learning should be carefully chosen. 

Separate optimization is a convenient way to use DFE on already optimized classifiers in order 

to optimize the feature extractor and enable one to easily retrain (or adapt) pre-designed status 

of either the feature extractor or the classifier. Also, separate optimization provides a convenient 

way to adaptively optimize the feature extractor as data becomes available. Note that although 

modules are optimized separately, this does not contradict the DFE concept, since the two modules 

are still using the same criterion for optimization, which is MCE. 

6.4.1 MGPD simulation 

A DFE-based speech recognizer requires an accurate tuning of parameters for optimality. Again, 

in classical MCE/GPD-based optimization scheme, the decreasing learning rate En  which is shared 

by both the feature extractor and the classifier, is chosen as 

后 =E(1-i7)
where N is total number of iterations and c: is the learning at the beginning of the training set. 

Needless to say, Er determines the performance of the system, given a fixed number of iterations 

ぷ ClassicalG PD (that is, use of the same learning rate for feature extractor and classifier) is the 

standard and straightforward method. 
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Figure 6.5: Classical GPD optimization scheme and MGPD optimization scheme for a fixed number 

of iterations. Top: The performance of the system versus the learning rate E using GPD. Bottom: 

the performance of the system versus the ratio between classifier learning rate c and feature extractor 

learning rate p in MGPD. 
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The way these two methods of optimization behave when adapting the center frequency, the 

bandwidth, and the gain of a filter bank-based feature extractor simultaneously, is shown in Figure 

6.5. In the top of figure, the performance of the GPD is displayed as a function of the initial 

learning rate value (E). The performance of the GPD is optimal for E falling into the range of 0.1 

to 0.01. On the bottom figure, performance of the MGPD is displayed. The figure displays the 

ratio旦forthe value of c = 1. It can be seen that, the MGPD realizes better performance (i.e., 

lower error rate) in both the training set and the testing while showing a more stable curve across 

a wide range of the learning rate ratio. The solution consists of finding the accurate learning rate 

ratio between the feature extractor and the classifier. Moreover, the performance depends on the 

task as well as the optimized parameter. GPD can be viewed as special case of MGPD in which 

the classifier's and feature extractor's learning rate ratio is equal to 1. 

The shortcoming of the MGPD approach derives from the fact that the interaction of the feature 

extraction and the classification is sometimes complex to analyze. Thus, a non neglecting number 

of experiments are required before one can find the optimal configuration of learning parameters 

c-r and P-r・Furthermore, even the selected learning scheme does not guarantee optimality. The 

assurance that this minimum is a global one (or at least an acceptable one) depends on the shape 

of the error surface. That is, since the MCE error surface is not generally quadratic, there is no 

guarantee regarding the concave properties of the error surface, which could lead to local properties 

to be taken into account for speeding up convergence. 

6.5 Incremental Generalized Probabilistic Descent Method 

The Incremental Generalized Probabilistic Descent Method (IGPD) is here described as an alterna-

tive to MGPD. The approach is to iteratively adapt the~raining rate during the learning process。

Let us suppose that the recognizer parameters P can be decomposed into a subset of parameters.i.e., 

P={釘，．．．，釘，．．．，釘}.For sake of simplicity, let us assume that¢i is a scalar. For instance, 

むcanbe a component of a mean vector, or of a covariance matrix, within a state of model or a 

parameter of a feature extractor module (for example, the bandwidth or gain within a filter-bank 

channel). In the context of discriminative training, the purpose is to push or pull the models apart 

according to their contribution to the error. This is particularly the case when each category is 

represented by separate models or, in a case of the feature extractor, when each feature extractor 

parameter is contributing to a single feature-vector component. 

Each parameterむisassigned its learning rate Ei, which controls its increment according to 

its contribution to the error. Since the target is minimum error, parameter-dependent learning 

rates extend the discrimination power to the space spanned by the learning rates. That is, each 

learning rate is updated by gradient descent at each iteration. Since the learning rate should stay 

positive, the adaptation is done through a transformation. Here, as in [Sutton, 1992], a logarithmic 

transformation is used. That is, 

Ei = exp(巧）， (6.21) 
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which leads to the following adaptation rule for the learning rate: 

祝
叫r+1] =附[r]-μ― 

枷 i'
(6.22) 

μis the meta-learning rate which controls the overall learning process. In (6.22), £refers to the 

loss£(s; q>) and is the notation used throughout this chapter. The meta-learning rate acts as the 

"learning rate" in the error surface spanned by the recognizer learning rates. The learning rate 

of each parameter is updated according to its contribution in reducing the error in the next step. 

Given, the updated learning rate, the recognizer parameters are adjusted by 

¢ヤ+1] 
祝

叫r]-exp(崎 +1])-
砂

冽
釘[r]-Ei['T + 1] -

珈i. 

(6.23) 

(6.24) 

The key difference with GPD adjustment lies in the iterative optimization of the learning rates, 

which depend here on the current parameter update whereas in GPD, the learning rate depends 

on the current iteration, for a fixed positive definite matrix. 

6.5.1 Learning rates update 

、8£
The key to the optimization scheme is the calculus of― for each recognizer parameterか.The 

枷 i
general chain-rule of calculus is 

8£ 

8巧

冽拗k

I: 叩如

祝 狐

狐如
祝

~-mi・
枷i

(6.25) 

(6.26) 

(6.27) 

The approximation of (6.26) assumes that each learning rate affects only its assigned parameter. 

This is not a very good approximation when parameters are shared among categories (Neural 

Network, for instance). However, (6.26) is a valid approximation when each category has its own 

models. (For instance, HMM-based speech recognizers). 

According to (6.26), the update of the learning rates is proportional to the gradient of the loss 
枷i . 

and to the term mi. mi = - 1s an additional term assigned to the adaptation ofか， which
枷 i

characterizes the variability ofかduethe learning rate. Thus, this term memorizes the adjustment 

of the parameters似四 iscalled the adjustment memory (AM). Its calculus is key to the overall 

learning process. 

6.5.2 Adjustment memory update 

The adjustment memory parameter (AM) is updated on an iteration basis based on the previously 

learned examples. The update rule is 

匹 [T+l] = 
御市+1] 

加 i
(6.28) 
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(6.29) 

(6.30) 

The last term of (6.30) implies using second-order derivatives. Since, it is assumed that each 

learning rate influences only the adaptation rule of its assigned parameter, 

a2c 
珈沼加 L 

a2c 枷k

k 
如心如枷i

(6.31) 

～
 
～
 

炉f 祝％

82</>i 枷i 昌四・ (6.32) 

Now, reconsidering the adaptation rule in (6.30) and using (6.32), we derive the adaptation of the 

memory parameter: 

疇 +1] =叫Tj(1 -Ei[T + 1]昌）ーEi[T+ lj是・
32£ 

Given a recognizer structure, the computation of the second derivative - is computationally 
_82¢i 

expensive. An approach could be to ignore the effect of the Hessian matrix altogether and update 

the AM terms using only the gradient of the loss versus the recognizer parameters. This approach 

leads to the following adjustment rule: 

(6.33) 

祝
叫 [T+l] =加[T]-Ei[T + 1]―-

珈匁・
(6.34) 

which is the IGPD-A algorithm. In IGPD-A, the AM term is simply accumulated over the incre-

ments of the parameter categories. 

Another approach is derived by considering that within the vicinity of a minimum, the Hessian 

is usually positive definite, thus the first term of the memory adaptation tends to decrease the 

memory values. This effect can be simulated by decaying linearly the first term of equation (6.33). 

In that case, the AM adjustment rule is 

叫 T+l] =疇](1 -N) -Ei [T + 1]員，
where N is the total number of iterations. This is IGPD-B algorithm. 

(6.35) 

6.5.3 Summary of the algorithm 

Here, the IGPD algorithm is summarized. For generality, let </Ji be a vector of parameters (e.g., a 

mean vector) and its learning rate Ei (a scalar) and its AM parameter mi. mi is a vector of the 

same size as </Ji-The gradient is 

ac ac ac ac T 

高~[7i¢;; , .. , 7i¢;; , ... , 8¢,,,., 叫）］，
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is also a vector of the same as炉

The IGPD algorithm is 

• Initialization: 

For each parameter </Ji, let mi = 0 and Vi randomly initialized. 

iterations. 

• For each input data s, do 

祝
叫r+1] =巧[r]-μ-

⑳ i 

T 

m市］

叫T+ l] = exp(巧[r+ 1]) 

祝
剣T+ 1] = <pヤ］一 Ei[r+l]-

8</Ji 

祝
叫 r]-Ei[r+ 1] -

知

mヤl(1 一¼)一 Ei[T + 1]― , 8£ 

8¢i 

mヤ+1] = { 

endfor. 

If IGPD-A 

if IGPD-B 

N is the total number of 

The relation between IGPD and GPD is the about the choice of the positive definite matrix. 

In IGPD, the positive definite matrix is simply the diagonal matrix with elements 

(Ei[T + 1], ... , Ei[T + 1], ... ,) 

where it size equal to the number of parameters in the system. Thus, the IGPD provides a way 

to select the positive definite matrix iteratively based on local properties of the error surface. The 

designer is removed from the burden of learning rate tuning. 

6.5.4 IGPD simulation on classifier training 

Here, the IGPD algorithm is tested on optimizing the classifier while keeping the feature extraction 

fixed。

Shared learning rate 

The learning rate is shared across all parameters of the classifiers. Fig. (6.6) illustrates the 

performance on the vowels recognition task of each learning paradigm when using a global learning 

rate: GPD, IGPD-A, IGPD-B, respectively. 
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(a) 
MCE I GPD learning 
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(c) 
MCE / IGPD-B learning using a global learning rate 
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Figure 6.6: Performances versus learning parameters in the classical MCE-based recognition task using 

the same learning rate for all parameters of the classifier. Figure (a) illustrates GPO performance versus 

the initial learning rate. Figure (b) illustrates IGPD-A performance versus the meta-learning rate. Figure 

(c) illustrates IGPD-B performance versus the meta-learning rate. 
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GPD algorithm achieves a rather good and stable performance in the training set, even though 

the performance fluctuates on the testing set. The training curve displays a concave form with a 

rather wide gap between the performance on the training set and the performance on the testing 

set. This illustrates the sensitivity of DFE to over learning, since the gap between the two curves 

get wider as the learning rates increases. 

The gap between the two curves is drastically reduced when running the IGPD algorithm. 

In particular, one can notice that the two training curves and the testing curve fluctuate in a 

synchronous manner, with a large plateau across different values of the meta-learning rate. IGPD-

B algorithm show much more stability across meta-learning rate values. 

Comparing the 3 algorithms in the context of MCE on classifier design, it seems that the IGPD 

algorithm, and in particular IGPD-B displays a more constant curve across meta-learning rate 

values, thus relieving the designer of the burden of learning rate tuning. However, the 3 algorithms 

shows rather close results on the testing set (around 15 %) even though GPD outperforms IGPD 

on the training set for various values of the learning rates (a large plateau around 13.5 % error 

rates). 

Class-dependent learning rate 

Each category is now assigned a private learning rate which is updated by the IGPD algorithms. 

For clarity, the various IGPD versions are referred to as IGPD-A-S and IGPD-B-S, for IGPD-A 

and IGPD-B, in this context. 

Fig. 6.7 illustrates the results on the task for the two proposed algorithms. IGPD-A-S seems 

much more stable than IGPD-B-S although IGPD-B-S shows the best performance in the testing 

set (around 15.5%) for a particular value of the meta-learning rate. Unlike the GPD case, it seems 

that the performance using IGPD algorithms depends less on the tuning of the meta-learning rate. 
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(a) 
MCE / IGPD-A learning using a class-based learning rate 
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(b) 
MCE / IGPD-B learning using a class-based learning rate 
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Figure 6. 7: Performances versus learning parameters in the MCE-based recognition task using a class-

dependent learning rate. Figure (a): IGPD-A performance versus the meta-learning rate. Figure (b): 

IGPD-B performance versus the meta-learning rate. 
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Asymptotic behavior 

For given learning parameters, performance versus the number of iteration gives an idea about the 

convergence rate of each algorithm and the asymptotic behavior, when increasing the number of 

iterations. 
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Figure 6.8: Performance versus the number of epochs for GPD and IGPD in classifier optimization. 
IGPD uses a class-dependent learning rate. 

GPD error rate decrease is the fastest for the first iterations, followed by IGPD-A. The slow 

decrease in error rate of the IGPD algorithm may be due to the time spent during the first iterations 

in searching the right learning rate. 

6.5.5 IGPD simulation on DFE-based recognizer 

The application of IGPD to DFE-based recognizer is here described. In DFE, feature extractor 

parameters and classifier parameters are updated simultaneously for minimum error. Due to the 

complexity of the overall system, tuning of the learning rate can be time-consuming. Furthermore, 

as emphasized previously, a straightforward application of GPD does not always converge. IGPD 

should be useful in finding iteratively the learning parameters which permits the overall system 

learning. Here, the use of the IGPD algorithm on DFE-based recognizer is illustrated. The target 

is to adjust the center frequencies of a filter bank under a cepstral transformation. The center 

frequency of each channel is adjusted simultaneously with the classifier parameters. Each channel 

is assigned a private learning rate. That is, 16 learning rates which correspond to the 16 channels. 

The number of epoch is fixed at 300 and performance are studied by varying the learning parameters. 
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(a) 
DFE / GPD center frequency adjustment 

(b) 
DFE / MGPD adjustment of center frequency (Classifier initial learning rate = 0.1) 
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(d) 
DFE / IGPG-B adjustment of center frequency using a global learning rate 
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Figure 6.9: Performances versus learning parameters in the DFE-based center adjustment using a 

shared learning rate in the classifier. Figure (a) illustrates performance of GPO application. Figure (b) 

illustrates performance of MGPD. Figure (c) illustrates IGPD-A performance versus the meta-learning 

rate. Figure (d) illustrates IGPD-8 performance versus the meta-learning rate. 

134 



(a) 
DFE / IGPD-A adjustment of center frequency using class-dependent learning rates 
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(b) 
DFE / IGPD-B adjustment of center frequency using class-dependent learning rates 
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Figure 6.10: Performances versus learning parameter in the DFE-based vowel recognition task using a 
class-dependent learning rate. Figure (a) illustrates IGPD-A performance versus the meta-learning rate. 
Figure (b) illustrates IGPD-B performance versus the meta-learning rate. 

Shared learning rate 

Fig. 6.9 shows the results when adjusting the center frequencies using the 4 learning methodologies: 

GPD, MGPD, IGPD-A and IGPD-B. Here, the classifier parameter share the same learning rate. 

The GPD curve shows many fluctuations making it harder to empirically find the right learning 

rates. MGPD and IGPD provides a more stable configuration. In particular, MGPD and IGPD 

shows rather similar results in the testing. However, it is clear that MGPD is extremely sensible to 

the learning configuration. For instance, a learning rate ratio of 1.0, which is equivalent to classical 

GPD, shows poor results. 

GPD's best results in the testing is slightly higher than 16%, while MGPD shows around 15.5% 

across a wide range of filter learning ratios, similar to IGPD results. The best results is given 

IGPD-A for the meta-learning of 5 (15%). 

Class-dependent learning rate 

A private learning rate is assigned to each class and to the center frequency of each filter channel. 

Fig. 6.10 shows the results. 

The two curves show a rather constant performance across meta-learning rate, although IGPD-

A gives better results. The results seems higher than the one obtained when using a global learning 

rate. 
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Asymptotic behavior 

Similar to the classical MCE study in the context of classifier optimization, we intend to grasp the 

behavior of the four algorithms, when increasing the number of epochs for fixed learning parameters. 

Performance versus the number of epochs provides an estimate of this asymptotic behavior. Here, 

the IGPD uses a class-dependent learning rate. Fig. 6.11 illustrates performance of GPD, MGPD, 
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Figure 6.11: Performance versus the number of epochs for GPD, MGPD and IGPD in overall recognizer 

optimization. IGPD uses a class-dependent learning rate. 

and IGPD versus the number of epochs in the DFE context. It is clear that IGPD-A converges 

faster in this case. Ultimately, as we have seen previously, the three algorithms give rather similar 

results for a higher number of epochs. 

However, it is quite obvious that IGPD-A provides a faster convergence in the DFE framework. 

This maybe due to its ability to optimize the learning parameter, given a complex structure in a 

more efficient manner than classical GPD. 

6.6 Discussion 

In average, the IGPD and MPGPD performs better than the classical use of the GPD algorithm. 

Contrasting MGPD and IGPD is more difficult, given the above framework. The best algorithm, 

obviously depends on the classifier structure as well as the task. 
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6. 7 Conclusion 

In some practical application within the DFE approach, a straightforward use of the GPD al-

gorithm may result in poor convergence due to the non-homogeneous nature of the DFE-based 

recognizer. This problem may be solved by appropriate choice of the positive definite matrix and 

learning rate. However, such a choice is usually time-consuming. In this chapter, it was proposed 

to consider the modular nature of the recognizer in the learning process by choosing a training 

parameters・(learning rate and positive definite matrix) according to the module. This approach 

termed Modular Generalized Probabilistic Descent, although more adapted to the nature of the 

recognizer, added more learning parameters. The incremental Generalized Probabilistic Descent 

(IGPD), which performs a gradient descent on the space spanned by the learning parameters, was 

described as a method to overcome this deficiency. 
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Part III 

Applications 
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Chapter 7 

Discriminative Feature Extraction 

Applied to Lifter Design 

To find out what is natural, 

we must study specimen which retain their nature 

and not those which have been corrupted 

-Aristotle-

A cepstrum vector, which is computed by applying the inverse DFT to a logarithmic power spec-

trum of a speech fragment, has been shown to have information useful for classifying phonemes, 

particularly in its low-quefrency components. Cepstrum Liftering, which is equivalent to applying 

a low-pass lifter on the cepstrum is the tool for enhancing and/or removing undesirable cepstral 

component. Although the liftering process has been studied extensively, standard techniques are 

limited due to various mixed sources of information within the cepstrum coefficients. This chapter 

presents an application of the Discriminative Feature Extraction to lifter design that may help 

overcome some of these limitations. 
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7.1 Introduction 

A standard model of the speech production system assumed that speech is generated through a 

vocal tract filter excited by a periodic excitation or noise (vocal cords). Based on this model, various 

attempts have been made to set apart the contribution of the vocal tract and the contribution of 

the source within the speech signal [Ohyama et al., 1981a]. In particular, for voiced sound such as 

vowels, the sound category is mainly determined by the shape of the vocal, if the effects of the lips 

are neglected. Cepstrum coefficients, processed from the inverse Fourier transform of the logarithm 

of the spectrum carries the effect of the vocal tract and vocal cords in an additive manner. 

Several investigations have been carried out to extract the discriminant information by the 

liftering process. Liftering, which is filtering in the quefrency domain (cepstral domain), has thus 

been studied extensively. Research has been done on accurate pitch estimation [Noll, 1964], or 

on a optimal lifter shape design, using either LPC-based spectrum [Juang et al., 1986; Tohkura, 

1987], or Fourier transform-based spectral representation within a statistical estimation framework 

[Ohyama et al., 1981a]. Nevertheless, these techniques are limited due to various mixed sources 

of information over cepstrum coefficients; even lower quefrency terms, considered indicative of 

phoneme identity, possess various components characterizing the vocal-tract behavior which leads 

to a high statistical variation. Difficulties in separating these components for general purposes may 

be overcome through a task-oriented framework. 

In place of the conventional setting, based on heuristics or experimental knowledge as shown 

above, a full-length lifter over a given cepstrum vector was prepared without explicit a priori 

assumptions, which enables any initial configuration [Biem and Katagiri, 1992a; Biem and Katagiri, 

1992b]. This initial lifter is then adjusted by the DFE training, finally producing an optimal one, 

in the sense of minimizing the classification errors of the back-end classifier attached to the lifter . 

Experimental results on a vowel recognition task are presented, applying the proposed idea to the 

design a lifter shape over cepstrum coefficients using a Neural Network classifier [Biem and Katagiri, 

1993b]. Comparison with standard approaches that include investigation in the time/frequency 

domain show how speech characteristics are extracted for recognition purposes. 

7.2 Liftering-based Speech Recognition 

7.2.1 Speech production model 

A standard speech production model considers that the speech s(t) is the output of the vocal tract 

impulse response v(t), convolved with the source u(t) [Fant, 1973]. That is, 

s(t) v(t) * u(t) 

J+oo v(t + T)u(T)dT. 
-oo 
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This is the basic assumption of the model. Using homomorphic processing, it is possible to filter 

out the vocal tract contribution from the speech signal. For digital speech processing, the signal 
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s(t) is represented as sequences of frame s『={s1, …，sr }, where St= [st,1, …, St,d戸isthe frame at 

time t and the corresponding cepstrum vector is Ct = [ Ct (0), …，Ct(n), …, Ct(L)]T, where n refers to 

the quefrency. 

Let S (w) be the Fourier transform of the speech signal s (t), the cepstral parameter c(n) is 

defined as the inverse Fourier transform of the log spectrum. That is, 

c(n) =上「 logS(w) exp(jwn)dw. 
21r -7f 

(7.3) 

n spans a domain called the quefrency domain. This term was apparently proposed by J. R Tukey 

to reflect the fact that inverse Fourier of the log spectrum does not take us back to the time domain 

but unto a new domain called "quefrency" [Parsons, 1987]. He also proposed the term "cepstrum" 

out of "spectrum" and "liftering", out of "filtering", for describing quefrency domain operations. 

By homomorphic processing, taking the logarithm of the power spectrum gives 

log S(w) = log U(w) + log V(w), 

where U(w) and V(w) are the Fourier transform of the excitation source and the vocal tract impuise 

response, respectively. It can be seen that the effect of the vocal tract and the vocal cord are additive 

within the log magnitude spectrum. Let v(n) and u(n) be the inverse Fourier transform oflog V(w) 

and log U (w), respectively. The cepstrum coefficient c(n) of the power spectrum is given by 

c(n) = v(n) + u(n). (7.4) 

From the above equation, it is possible to remove out the source contribution u(n) by appropriate 

processing. For cepstral analysis, the following two assumptions are made: 

l. u(t) is approximately a sequence of pulses. The distance T between two pulses is called the 

pitch period and determine the underlying pitch of the signal. Thus, V (w) is basically a line 

spectrum, with corresponding cepstra v (n), and is also a sequence of pulses spaced by T F5, 

where F5 is the working sampling rate of the signal [Flanagan, 1972]. 

2. The vocal tract is a causal filter. 

Speech production is a highly complex process, involving various articulators, whose global influence 

on the output speech is still under investigation. The two assumptions above are a gross attempt 

to simplify the study of such a complex problem. The first assumption is questionable for unvoiced 

speech such as fricatives and the second assumption neglects the effect of the nasal tract. Despite 

this simplified scheme, the above model has been proven to be quite useful in various speech 

processing system such as speech coding, speaker recognition and speech recognition. 

Thus, based on the above model, lower quefrency terms of a cepstral representation contain 

vocal tract information and the spectral representation become smoother without the fine spectral 

structure due the pitch harmonics. Consequently, cepstral analysis has been used for various tasks, 

such as estimating the spectrum envelope of the speech spectrum, extracting the vocal tract trans-

fer function, which is extremely useful, when the power spectrum is estimated by DFT techniques. 
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CEPSTRUM 
COMPUTATION 1 

Recognized 

c(n) X廿 三三
w(n): Liftering 

Figure 7.1: The liftering process. Liftering can be viewed as multiplying a cepstral coefficient by a 
weight 

That is, the raw speech spectrum, produced through FFT techniques, is highly correlated and 

therefore contains redundant information which are useless and even inhibits efficient discrimina-

tion [Juang et al., 1986]. Cepstrum-based speech processing thus permits the design of a smooth 

spectrum removing the component of the excitation source through liftering. 

7.2.2 Cepstrum liftering application to speech 

As said before, a cepstrum vector, which is computed by applying the inverse DFT to a logarithmic 

power spectrum of a speech fragment, has been shown to have information useful for classifying 

phonemes, particularly in its low-quefrency components. The lifter shape is therefore expected to 

be a low-pass one, designed to keep low quefrency values. However, since the low quefrency terms 

are usually highly variable due to speaker characteristics and vocal efforts, which may inhibit their 

discriminating capabilities, the liftering process is also expected to reduce the variance for better 

recognition. 

Methods of designing a lifter, have been extensively investigated (e.g., [Ohyama et al., 1981a; 

Tohkura, 1987]). Most approaches are based on the a priori speech production model, as described 

above or on the statistics of the data. The basic idea is illustrated in 7.1 and is as follows. Since 

the vocal tract is modeled as a causal filter with an finite impulse response, the cepstral coefficient 

are located in the lower quefrency domain. Consequently, highest quefrency values of c(n) mainly 

correspond to u(n). The vocal tract information can thus be extracted by a simple rectangular 

lifter, which performs 

where 

c(n) = w(n)c(n), 

w(n)~{~ 
if n < nc 
otherwise. 

(7.5) 

nc is the cut-off quefrency of the lifter and cepstral terms above the cut-off quefrency are considered 

useless for discrimination. The rectangular lifter is the baseline liftering process, far from being 
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satisfactory in certain contexts due to the required estimation of the value nc. Moreover, not all 

cepstral values below nc have discriminant information: they carry various information such as 

speaker identity, the vocal efforts and transmission characteristics. Thus, having equal weighting 

on those coefficients is not an optimal solution. 

Triangular lifters 

Most of the research in the 80s, done on liftering process, was made within the framework of finding 

a suitable cepstral distance measure [Paliwal, 1982; Tohkura, 1987; Hanson and Wakita, 1986; 

Juang et al., 1986]. The focus was on estimating w(n) such that the cepstral distance between two 

patterns Ct and Cr, defined as 

L 

d(ct,cr) = I)w(n)ct(n) -w(n)叫n))2
n=l 

L 

1:w(n)屈 (n)-w(n)er(n))叫
n=l 

(7.6) 

(7.7) 

yields better performance. Note that, in this framework, the liftering is embedded in the distance 

measure. One proposal [Paliwal, 1982; Tohkura, 1987] is to use an asymmetric triangular lifter of 

the form 

w(n) = n, for n < nc・

This lifter was designed through two motivations: a statistical one and a physical one. The sta-

tistical motivation relies on the fact that cepstral coefficients (except for c(0)) has zero means and 

a standard deviation inversely proportional to the square of the coefficient index n [Juang et al., 

1986]. i.e., 

E{c2(n)} 
1 

～ 
n 2・

Consequently, a variance normalization is obtained by choosing w(n) to be the inverse of¼- That 

is, w(n) = n. By so doing, the cepstral distance becomes, 

dw(Ct, Cr) L(nct(n) —叫(n))2
n 

こ炉(ct(n)-cr(n))乞
n 
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This distance puts emphasis on higher quefrency terms. A variant is to use a specific cut-off 

quefrency for achieving better robustness. The physical meaning of (7.9) is as follows. Remember 

that 
00 

log IS(』=L 心）exp(-j叩）．
n=-oo 

(7.10) 

Thus, taking the derivative of the log spectrum, with respect to the frequency w, gives 

Dlog /S(w)I 00 

如
= I: —jnc(n) exp(-j叩）

n==-oo 

(7.11) 
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and by using the Parseval theorem, we have 

L 

dw(Ct, Cr) = L(n2(ct(n) -cr(n))2 
n 

j1r 8loglSt(w)I _ aloglS心）I 2 

-7r 如 aw I 

(7.12) 

(7.13) 

where St(w) and Sr(w) correspond to the power spectrum of Ct and Cr, respectively. dw(ct,cr) 

corresponds to an L2-norm between the differential log magnitude spectrum (spectral slopes). 

Since any fixed spectral slope is constant within the differential log magnitude, spectral peaks, 

such as formants are well preserved by this distance measure. When the power spectrum S(w) is 

computed from an LPC model i.e., S(z) =祐， thedistance dw (Ct, Cr) is referred to as the "root 

power sum" distance, because nc(n) is equal to the sum of the n-th power of the root of A(z) 

[Rabiner and Juang, 1993]. 

The triangular lifter has been used in various speech recognition tasks [Paliwal, 1982; Hanson 

and Wakita, 1986; Tohkura, 1987]. Paliwal [Paliwal, 1982] reported an increase in recognition 

rate from 91.4% to 92.7% on a vowel recognition. However, despite its powerful significance, the 

triangular lifter essential shortcoming is that, unless one uses a cut-off quefrency value of叩， itdoes 

no de-emphasize the higher frequency domain, which result in less robustness when the system is 

performing under adverse conditions. 

A more effective way to use the variance of the cepstrum is simply to use as lifter the inverse of 

the diagonal coefficients of the covariance matrix. This approach suggested by Tohkura [Tohkura, 

1987] as a way to simplify the straightforward use of the Mahalanobis distance has proven to be 

quite useful for speech recognition. The obvious shortcoming of this approach is the fact that one 

needs to estimate the diagonal covariance matrix, which is extremely prohibitive in large vocabulary 

recognition systems. 

Raised-sine lifter 

An interesting study made by Juang [Juang et al., 1986] has established that higher quefrency 

terms are extremely dependent on the power spectrum model, the signal analysis method (window 

position, system interaction with the excitation) and lower quefrency bears speaker characteristic 

(glottal shape, vocal cord duty cycles, speaking effort) as well as channel transmission information, 

which are undesirable for recognition. Consequently, Juang [Juang et al., 1986] has suggested the 

use of a bandpass lifter of raised-sine shape. That is 

w(n)~{ : + hsin (デ） if n < L 
(7.14) 

otherwise, 

where h is usually equal to½- The raised sine-lifter simulates the effect of the triangular lifter 

for n :::; ½while smoothly truncating higher coefficients. This result in enhancing some spectral 

peaks while suppressing the effect of the spectral tilt. The shortcoming of the raised-sine lifter is 
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that tuning of both h and L for achieving reasonable accuracy is required, which can extremely be 

time-consuming for practical speech recognition task. 

Exponential lifter 

Another used lifter is an exponential lifter proposed by [Junqua and Wakita, 1993], which is of the 

form 

w(n) = n丸

and tries to establish a continuum of choice between a no-liftering situation (g = 0) and the 

triangular lifter (g = l). 
It can be noted that most lifters, presented above are sub-optimal due to 1) no guarantee of 

optimality regarding the liftering parameter choice 2) no guarantee of minimum error achievement. 

7.3 DFE-based Lifter Design 

The liftering procedure provides a good framework for testing the Discriminative Feature Extraction 

process in terms of performance and analysis of the resulting lifter [Biem et al., 1997]. Since liftering 

is a simple weighting process, it can be viewed as linear transformation of the cepstral coefficients. 

The DFE idea consists of representing the liftering process, within the recognizer structure and 

optimizing the overall recognizer using the MCE/GPD criterion. Any recognizer structure can be 

used for this purpose. Below, a Neural Network-based implementation is described. 

DFE is applied to designing a recognizer having a liftering-based feature extraction module 

in a five-class, Japanese vowel recognition task. Each input (to the feature extractor) pattern is 

represented as a fixed-dimensional cepstrum vector, which corresponds to a center fragment of a 

vowel sound. 

7.3.1 Recognizer structure 

Again, liftering is done by multiplying an input cepstral value by a weight value. Taking this into 

account, the recognizer illustrated in Fig. 7.2 was used。

The recognizer consists of a liftering feature extractor and a three-layer (one hidden layer) 

perceptron neural network classifier. The lifter is implemented with a set of weights, each associated 

with a straight connection at one of the 128 (0th to 127th) quefrency positions. The classifier is 

a usual, fully-connected multi-layer perceptron network. The input layer of this classifier has 128 

nodes, corresponding to the lifter structure. The top output layer has nodes in accordance with 

the number of classes. The output functions, one at each node, are nonlinear (sigmoidal) only 

at the classifier hidden layer, while being linear at the other layers. A cepstrum vector pattern, 

i.e., a system input (corresponding to c), is first liftered by an inner-product computation with 

the lifter weight vector at the feature extraction module, and then the resulting weighted pattern 
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．．． Lifter 

Cepstrum vector 

Figure 7.2: Recognizer structure consisting of a three-layer perceptron classifier with a liftering module. 

(corresponding to x) is classified based on the standard network computation at the classification 

module. The node of the top classifier layer outputs the discriminant function value. 

Apparently, the recognizer seems to be a standard four-layer network. However, as its lowest 

straight connection is purposely selected for implementing liftering, the recognizer is obviously a 

modular system having differences in nature between the front-and post-end modules. 

This modularity assumption, which is a fundamental concept of the DFE definition, is used in 

the system initialization for training. 

7.3.2 
.. 

Tram1ng process 

Let oi(c) be the output corresponding to the class Ci due to the cepstrum vector c (belonging to 

category C砂 themisclassification measure is defined as: 

dk(c; <I>) 疇心）+ [M~lt 。;(c; ii>)"]¼ (7.15) 
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= -ok(c; <I>)+ o万(c;叫 (7.16) 

where rJ is a positive number controlling the degree of misclassification to be considered and M is 

the number of output nodes, which corresponds to the number of class. <I> represents the overall 

recognizer parameter. The above definition of the misclassification measure is aimed at taking into 

account both the recognized class as well as the misclassified classes. Again, a positive value of 

dk(c) corresponds to a misclassification and a negative value is a good recognition. So, through the 

choice of rJ and the error function c _, £(c; <I>), one can control the loss over which the optimization 

process is made. The choice of'T/ = 3 was done, meaning that of a "soft" MCE scheme was carried 

out. 

The chosen smooth derivable function as error function is simply the sigmoid, defined as 

C(dk(c; <1>)) = 
1 

1 + e°'dk(C;4>) (7.17) 

which means approximating the 0-1 step function by a sigmoid whose smoothness is controlled by 

the parameter a. Training is done through usual back-propagation of the error. Thus, if w is a 

weight within the network, we have, 

w[r +I]= w[r] -E7.e'(dk(c; 4>)) 
紺 k(c)
aw . 

By making use of the chain rule, we have 

with 

狐 (c;4>) M adk(c; 4>) OOj(c; 4>) 
=L 如 00j(c;4>) aw . 

j==l 

狐 (c;<I>) = { -¥ for j = k 

如 (c;<I>) M -I (~ 塁:ir-1 for j'F k. 

(7.18) 

(7.19) 

(7.20) 

The computation of 
砂 (c;<I>) 

aw is carried by the back-propagation algorithm (see appendix B). 

7 .4 Speech Data 

The input patterns were generated by segmenting vowel center fragments, with a 21 msec Hamming 

time window, from 500 phonetically-balanced sentences uttered by 5 speakers (3 males and 2 

females, 100 sentences/speaker) under noise-free conditions and using 256-point FFT. Speech data 

was digitized at a 12 kHz sampling frequency and stored at 16 bits. The total number of generated 

input samples was 3500; half of them (70 samples per speaker and per vowel) were used for design, 

the other half (70 samples per speaker and per vowel) for testing. 
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7.5 Results and Discussion 

Considering the nature of the GPD's adaption, several pairs of training and testing for each system 

selection, such as the selection of the classifier hidden nodes and the selection of training initializa-

tion, was ran, changing the training conditions, such as the setting of the learning factor E and the 

order of design sample presentation. Since the variation among these conditions was minor, only 

the best accuracies (lowest recognition error rate) for each system selection are presented in this 

chapter. 

It is advisable that, similar to general cases of gradient-based optimization algorithms, the 

DFE-trained, or GPD-trained, recognizer is initialized in some reasonable way. However, it is 

rather unclear how one can reasonably initialize the back-end network classifier. Therefore, the 

neural network classifier was initialized randomly as is usually done in neural network applications. 

As for the feature extractor, the following three initialization methods were investigated: 

l. A random initialization that sets the lifter weights to small random values. In this framework, 

the modularity process is not considered, except in the node connections. Thus, the weights 

in the lifter are treated in manner similar to other weights without specificity. 

2. A uniform initialization that sets the lifter weights to the identical value 1.0. This is equivalent 

to a non-liftering situation before training. The DFE algorithm is given a "free" starting point 

in finding the appropriate lifter. 

3. A rectangular initialization that sets the low (quefrency)-pass rectangular lifter with some 

preset duration. This is equivalent to the use of a priori knowledge in choosing an initial 

configuration of the feature extractor. The DFE algorithm is expected to find the "best" 

lifter, from this initial configuration. 

For comparison purposes, baseline system in which the feature extractor module was fixed and 

only the classifier module was trained with MCE/GPD was investigated. The baseline system 

uses a priori knowledge. In the baseline system, the lifter was fixed to the rectangular shape, as 

described in the third initialization case above. Because of the lack of exact information on the 

advisable length of the low-pass lifter, which would lead to accurate vowel classification, four lifter 

duration settings were examined, namely 8, 16, 32, and 128 as seen in Fig. 7.3. Note that the 

rectangular lifter with the duration of 128 works as an all-pass lifter, corresponding to the situation 

of no liftering. 
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Figure 7.3: Baseline rectangular lifters. 
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Performance versus the number of hidden nodes with lifter optimization 
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Figure 7.4: Error rates versus the number of hidden nodes. Upper: baseline system without liftering 

(with all pass lifter). Bottom: uniformly unitialized DFE-trained system. 
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Generally, the number of trainable parameters affects the achievable accuracy of the classifier. 

To investigate this point in this framework, preliminary experiments was carried out, setting the 

number of the classifier hidden nodes to 30, 40, 50, 60, and 70, for the MCE/GPD-trained baseline 

system having the 128-length all-pass lifter and the uniformly-initialized, DFE-trained system. 

Fig. 7.4 shows the achieved error rates, one for each number of hidden nodes: the upper figure 

is for the baseline system, and the bottom is for the DFE-trained system. The results show that 

using 60 hidden nodes is the most suitable for the experimental framework. In light of the above 

results, a classifier having 60 hidden nodes was used in the subsequent experiments. 

7.5.1 Baseline system 

First, let us compare the four low-pass lifter lengths which correspond to the baseline systems. As 

summarized in Table 7.1, the length of 16 produced the best performance over the testing data. 

The no-liftering situation achieved quite high accuracy on the training set but resulted in lower 

accuracy on the testing set. The results may suggest that the training in the no-liftering case used 

the information that was spedfic to the training samples but irrelevant to finding the true class 

boundary. Thus, this result shows that an appropriate liftering is indispensable for alleviating this 

problem. 

7.5.2 Effect of initial lifter in DFE training 

Let us compare the three initialization methods in the context of DFE training. Based on the above 

results, the length of the initial lifter was set to 16 in the rectangular initialization. The results for 

these three initialization cases are also shown in Table 7.1. DFE successfully achieved 11.3% in the 

uniform initialization case, which the best result across all cases. Importantly, the DFE training 

provided this improvement over the testing data, while on the training data, it showed a similar 

accuracy to that of the no-liftering baseline system. This may allow us to argue that the DFE-

trained lifter successfully extracted features that are general and more useful for the classification 

of vowels. The random initialization performed poorly. This maybe explained by the fact that the 

random initialized provide a "bad" starting point the gradient descent algorithm. This result can 

be contrasted with the uniform initialization case, which takes into account the modularity of the 

recognizer and does not impose an initial lifter, thus providing a "good" starting point for DFE 

optimization. 

Between the random initialization and the no-initial lifter situation, the rectangular initializa-

tion scheme (16-length lifter) imposes an initial lifter based on expertise. Indeed, this training 

scheme has produced the second best result in the testing set while showing similar performance 

on the training set when the lifter is un-trained. Consequently, a priori knowledge may help the 

DFE training, but at the same time it may inhibit the full capability of the DFE training. 
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Table 7.1: Error rates for the baseline systems and the DFE-trained systems. 

Liftering process Training Testing 

baseline system 

(no liftering (128-length fixed lifter)) 3.5% 16.0 % 

baseline system 

(32-length fixed lifter) 13.4 % 15.3% 

baseline system 

(16-length fixed lifter) 8.4 % 14.5% 

baseline system 

(8-length fixed lifter) 9.7 % 14.9% 

DFE-trained system 
(16-length rectangle initialization) 8.4 % 14.2% 

DFE-trained system 

(random initialization) 7.0 % 16.8 % 

DFE-trained system 

(uniform initialization) 3.2 % 11.3 % 

7.5.3 Lifter analysis 

Fig. 7.5 shows a typical shape of the trained lifter in the uniform initialization case and for the 

rectangular initialization case. Both lifters de-emphasizes two quefrency regions: 1) the high que-

frency region that corresponds to pitch harmonics and spectral minute structure, and is irrelevant 

to vowel discrimination, 2) the lower quefrency region (0-2 quefrency region) that is dominated 

by the bias and slant of the overall spectrum added to speaker characteristics, while enhancing 

the region of 3-20 quefrency that mainly corresponds to the spectral formant structure. Thus, the 

cut-off quefrency can be said to be around 20. Note that rectangular lifter of 16 gave the best result 

among the baseline methods. This reasonable result might be a good support for the argument 

cited above and shows that the DFE-trained lifter provide a meaningful shape in terms of scientific 

knowledge. 

Investigation of the significance of the 3-20 quefrency regions was carried out by analyzing the 

pitch frequencies of the design speech samples. It was found that female pitches ranged from 40 

quefrency to 60 quefrency and male pitched was concentrated in the 80 quefrency region. Thus, 

the trained lifter in Fig. 7.5 successfully suppresses these pitch components, though few ripples 

remain in the corresponding regions. The pitch components are better suppressed when using the 

16 length lifter. 
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Figure 7.5: Top figure: a typical DFE-designed lifter issued from the uniform initialization. Upper-

top: the entire view. Bottom-top: the same lifter with a focus on the lower quefrency region. 

Bottom Figure: a typical DFE-designed lifter issued from the 16-length rectangular initialization. 

Upper: the entire view. Bottom: the same lifter with a focus on the lower quefrency region. 
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7.5.4 Comparison with statistically based lifter 

It is obvious that these trained lifters are different from conventional ones based on a priori knowl-

edge (e.g., see [Ohyama et al., 1981b]). Comparison of the resulting lifters with those obtained 

from the data-driven approach proposed in [Tohkura, 1987] was made. 
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Figure 7.6: Normalized inverse variance over the training set. Normalization is performed such that the 
maximum value is equal to 1. 

Fig. 7.6 shows the inverse function curve of the average intraclass variance, computed according 

to the method in [Tohkura, 1987]. One should note that the DFT-based cepstrum was here, 

while [Tohkura, 1987] used an LPC-based one; therefore, it is difficult to compare both directly. 

However, it is clear that the curve successfully suppresses the lower-quefrency components but 

fails to suppress the higher-quefrency components. Again, the comparison clearly shows that DFE 

provides an important departure from the conventional design approach. 

7.5.5 Comparing MCE and MSE 

The same study can be made using the MSE criterion, instead of the MCE. An experiment was 

performed where a uniform lifter (that is, no initial liftering) and random lifter were adjusted by 

the MSE criterion, using the same architecture describe above. For reminding, the MSE criterion 

is defined as 
M 

伍 SE(c)= I:(tk(c) -Ok(c))2 (7.21) 
k=l 

where tkに） signifies the k-th coefficient of the target vector t k for input vector x. 
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Note that only one difference between DFE/MSE and DFE/MCE-based design is the selec-

tion of the learning objective. Several training runs were performed, changing the order of data 

presentation. 

Table 7.2: Recognition rates for the」apanesevowels task using the MCE criterion and the MSE 

criterion. 

Liftering initialization values 

1.0 

random 

MCE 9T 
93% 83.2% 

MSE gT 
89.8% 80.8% 

Table 7.2 summarizes the best recognition rates using MCE/GPD and the standard minimum-

square error criterion (MSE) aimed at lifter design. Similar to the MCE's case, the random 

initialization performs poorly, when using the MSE criterion. 

The comparison between MCE and the MSE training shows that MCE provided more accurate 

recognition rates than the MSE training in the training set, while showing similar result in the 

training set. 

7.5.6 MCE-based lifter and MSE-based lifter 

Fig. 7.7 shows the resulting lifter trained with the MSE loss. 

Similar to the MCE-based lifter, the MSE-based lifter also suppresses the high quefrency region 

and enhance the low quefrency values which corresponds to phoneme characteristics. Comparing 

MSE-based and MCE-based lifter illustrations, one notes that the MCE-based lifter is smoother, 

which is consistent with the higher generalization power in recognition accuracy of the MCE-trained 

lifter. Both show high variability occurring in the low quefrency region certainly due to the high 

variance of the data in that region. 

Spectral analysis 

To deepen the understanding of the proposed approach, investigation of power spectra were carried 

out, each corresponding to the trained lifter. 

Fig. 7.8 shows the logarithmic power spectra of a single frame spectrum; one corresponding to 

the raw cepstrum vector and the other to the lifter-processed cepstrum vector. The liftered spectra 

clearly brings out the formant structure of the frame, thus confirming its importance in vowel 

classification shown in psychology. The MCE-based spectrum is smoother than the MSE-based 

one and also show more similarities in shape to the spectrum envelope. Significant notches still 

remain on the smoothed spectrum for both MCE and MSE, which seems to be due to an inability 

in suppressing high quefrency elements and the ripple-like variation in lifter shape. 
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Figure 7.7: MSE_-based lifter. 

7 .6 Discussion 

The difference between DFE and classical use of MCE/GPD has a large significance, although a 

rather simple one. That is, the design scope extended by DFE will achieve more accurate recogni-

tion, given system resources (e.g., trainable parameters), by extracting more suitable features for 

classification; this property can conversely lead to system size reduction and faster recognition com-

putation, relieving the burden on the classifier. Furthermore, by controlling the training conditions, 

such as the learning factor, the wider scope will realize a more flexible inter-module interaction. In 

the extreme case, this interaction can be a practical way to easily retrain the pre-designed status 

of either the feature extractor or the classifier, though it somewhat contradicts the DFE concept. 

DFE substantially increases the number of adjustable system parameters. This fact would 

enlarge the ratio of the number of parameters to that of given training samples, hence probably 

increasing the statistical bias of training results. However, in contrast to the usual case of increasing 

the parameters of a classifier which operates in a fixed feature space, the nature of such bias in the 

DFE training framework is unclear. This point is an important future research issue. 
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Figure 7.8: MCE-based liftered power spectrum and MSE-based liftered power spectrum of a vowel 

frame. 

159 



7. 7 Conclusion 

In this chapter, Discriminative Feature Extraction application to a classical feature representation 

of speech, namely an optimal lifter design, was described. 

For evaluation, a vowel fragment recognition experiment was conducted. It was shown that a 

DFE-designed lifter successfully achieved fewer classification errors than the baseline MCE/GPD-

trained classifier represented by a rectangular lifter shape, when adjusting a uniformly initialized 

lifter (i.e., no use of a priori knowledge in initializing the feature extractor parameter). Briefly, the 

following points can be stated: 

• Imposing a random lifter shape at the beginning of the process gives poor performance. In 

others words, the modularity of the recognizer should be taken into consideration on the DFE 

training process. 

• A uniform lifter at the beginning of the process gives the best result. A uniform lifter is 

equivalent to non-liftering at the beginning of the DFE process. Thus, DFE optimality is 

achieved when an initial feature extractor is not imposed. 

• Using a priori knowledge in the form of an initial rectangular lifter gives the second best 

performance. That is, expertise can be a reasonable starting point for an initial feature 

extractor design. However, this initial feature extractor may inhibit the realization of a 

general optimal recognizer. 

The lifter was designed using a Feed-Forward Neural Network classifier. Its shape clearly de-

parts from classical lifter shapes while showing an emphasis of the low-terms cepstral coefficients, 

believed to carry the discriminant informations, and provides higher recognition compared to classi-

cal rectangular lifter. The DFE process has rather enhanced the region of interest, than suppressed 

higher quefrency terms in contrast to classical methods. Investigation of the liftering effect on the 

spectrum of speech shows that the formant structures are kept, thus confirming its importance in 

vowel classification. 

Comparison of MSE and MCE, targeting lifter design, was also made. MCE-based criterion 

achieves better performance and display a smoother lifter than MSE. 
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Chapter 8 

Discriminative Feature Extraction 

Applied to Filter Bank Design 

No knowledge is so easily found as when needed 

-Robert Henri-

In speech recognition, 五lterbank modeling has been the basis for the production of various speech 

features. Given a task, there are still question marks concerning the choice of a particular五lter

bank model, the proper number of五ltersto be used, the appropriate frequency scale (perceptual 

or linear) and the spacing of the五lters.Although the answer is obviously task-dependent, there is 

no certainty about the optimality of the adopted model. Thus, an optimal tuning of the五lterbank 

parameters, given a task and a classi五erstructure is investigated within the DFE framework. 
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8.1 Introduction 

Filter bank modeling is one of the rnost the popular approach to speech parameterization. In speech 

recognition, a short fragment of an input speech is often converted to an output of a bank-of-filters 

model, and then the overall input is represented as a sequence of these output vectors. Various 

parameters, such as center frequency, bandwidth or gain should be taken into consideration when 

designing a filter bank front-end feature extractor. This chapter focuses its attention on designing 

a filter bank aiming at realizing highly-accurate speech recognition, in the minimum error sense 

[Biem and Katagiri, 1993a; Biem and Katagiri, 1994] Again, design of the filter bank is linked with 

various crucial decisions. The set of filters must be chosen so as to extract the important part of the 

speech, i.e. relevant to the back-end classification. That is, an appropriate number of filters must 

carefully investigated for accurate resolution of the speech spectrum. An important parameter in 

filter bank design is the spacing interval between two adjacent filters. The number of filters, their 

type as well the spacing method (overlapping or non-overlapping) depends on the task and the 

processing environment (noisy environment, signal from dial-up phone, etc ..). 

Here, the design of a minimum classification-based filter bank through the DFE method is 

shown. A bank-of-filter feature extractor module is comprehensively optimized with the classifier's 

parameters for minimization of the errors occurring at the back-end classifier [Biem and Katagiri, 

1993a]. Evaluation is done in two experimental tasks: one recognizing static vowel fragments, each 

being a filter bank output vector, and one recognizing dynamic (variable-durational) words, each 

being a sequence of filter bank output vectors, within the ATR directory assistance task framework 

[Woudenberg et al., 1995]. The first, relatively simple task enables us to carefully investigate the 

nature of DFE training, e.g., plausibility of designed filter bank shapes; the second task enables 

us to study utility of DFE in a more realistic environment using dynamic and distorted telephone 

speech utterances. In both tasks, DFE-designed recognizers are compared with conventionally-

designed, baseline systems, in which the filter bank is defined based on psychoacoustic findings and 

the classifier is trained by using Maximum Likelihood Estimation and MCE/GPD. MLE, in the 

context of the prototype-based recognizer used in chapter takes the form of the k-means clustering 

[Juang and Rabiner, 1991]. 

The use of the prototype-based distance classifier would be considered rather traditional nowa-

days. However, the classifier is mathematically equivalent, conditioned by the selection of distance 

measure, to a simplified version of a classifier based on hidden Markov model (HMM) (See [Mc-

Dermott and Katagiri, 1994; McDermott, 1997] for details) and has sucessfully been used for filter 

bank optimization [Biem et al., 1995]. 

8.2 Filter Bank Modeling of Speech 

In filter bank modeling of speech, a speech waveform is passed through a set of I bandpass fil-

ters. The filter bank process can be implemented either in the time domain or in the frequency 

162 



domain of speech: a) executing filtering computation through finite impulse response filters (FIR) 

or recursive filters (IIR) b) simulating filter outputs using a DFT-based power spectrum. Filter 

bank implementation in the time domain permits a better control of time and frequency resolution, 

which may result in better feature extraction. If IIR filters are less computationally costly, FIR 

filters enable the realization of precise linear phase filter with well-defined frequency characteristics. 

When a precise frequency resolution is not required, the filter process can be simulated directly 

on the power spectrum. Given the simplicity and easier implementation through FFT, most filter 

bank implementation in the speech recognition field have been carried out using DFT-estimated 

power spectrum. For the filter bank parameter adjustment, which is the goal of the DFE training, 

this can be directly implemented through use of the FFT-based power spectrum. Consequently, 

throughout this report, the filter bank process will be simulated by weighting of the FFT-generated 

power spectrum. 

8.2.1 Filter bank-based feature extractor 

Again, for simplicity, emulation of filtering is done by using FFT computation. An input speech sig-

nal is first converted to a sequence of FFT-based power spectrum vectors, s『={s1, ... ,st,·•·,sT} 

where St is an FFT-based, F-dimensional power spectrum vector at time t (time window position) 

and Tis the (sequence) length of s『;St= [st,1,・・・,sもf,・ ・ ・, St,F戸whereSt,J is the jlh element of 

St (the element of St at the fth frequency index1.). Assuming that a filtering function is F(・; 8) 

where 8 is a set of trainable control parameters of the filter bank, the filter bank converts s[ to its 

corresponding filter bank output pattern x[ in a vector-by-vector mode; 吋＝｛互・・。，Xt,...'祈｝

where叫 isthe J (usually< F)-dimensional filter bank output vector that corresponds to St, i.e., 
T 

叫=[xt,1, ... , Xt,i, ... , Xt,I] = F(st; 8) for all possible t's; 吋 =F(s『;8). 

The detailed process of filter bank modeling using FFT is as follows. Filtering is done by 

weighting of the input power spectrum vector. For a power spectrum vector St (short time window 

position), the I-channel filter bank model transforms each St into a lower dimensional vector Xt = 

加，i戸fori E {1, .... I} such that an output feature Xt,i is the log energy in the channel: 

知 ~Iog1{苔t 叫，fSt,t) for i~1, ... , I, (8.1) 

where Bi represents the channel interval and Wi,f the weighting at frequency f within the ith 

channel. This basic formulation of filtering can be re-written as, 

叫＝汽Bt;8)=[1og10(w1Tst), ... ,log10(w八），...,log10(w1Tst)]T, (8.2) 

where I, which is the dimension of the filter bank output vector, corresponds to the number 

of filters of the filter bank; Wi is the F-dimensional weight vector of the ith channel filter, i.e., 

Wi = [wi,l, ・.,, Wi,f, ・ ・ •, Wi,Fドwherew□ is the weight coefficient of the ith channel filter at the 

1Concretely, f is an integer describing the sequence of DFT bins 
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炉 frequencyindex. This conversion is repeated in the vector-by-vector mode, i.e., for every t, 

thus transforming s[ into叶
Usually, the filters of the model are spaced in a perceptual frequency scale. These perceptually-

based spacing methods have been shown to be useful to increase speech recognition accuracy. Also, 

to make the output vectors Xt smoother, the filters are placed so that they overlap each other, 

and the set of weight vectors of the filter bank, i.e., W = { w1, ... , Wi, ... , WJ }, are determined 

by using some (small number of) continuous functions. However, in principle, each element of the 

vector, Wi,f, itself can be individually treated as a trainable parameter. This latter approach seems 

attractive, because it permits the design of a more general filter bank. However, this flexible setting 

also increases sensitivity to training data because of the increase in the number of parameters, which 

may result in a less robust design for unknown input patterns. 

8.2.2 Parameter selection for filter bank design 

Again, there are several possibilities for implementing FFT-based :filter banks. Here, two types 

of implementation were selected, i.e., 1) each filter's frequency response has a Gaussian form de-

termined by three kinds of trainable parameters, center frequency, bandwidth, and gain factor 

(G-type) , and 2) each filter is a set of independent weight coefficients (I-type). The Gaussian form 

was selected based on its smoothness and tractability. 

DFE-optimization of the filter bank is illustrated in Fig. 8.1 and is as follows. The i-th filter 

response within the G-type implementation is defined as: 

印=ai exp [一店{p(,i)-p(J)}2], for i = 1, ・・・,I, (8.3) 

where ai simulates the gain factor, 店(>0) determines the bandwidth, "/i determines the center 

frequency, respectively, at the ith channel; p(・) is a frequency mapping function that determines 

frequency scaling. Thus, 8 = { {幻｝い={{ai, (3心}} {=1, and this definition leads to the following 

four cases of DFE training for the G-type filter implementation, based on the selection of the 

trainable parameters: 

1. selective training I (Ge-training): Gc-training trains only the center frequencies宵's,while 

keeping the remaining filter parameters fixed. Note that modifying the spacing of the filters, 

with a fixed bandwidth and gain, results in a different coverage of the available frequency 

range. 

2. selective training II (Gb-training): Gb-training only adjusts the bandwidths fJi's. A 

larger value of f3i signifies a narrower filter and vice-versa. 

3. selective training III (Gg-training): Gg-training only adjusts the gain factors a/s. A 

large value of gain factor puts emphasis on the filter output energy. 

4. simultaneous training (GS-training): In GS-training, the three types of adjustable pa-

rameters, i.e., center frequencies, bandwidths, and gain factors, are simultaneously trained. 

164 



Filter bank center frequencies adjustment 

Filter bank bandwidths adjustment 

Filter bank gains adjustment 

三

Figure 8.1: G-type training. The center frequencies, bandwidth and gain of the i-th filter can be 

optimized by adjusting the parameters'Yi, /3i and o匂
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It should be noted here that the above training cases keep the Gaussian shape of individual 

filters. And, unlike the T-type case, optimizing filter centers, bandwidths or gains of the filter bank 

is a less tangible phenomenon than adjusting a filter weight. 

In the framework of I-type filter implementation, the weight functions are considered indepen-

dent and are not constrained to be of a pre-chosen filter shape, thus 8 = { { Wi,f}『~lr . This 
i=l 

then leads to only one training case, namely, I-type training where one treats each filter weight 

Wi,f as an independent trainable parameter. The DFE adjustment rule is applied to J = log(11) 
instead of 1J ({} corresponds to either ai, /3い布， orwふf).An altertive is to use the squared root 

as in [Biem and Katagiri, 1994]. This formalism has also been applied to speaker normalization 

[Woundenberg et al., 1997]. 

8.3 Recognizer Structure 

For generality of description, the task of recognizing dynamic speech patterns of M classes such as 

phonemes and words; { Cぃ・・・, Cj, ・・・,CM}. The speech recognizer is a modular system, consisting 

of a front-end filter bank-based feature extractor and a back-end prototype-based distance classifier. 

Fig. 8.2 illustrates this modular recognizer. 

Filter-Bank-Based 
Feature Extractor 

Prototype-Based 
Distance Classifier 

Class 
Index 

Figure 8.2: Block diagram of a modular speech recognizer consisting of a front-end filter bank-based 

feature extractor and a back-end multi-prototype distance classifier. 

8.3.1 Classifier structure 

The classifier is based on the one in [McDermott and Katagiri, 1994]. It consists of an acoustic 

model and a language model. The acoustic model uses a state transition structure, similar to an 

HMM; the language model is a finite state machine structure. The decision rule in this stage is 

based on the most fundamental rule in the Bayes decision theory; i.e., 

a(叶） = Ci if i = arg minj {約位『；A)}' (8.4) 

where C(・) is classification operation, A is a trainable classifier parameter set, i.e., a set of prototype 

vectors, and gj位『；A) is a discriminant function, defined in terms of A, which indicates the degree 
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to which吋『 belongsto Cj, Note here that a smaller value of the discriminant function indicates 

a higher possibility that an input to the classifier belongs to the corresponding class. 

Prototype-based distance classifier 

In this classifier, each class (phoneme/word/phrase) is modeled as a string of sub-phonetic states, 

each being assigned prototypes in the filter bank output vector space. The model resembles an 

HMM in structure but uses distance computation in place of probability estimation. 

Concretely, we are given a finite set of P phonetic models, 

A={ふ， ...'Ai,。．．，入p}, 1 :Si :SP, (8.5) 

where入iis composed of a set of prototypes distributed among the states of the model. Each 

phonetic model入ihas Si states. And the total number of states is S. 

1st state 2nd state 3rd state 

r2,1 r2.2 r2,J r2,4 

Figure 8.3: Prototype-based minimum error classifier structure. 

Fig. 8.3 illustrates a model with 3 states and 4 prototypes per state. According to [McDermott 

and Katagiri, 1994], the discriminant function gjは『；A) is defined in the following way. 

State-distance 

Given a stateゅ， thestate-distance indicates the average similarity between the filter bank output 

vector Xt and prototypes in the state. The state-distance is defined as 

D凸）~{~ び（四rい）ー『 9
(8.6) 

where v is a positive constant. r如，n is the n-th prototype in stateゆandNゅisthe number of 

prototypes in the state. a-(叫， r如，n)measures the local distance between a filter bank output vector 

and a prototype as follows: 

心 t,rゅ，n)= (叫 -rゅ，n汀(x-rゆ，n)- (8.7) 

This distance is simply the squared Euclidean norm of the two corresponding vectors in the filter 

bank vector space. The state-distance is thus an Lp norm of local distances. The local distance 
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can take the general form of a Mahalanobis distance. However, for reducing the complexity of the 

system, the local distance measure has been restricted to an Euclidean distance. 

Discriminant function 

Given the sequence of filter bank output vectors x『,the discrimination measure of the category 

Cj, is found by computing an aggregate state distance over possible state sequences, as follows: 

叫吋；A)~[~ 長（巧s)い］ー1/(' (8.8) 

where V7,s is a matrix of state distances, where each element (t, 心） contains D心(xt);底 (Vr,s)

is the path distance representing an accumulated sum of state distances along the path wゎoneof 

possible paths within a region of巧spermitted by a Dynamic Programming procedure for~ 五く

is a positive constant. Accordingly, the classifier recognizes the filter bank outputのiby applying 

the d_iscriminant function (8.8) to the decision rule (8.4). 

The distance classifier works in a quite similar manner to HMM-based classifiers. The technical 

merit here is that, without any serious defect in modeling capability, one can use any reasonable 

distance measure in place of the probability density function, which is used in HMM and whose 

estimation is usually more complex than the computation of distance measures because of the strict 

condition that the integral of the density function over its corresponding sample space must be equal 

to one. Many distance measures such as the Mahalanobis distance and the Euclidean distance are 

directly derived from the common Normal probability distribution. This emphasizes the close 

relationship between the distance-based classifier and HMM-based classifiers. This relationship 

accordingly allows us to consider that the discussion in this chapter should fundamentally hold 

true in the general case of using HMM classifiers. However, the structure used here allows one to 

use any metric (for instance, Itakura-Saito distance [Itakura and Saito, 1970]) in place of (8.7). 

8.4 DFE implementation 

As said before, a traditional design framework simply determines the filter bank :F(・; 8) by means 

which are independent of the design of the classifier, or in other words, the design of the discriminant 

function set {gj(•; A)}. Clearly, this approach is not optimal and can be improved by DFE training. 

For the system structure described above, the DFE training is implemented as follows. 

Assume that a design sample s『(ECいisgiven at the training time index r. Again, the filter 

bank :F(・; 8), converts s『to吋.Let炉＝｛叶，砂．．．，叶}, be the best sequence of states found 
by the DP procedure, corresponding to category Cj・叩{corresponds to the state occupied by the 

feature-frame Xt along this path. Thus, D j (xt) is the state-distance, corresponding to the feature-
丸

vector Xt, For DFE implementation, the discriminant function only considers the accumulated sum 
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of state-distance, along the best path. That is, 

T 

9jは『；A)= LD州叫），
t=l 

(8.9) 

which is equivalent to letting〈→ oo, in the definition given in (8.8). During training, the correct 

path 9k(x『；A) is simply found by performing the DP procedure constrained by the word/phoneme 

transcription. 

Normalized misclassification measure 

The straightforward way to implement MCE on recognizer is to make use of the classical misclas-

sification measure, which is defined, in this context as, 

M 

d, に(s『;8) ; A) = g, (a: 『;A)-{M~l互9j (元A戸｝ (8.10) 

when using a PBMEC structure. However, using a simple difference as misclassification measure, 

result in a wide range of values spanned by the misclassification measure. An alternative is to make 

use of a normalized misclassification measure. For s『belongingto category Ck, the normalized 

misclassification measure is defined as 

{ M~l 旦Yi (吋，A戸｝―ふ
dkに(s『;e);A)=山(x『；A) = 1 - , (8.11) 

9k (x『；A¥ 

where t is a positive number which controls the relative contribution of the classes considered. 

Again, the above misclassification is an attempt to normalize the general form of the misclassifi-

cation measure given in Chapter 4. Its value range spans a narrower interval and thus permits 

the use of classical loss function. The normalized misclassification measure can be written in the 

following more compact form 

dk (x『;A)= 1-
叶『；A) 
9k (吋；A)° 

(8.12) 

Again, the anti-discriminant function gk (吋；A) is defined as 

M ―} 

ii,; (吋；A)~{ Ml~1 互 Yi (吋；A)―'} (8.13) 

In accordance with the MCE concept, the sigmoid was used as smooth binary (0-1 step) loss. 

That is, 

仇(s『[r];<I>) =£(い吋[r];A))= 
1 

l+exp{—叫(Fe(s『[r]); A) 
(8.14) 

where a is a positive constant. The misclassification measure and the loss function are each a 

function of both e and A. Clearly, the interaction between the filter bank and the classifier is 

embodied by this definition of functionals. 
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8.4.1 Classifier parameter adjustment 

The set of r・defines the classifiers parameters. Again the adjustment rule is obtained as follows: 
心i,n 

覧，n[T]= r邁，n[T]-E70r炒:,n (8.15) 

where E,,-is a small, monotonically-decreasing, positive number at r (the training rate), and r・[r] 叫，n

denotes the status of r i at r. By making use of the chain rule of differential calculus, the 
ゅt,n

mcrement 8r i 
叱，n'

is given by 

匹，n~-2£' 伍（元A))T,; { uiご：＇）れ）｝ー(1十•I (叫— r弱，n) (8.16) 

Y kj is determined by the form of the misclassification measure. When using a normalized misclas-

sification measure, we have 

Ykj = 

叶『；A) 
gf (吋；A) 

1 {鰈（吋；A) i+< 

-(M -l)g, (土），j(吋；A)} 
For a classical misclassification measure as defined in (8.10), 

if j = k 

if j # k. 

孔 ~{1― (M~1) {: 鸞~::?r'::::

(8.17) 

(8.18) 

It can be observed that the adjustment rule of (8.16) is extremely close to an LVQ-like training. 

That is, reference vectors that belong to the right category are pulled closer and the reference 

vectors that belong the wrong category are pushed away. 

8.4.2 Filter Bank opt' 
．． 

1m1zat10n scheme 

Let¢be any adjustable filter bank parameter. To keep the physical meaning of the parameters, 

there is the need to ensure that the values of the parameters remain positive during training. This 

is done by using the transformation¢= exp(嘉）. The chain rule of differential calculus is used for 

adjusting the filter bank parameters. DFE process performs the following adjustment: 

where 

嘉[T+l] =厄[T]-pTV28忍

品
冽 (dk(s『；り）

厖
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Since, the filter bank is shared across all states and paths, the following chain rule of differential 

calculus is applied, 

祝他(s『心））
厖 = LL T I 祝伯（い））~'

t=l i=l 釦 t,i 8¢ 
(8.21) 

祝伍(s[沖））
The term which depends on the classifier structure is independent on the filter 

釦 t,i

bank parameter type. This term is referred to as "classifier's input-derivatives" at time t, because 

this term characterizes the gradient of the loss versus the input to the classifier. The second term 
8Xti 
~is determined by the filter bank process and depends on the filter bank parameter type. 
8¢> 

Classifier's input derivatives 

For a sequence of spectral frames s『ofcategory Ck, each input frame is compared against a set 

of a reference vectors within a state of a certain phonetic model as decided by the DP procedure 

along a the path of category Ck. Having this in mind and applying the chain rule of differential 

1 
祝(dk(s『心））

ca culus to , we have 
釦 t,i

祝他(s[連））
OXt,i 

M 況 (dk(s[り） N吋 8D年）如(xt,r叫，n)
=L L 叫

j=l 8D叫図） n=l 如（叫，rゆj,n) OXt,i 

From the definition of Ci(Xt, r i) given in (8.7), we have the following properties 
丸，n

加（叫， ri 別，n

如 t,i

） 如（叫， ri 丸，n

街 j
ゅt,n,i 

） 

where 8r i . is the ith component of 8r i . From (8.23), it follows that 
心t,n,z 別，n

祝 (dk(s『;<I>)) 
釦 t,i

Nj  
M ,;,t 8£dk s『;①

LL — 
（（）） 

j=ln=l 

N J M ,;,t 

街・
号 n,i

＝一LL叫{,n, が
j=In=I 

(8.22) 

(8.23) 

(8.24) 

(8.25) 

Thus, the classifier's input derivatives are simply the negative sum over the increment of all reference 

vectors along all DP paths. The above relation establishes the close link between the classifier 

parameters and feature extraction at the local level. This relation is still valid if the distance a is 

any symmetrical similarity measure (for instance a Gaussian mixtures, in case of HMM). 

In light of the above, the increment 8嘉isgiven by 

Ni  
T I M ,f;t 

品=I:I:I:I:8r 
如，i

. -

t=l i=l j=l n=l 
対，n,i 如 (8.26) 
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T M 

= I:I:8r叶，nT
知 t
・_. 

t=l j=l 如

Filter bank parameter derivatives 

(8.27) 

釦 t,i
Here, the focus is on expanding the filter bank's parameter derivatives _ . These derivatives do 

8¢ 
not depend on the back-end classifier, but rather on the structure of the filter bank. Consequently, 

the formula displayed in below could be used on any recognizer which uses the filter bank model 

described in this chapter. The general chain rule is 

F 
釦 t,i OXt,i OWi,f 

如
= I: 一 一 ー

f=l 
如 i,f 珈'

(8.28) 
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— can be computed in a straightforward manner. Departing from the definition in (8.1), 
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which is the derivative of features Xt,i versus a weight wちf. -=-depends on the parameter type. 

枷
Its computation is described below on a case by case basis. 

Filter bank weight adjustment 

Let us consider the case in which¢is the weight of a given channel 2 at frequency j. That is, 

¢= w2,r This is the I-type training case where the filter bank weight are adjusted without keeping 

the Gaussian constraint. Let四j= exp(w2,J) From (8.3), it is straightforward that 

如if~
'=  

8布^ ＾
x(i, i) xU, f)wi,J 

i,f 

(8.31) 

where 

x(a, b)~{~ if a-/= b 

otherwise. 
(8.32) 

C enter frequencies adjustment 

Let¢represents the center frequency of a channel i. The perceptual mapping function being 

monotonic, the adjustment can be done done directly in the perceptual domain. Thus, let¢= 

ri = p(,i)-Again, p(・) maps the linear scale to the perceptual frequency scale. For Fi= exp(ri)-

it follows that 

awif ， ＿ 
ari 

-2/3'iい(ri-p(f)) wiJ x(i, i). (8.33) 
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Bandwidth adjustment 

Here cp is the parameter f3i of channel i. Again, let厨=exp(/3i:)-From (8.3), we have 

如 i,f喜＝噂(p('Yi:)-p(j))2四 1x(i,i). 

Gain adjustment computation 

¢is the parameter az of channel L For缶=exp(az), 

awi,f 
= Wi,f X(i, i). 

8面

(8.34) 

(8.35) 

The derivative of the weight versus the log of the gain within a channel is equal to the weight. 

8.5 System initialization 

DFE training is based on gradient search optimization. Consequently, a good initialization of the 

trainable parameters is advisable. That is, a reasonable initial setting is essential for the shaping 

and positioning of all of the filters as well as the classifier prototypes. Concerning the filter shape, 

each filter was initially set to a Gaussian function even in the I-type case where the filter weights 

were treated as independent coefficients. Concerning the filter positioning, two initial settings of 

frequency scaling were considered: the typical psychoacoustics-based scale called the Mel scale 

(Mel-scaling) and the linear scale (Linear-scaling). To embody the Mel-scaling, the following 

approximation equation, as provided by [Zwicker and Terhardt, 1980], was used 

p(f) = 2595 log1。(1+ f 珂）． (8.36) 

The Linear-scaling was simply implemented as 

p(f) = f. (8.37) 

In both the Mel-scaling and the Linear-scaling cases, the filter center frequencies were uniformly 

spaced on the corresponding frequency scale so as to cover a full range of possible frequency band, 

which is limited by the Nyquist sampling frequency. Moreover, to avoid discontinuity, the band-

width of each filter was selected so that adjacent filters crossed at the middle position between the 

corresponding centers. Gain factors were initialized at value one (1). Note that the same approach 

have been applied using the bark scale [Biem and Katagiri, 1994]. 

Fig. 8.4 depicts two example shapes, each with 16 channels, of the filter bank defined above: 

the top shape for the Mel-scaling and the bottom for the Linear-scaling. 

DFE training generates a new filter shape, even though the filter is initially set to the Gaussian 

function. Clearly, the number of trainable parameters within the G-type is much smaller than that 

of I-type case. For generalization capabilities, the number of training parameters must be small 

compared to the number of available training samples. However, the independent weighting case 
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Figure 8.4: Initial filter bank aligned in the Mel scale and the Linear scale. 

possesses much larger capability to design different filter shapes, which may lead to a better feature 

representation. This apparent conflict is a point to be studied in the later comparative experiments, 

though it may be rather difficult to find a general theoretically-proven solution. 

8.6 Vowel Fragment Recognition Task 

8.6.1 Task 

This section describes the application of the DFE-trained filter bank-based recognizer to the task 

of recognizing static vowel fragments, each extracted from a Japanese vowel segment by a short 

Hamming time window; T = l for all of the possible fragment patterns. This simple application 

was chosen mainly because it provided a tractable framework for the analysis of DFE behavior: 

the spectral characteristics of vowel sounds are rather well known. 

The number of vowel classes was five; i.e., /a/, /i/, /u/, /e/, /o/; M = 5. A database consisted 

of 500 phonetically balanced sentences spoken by 5 speakers (3 male and 2 female speakers) in 

a sound-proof room in order to extract 3,500 vowel fragment samples in total. Thus, the vowel 

patterns came from various spoken contexts with variability such as speaking rate, speaker vari-

ability and coarticulation. Half of the samples were used for training (design), and the other half 

for testing; i.e., 1,750 patterns for training and 1,750 patterns for testing. Training and testing 

samples were statistically balanced in terms of speaker and vowel class. That is, 70 samples per 

speaker and per vowel were used in the training stage as well as the testing stage. 

Digital representation of the speech waves was made at 12 kHz sampling rate and at 16 bits. 

Each fragment pattern was extracted by applying a 21 ms Hamming time window to the center po-

sition of a vowel segment, labeled by hand. The fragment was then converted to a 128-dimensional, 
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FFT-based power spectrum as input to a filter bank feature extractor (FFT was performed with 

256 points); F = 128. 

8.6.2 Experimental settings 

System 

Similar to other studies [McDermott and Katagiri, 1994], the number of channels of the filter bank 

was set to 16 (I= 16). Each filter was initially set to the Gaussian function form. The filter bank 

used in the experiments of this chapter are therefore the same as those illustrated in Fig. 8.4. 

Since the input pattern was static, a simplified version of the classifier structure comprising only 

one sub-phonetic state model for every class was used. However, since the number of prototypes 

within each state often determines the recognition accuracy and since it is rather difficult to deter-

mine the optimal number theoretically, four different settings of the prototype numbers per class 

was studied; i.e., 1, 3, 5, and 7. The prototypes were initialized by using k-means [Duda and Hart, 

1973] clustering techniques. The k-means procedure is an iterative clustering techniques, which 

selects a set of prototypes (each representing a cluster), minimizing the average distortion measure 

across the whole data set. In the case of an Euclidean distance, it can be viewed as a Maximum 

Likelihood estimation technique,. which uses single Gaussian model with unit variance. 

Training 

For every size of recognizer (every prescribed number of prototypes per class), the five types of 

DFE training was conducted, namely, Gc-training, Gb-training, Gg-training, GS-training, and I-

type training. It should be noted that in all of these cases, DFE training adjusts the classifier 

prototypes, as in [McDermott and Katagiri, 1994], as well as the filter bank parameters. More-

over, for comparison purposes, evaluation of the performance of two types of baseline training 

was performed: k-means clustering training that corresponds to the initialization cited above and 

MCE/GPD training that adjusts only the classifier prototypes with MCE/GPD after the initial-

ization. 

The gradient-based loss minimization of the DFE training and the MCE/GPD training includes 

several factors/parameters, such as the training rate and the order of presentation of the design 

samples. These factors must be experimentally or empirically selected and could result in somewhat 

different recognition performances. For every training case, several runs of DFE training were 

carried out by controlling the training factors. However, for presentation clarity, only the best 

recognition accuracy (lowest recognition error rate) for every training case, are presented. 

8.6.3 Results: general comments 

A summary of main experimental results are presented in Fig. 8.5 and Fig. 8.6 according to the 

selection of the frequency scale on which the filter bank is initially designed. 
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Fig. 8.5 shows recognition error rates for the Mel-scale-based initialization and Fig. 8.6 for 

the Linear-scale. The error rates are plotted as a function of the number of prototypes per class. 

Graphs in the figures clearly illustrate the results of the k-means clustering-based training, the 

MCE/GPD training and the DFE-based training methods. 

MCE training and k-means 

The k-means clustering training, which is based on the Minimum Distortion criterion, dramatically 

reduces the error rate as the number of prototypes increases. Careful observation also shows that 

the accuracy of the k-means clustering training method is affected by the selection of the initial 

frequency scale: the error rates of the Mel-scaling case are consistently about 5% lower than those 

of the Linear-scaling. 

The difference in error rate is rather clear between the k-means clustering training and the 

discriminative training, i.e., the MCE/GPD training or the DFE training. That is, with regards to 

important results over testing data, both the MCE/GPD training and the DFE training achieved 

about 13% (in the MCE/GPD training of the largest size classifier using the Linear-scaling ini-

tialization and in the DFE's I-type training of the smallest size classifier using the Linear-scaling), 

while the k-means clustering training produced about 19% (in the case of the largest size classifier 

using the Mel-scaling initialization). These results clearly demonstrate the effect of discriminative 

training. 

A particularly interesting finding over the discriminative training results is that the error rates 

on testing data are not clearly linked to either the number of prototypes or the selection of frequency 

scaling (initialization in the DFE cases). This is probably due to the discriminative nature of 

MCE/GPD or DFE that made the best use of the available prototypes so as to set class boundaries 

as accurately as possible in the feature vector spaces, each determined by the initial filter bank (for 

the MCE/GPD case) or the DFE-designed filter bank. 

DFE and classical MCE 

The differences between classical MCE/GPD and DFE training are not so large, i.e., at most 

about 2% increase in recognition rate. One possible explanation is that both training methods 

did not completely reached the desirable (global) minima of the empirical loss surface over the 

corresponding training data, in light of their adjustment principle, i.e., the gradient-based search 

optimization. In particular, different from the MCE/GPD training that adjusts homogeneous 

parameters, i.e., the prototypes, the DFE training adjusts heterogeneous parameters, i.e., the 

filter bank parameters and the prototypes, which can be difficult to handle in terms of parameter 

sensitivity control in the adjustment procedure. Another possible explanation is that both method 

has achieved near-to-the lowest possible error rate on the task. 
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Figure 8.5: Error rates versus classifier size for various configurations when using an initial filter bank 

aligned on the Mel scale in the vowel recognition task. 
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Figure 8.6: Error rates versus classifier size for various configurations when using an initial filter bank 

aligned on the Linear-frequency scale in the vowel recognition task. 
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Nevertheless, the results show that DFE is clearly superior to the k-means clustering and even 

to MCE/GPD training in terms of training efficiency, which means making good use of available 

system parameters in order to achieve as high recognition accuracy as possible. For example, let us 

compare the smallest Gc-trained (DFE-trained) recognizer case and the largest MCE/GPD-trained 

recognizer case (Fig. 8.5). The smallest recognizer using 96 trainable parameters (16 filter center 

frequency parameters and 80 classifier parameters (16 x 5 prototypes)) achieved an error rate of 

about 14%, which is slightly better than the rate of the largest MCE/GPD-trained system using 

560 trainable parameters (16 x 7 x 5 prototypes). This efficiency can be easily observed for most 

of the plots on the dotted (testing data) error rate curves. Indeed, DFE succeeded in reducing the 

system resource to 1/6, while keeping the high recognition accuracy achieved by the MCE/GPD 

training. Even if recent progress of hardware technology are alleviating the size limitation in system 

design, a small size system, added to the limited number of available resources, is an inevitable 

requirement in system development, which may addressed the DFE approach. 

Filter bank analysis 

As shown above, DFE is effective in terms of accuracy and training efficiency than the other two 

training methods in this particular context. One may expect here that this effectiveness is either 

due to the DFE's data-driven feature representation or to the use of classification information in 

feature extraction design. In other words, the DFE-trained filter bank is expected to find new 

reasonable features, which may be different from conventional ones. Therefore, analysis of the 

relation between the trained filter bank shapes and the input spectrum vectors was carried out. 

Fig. 8. 7 illustrates the DFE-trained filter banks in the case of the smallest classifier of one prototype 

per class. 

This figure is composed of five parts, with each part showing results of both the Mel-scaling 

and the Linear-scaling initialization cases. In the figure, the top left part presents the results of 

Gc-training, drawn as a function of filter center frequencies; the bottom left part presents results 

of Gb-training, focusing on the bandwidths of individual filters. The upper right part depicts the 

filter banks of which all center frequencies, bandwidths, and gains were simultaneously updated 

(GS-training); the bottom right part depicts the results of I-type training. All these results do 

not allow an easy analysis. In fact, due to the high dimension of the data, a simple observation is 

clearly insufficient for analyzing the details of the training mechanism, even if, as can be observed, 

the resulting filter banks are affected by their initial configuration. Furthermore, due to the local 

optimality of training, the results are not guaranteed to be truly optimal (in the sense of global 

optimality over training data). Nevertheless, through careful observations, it can found that the 

DFE training successfully updated the filter banks so as to use the class identity information of the 

spectrum vectors more effectively. 
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Figure 8. 7: Resulting filter banks after DFE optimization of various filter bank parameters in the context 

of 1 prototype/per vowel. 
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Let us focus on the results of GS-training using the Mel-scaling initialization (upper-right part 

of the figure). Most of the filters shift to the region lower than 3 kHz, and the filters that were 

originally wide are sharpened, increasing the frequency resolution of filter bank outputs. These 

changes must probably have appeared so that the filter bank could effectively extract features 

useful for classification, which originally existed in the region. Concerning the error rate over 

testing data, the GS-training using the Mel-scaling, achieved the lowest error rate of about 14%, 

within the one prototype per class system structure. 
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Figure 8.8: Formant location in the training data aiming at vowel recognition. 

To verify the physical validity of the GS-trained filter bank, investigation of the formant location 

of vowel fragments in training data was done. Formants are known to be important for vowel 

classification. Fig. 8.8 shows a histogram of the lower 3 formants as represented in training data. 

The formants were estimated by using an LPC-based root finding method, followed by human 

verification. The values of formants span the 0-4 kHz region, and in particular, most of them 

exist in the region below 3 kHz. It could be argued that there is a strong correlation between the 

GS-trained filter bank shapes and the formant distribution. On the other hand, the filter bank 

in the Cc-training using the Linear-scaling initialization showed only minor changes. Also, in the 

Mel-scaling case, the Cg-training provided the large gain in the frequency region higher than 4 

kHz, where no important formants exist usually. It seems that, in order to represent the class 

information included in the input data, DFE updated the filter bank feature extractor (together 

with the classifier), by using the 16 filters as effectively as possible, according to the degree of 

freedom available within each channel-filter. However, the DFE training may have suffered from 

sensitivity to training parameters due to the heterogeneous selection of parameters in the filter 

bank feature extractor and the prototype-based classifier, thus not leading to the best status of the 

filter bank. Nevertheless, in general, it may be able to argue from Fig. 8.8 that DFE successfully 

adjusted the filter banks so that they could selectively extract the useful information. 
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8.6.4 Detailed analysis of the filter bank 

Center frequency optimization 

The center frequency adjustment tries to find the optimal spacing method, given a fixed bandwidth 

and a fixed gain. Obviously, the process may produce a non-uniformly spaced filter bank model 

showing an accumulation of filters in those regions relevant to discrimination. However, a fixed 

bandwidth may result in non-covered region in spectrum. 

The results for an original spacing in Mel and linear frequency domain is shown in Fig. 8.7. 

Concerning the Mel domain, one can see that main changes occur in the F2 domain where the 

center frequency of the 7th bandpass filter has moved to the location of the 8th filter, resulting into 

an emphasis of the F2 region. Most filters in the F3 domain has also moved closer to emphasize the 

F3 region. Center frequencies of the region above 4 kHz have moved to higher value which means a 

de-emphasis of this region. No changes in the Fl region. This is consistent with the performance: 

12.0%/14.1 % error rate on the training/testing set compared to 12.6%/15.0% achieved by the 

baseline recognizer. 

The linear frequency scale did not show significant changes as can be seen in Fig 8.7. The 

frequency has been sorted in ascending values after optimization. The filter bank has remained 

rather linear with small shift of frequency in the 1.5-2 kHz region and the small emphasis of the 4.5 

kHz region by the 13th filter getting closer the 12th filter. This is consistent with the performance 

obtained: similar to the baseline in the training set with rather better generalization in the testing 

set. 

Bandwidth optimization 

Results for bandwidth optimization are shown in Fig 8.7. A uniformly spaced bandwidth model 

in the Mel domain resulted in a model showing larger bandwidths in the higher frequency regions. 

While, most filters in the region below 1.5 kHz remained relatively stable, the region above 3 kHz 

displays the most noticeable changes: the last 2 filters have seen an increase in their bandwidths 

and the 12th and 14th filter have seen a decrease in their bandwidth values. The model has shown 

a rather poor generalization 14.4% on the testing set in contrast to the rather good performance 

on the training set: 11.9%. This may be explained by the fact that a narrower filter bank signifies 

a selection of single frequencies which may no lead to accurate generalization. 

In the linear-scale case, when looking at the bandwidth value versus the center frequency of the 

channel in Fig 8.7, one can notice that most bandwidth values have decreased to lower values. As 

said before, the process may result in an emphasis of center frequency in detriment to regions. This 

may explain the relatively high recognition in rate in the training set (11.0 %) while exhibiting 

a poor generalization (14.4%). The same phenomena was noticed in Mel-scale based bandwidth 

optimization task. 
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Gain factor optimization 

Looking at Fig 8.7, in the Mel-scale domain, the gain optimization has resulted in an significant t 

emphasis of the energies of the filter in the region above 4 kHz as well a rather noticeable emphasis 

of the 2-3 kHz region. However, the performance are rather close to the baseline method. This could 

be explained by the use of logarithm, which compresses the output of the filter bank. Consequently, 

only higher gain changes have any noticable effect. 

The linear-frequency-gain optimization has resulted into an emphasis of 2-3 kHz region and 4-5 

kHz region。 Although,as in the Mel scale, the modification are relatively small: a value of 1.27 

for the 14th filter is the maximum. As in the Mel-scale, this may explain the fact the model show 

similar result in the training set with the baseline system (12.4%) while proving a slightly better 

generalization (14.8%). 

Weighting optimization 

The "weighting" optimization (I-type training) task resulted into sharper filters which tend to select 

single optimum frequencies instead of spectrally meaningful regions for both frequency scale. In 

particular, the harmonic structure of the spectrum is exposed. 

In the Mel-scale domain, the 9th filter which did not show any significant changes in. the pre-

vious optimization cases, seems to single out its center frequency. The 13th filter which has shown 

a decrease in its bandwidth as well its gain in the previous optimization cases, now exhibits an 

emphasis on two single frequencies. Thus, the process has resulted into a relatively poor general-

ization: similar result was obtained on the testing set with the center frequency optimization case 

while showing a good performance on the training set: 10.9%. 

Using linear scale, one can observe that the Gaussian form of the frequency response of the 

filters have been modified into wider filters with emphasis on frequencies in the 0-7 kHz and 1-

2 kHz region (Fl region). This new set of filters seems to be more efficient filter bank model 

according to its performance: 10.5% error rates on the training set and 13.4%error rate on the 

testing set. This results contrast with the Mel-scale task, in which weighting optimization have 

shown a relatively poor generalization. 

Center, bandwidth and gain simultaneous optimization 

Optimizing center, bandwidth, gain at the same time may help provide a globally efficient model. 

Again, this is the GS-training scheme. 

Fig. 8. 7 shows the adjusted filter bank model using Mel-Scale. The frequency spacing has 

been modified to produce a model which spans a smaller frequency range: 0-4 kHz. Moreover, the 

model clearly puts emphasis on the F2 and F3 regions by appropriate shift of center frequencies 

while showing a decrease in the bandwidth and a rather stable gain values. This may explain the 

relative good performance achieved by the model: 12.1 %/14.1 % on the training/testing set. 
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In the linear-scale, the spacing is rather different from the spacing obtained when optimizing 

the independent center frequency optimization case. One can notice the accumulation of center 

frequencies in 1.5 kHz region (F2 domain) and 2-3 kHz region (F3 domain). Furthermore, most 

filters have become narrower. The center frequencies of the last two filters have move to higher 

value. This signifies that the two filters do not cover the frequency range of interest. It could be 

said that the new filter bank model has a lower number of filters: 14 precisely. 

GS-training of filters bank parameters, significantly affects the spacing of the filter model as 

well the spanned frequency range. On average, GS-optimization appear to perform better than 

when optimizing each parameter independently. 

8.6.5 Classifier and filter bank interaction analysis 

The nature of the interaction between the filter bank extractor and the classifier and the way 

both modules collaborates in order to reduce the errors at the output of the recognizer may be 

grasped by studying the modification of the filter bank according to the number of parameters of 

the classifier. A richer classifier may be sufficient in achieving satisfying performance. This signifies 

less need to alter the original filter bank model. An estimate of the filter bank modification can be 

given by calculating for each parameter of the filter bank model (ai, /3i, "Ii), the gap between the 

modified value and the original value of the parameter and averaging these gaps across the number 

of parameters in the model. This estimate is referred to as the degree of filter bank modification 

(FBMOD)). 
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Figure 8.9: Filter bank modification versus the number of prototypes in the classifier. 

modification (FBMOD) is a equal to the average distance across all parameter of the 

original model. 

The degree of 

model to the 

Fig. 8.9 shows how the FBMOD varies as function of the number of prototypes per category 

in the classifier when optimizing all parameters at the same time, in the Mel scale and the linear 
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scale. As expected, the FBMOD decreases when the number of prototypes increases. The Mel 

scale-based filter bank model has required less modifications than the linear scale based one. These 

results show how sensitive DFE is to the original design of the filter bank model. 

8. 7 Directory Assistance Task 

8.7.1 Task 

The framework is the design of a system which recognizes Japanese persons'names and forwards 

calls to staff members within the ATR laboratory. Thus, the system is intended to act as an 

automatic switching operator in charge of accepting spoken names and making connection to the 

recognized persons. The point of interest is to improve the speech recognition accuracy of the 

system by applying the DFE training and test the DFE ability on a more challenging and practical 

task. 

Data were automatically collected in an office environment by a system that periodically called 

staff members to repeat 5 randomly selected names. Each name utterance was therefore spoken in 

the isolated word mode. The process produced 684 utterances in total from 47 speakers (3/4 of 

whom are male) .. 570 utterances were used for training and 114 for testing. The utterances were 

phoneme-labeled using their transcriptions by a segmental k-means clustering procedure [Juang and 

Rabiner, 1991]. The labels created by this process were then verified through human correction. 

The segmental k-means procedure is an iterative procedure which realizes an optimal segmentation, 

in minimum distortion sense, of a given body of training utterance. The segmentation is achieved 

by finding the optimal state by the Dynamic Programming and, after clustering the speech frames 

along this optimal path, estimate new models by performing clustering within each state。 Itis, 

thus Maximum Likelihood Estimation procedure (see Chapter 9 for further details on the segmental 

k-means procedure). 

The speech signal, coming from the telephone transmitter, was digitized at 8 kHz sampling rate 

and at 16 bits. To compute the acoustic vectors (inputs to the filter bank feature extractor), a 

Hamming window of 21 ms was shifted over an input speech utterance every 5 ms. At each window 

position, a segmented utterance was converted to its corresponding 128-dimensional FFT-based 

power spectrum-vector (:F = 128). 

8. 7 .2 Experimental settings 

system 

In this experiment too, 16 channel, Gaussian-shaped filter bank; I= 16 was used. The filters were 

placed so as to cover the 0-4 kHz frequency range, and their gain values each were set to one (1). 

For classification, 26 context-independent phoneme models was considered. This phonemic set 

corresponds to the 5 Japanese vowels, 20 consonants (/b/, /ch/, /d/, /f/, Jg/, /h/, /j/, /k/, /m/, 
/n/, /NJ, /p/, Jr/, /s/, /sh/, /t/, /ts/, /w/, /y/, /z/) and silence. Since the input utterances 
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are essentially dynamic, the length of input vector. sequence is changeable; T depends on each 

input word. Unlike the work in the vowel task, which was selected for a detailed comparison study, 

pre-selected settings foi" the number of states and the number of prototypes was used; That is, each 

phoneme model consisted of 3 states, each being associated with 2 prototypes. 

Training 

As in the previous task, 7 types of training was conducted. 1) baseline training using the segmental 

k-means clustering, which is the Minimum Distortion Estimation, 2) baseline training using the 

MCE/GPD training, 3) Gc-training, 4) Gb-training, 5) Gg-training, 6) GS-training, and 7) I-type 

training. However, for simplicity, only the Mel-scaling initialization was used in this task. In all of 

the training cases, the filters were therefore initially aligned as shown in the top illustration of Fig. 

8.4, but covering the 0-4kHz bandwidth. In the baseline MCE/GPD training, the filter bank was 

fixed and only the classifier prototypes were re-trained. In the 5 DFE-based training cases, both 

the filter bank parameters and the prototypes were adjusted jointly. 

8.7.3 Results 

Controlling several training factors such as the order of training sample presentation, several train-

ing/testing runs were carried out. All training cases, except the GS-training, quite successfully 

converged to the almost perfect accuracy over training data. 

Fig. 8.10 shows the lowest error rates for all training cases, except the GS-training. The GS-

training that jointly adjusted the three kinds of parameters of the Gaussian filters failed to converge 

appropriately, and therefore, its results is not shown in the figure. This non-convergence may be 

related to the difficulty of selecting right training parameters within gradient-based optimization. 

In the figure, except the rather limited result ofI-type training, which may be due to the problem 

of the high number of system parameters (over-learning problem), the results clearly showed the 

utility of DFE as a whole. All DFE training cases using the G-type filters, i.e., the Gc-training1 

the Gg-training, and the Gb-training, improved the result of MCE/GPD training, i.e., 7.9 % over 

testing data, and in particular, the Gg-training achieved 5.3 %. Also, a comparison between the 

training and testing data results suggests the validity of the DFE-trained filter banks. Over training 

data, the achieved error rates of DFE were almost the same with that of the MCE/GPD training. 

However, there is a clearer differences in error rates over testing data between the MCE/GPD 

and DFE training cases. Then, it may be argued that this phenomenon was due to the effect of 

the classification-oriented filter bank that was realized by the DFE training. DFE succeeded in 

designing the feature space that was more relevant (essential) to classification, and thus achieved 

the lower error rates over the unknown testing data. 
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Figure 8.10: Experimental results of the directory assistance task for various adjusted parameters. With 
a 95% confidence interval the the histogram corresponds to the following error rates. Baseline MLE: 
7.9%+-0.0495. Gc-training: 7.1 % +-0.0471. Gb-training: 6.1 % +-0.0439. Gg-training: 5.3% 
+-0.0411. I-type training: 9.7% +-0.05431. 

Filter bank analysis 

Fig. 8.11 displays the resulting filter bank model after optimization. One can notice that the 

optimized model differs from the vowel optimization case. In the first three optimization cases 

(center, bandwidth and gain), the filter bank model has put an emphasis on higher frequency 

region. In particular, in the center frequency optimization case, re-spacing occurred only in the 

2.5-3.5 kHz region and Gain optimization tends to decrease the energies of the 1-2 kHz region. 

However, unlike the vowels recognition case, it is quite clear what are the important features here. 

It can be observed that, the "weighting optimization" did not out-performed the baseline 

method. This could be explained by the fact that the use of a richer classifier structure adds 

to the complexity of the system : antagonist influences are likely to occur when using various type 

of parameters. For instance, the "weighting" optimization has almost kept the Gaussian form of the 

frequency-response with slight modifications in the lower frequency region. It could be seen that, 

the resulting model has changed the spacing of filter: filters have moved to the lower frequency 

region. This is in contrast with the individual parameter optimization case which rather emphasize 

the higher frequency region. 

These results are not similar to the vowel recognition case and confirm the fact that the relevant 
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parameter is task-dependent and classifier structure dependent. Also, the initial set of reference 

vectors, here based on 8 kHz sampling rate, may have an influence in the resulting model. 

Mel scale-based bandwidth optimization task 
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Figure 8.11: Experimental results of Mel-scale based filter bank optimization task in the directory 

assistance task. 
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8.8 Conclusion 

In this chapter, experimental evaluations of the Discriminative Feature Extraction design method in 

speech pattern recognition tasks using a particular system structure, which consists of the filter bank 

feature extractor and a multi-prototype distance classifier with state-transitions, was described. 

DFE determines all of trainable parameters of the overall recognizer using a single design criterion 

of reducing a smoothed recognition error counts. First, evaluation of DFE for single vowel frame 

pattern recognition task was done and detailed analysis of the DFE-trained filter bank within the 

context of this simple task was carried out. Investigation was performed by controlling experimental 

settings such as the number of prototypes and different frequency scale initializations, namely the 

linear and the Mel scale. Observation of the DFE-designed filter banks showed that, in certain 

cases in which the spacing of the filter bank is a free parameter, the training appropriately focuses 

on the formant region, which is considered relevant to vowel categorization. Second, the capability 

of DFE was tested in the more realistic and difficult task, called the ATR directory assistance task, 

which consisted of recognizing names over the telephone. DFE was compared to the segmental 

k-means clustering and the MCE/GPD training, and it successfully achieved the lowest word error 

rate of 5.3 %. However, analysis of the filter is rather difficult in this situation. The results in this 

chapter enlighten the utility of DFE in the common selection of a filter bank. 
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Chapter 9 

Discriminative Feature Extraction 

Applied to FFT-based Cepstral 

Parameters 

One, must pursue the tree to all its root fibers 

-Carl Friedrich Gauss-

In previous chapter described the application of Discriminative Feature Extraction to designing 

various fi.lter bank parameters aiming at minimum classifi.cation error. Here, an extension of this 

approach is presented for readjusting Mel frequency cepstral coefficients (MFCC), which is the 

most widespread speech parameterization method in the speech research community. The use of 

cepstrum is motivated by the fact that it provides a good compactness of information by appropriate 

decorrelation of features while representing local spectral properties. 
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9.1 Introduction 

Cepstrum coefficients, either based on filter bank or LPC model of speech, constitute the most 

widely used speech parameterization method. Cepstrum parameterization derives from homomor-

phic signal processing techniques, which provides a convenient way to separate the influence of 

the source from the vocal tract in the source/vocal tract model of the speech production. Thus, 

making use of cepstrum coefficients ensures a good compactness of information by representing 

with few parameters the general aspect of the estimated speech spectrum. Also, cepstra produce 

decorrelated features without specific use of data statistics. This is particularly useful in the FFT-

based estimation of the speech spectrum, where the original spectrum is first smoothed through 

a set of overlapping filters, which leads to a high degree of correlation among the components of 

the filter bank output energies. Thus, the experiments described in the previous chapter bear this 

shortcoming. 

The matrix performing the transformation of the filter bank output energies into cepstral pa— 

rameters is chosen a priori. Consequently, for filter bank-based cepstrum, performance depends 

on appropriate design of the filter bank. Most filter bank-based cepstrum applications have relied 

on the perception-based Mel scale (e.g. MFCCs). However, the relation between percept叫 ly-

motivated feature extraction and statistical pattern recognition remains unclear. Perceptually-

motivated cepstral parameters may not be the optimal features within the framework of statistical 

speech-pattern recognition. 

In this chapter, the study of the previous chapter is extended by designing a filter bank model 

using a cepstral distance measure at the frame-level [Biem and Katagiri, 1997b; Biem and Katagiri, 

1997a]. Again, in a manner similar to the previous chapter, the study was done in three steps. 

First, a vowel fragment recognition task was carried out with the motivation of analyzing the 

inherent characteristics of DFE-optimized cepstrum. Second, the target is word recognition using 

telephone-speech. In this latter study, the focus is on a particular aspect of the DFE training, 

that is, the level at which training should be performed. For a word-recognition target, the system 

usually uses a loss, which reflects the error at the string level. However, it was seen in the previous 

chapter that DFE acts sequentially in the frame by frame mode. Thus, for a DFE-based feature 

extractor to be efficient, there is the need to consider local-frame errors in the optimization scheme. 

The second part of this chapter is devoted to this study. 

The third part studies various DFE implantation in the context of word-modeling by contin-

uous HMM. Here, the phonetic-based approach is replaced by word-level models. First, a joint 

MLE/DFE technique is investigated, in which MLE is performed on DFE-based features. Second, 

an implementation of DFE which embeds dynamic features, in the form of regression coefficients 

is carried out. 
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9. 2 Filter Bank-based Cepstrum 

In filter bank modeling of the speech spectrum, the cepstrum is computed at the output of the 

filter bank. In a manner similar to the previous chapter, the filter bank model simulated on 

the DFT domain by weighting of the DFT bins with the magnitude frequency response of the 

filter. Thus, for a sequence of speech spectral vectors s『={s1, .. ,,st, .. ,,s7} in which St= 

[st,1, 
T ... , St,f, ... , St,F] is the magnitude spectrum of the frame (short time window position); 

St,t represents the J-th element of frame-vector. F is the maximum frequency. As seen in the 

previous chapter, an I-channel filter bank model transforms each St into a lower dimensional vector 

叫=[xt,1, ・,,, Xt,i, • ・ •, Xt,J戸suchthat an output feature xぃisthe windowed log energy of the i-th 

channel: 

叩 ~log10(L叫，1s,,1) for i = 1, ... , I, 
/EB; 

where Bi represents the channel interval and wら/the weighting at frequency f provided the ith 

filter. 

From the vector of log energies, the cepstrum vector Ct = [ct,1, ... , Ct,q, ... , Ct,Q戸iscomputed 

via an inverse discrete cosine transform (IDCT). The DCT has its origin in signal interpolation. 

Various implementations of the DCT are available in the literature. the following implementation 

is used, as proposed in Mermelstein and Davis [Mermelstein and Davis, 1980]: 

(9.1) 
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for q = 1, ... , Q, where Q is the number of cepstral coefficients. In this chapter, the cepstrum vector 

Ct is the input feature to the classifier. In cepstral terminology, q is referred to as the quefrency (see 

Chapter 7). The inverse DCT implementation of (9.2) can be viewed as a linear transformation 

of filter bank output energies, in which the transformation matrix is fixed. The above definition 

of cepstrum is somewhat different from the standard definition of the cepstrum as described in 

Chapter 7 (see also [Rabiner and Schafer, 1978] for detail). That is, the cepstrum is computed 

by performing the inverse Fourier Transform on the log spectrum~However, implementation of 

the cepstrum as displayed in (9.2) is the standard approach in speech recognition, and is believed 

to convey the significant information needed in speech application task. The cepstral production 

process is labeled as :F(・; 8) where 8 is a set of trainable control parameters. Thus, for a sequence 

of spectral frames, s『,the feature extractor output is a sequence of cepstral vectors c『=:F(s『;8). 

The type of cepstrum depends on the underlying filter bank since the DCT is chosen a pri-

ori. Various standard cepstral parameterization methods are derived by appropriate choice of the 

frequency scale which determines the particular filter bank setting. For instance, using a linear 

frequency scale, gives birth to linear filter bank cepstral coefficients. A Bark scale produces Bark 

filter bank cepstrum coefficients (BFCC) and a Mel scale mapping generates Mel cepstral coeffi-

dents (MFCC) [Mermelstein and Davis, 1980]. All these cepstral parameters enjoy a widespread 

use used in speech recognition. 
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In contrast to filter bank output energies, cepstral coefficients displays less correlation. Fig. 9.1 

displays the correlation matrix of the Mel-based filter bank output energies and MFCC taken frorn 

a database of vowel sounds. It can be seen that MFCC are less correlated than filter bank output 

energies and thus carries in a compact form the signal properties. This property of the cepstrum 

rnay explain its widespread use in HMM-based speech recognition system. The cepstral coefficient 

can be seen as approximating a principal component analysis transform [Pols, 1966], without the 

need to compute the covariance matrix. 

Furthermore, particular quefrency terms carry different type of information. For instance, 

the low quefrency terms correspond to short terrn correlation in the signal (vocal tract shape, 

spectrum envelope) and rnaxirna of higher quefrency terrn correspond to long-term correlation of 

the signal, such as pitch. In speech recognition, usually, only lower quefrency terms are taken into 

consideration. That is, Q < I, in the definition given in (9.2). A trade-off takes place concerning 

the optimal values of Q and I. Usually, higher values of I are chosen so as to have a good frequency 

resolution of the spectrum. Another property of the cepstrurn is that, due to use of a non-linear 

operator (logarithm function), the cepstrum is believed to be robust to certain type of noise and 

signal distortion [Rabiner and Schafer, 1978]. 

9.3 DFE-based Design 

As said before, the type of cepstral parameter depends on the setting of the filter bank. In particular, 

filter bank designed on the Mel-scale, that is, MFCC have become the standard cepstral-based 

feature parameterization in most speech recognition systems, due to the good results obtained by 

Mermelstein and Davis [Mermelstein and Davis, 1980] in a word recognition task. Other studies 

have shown conflicting results. Leung [Leung et al., 1993] reported rather good results for BFCC 

in a phonetic classification task for clean and telephone speech. However, the fact remains that 

MFCC seem to be the standard speech parameterization method. 

Improvement of the cepstral representation can be achieved by designing the filter bank using the 

DFE approach, in a manner similar to Chapter 8. Again, for practical requirement and commodity 

of gradient-based optimization, as was done in Chapter 8, the magnitude response of the filter wちf

inりthchannel is constrained to a Gaussian-form: 

Wi,f =叩exp[一店{p('Yi)-p(J)ド], for i = 1, ・ ・ ・, I, (9.3) 

for i = 1, ... , I, where the trainable parameters店>0 and ri determine bandwidth and center 

frequency, and°'i is the trainable "gain" parameter in the i-th channel. p(J) maps the linear 

frequency f onto the perceptual representation. Usually, MFCC are implemented using triangular 

filter uniformly spaced on the Mel frequency scale. However, the use of Gaussian filters does not 

show a fundamental difference in the cepstral representation. The block diagram of cepstrum 

optimization by DFE is shown in Fig. 9.2. 

DFE-based optimized filter bank cepstrum coefficients (DFCC) are designed by appropriate 
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Figure 9.2: Block diagram of DFE-based cepstrum optimization. 

optimization of center frequency, bandwidth and gain. To find the relevant parameter and reduce 

the complexity thereof, each parameter could be adjusted independently while others are fixed. 

Thus, center frequency-optimized cepstrum coefficients (C-DFCC), bandwidth-optimized DFCC 

(B-DFCC), gain-optimized DFCC (G-DFCC) and weighting-optimized DFCC (W-DFCC) could be 

designed by such a method. Here the term "weighting" refers to optimizing each frequency weight 

without keeping the Gaussian constraint. For generating a globally efficient model, a simultaneous 

optimization of center frequency, bandwidth and gain (S-DFCC) could be carried out. 

9.4 Classifier Structure 

In the experiment described in this chapter, two types of classifier were used: the PBMEC, which 

was described in Chapter 8 and continuous hidden Markov models (HMMs). Here, the HMM 

structure is described as applied within the DFE framework. See (8.3.1) for more detailed expla-

nations concerning PBMEC. Again, the main difference, between HMM and PBMEC is the use 

of the probability density function as "similarity measure" to a state of the system added to a 

probabilistic transition from one state to another. 

A category (phoneme/word/sentence) is represented as a string of phonetic models, in which 

each phonetic model consists of a concatenation of sub-phonemic states. However, in the letter 

recognition experiment later described, an HMM is assigned to each letter. 

Let c『={ c1, ... , cT} be a sequence of cepstral vectors belonging to class Ck・Given a cepstral 

vector Ct, its "distance", in the HMM framework to state心is

N心

広 (ct)=如(ct)=互叫，nN(ct,μ 心，n,立）， (9.4) 

whereμ ぃisthen-th means in state心andN心isthe number of mixture components in the state. 

Sぃisthe covariance matrix associate with then-th mixture within the state心.The set of mぃ
are the mixing weights satisfying the constraint 

N,μ 

こ叫，n= l. (9.5) 
n=l 
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N(ct,μ ゅ，n,lら，n)is the well-known multi-variate Gaussian density defined as, 

N(ct,μ ゅ，n心） = 1 exp (-! (Ct -μ ゅ，n)心心，nー 1(ct-μゅ，n)).
(27T)各図，nJl/2 2 

Let炉＝｛吋外…，ゅ?-}, be the best sequence of states found by the Viterbi procedure for 

category C j and叶correspondsto the state occupied by the cepstrum-vector Ct along this path. 

The probability of the model generating this sequence, given the path叫 isdefined in terms of 

the observation probabilities bゅ(ct)and the state-to-state transition probabilities aij・That is, 

(9.6) 

T 

Pr(c[;AI炉)= II a'I/Jぃ凸(Ct).
t=l 

The discrimination measure corresponding to a category C j is simply the log of the likelihood 

along the path, which gives, 

gj(c[; A) log(Pr(c『;Al炉））
T T 

I:loga心L1ゅ； + Llogbゅ{(Ct). 
t=l t=l 

(9.7) 
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The discrimination function 9k(c『;A) of the correct category is simply the log likelihood along the 

Viterbi path, given the transcription. 

9.4.1 Segmental k-means for ML  estimation 

It can be seen that the above formalism does not consider the likelihood of the model but rather the 

likelihood along the best path as found by the Viterbi algorithm. This is a simplification scheme 

which may be justified by the observation that, in practice, computing the likelihood along the best 

path approximates well the overall likelihood of the model. 

Within this Chapter, the discriminant function of (9.9) was also used for Maximum Likelihood 

Estimation, instead of computing the Likelihood over all path of the HMM. That is, MLE is 

implemented through the segmental k-means algorithm [Juang and Rabiner, 1991]. 

The usual EM (or Baum-Welch) procedure estimates A at each iteration so as to maximize 

log(Pr(c『;A)). 

This maximization is a hill-climbing process which leads to a local optimum. Let ¥JI be any state 

sequence along the HMM. The segmental k-means focuses on maximizing 

max log(Pr(c『;Ajw)) 
屯

relatively to A. Thus, the segmental k-means includes two steps: a segmentation step for finding 

the optimal state sequence and an optimization step for optimizing the likelihood along the optimal 

state sequence. The segmental k-means can be viewed as an extension of Viterbi training [Bahl et 

al., 1983]. 
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The EM algorithm, through the Baum-well instantiation and the segmental k-means are both 

optimal in the sense there are proof of convergence for both [Rabiner and Juang, 1993]. The 

segmental k-means, however, is more simpler with lesser computational difficulties. Consequently, 

it is the method used here ML estimation. 

9.4.2 Structure-dependent misclassification measure 

In the framework of PBMEC, the misclassification measure is defined as the simple difference, 

d, げ(・『;e) ;A)~d, (c『;A)~9k (c『;A) -{ M~1 t, gj (c『;A戸｝ュ， (9.10) 

Again, ~is a positive number which controls the relative contribution of the classes considered. In 

this chapter, ~ → oo, which is equivalent to implementing a strict MCE scheme. In the case of 

HMM, as suggested by [Chou et al., 1992], the misclassification measure takes the form 

d, (:F (s『；e) ;A)~-g, (c『;A)+log{M~l 旦 e9,(c『,A){ r- (9.11) 

In this later case, the anti-discrimination function is defined as 

g万(c『； !I>)~log { M~l 旦げ,(c『,A)ど『 (9.12) 

9.5 DFE Optimization 

An important issue in phonetic-based word or sentence recognition is the level at which training 

should be performed (string-level, phoneme-level or frame-level), especially when labeling infor-

mation is not available. A string-level training will ensure that the correct string (i.e., a list of 

phonemes) displays the optimum discriminant function, regardless of the error that may occurs for 

individual phonemes composing the string. String-level training is the natural level of optimization 

since it is closely related to the target task (word/sentence recognition). 

Thus, in the classical MCE application to word recognition [Rainton and Sagayama, 1992], the 

error is defined for unrecognized string, even if some frames are mis-aligned by the DP process. 

However, DFE acts in a frame-by-frame mode, thus processing sequentially the incoming frames of 

an utterance. This means that local frame-errors may be of importance within the DFE process. 

Those frame-errors are not provided in a direct manner by the string-level optimization scheme, 

which focuses on the final score of the string. 

Clearly, the filter bank should produce cepstrum values that are close to the corresponding 

model state, given the current frame. Thus, a frame-level optimization of the overall recognizer, 

was here investigated, along the line given in [Chen and Soong, 1994]. That is, the filter bank was 

optimized for each frame that causes a deviation from the correct path. 
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9.5.1 St . ring-level opt1m1zat10n 

For a pattern c[ of category Ck, the normalized misclassification measure dk (c『；<I>) which reflects 

the overall string error, for instance using PBMEC, is defined as 
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(9.13) 

where l is a positive number which controls the relative contribution of the classes considered. 

Theoretically, M denotes the total number of categories (the vocabulary size for a word recognition 

task or the number of potential sentences in a sentence recognition framework). Usually, for large 

task, M refers to the best competing categories are found by the N-best Viterbi decoding [Chou 

et al., 1993]. 

The reader should remember that for word or sentence recognition, an utterance is modeled as 

a concatenation of phonemic models. Thus, the misclassification measure above considers the error 

at the string-level since the discrimination function is the result of a summation of local scores 

along the best Viterbi path. 

The misclassification measure can be written in the more general form 

dc(c『；4>)=1-
叫e『；<I>) 

縣 (c[;<I>)'
(9.14) 

where g万(c[;<I>) is defined in (8.13) for PBMEC and in (9.12) for HMM. Again, ~ → oo, which, are 

said previously, is equivalent to implementing a strict MCE scheme. In this case, the gradient of 

the string-level loss is given by 

況(c『;<I>) 

8¢ 
= C'(dk(c『;<I>)) I: I: T 狐 (c『；<I>) 8D対位）．

j==k,j==kt==l 
8D叫(ct) 枷

(9.15) 

The above adjustment only considers two competing categories: the correct category and the 

recognized category. 

As already stated, the advantage of using a normalized misclassification measure is that the 

interval spanned by the misclassification measure value is much more narrower, thus, enabling 

efficient learning by a classical sigmoid loss. The main drawback is that the normalized misclassi-

fication measure introduces an asymmetry in the learning process, thus gradients of the recognizer 

parameters that belong to both the correct and the incorrect path do not cancel out. From (9.14) 

and as illustrated in Fig. 9.3, it can be seen that all phonetic models belonging to the correct path 

and the ones belonging to the incorrect path are updated at each data presentation. Consequently, 

acoustic models that belong to both paths are updated twice. i.e, within the correct path and 

within the incorrect path. This is likely to complicate the filter bank optimization scheme since a 

frame is supposed to belong to a specific acoustic model and may lead to non-convergence. Another 

observation is that, when using the strict MCE, the best path changes in an uncontinuous manner, 

which may result in a less smooth optimization scheme by the DFE process. 
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Figure 9.3: String-level optimization using a normalized misclassification measure. When using a 

normalized misclassification the gradient of the loss for models that belong to both paths do not cancel 

out 

Note that the problems mentioned above only occur in the context of a normalized misclassi-

fication measure. For a classic misclassification measure, the gradients of the loss cancel out for 

models belonging to both the correct path and the incorrect path, given a frame, thus producing a 

balanced learning for the overall recognizer. 

9.5.2 Frame-level optim1zat10n 

The frame level is an attempt to redress the asymmetry effect encountered in the string-level 

optimization when using a normalized misclassification measure. The idea is to use a loss, which 

reflects local mismatches along the correct path and the incorrect path at a given frame and only 

update the models for those mismatches. For the frame level optimization [ Chen and Soong, 1994], 

the loss is the sum of a local frame-based losses: 

T 

鱈 (c『;<I>))=I: パ砧(c讀））
t=l 

(9.16) 

where 

万
D -;;;(cり

仇(Ct;<I>) = 1 -
ゆt

D心戸(cリ

represents the local misclassification of the t-th frame. The local misclassification measure takes into 

consideration the mismatch at the frame level between to the paths, which result into a smoother 

(9.17) 

transition of DP path between iterations. 
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Figure 9.4: Frame-level optimization using frame-based normalized misclassification measure. 

models that do not belong to both path are updated 

Only 

The frame-level optimization is illustrated in Fig. 9.4. It can be seen from this figure and from 

(9.16) that only phonetic models belonging to different paths, given a frame, are updated (the loss 

value is chosen to be zero for negative misclassification measures). Consequently, the filter bank 

parameters are updated according to those frames that have produced the mismatch between the 

two paths. This is believed to give consistent phonetic information to the filter bank optimization 

process. The frame-level optimization, as presented here, is quite similar to the optimization scheme 

introduced in [Mellouk and Gallinari, 1994] in the context of a hybrid NN and DP matching. 

The obvious drawback of the frame-level optimization is that the error is not directly linked to 

the string-error, which is the prime target. However, based on the assumption that lesser frame-

errors imply lesser string-errors, the frame-level optimization may result in more robustness. 

9.5.3 Classifier's parameter adjustment 

A similar optimization as shown in Chapter 8 was carried out. For PBMEC, the detailed adjustment 

of classifier parameters is described in section 8.4.1. Here, the focus is on describing the HMM case. 

The HMM is characterized by various parameters such as means, variances and mixtures. In this 

report, only the means were updated while the variances and mixtures remained unchanged. The 

adjustment rule for the means is as follows: 

罰，n[T]=μ ゅ紐[Tj-E泣μ叶，元 (9.18) 
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Again, E7 is a small, monotonically-decreasing, positive number at T (the training rate), andμi [r] 
心t,n

denotes the status ofμ 叫，n at T. Using the chain rule of differential calculus, 

叫 Ln = -u'(dk(c『;A)) Ykjb: ニ）N(ct,μ ぃ心）エい―1(ct-μ 叫，n) (9.19) 

Again, Y kj is determined by the form of the misclassification measure. For the classification measure 

defined in (9.11), 

孔 ~{~:~I){:二~:::}
9.5.4 Filter bank adjustment 

if j = k 

if j # k. 
(9.20) 

For filter bank parameter adjustment, the formula displayed from each parameter case have been 

described in the Chapter 8. The slight difference concerns the use the cepstrum transformation. 

Let¢be any adjustable filter bank parameter. Again, the transformation¢= exp(嘉） is used to 

constrain the filter bank parameter to stay positive. The update rule is 

where 

厄[T+1] =厄[T]-p7U28厄．

品
祝伍(s『;り）

品

The chain rule of differential calculus gives 

況 (dk(s『；q>)) 
厖

T Q ac (dk (s『；qi))竺
LL 
t=l q=l 8Ct,q 如

T Q 祝他(s[;qi I 

LL 
)) 8ct,q 8xt,i 

8ct,q L 
t=l q=l i=l五品

丘t冽伍（い）） cos (竺 (i-り） Bx,,; 
t=l q=l i=l 8ct,q J 2 8厄・

(9.21) 

(9.22) 

(9.23) 

(9.24) 

(9.25) 

The computation of 
況 (dk(s『；州）

枷 ti 8ct,q 
is given in 8.4.2, by replacing Xt,i with Ct,q and I with Q. 

~is detailed in 8.4.2 for each filter bank parameters. 
8¢ 

9.5.5 Embedding dynamic features 

Most speech recognition systems nowadays make use of dynamic features to capture local spectral 

movements. Regression coefficients as introduced by Furui [Furui, 1986] are the most widely used. 

Other approaches to capture spectral dynamic include dynamic cepstrum as proposed by Aikawa 
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[Aikawa et al., 1993]. Here, the concern is on the use of dynamical feature in the DFE framework, 

in particular on the use of regression coefficients. 

The inclusion of dynamic features in the DFE framework can be done by two ways .. The first 

and straightforward method is to perform the regression on the DFE-optimized static features. 

The second method embeds the regression within the DFE training. In this later case, the DFE 

optimization is as follows. 

Let知＝［△Ct,1, ・ ・ ・, △ Ct,q, ... , △ Ct,Q戸， where△Ct,q is the regression coefficients along the 

feature index q. The polynomial regression coefficients is defined as 

△ Ct,q 

R 

LP(Ct十p,q-Ct-p,q) 
p=l 

2
 p
 

R

こ
[
2
 

(9.26) 

t匹 t十p,q
p=-R 

= R 

2I: 炉
p=l 

OCt ,q 

8t' 

(9.27) 

～
 
～
 

(9.28) 

where R is the number of forward and backward frames used for calculating the regression co-
Bet 

efficients. (9.26) shows that△ Ct tries to approximate the temporal cepstral derivatives - by 
at 

the derivative of a polynomial that fits the cepstral trajectory. △ Ct is usually referred to as delta 

cepstrum. If the feature vector contains delta parameters computed by (9.26), optimization of the 

a filter bank parameter厄shouldtake this fact into account by adding the term 

祝 (dk(s[; <I>)) a△ Ct,q 

8△ Ct,q 痴
＝ 

I: 
R 祝伍(s[;州）

p=-R 8ct十p,q

R 

2I: 尻
p=-R 

8△ Ct+p,q 

品
(9.29) 

to (9.25). The overall chain is thus 

祝 (dk(s『；<I>)) T Q I 8£dk (s『;<I>)) 
- = I:I:I: 

（ 
t=l q=l i=l 8ct,q COS (予 (i-})) 

T Q 

+I:I:I: 
I 況 (dk(s『；り）仰. 1 

t=l q=l i=l a△ Ct,q COS臼(i-2)) 
t p OXt十p,i

p=-R 厖

(9.30) 
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which finally gives 

況伍(s『；州）
厖

T Q I 

=~~~cos(り (i ― t))

祝(dk(s『；り） 祝伍(s『;<I>)) 
＋ 

如，q 8△ Ct,q 

t p OXt十p,i

p=-R 厖

2
 p

 

R

▽〔
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(9.31) 

祝伯(s『；<J))) 
Note that the computation of 

classifier structure. 
8△ Ct,q 

is similar to 
祝伍(s『心））

and is given by the 
OCt,q 

9.6 Vowel Segment Recognition 

As in the previous chapter, the process was first analyzed by performing a simple vowel classification 

experiment. 

9.6.1 Task and classifier structure 

The task was to recognize the 5-class Japanese vowel uttered under various phonemic contexts by 

several speakers. A database of 500 sentences spoken by 5 speakers (3 males and 2 females) was 

used to extract 1750 tokens for training and 1750 token for testing from the middle position of the 

vowel onset. The training body and the testing body was balanced among the speakers and the 

vowel-category. 

The speech signal was digitized at 12kHz and stored at 16 bits. A Hamming window of 21 

ms was used for the production of the spectral frames, prior to filter bank analysis and cepstrum 

computation. 

9.6.2 Experimental conditions and results 

In the following experiment, the initial filter, before training, was based on the Mel scale. The Mel 

scale maps the perceived frequency of a pure tone onto a linear scale. Hence, various analytical 

approximations of the original Mel scale has been derived from psychoacoustic experiments, all of 

them being approximatively linear below 1 kHz and logarithmic above lkHz. Again, the following 

approximation, as provided by [Zwicker and Terhardt, 1980] was used: 

p(J) = 2595 log10(1 + f 
700 

）． (9.32) 

It is common practice to choose a lower number of cepstrum coefficients as compared to the number 

of filters. This is motivated by the fact that a higher number of filters permits a better resolution of 

spectral characteristics and a lower number of cepstral coefficients reduces the dimensionality of the 

204 



feature. However, reducing the feature vector dimensionality also means that few information are 

given to the recognition process. For investigation, two kind of feature representations were tested. 

The first representation (representation!) uses the same number of filters and cepstrum (I= 16, Q 

= 15). 15 cepstrum coefficients is due to the fact the 16-th cepstral component is zero. The second 

representation (representation II) uses 20 filters with 10 cepstral coefficients (I = 20, Q = 10). In 

both cases, the filters were initially aligned in the Mel scale. A k-means algorithm was ran to select 

the initial set of prototypes, prior to MCE/GPD (no training offeature extraction module) or DFE 

training (simultaneous training of classifier and feature extractor). Note that when the filter bank 

is kept constant, the resulting features are simply MFCC. Thus, the MCE/GPD training was done 

using MFCC. MCE/GPD training was carried out as baseline for MFCC testing. DFE training 

produced the various DFCC in a segment classification basis. Only two architectures were tested: 

using only one state with 1 and 3 prototypes per category in the first representation case and 1 

prototype per category in the second representation case. 

9.6.3 General results 

The best results achieved across the optimization methods are summarized in Table 9.1 for repre-

sentation I and in table 9.2 for representation II. 

Contrasting representation I and representation II using MFCC shows that representation II 

achieves better performance in the context of k-means training. Both representations have rather 

close results when using classical MCE or DFE. 

In representation I, C-DFCC, W-DFCC and S-DFCC show the best results so far in the testing 

set. In particular, the performance of C-DFCC are rather close to the performance of S-DFCC. 

The meaning of these results is that center frequency optimization (spacing) contributes the most 

in the quality of cepstral features. W-DFCC put an emphasis on single optimum frequency which 

has resulted into the best of the DFCC in the training set. 

In representation II, the best performance is achieved by C-DFCC in the testing set, although 

W-DFCC and S-DFCC show the best results in the training set. Thus, when looking across the 

two types of representations, it can be argued that the center frequency optimization contributes 

the most to the performance. 

For both representation, it could be noticed that optimizing any parameter of the filter bank 

model showed an improvement of the system performance. The best improvement are achieved 

when optimizing the center, the "weighting" and the main three parameters at the same time. 

Optimizing the gain showed less improvement of the original model. The obvious conclusion is that 

DFCC make it possible to be more efficient in average than classical MFCC. 

9.6.4 Optimized filter bank analysis 

Formants are essential feature in recognizing vowels. For a deeper analysis of DFCC, an analysis on 

how the resulting filter bank model performs formants resolutions was done. Again, Fig. 8.8 shows 
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Table 9.1: Experimental results using various filter bank cepstral parameters in terms of error rates(%) 

in the vowel recognition task for 1=16 and Q = 15 (representation 1). 

types of features 1 prototype/class 3 prototypes/ class 

train test train test 

MFCC(k-rneans) 29.7 27.1 25.3 23.7 

MFCC (MCE/GPD) 13.1 15.5 11.8 14.0 

C-DFCC 12.4 14.3 11.1 13.3 

B-DFCC 12.0 14.9 10.9 13.6 

G-DFCC 13.0 14.9 11.6 13.7 

W-DFCC 10.4 14.3 10.7 12.9 

S-DFCC 12.4 14.2 11.0 13.5 

Table 9.2: Experimental results using Mel-based DFCC in terms of error rates in the vowel recognition 
task for Q:::::20 and L::::: 10 (representation 11). 

types of features train test 

k-means 21.0 22.3 
MFCC 13.0 15.5 

C-DFCC 12.1 14.5 

B-DFCC 12.0 14.6 

G-DFCC 13.3 15.2 

W-DFCC 11.9 14.9 

S-DFCC 11.9 14.9 

an histograms of formants location in the train database as found by an LPC-based root finding 

method. It can be seen that Fl formants are mostly located in the region below 1 kHz, whereas 

most F2 formants are contained in the region between 1 and 3 kHz. 90 % F3 formants spans the 

region between 2.5 and 3.5 kHz. 

Center frequency opt1mization 

Figure 9.5 illustrates the modified filter bank after center frequency optimization by DFE for the 

two representations. 

It could be seen that for both representations, modifications of the filter bank spacing, have 

occurred in the 1.5 kHz region (F2 domain), where some filters have moved closer for an emphasis 

of this region. The same observation stands for the filters in the 2.5 kHz region. More noticeable 

is the shift toward lower value of the center frequency to accentuate the 4 kHz region, where F3 

formants are located. 

It seems that the spacing of the filters has been modified for a better resolution of the formants 

independently of the number of cepstral coefficients, which may explain the better performance 

achieved by this model for both representations. 
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Figure 9.5: Left: Resulting Mel-scale based filter bank center optimization task for I = 16 and Q = 
16 (representation 1). Right: Resulting Mei-scale based filter bank center optimization task for I = 20 
and Q = 10 (representation 11). Each channel is plotted versus its modified center. 

Bandwidth optimization task 

Optimization of the filter bank through the parameter /3i maximizes or minimizes the contribution 

of those regions which may be important for minimum error. Note that, the center frequency are 

fixed, thus optimization is done on pre-chosen perceptually based regions. For better visualization of 

the bandwidth, the notion of "corresponding bandwidth value" (CBW) of a channel is introduced. 

The CBW of a channel is the interval in the Hertz domain between the two frequencies whose 

weighting is half of the weighting at the center frequency of the channel. 

Figure 9.6 shows the CBW versus the center frequencies of the filter bank model for the two 

representations. In general, most filters above the 3 kHz region have seen a significant change of 

their bandwidth value. In contrast to the original model, the obtained bandwidth values are not 

a monotonic function of the center frequencies. Note that a decrease in CBW value signifies that 

the filters tend to select fewer frequencies in the channel. 

In representation I, the 13th and the 14th filters have recorded a decrease of the CBW of more 

than 200 Hz. However, this has been compensated by the 15th and 16th filters whose bandwidths 

have recorded an increase of their CBW of more than 300Hz. 

In representation II, the 15-th filter has increased its CBW value of almost 2 kHz, fully covering 

the 3 kHz region, to the detriment of the surrounding filters. 

Both representations show similar behavior in certain regions of the spectrum. For instance, 

both show a decrease in bandwidth around the 1.5 kHz region and 3.5 kHz region, and an increase in 

bandwidth in 4.5 kHz region. This observation may lead to the conclusion that both models attempt 

to put emphasis or de-emphasis on meaningful part of the spectrum. Both representations display 

a good performance on the training set (12.0%) while showing a relatively poor generalization on 
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Figure 9.6: Left: Resulting Mel-scale based filter bank bandwidth optimization task for I = 16 and Q 

= 15 (representation I). Right: Resulting Mel-scale based filter bank bandwidth optimization task for I 
= 20 and Q = 10 (representation 11). The CBW is plotted versus the center frequency in each channel. 

the testing set: 14.9% for representation I and 14.6% for representation II. 

Gain optimization task 

The gain optimization puts an emphasis on those outputs relevant to minimum error. 

Figure 9.7 shows the value of the gain (the parameter ai) versus the center frequency in each 

channel for both representations. It can be seen that both representations show a similar shape 

although the value range is different: both accentuate and de-accentuate similar regions of the 

spectrum. 

Filters in the region below the 1.5 kHz frequency region have shown a small decrease of the gain 

parameter. While the filters above the 4 kHz have shown significant increase of their gain value. 

Note that only high value of the gain should have a noticeable effect on the performance of the 

system because of the use of the logarithm in calculating the log energies which tends to attenuate 

the small modifications of the gain value. The sharp increase of the gain in the region above 4 kHz 

can be compared to a pre-emphasis process widely used a to accentuates higher frequency energies. 

Weighting optimization task 

As said before, each parameter wふfcan be optimized independently without keeping the Gaussian 

constraint. 

As can be seen from Fig. 9.8, the resulting model did not keep the Gaussian form of the 

frequency response. One can notice that within certain channel, several optimum frequency have 

been emphasized. The fewer number of channel in representation I has resulted in filters having 
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Figure 9.7: Left: Resulting Mel-scale based filter bank gain optimization task for I = 16, Q = 15 

(representation I). Right: Resulting Mel-scale based filter bank gain optimization task for I = 20, Q 

= 10 (representation 11). The values of ai are plotted against the center frequencies in the channels. 

higher energies than filters in representation II In representation I, filters in the region below 1.5 

kHz have not shown any significant increase of the weighting. 

The selection of multiple optimum frequencies within a channel may, in a sense, be compared 

to the search for the the best within-channel optimum frequency as in center optimization case. 

However, the higher number of free parameters may inhibit generalization capabilities. 

Simultaneous optimization of center frequency, bandwidth and gain 

A global optimization of the filter bank maybe achieved by optimizing at the same time, the center, 

the bandwidth, the gain. This enables an efficient interaction between the three parameters while 

reducing the degree ofliberty which may lead to the over training dilemma. 

Fig. 9.9 shows the resulting filter bank for S-DFCC cases. Hence, in representation I, the best 

result on the testing set has been achieved so far by this model: 14.2% on the testing set while 

displaying a similar result in the training set with C-DFCC. 
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Figure 9.8: Resulting Mel-scale based filter bank weighting optimization. Left: Resulting Mel-scale 

based filter bank weighting optimization task for I= 16, Q = 15 (representation 1). Right: Resulting 

Mel-scale based filter bank weighting optimization task for I = 20, Q = 10 (representation 11). 
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Figure 9.9: Resulting Mel-scale based filter bank CBG optimization task. Left: Resulting Mel-scale 

based filter bank center-bandwidth-gain optimization task for I= 16, Q = 15 (representation 1). Right: 

Resulting Mel-scale based filter bank center-bandwidth-gain optimization task for I = 20, Q = 10 
(representation 11). 
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Looking at the DFE-adjusted models of Fig. 9.9, one can see that center frequency modification 

contributes the most in the adjustment of the filter bank. Thus, the spacing of the filter clearly puts 

an emphasis on well-defined regions: the 1-2 kHz region (F2 domain), the 2.5 kHz region covered by 

11th filter (F2 region) and 12th filter and the 3.5-4 kHz region (F3 domain). It can be noted that, 

a similar filter spacing was achieved on the C-DFCC task. Furthermore, the spacing of the filters 

in representation II has been modified so as to covers the 0-5 kHz region, which is acknowledged 

to carry much of the spectral information. The bandwidth and the gain have remained relatively 

stable. 

It seems that when optimizing the main parameter of the filter bank at the same time, DFE 

focuses on finding the optimal spacing for minimum error by center frequency modifications and 

puts less emphasis on bandwidth and gain modification in the context of the Mel scale. 

9. 7 Directory Assistance Task 

This section presents application of DFCC to a directory assistance task. 

9.7.1 Task 

The purpose is the design of a system which recognizes Japanese's names and forwards calls to 

staff members within the ATR laboratory. Thus, the system is intended to act as an automatic 

switching operator in charge of accepting spoken names and dial up the phone call to recognized 

persons. The point of interest is to improve the speech recognition accuracy of the system by 

applying DFE-optimized cepstral parameters. 

Data were automatically collected in office environment by a system that periodically called 

staff members to repeat 5 randomly selected names. Each name utterance was therefore spoken in 

isolated word recognition mode. The process resulted into 684 utterances in total from 4 7 speakers 

(3/4 of them are male) with the target of recognizing 64 names; 

Closed testing set 

570 utterances were used as training and 114 as a closed testing set (closed-test). The closed-test 

features the same speakers as in the training data as well as the same vocabulary (64 names) from 

47 speakers. 

Open testing 

Also, 234 utterances were collected during a demonstration of the system, which involved 34 new 

names (open-test). The open-test contains names that were not in the training vocabulary, uttered 

by new speakers in a more noisy atmosphere (which was different from the training conditions). 

Thus, the total vocabulary for the open-test is 98 names for total number of utterance equal to 

234 .. 
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The closed-test features the same speakers as in the training data as well the same vocabulary, 

while the open-test set contains names that were not in the training vocabulary, uttered by new 

speakers in a more noisy environment. 

The utterances were phoneme-labeled using their transcriptions by the segmental k-means clus-

tering procedure; the labels created this process were then verified through a human correction 

work. 

9.7.2 Experimental settings 

The speech signal was digitized at 8 kHz sampling rate and at 16 bits. A Hamming window of 

21 ms was shifted every 5 ms over an input speech utterance, thus producing 128 FFT-based 

power spectrum (F = 128), as input to a 20-channel-filter bank whose output was converted to 10 

cepstral parameters. For acoustic modeling, 26 context-independent phoneme models were used, 

which correspond to 5 Japanese vowels (/a/, /i/,/u/,/e/, /o/), 20 consonants (/b/, /ch/, /d/, /f/, 

/g/, /h/, /j/, /k/, /m/, /n/, /N/, /p/, /r/, /s/, /sh/, /t/, /ts/, /w/, /y/, /z/) and silence. A 
finite state grammar was used to constrain the search. 

Each phoneme model was a PBMEC structure which consisted of 3 states, each being associated 

with 1 prototype. 

9.7.3 S 
. . . 

ystem m1tiahzation 

The initial prototypes of the classifier module produced by Maximum Likelihood (ML)-based seg-

mental k-means provided an estimated segmentation of each utterance. This ML-produced baseline 

system was further trained by one of the five types of DFE training. For comparison purposes, 

classical MCE/GPD training using MFCC was also carried out. 

9. 7.4 Results 

The results for string-level and frame level training are shown in Table 9.3. 

The results (in terms of recognition rates) show that all MCE-based training outperform ML 

training in both testing sets. The frame-based optimization shows better performance in average 

than string-level training for both MCE (only classifier adjustment) and DFE (joint optimization), 

on both testing sets. This result is explained by the fact that the adjustment rate of the filter 

bank parameters is higher within the frame-level optimization than string-level optimization. Con-

sequently, given a few number of training data, such as in the current task, the frame-level training 

provides better performance. 

Open and Closed test set 

Comparison of performance on the open-test and closed-test is a crucial test for robustness. The gap 

in results between the open-test and the closed-test is due to the large difference of the experimental 

conditions between the two sets. W-DFCC seem the most robust features for string-level training 
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Table 9.3: Experimental results of ATR names recognition task using string-level training and frame-level 

training for various cepstral features. 

features String-level 恥ame-level

train closed-test open-test train closed-test open-test 

MFCC 
(ML) 67.0 54.3 35.9 

MFCC 
(MCE) 97.3 91.2 57.9 97.3 94.7 59.9 

C-DFCC 96.9 92.9 60.0 98.2 92.9 59.5 

B-DFCC 97.0 92.9 57.8 98.5 94.7 56.8 

G-DFCC 97.5 94.7 59.0 99.1 94.7 60.3 

S-DFCC 96.4 92.9 55.3 98.7 95.6 64.5 

W-DFCC 97.8 92.9 61.6 98.8 93.8 56.9 

while S-DFCC give the best results for frame-level training. MFCC appear to be relatively robust 

within the frame-level optimization. 

String-level and Frame-level 

For string-level training, the best performance on the closed test is realized by G-DFCC and on 

the open test set by W-DFCC (61.6% compared to 57.8% for MFCC). Also, C-DFCC appear to 

be relatively robust considering its relative performance across the two testing sets. 

For frame-level optimization, the best result is achieved by S-DFCC on both testing sets. In 

particular, the result in the open test set is far ahead of other cepstral features (64.5%, compared 

to 59.9% for MFCC). This is in contrast to its rather limited performance achieved within the 

string-level optimization. Its seems that frame-level enables the gathering of short-time salient 

information in a more efficient way than the string-level training. This is consistent with the frame 

by frame way to process speech signals in conventional speech recognizers. 

MFCC and DFCC 

For the closed test set, MFCC and DFCC provide relatively close performance for both lev-

els of training, although in most cases, DFCC display better recognition rates. For the open 

speaker/vocabulary test set, DFCC appear to be more robust than MFCC for both level of train-

ing. However, the best type of DFCC depends on both the task and the level of training. 

9.8 Isolated Letter Recognition 

This section presents application of DFCC to the ISOLET database. The ISOLET database, 

collected and distributed by the Oregon Graduate Institute consists of two examples of each letter 

of the English alphabet uttered by 150 American English speakers, 75 males and 75 females. The 
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database is divided into 5 portions of 30 speakers. It is common to use the first 4 portions as 

training (120 speakers, 6240 utterances) and the last portion as testing, that is, 30 speakers (1560 

utterances. Among the letter of the English alphabet, the E-set subset is of particular interest. 

The E-SET is the set of /e/ sounding letter, That is {"B", "C", "D", "E", "G", "P", "T" and 

"V", "Z"}. All this letter shares the /e/ sound and are particularly difficult to discriminate. The 

E-SET is comprised of 2160 training utterances and 540 testing utterances. 

The speech signal is digitized at 8 kHz. For all experiment, a frame rate of 5 ms and Hamming 

window shift of lOms was used. 

9.8.1 Recogmzer structure 

Speech parameterization 

Throughout this section, the features were 12 cepstral coefficients computed from a 24-order filter 

bank. Again, the initial configuration simply emulates MFCC, with Gaussian filters. Here, only 

S-DFCC was performed. That is, simultaneous optimization of center-frequency, bandwidth and 

gam. 

System structure 

Within this section, a word is modeled by an HMM, which is quite different from the previous 

study of DFE application which was based on phonemic models. Each letter is thus modeled by a 

left-to-right continuous HMM consisting of 5 states. Each state is assigned 5 mixture probability 

density functions. Throughout this section, the variances and mixtures are fixed, and only mean 

vectors are considered free parameters for acoustic-modeling. 

9.8.2 ML-estimation using DFCC 

In the vowel and the directory assistance task, the starting point for DFE optimization was based 

on MFCC. That is, the choice of the initial PBMEC prototypes was estimated by the segmental 

k-rneans, which optimizes the MLE criterion, using MFCC. 

This approach may be unoptimal for a number of reasons. First, the optimization technique is 

based on the gradient search, and MFCC as the starting point for DFE may not be the optimal 

solution. Second, it is desirable that the DFE method should produce features that may be of 

use even in a classical framework of optimization using MLE. This may be particularly useful in 

extremely large vocabulary recognition task, where the EM algorithm enables a straightforward 

re-estimation paradigm. The interesting point of this approach is that, similar to the experiments 

described in Chapter 3, the MLE-estimation is based on discriminative features, that is features 

that bear knowledge of the classification scheme. 

The simple algorithm described below allows one to iteratively improves the performance of the 

MLE-based model using the DFE technique. The algorithm is as follows, in the context of filter 

bank cepstral parameters. 
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1. Initialize cepstral parameters to MFCC configuration. 

2. Initialize acoustic models using MLE training on MFCC. 

3. Estimate MCE loss function using set of misclassification measures from the training data. 

4. Optimize features using DFE with the MLE-based classifier (no classifier training). 

5. Estimate new acoustic models by MLE using optimized features and last overall recognizer 

status as a starting point for optimization. 

6. if the error rate on training data does not increase when compared to the previous value, stop 

and use current feature and un-trained model as starting for acoustic model MCE training. 

otherwise go to step 3). 

In this study, using a mixture of error-functions as MCE loss enables a straightforward estima-

tion of the loss parameters at step 3, according to the set of misclassification measures over the 

training data set. 

Optimization of features in step 4 can be done using any optimization method available. In 

particular, since the acoustic models are not trained at this stage, GPD, MGDP or IGPD are not 

necessary. For instance, for faster optimization, the quick-prop algorithm proposed by Fahlman 

[Fahlman, 1988] can be applied. The quick-prop algorithm is a compromise between the off-line 

gradient descent and the Newton method, which uses an approximation of the Hessian matrix. For 

an untrained classifier, only a (well-selected) subset of the training set can be used at this step 

since only few parameters need to be adjusted. 

The rationale between this optimization at step 4 considers the fact that the errors provided 

by the MLE-based acoustic models are an estimate of the "q叫 ity"of features at this point in 

time. This enables us to further optimize these features according to this estimate. Once, the 

error has been sufficiently reduced by the MCE optimization, the MLE estimates new acoustic 

models at step 5 using optimized features. Since features are optimized based on the performance 

of MLE-derived models, this procedure permits to improve the performance of MLE by performing 

MLE on "improved" features. 

The philosophy behind this approach is as follows. The new models bear the characteristics 

of the discriminative features. The error estimate using these new models can be further reduced, 

thus producing a better feature set at each estimation. When MLE performance can not be further 

improved, this is interpreted as having achieved the best possible features possible for MLE , given 

the acoustic-modeling structure. Furthermore, these features may provide a better starting point 

for DFE optimization of the overall recognizer. 

Fig. 9.10 shows the resulting filter bank after the joint MLE/DFCC was carried out on the 

ISOLET database. Clearly, this filter bank is quite different shown in the same figure. 
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Figure 9.10: Initial and Optimized filter bank using the joint MLE/DFE optimization scheme in the 
ISOLET task. 

Experimental evaluation 

Fig. 9.11 shows the performance of the DFCC features versus the number of trials. A trial is 

defined as the period covering two MLE optimization. Again, acoustic-models are not trained, but 

re-estimated after each trial by MLE. This figure also displays the performance of DFCC at each 

trial before ML estimation of DFCC. 

It can be observed that the performance of DFCC and DFCC+MLE estimation increases at 

each trial, except for the last trial which displays a decrease in the performance of DFCC+MLE. 

The decrease of the MLE performance after the third trial signifies that the "quality" of features, 

in term of MLE, has reached its optimum, given the preset classifier structure, and do not longer 

need to be optimized. Note that DFCC, prior to MLE, still display an increase in performance as 

the number of trial increases. 

MLE-based acoustic models realized 77.82% recognition rate using MFCC and 78. 78% recogni-

tion using the DFCC at the second trial. However, the best performance at the last trial is realized 

by DFCC, prior to MLE estimation of acoustic models. At this point, the DFCC are already 

optimized and MLE appears to be an error contrasting criteria. 

Dependency on the classifier structure 

In this section, it is examined whether DFCC coefficients obtained by the method presented above 

can be used in a different classifier structure. DFCC were obtained using a preset classifier config-

uration. That is, a 5-states left-to-right HMM with 5 Gaussian mixtures per state. Clearly, these 

DFCC has been optimized for this particular structure. By matter of curiosity, its performance 

using a different configuration of the classifier is investigated. That is, various recognizer structures 
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Figure 9.11: DFCC performance on ISOLET. The classifier is untrained by MCE but re-estimated at 
each trial by MLE using DFE-estimated features 

are optimized by MLE using MFCC and the optimum DFCC obtained by the HMM configuration 

presented above.i.e,. 5 Gaussian mixtures within a 5-states HMM. 

Various configurations can be obtained by changing various HMM parameters such as the state 

transition probabilities, or emission probabilities, or the number of states. Here, the configurations 

were determined by changing the number of mixture-components. 

Table 9.4 shows the results as function of the number of mixtures. As expected, DFCC only 

outperform MFCC for the configuration for which it is derived. This results confirm the fact that 

DFE-features are matched to the classifier for which they are derived. 

9.8.3 DFE-training 

In the vowel and name recognition task, DFE was applied to optimizing jointly the overall recog-

nition systsem. Here, as was stressed in Chapter 6, another alternative is presented. It consists of 

grad叫 lyupdating the modules of the recognizer using MCE. 

After MLE/DFE-based DFCC-extracted features through the method presented above, two 

methods are offered to us for DFE-training. The first method is the classical global optimization 

of the overall recognizer as was done previously. The second method relies on the fact that since 

DFCC are already derived from an MCE criterion, one only need to optimize the acoustic models 
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Table 9.4: Recognition rate on ISOLET and E-SET using MLE with various mixture components for 

MFCC and preset DFCC. The preset DFCC has been obtained with using a 5-mixtures-Gaussian-pdf-
HMM. 

# of mixtures ISOLET E-SET 

MFCC DFCC MFCC DFCC 

3 77.05 76.08 53.88 50.37 

5 77.82 78.78 52.59 55.00 

8 79.16 78.26 55.74 54.62 

12 78.20 76.98 55.37 53.88 

using MCE. Note that the latter approach does not contradict the DFE concept, since its uses the 

same criterion for both the classification stage and the feature extraction stage, which is the basic 

philosophy of the DFE approach. If the latter approach is taken, it is advisable to perform a last 

tuning of the feature extractor using (fixed) MCE-acoustic models to re-ensure that the overall 

recognizer is optimized. This DFE implementation may be well-suited for large-sized system where 

tuning of the learning parameter is time-consuming as was suggested in Chapter 6. 

To summarize, the overall procedure is as follows: 

1. Extract DFCC by the joint MLE/DFE method. 

2. Train the overall recognizer or train acoustic models by MCE using DFCC. In the latter case, 

re-tune features to untrained model using the MCE criterion. 

Let DFE-J refers to training the overall recognizer and DFE-S for training classifier and the 

feature extraction separately. Again, DFE-S is simply training the classification with MCE on 

MCE-optimized filter bank-based cepstral features. Table 9.5 shows the result of various optimiza-

tion methodologies for the ISOLET task and its E-SET sub-task. Note that the recognizer was 

not trained to perform the E-SET discrimination but discrimination of all letters. For clarity of 

comparison, the results of the MLE optimization is also shown. From this table is is quite obvious 

that all MCE-based approaches outperform MLE-based ones across the feature sets. 

MLE performance improves when estimation is based on DFCC. This is clearly shown on the 

E-SET task, when the use of DFCC has resulted into an improvement over MFCC: from 52.59 % to 

55.00 %. However, the improvement over the entire database is less: 77.82 % for MFCC and 78.78 

% for DFCC. It seems that DFCC have focussed on discriminating the most acoustically similar 

categories as expected. Similar to the res-i;ilts obtained in Chapter 3, this experiment shows that 

discriminative features are able to improve MLE-based models. 

MCE/MFCC is using classical MCE on MFCC and DFE-S is using classical MCE on pre-trained 

DFCC. In the first approach, the models are discriminant but the features are not. In the second 

approach, the features and the models are both discriminant but not embedded. Classical MCE 

gives the same result independently of the feature set in the ISO LET task. This confirms the MCE 

power regardless of the feature space in use. That is unlike MLE, MCE is less sensitive to the 
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Table 9.5: Recognition rate on ISOLET and E-SET using MLE, classical MCE, DFE-5 (refers to MCE 

optimization of previously derived DFCC) and DFE-」(refersto joint optimization) with static filter bank 
cepstral coefficients. 

Method Task 
ISOLET E-SET 

MLE/MFCC 77.82 52.59 

MLE/DFCC 78.78 55.00 

MCE/MFCC 83.84 66.85 

DFE-S 83.84 68.14 

DFE-J 84.35 68.70 

feature space on which estimation is made. This also make any comparison of feature "quality" 

using the MCE criterion, difficult. It seems that DFE learning focus more on separating the more 

similar categories, which is what is actually expected. In this task. The importance of DFCC as 

compared to MCEiMFCC can still be grasped when observing the performances on the difficult 

E-SET task (that is, a task which requires higher discriminative capabilities). On the E-SET task, 

MCE performs better using DFCC (68.14%) than when using MFCC (66.85%).・Again, this is in 

sharp contrast with the result obtained on ISOLET. 

The joint DFE optimization scheme, referred here as DFE-J, gives the best result for both task. 

This confirms the fact that joint optimization permits a better match between the feature extractor 

and the classifier in a more efficient way than separate optimization. The performance of the joint 

optimization scheme is more striking in the difficult E-SET task than the overall ISOLET database, 

confirming the inherent property of DFE to focus its learning on less separable categories. 

9.8.4 Using Dynamic Features 

As already indicated, two ways are offered for making use of delta parameters in DFE optimiza-

tion. The first and easy way is to compute delta DFCC using the classical regression formulas on 

previously derived static DFCC. The second method is embedding delta DFCC in the DFE process 

using the optimization scheme described in section 9.5.5. The two methods were implemented and 

compared with the use of delta MFCC. Delta DFCC computed by classical regression equations is 

referred to as△ DFCC-R and delta DFCC computed by embedding the regression process into the 

DFE is referred to as△ DFCC-E. 

Table 9.6 displays the performance of various optimization methodologies when using dynamic 

parameters. △ DFCC-R were calculated using previously optimized static DFCC by the MLE/DFE 

method described in section 9.8.2. Similar to△ DFCC-R, △ DFCC-E were calculated in a similar 

way with the difference that, instead of performing the regression after DFCC derivation, the 

regression is embedded in the DFE optimization. It is quite clear, from this table that all MCE-

based frameworks outperform MLE-based ones across all feature sets. 
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Table 9.6: Recognition rate on ISOLET and E-SET for DFE-S, DFE-」andclassical MCE using delta 

parameters. △ DFCC-R refers to calculating delta parameters using the regression formula on previously 

optimized static DFCC. △ DFCC-R refers to delta parameters, which are derived by embedding the 

regression formula within the DFE optimization process. 

Method Task 

ISOLET E-SET 

MLE/(MFCC十△MFCC) 85.32 68.88 

MLE/(DFCC十△DFCC-R) 86.31 68.70 

MLE/(DFCC十△DFCC-E) 85.57 67.77 

MCE/(MFCC十△MFCC) 90.25 80.37 

MCE/(DFCC十△DFCC-R) 87.69 84.25 

DFE-S 89.55 81.66 

DFE-J 90.44 81.85 

MLE training using DFCC appended with△ DFCC-R and, DFCC appended with△ DFCC-E, 

perform slightly better than MFCC十△MFCC on the ISOLET task. However, MFCC give slightly 

better result in the E-SET task. If the result on the E-SET task are contrasted with those obtained 

when no delta parameters are used, it seems reasonable to conclude that, for MLE estimation, the 

regression coefficients introduce a discrepancy. This is particularly true for△ DFCC-E. In this case, 

the feature extractor parameters have been optimized for dealing explicitly with the regression. The 

way the MLE deals with feature derivatives in the HMM framework has been the object of vast 

literature. During decoding, the HMM structure assigns a frame to a given state, without a clear 

model of the surroundings of the frame. The way this affects the embodiment of feature derivatives 

in the DFE optimization is worth of investigation. 

M CE was investigated using△ MFCC and△ DFCC-R, calculated as shown above. Using 

△ MFCC has resulted into a quite better performance than using△ DFCC-R. This result may 

be explained by the fact performing the regression formula on pre-optimized DFCC may have pro-

duced a less optimized model, since the regression process was not explicitly taken into account 

during the optimization process. Nevertheless, when targeting acoustically close categories, that 

is the E-SET task, △ DFCC-R outperforms△ MFCC: 80.37 % for MFCC+△ MFCC compared to 

84.25% for DFCC+△ DFCC-R. 

This explanation is supported by the results obtained using DFE-S, which is equivalent to 

optimizing the classifier with MOE using DFCC十△DFCC-E. Indeed, DFE-S performs better 

than MCE/(DFCC十△DFCC-R), but lesser than MFCC十△MFCC on ISOLET. DFE-S and DFE-

J display a slight improvement on the E-SET task and ISOLET. 

It could be concluded that, even if DFCC+△ DFCC-R have the effect of introducing some 

discrepancy in the DFE optimization, it may be satisfactory to some extent to use them in place of 

△ DFCC-E when one would like to avoid the burden of the overall optimization process. However, 

further investigation is required before having a precise conclusion. 
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9.9 Conclusion 

A method to derive discriminant filter bank cepstral parameters was described in this chapter and 

shown to be more robust than classical Mel-based filter bank cepstral parameters. The method 

consisted of optimizing the filter bank parameters under a cepstral distance when adjusting the 

classifier parameters with DFE process. First, analysis of the method was done using a simple vowel 

recognition task. In this framework, discriminative filter bank-based cepstral parameters (DFCC) 

were analyzed. 

Second, to test the performance of DFCC, experiments using telephone speech for a word 

recognition task was carried out. Two level of training was investigated. A frame-level training 

and a string-level. DFE and MCE training seem more efficient in average when training at the 

frame-level for test data close to design data. Using an open data test set, the best result was 

achieved by simultaneously adjusting center frequency, bandwidth and gain using the frame-level 

optimization. 

Third, the method was applied to isolated letter recognition (American english alphabet), which 

includes the difficult E-set task. This has provided the opportunity to study the embodiment of 

delta parameters within the DFE process and implement a variant of the DFE process for use in 

the MLE framework. 
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Chapter 10 

Conclusion 

What is to be closed should first be opened 

-Lao Tzeu-
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10.1 Summary of the Report 

The report has focussed on following issues. 

In the introduction, speech recognition was viewed as a particular case of the statistical pat-

tern recognition framework. It was stressed that the pattern recognizer is a modular system, 

which consists of a feature extraction module and a classification (recognition) module. The fea-

ture extraction falls into two main categories: Expertise-based Feature Extraction (EXFE), which 

implements feature extraction by use of an algorithm, based on expertise or data statistics, and 

Embedded Feature Extraction (EMFE), in which the feature extraction is parameterized and op-

timized jointly with the classifier. The EXFE, which enjoys the most widespread use in speech 

recognition, highly depends on the current available knowledge. This knowledge is usually not 

complete. More alarming in the EXFE scheme is the fact that features are designed based on 

a criterion which is not directly linked with the classification criterion. This shortcoming of the 

EXFE technique is not encountered in the EMFE framework since the feature extractor and the 

classifier are optimized under the same criterion. The goal of this report was the re-designing of 

standard feature extractor by EMFE where the criteria to be optimized is simply the error rate of 

the recognizer in the speech recognition framework. This can be viewed as a new framework for 

feature analysis in light of their discriminative capabilities. 

The .usefulness of discriminant features was shown in Chapter 3, where MSE-derived features 

outperformed traditional speech parameterization based on cepstral analysis. In this experiment, a 

Neural Network was used as pre-processor for a Maximum-Likelihood-based HMM. Consequently, 

this experiment provided a test on the usefulness of discriminant features in conventional recognizer 

design (in which the feature extractor and the classifier are designed separately). The Neural 

Network used in this experiment was the Large-phonetic Time Delay Neural Network (LTDNN) 

[Sawai et al., 1989]. The LTDNN was trained to discriminate phonemes using the MSE criterion and 

its output was treated as feature vector for HMM. The LTDNN-features were compared to classical 

features, which consisted of LPC cepstral coefficients, delta cepstral coefficients and energy for 

recognizing Japanese phonemes uttered by one male professional announcer. The 24-dimensional 

discriminant feature-vector achieved 96.1 % recognition rate in average whereas the 37-dimensional 

cepstral features realized 89.0%. These results emphasize the importance of discriminant features, 

even in the context of Maximum Likelihood Modeling. 

This was a preliminary test on the usefulness of discriminant features as compared to expertise-

based features in the conventional framework of design. Still, it was a limited approach, since the 

feature extraction was optimized by a criterion different from the recognition target. As reviewed 

in Chapter 2, the best criterion for optimal recognizer design is to minimize the probability of 

error (error rate). Discriminant criteria such as the MSE or MMI are not directly related to the 

error minimization of the system. That is, MSE and MMI are not a monotonic function of the 

classification error rate of the system. 
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Among the various discriminative training methodologies, the framework of the Minimum Clas-

sification Error/Generalized Probabilistic Descent method (MCE/GPD) provides the basis for im-

plementing discriminative training aiming at reducing a smooth error count measure, which is 

closely related to the error rate of the system. That is, the 0-1 classification cost (which counts the 

error of the system) is approximated by a smooth function, at least first-order differentiable such 

as a sigmoid, subject to optimization. This smooth error is a function of the recognizer discrimi-

nant functions, which signifies that the classifier decision is embedded in the optimization criterion 

[Katagiri et al., 1990; Katagiri et al., 1991b]. 

The GPD framework also provides an optimization method that can be carried out to minimize 

an expected loss, which as shown in Chapter 4, is related to the probability of error. The optimiza— 

tion technique belongs to the family of stochastic gradient descent methods and is asymptotically 

efficient. In practical application, the empirical loss function, defined as the average of the MCE 

loss across the data set, approximates the empirical error rate. 

MCE/GPD, introduced as an alternative to the widespread use of Maximum Likelihood estima-

tion of acoustic models, has been proven to be quite useful in various speech recognition tasks. All 

comparative studies have shown that MCE/GPD yields a clear gain in performance if contrasted 

with the MLE criterion. As was shown in Chapter 4, when compared to other discriminative train-

ing approaches, such as MSE or MMI, the MCE advantage is that it directly attempts to reduce 

the empirical error rate, given a training data set, thus leading to more efficiency in practical 

application tasks. 

In Chapter 4, the Discriminative Feature Extraction (DFE) [Katagiri et al., 1993; Biem et al., 

1997] approach was consequently formalized as an extension of the MCE criterion applied to the 

design of the feature extraction and the classifier, aiming at the the single purpose of minimizing 

system mistakes. Thus, in the DFE framework, the feature extractor is matched the classification 

stage for minimum error achievement. 

Again, the MCE criterion aims at minimizing the expected loss function. However, in practice, 

only the empirical loss defined on the set of data is available. It was shown, within Chapter 5 

that using a recognizer of finite VG-dimension guarantees uniform convergence in probability of 

a minimum of the empirical loss to the minimum of the expected loss when the number of data 

mcreases. 

Chapter 6 discusses optimization methodologies in the DFE context. In particular, the Modular 

Generalized Probabilistic Descent Method (MGPD) and the Incremental Generalized Probabilistic 

Descent Method (IGPD) were proposed as optimization methodology in the DFE context. In speech 

recognition task, a straightforward use of the GPD algorithm may not lead to convergence due the 

different nature of the parameters involved (which leads to a complex error surface). The MGPD 

algorithm assigns different learning rate to each module and thus permits more flexibility during 

training phase. However, one is still faced with choosing the optimal learning rate for each module. 

The IGPD learning scheme assigns a private learning rate to each parameter of the recognizer 

and each learning rate is adjusted during the learning process, according to its contribution to the 
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overall learnmg progress. 

After underlying the theoretical framework of DFE, assuming that the empirical cost function 

is a reasonable approximation of the expected cost function, the nest task was the re-design of 

selected speech recognition-oriented parameterization methods. 

In Chapter 7, the DFE approach is applied to lifter design. Liftering consists of applying a 

window over cepstral parameters to extract useful information and remove useless ones. It is a 

standard feature extraction which was studied extensively during the 80's. Cepstrum coefficients 

contains various information such as the phonemic-identity of the sound and speaker characteristics. 

It is believed that lower cepstral terms are more concerned with phonemic-identity. Thus, applying 

a low-pass lifter is usually believed to be the appropriate solution. However, issues such the shape 

of the lifter, the cut-off cepstral terms are still under investigation. By designing a lifter through the 

DFE approach, one would realize, at least locally, an optimal lifter for the task. Thus, a lifter was 

designed by DFE using a Feed-Forward Neural Network architecture aiming at vowel recognition. 

Contrasting the DFE-based lifter with those based on models of speech production, shows how the 

DFE approach manages to extract relevant information as well as achieving better performance in 

contrast to standard lifters. 

In Chapter 8, the DFE approach was applied to another speech parameterization technique, 

which is filter bank modeling. A set of Gaussian filters is iteratively optimized according to the 

back-end recognition errors. Various parameters, such as center-frequency, bandwidth, gain were 

adjusted leading to an optimal filter-bank model given the recognizer structure. A preliminary 

study made on a vowel recognition task shows how the filter bank performs feature extraction 

according to the degree of freedom allowed within the filter bank during the optimization process. 

When allowing the center frequency of each filter to be adjusted, the filters tend to move to formant-

centric regions, which are acknowledged to be important features for vowels. This approach was 

then applied to an automatic switching operator system. The system is intended to recognize 

names over the telephone and forward calls to the recognized persons. In this task, DFE-optimized 

filter-bank achieved the lowest word error rate when adjusting the gain of each filters (around 5% 

error rate whereas a fixed filter bank using classical MCE achieved around 8% error rate). 

Finally, DFE was applied in Chapter 9 to readjusting Mel frequency Cepstrum coefficients 

(MFCC). MFCC can be said to enjoy the most widely used feature extraction technique in the 

speech community. MFCC is based on perceptual findings: the Mel scale is based on human 

perception of pitch, which has no clear link with statistically-designed classifier. However, in 

various studies, MFCC has been shown to perform better than other speech parameterization 

techniques. In this Chapter, optimization of MFCC was done by readjusting the underlying filter 

bank in a manner similar to Chapter 8. Again, a preliminary study is made on vowel recognition, 

which shows that in certain regions of the spectrum, the DFE-based cepstrum coefficients (DFCC) 

departed from the standard ones and moved the filters to meaningful region of the spectrum. Here 

also, the degree of modification of the filter bank depends on the degree of freedom allowed in the 

filter bank. 
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DFCC was then applied to the directory assistance task. When applying the DFE approach to 

the recognition of words, two optimization criteria can be performed: a string-level optimization 

and a frame-level optimization. Both were tested by the DFE approach. Testing was done through 

a close test set (the testing data obeys similar recording condition with the training data) and an 

open test set (testing data comes from different recording condition in contrast with training data). 

At the string-level training, in the close test set, the best performance was achieved by DFCC 

(94.7% as compared to 91.2% for MFCC). In the open test set, DFCC yielded 61.6% whereas 

MFCC achieved 57.9%. At the frame-level optimization, using the close test set, DFCC realized 

95.7% and MFCC, 94.7%. Frame-level training on the open test set gave 64.5% for DFCC and 

59.9% for MFCC. 

Lastly, the method was applied to isolated letter recognition, which contains the difficult E-set 

task. Here, DFCC refers the simultaneously optimizing the center frequencies, bandwidths and 

gains. Various strategies of DFE was investigated. For instance, application of DFCC to MLE 

estimation shows that DFCC can improve MLE performance. This is particularly the case on the 

E-set task: 52.59% for MFCC, in the context of 5 states and 5 mixtures word-HMM, and 55.00% 

for DFCC. Using the MCE criteria, classical MCE on MFCC realized 66.85% while DFE achieved 

68. 70% on the E-set task. However result on the overall database are rather close. 

It was also examined how to integrate delta parameters within the DFE process. This can 

be done within two strategies: calculating delta parameters using pre-optimized static DFCC or 

embedding the delta derivation process within DFE. Although the first method displayed better 

performance on the E-set task, in general there is no conclusive affirmation and the experiment 

requires further investigation. 

10.2 Further extensions 

The work presented in this report can be extended by one of the following suggestions. 

10.2.1 Application to large vocabulary 

In a large vocabulary speech recognition task, a method to integrate the language constraint into 

the learning scheme, down to the parameters of the feature extraction is provided by DFE. However, 

a cheap way to apply DFE for large task is required. That is, for large database, performing the 

DFE optimization can be extremely tedious. One direction for reducing the computational cost is 

to perform DFE on a carefully chosen subset of the database, which can be said to be representative 

of the task. 

Another method is to optimize the feature extraction on a particular phonemic class (for in-

stance, considering only broad-class categories such vowels, semi-vowels, fricatives, stops, …） and, 

in the the next stage, use the derived feature extractor for acoustic model estimation through MLE 

or MCE. This scheme can be used as an approximated DFE approach, designed particularly to 

handle the computational cost which characterizes large vocabulary speech recognition. 

227 



10.2.2 A ccurate opt1m1zat10n 

It is worth investigating other optimization methods other than gradient -descent. Even if gradient-

based optimization is rather fast and straightforward, an optimization scheme that guarantees 

convergence to a global minima is of interest. Simulated annealing and genetic algorithms are 

obvious candidates. 

10.3 Few Potential Applications 

In this report, application of the DFE method was shown in few selected tasks. The focus was 

particularly on the re-estimation of lifters and a filter-banks which are the basis of most speech 

parameterization techniques. However, the same approach can be applied using other feature 

extraction techniques. Here, some potential applications are briefly discussed. 

10.3.1 DFE application to time-frequency resolution 

All experiments described in this report was done within a preset time-frequency resolution provided 

by the short-time Fourier transform. Time-frequency resolution can be improved by an appropriate 

choice of the sliding window or by making use a wavelet transform. 

DFE application to the short-time window selection 

Given a speech signal s(m), a short short-time window w(n) transforms the signal into 

s(m, n) = s(m + n)w(n) 0::; n:::; N -1, (10.1) 

where s(n, m) denotes then-th new speech sample at time m N is the preset length of the window. 

In this report, a Hamming window was used as a sliding window. However, the choice of the 

Hamming window is not guaranteed to be the best. It has been shown in various studies that 

the resolution power of short-time Fourier transform depends on the choice of the sliding window 

[Rabiner and Schafer, 1978]. Since the effect of this weighting in the time -domain is equivalent 

to a convolution process in the frequency domain, the choice of window function affects both the 

frequency resolution of the selected speech segment (the main lope of the window spectrum must be 

narrow and sharp) and introduces spurious distortion outside the main lobe due to the convolution 

process. These two requirements are mutually exclusive. However, the DFE approach can be used 

to optimally select the window which provides the best performance for the recognizer structure at 

hand. This can be done in the following way. 

Most window are a special case of a more generalized window form, known as the Generalized 

Cosine Window, which is defined as 

w(n) = A -B cos (2パ三）+ C cos (2バロ (10.2) 
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where A, B and C are constant that determine a particular window type and n refers to the digitized 

time lag. 

A Hamming window is defined by choosing A = 0.54, B = 0.46 and C = 0. A Hanning is 

implemented with A = 0.5, B = 0.5 and C = 0 and for a Blackman window, we have A = 0.42, B = 
0.5 and C = 0.08. DFE can thus be used to find the optimal configuration of A, B and C. 

DFE application to the wavelet transform 

The frame based approach, which imposes a fixed sliding window, does not provide appropriate 

temporal resolution of the waveform. An alternative to the use of a fixed-length window frame is 

the wavelet transform. For decades, the wavelet transform has been introduced by mathematicians 

as alternative to the use of the Fourier transform, well-suited to non-stationary signals. Recently, 

the wavelet transform has found wide application in speech processing, sonar estimation and image 

analysis [Grossman and Kronland-Martinet, 1988]. 

The basic idea of the wavelet transform is to use an invertible linear transform as a time-

frequency analyzer, which integrates a time-scaling process. For a signal s(t), the wavelet transform 

is defined as 

S(t, a)= j s(T)六心（デ） dT. (10.3) 

The transformation above can be viewed as a decomposition of the signal along the basis functions 

l t -b 

言（丁）
called "wavelet". For lal > 0, there is a time expansion and for lal < 0, there is a time contraction. 

A classical choice of the wavelet is the Morlet wavelet, defined as 

贔xp(a口）2) ejwt (10.4) 

where a is a positive constant. 

In can be seen that the success of the wavelet transform depends on the value a and, in the case 

of the Morlet wavelet on a as well. The DFE approach can use in the selection of these parameters. 

10.3.2 DFE for noise adaptation 

In the presence of noise, specific adaptation techniques have been shown to improve performance 

since, in this situation, there is a clear mismatch between training and testing conditions. Among 

the many suggestions for reducing this mismatch, the technique of spectral transformation as 

proposed by [Mokbel and Chollet, 1991; Mokbel, 1992], performs a linear transformation of the 

clean speech unto noisy speech, using a least-mean squared error criteria. This transformation, 

however, is done on the cepstral domain (e.g. MFCC). One alternative is to use a method similar 

to the one presented in Chapter 9 or in [Woundenberg et al., 1997]. That is optimizing the filter-

bank itself for spectral adaptation. 
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10.3.3 DFE within LPC-based model 

Most of the work presented in this report relies on an FFT estimation of the spectrum. It goes 

without saying that the same method can be applied within the context of the LPC estimation of 

the speech spectrum. 

Without going into detailed explanations, the DFE approach can be used to optimize the 

spectrum by adjusting the poles of the all-pole model H(z) aiming at minimum error or adjusting 

the frequency scale by means a bilinear transformation. 

10.3.4 DFE within digital filter design 

DFE Application to LPC model can be viewed as a particular case of using the DFE approach 

to in designing a digital filter, in a manner similar to adaptive filter design [Widrow and Stearns, 

1985]。

The idea here is to replace the usual least-mean-squared criterion with an estimate of the error 

as provided by the acoustic models. The main problem is keeping with the stability of the filter. 

That is, keeping the pole inside the unity circle. This can be achieved by a specific parameter 

transformation, which maps the zero into an area of the unit circle. 

10.4 Final Discussion 

DFE is particularly useful when design resources are limited, such as in a realistic environment. 

A limited number of design samples often makes a classifier less accurate for unknown samples, 

resulting in a less robust system design. A conventional solution to this problem is to increase the 

statistical stability of (discriminant function) estimation by increasing the ratio of the number of 

design samples to the number of adjustable parameters the classifier has. However, as shown in 

statistics [Duda and Hart, 1973; Fukunaga, 1972] and artificial neural networks studies [Bishop, 

1995], the issue has yet to be solved. 

MCE/GPD has partly contributed to alleviating the problem; its innovation was the introduc-

tion of smoothness in estimating the error rate. The smoothness makes classification operations 

smoother and is equivalent to increasing the number of design samples, bringing higher robust-

ness [Juang and Katagiri, 1992a]. However, increasing the smoothness also means increasing the 

parameters-to-data ratio, and therefore even MCE/GPD cannot be a sufficient solution. 

The use of classification-oriented features clearly makes the classification decision easier and 

more accurate, and it can also achieve a more robust decision: The fe0'ture representation that is 

suitable for classification should appropriately suppress pattern variations irrelevant to the classi-

fication. Therefore, a desirable method of recognizer design needs to incorporate the design of the 

feature extractor in the classifier design. However, as shown in the literature, there has convention-

ally been no direct interaction, except for subspace-method (SM)-related cases, and artificial Neural 

Networks, between the the feature extractor and the classifier aiming at the same criteria. Thus, 
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a novel mathematical framework such the DFE, is clearly needed to realize for such interaction 

in practical application. Within, this report, DFE was simply applied to readjust few state-of-art 

speech feature extraction method. It goes without saying that better performance can be obtained 

by using a more complex feature extractor such as neural network. 

Note that the gradient-based optimization is not essential for the formalization concept of 

DFE. An important point is to formalize the entire recognition process consistently and directly as 

a training procedure. However, the gradient method is still useful frorn the practical viewpoint of 

computation load. As well known, the method does not guarantee to achieving the global minimum 

status of the error surface. However, irrespective of this defect, experimental results demonstrated 

that the DFE implementation which aims at achieving at least a local optimal design with the 

gradient optimization, can successfully be carried out. 

In the design of pattern recognizers, conventionally, recognition accuracy improvement is at-

tempted by increasing the size of trainable parameters used for classification. However, as often 

criticized and as demonstrated in this report, such an approach cannot be an acceptable solution. 

A larger size classifier is time-consuming as well as resource-consuming. Moreover, increasing the 

classification capability often causes the over-learning problem. On the other hand, if samples 

are represented in a highly separable feature space, the process of classifying them can be rather 

simple and easy. A small size classifier would be sufficient for handling such patterns correctly. 

The experimental results in the report show that DFE realizes this efficient classifier by finding 

salient pattern characteristics, as manifested in the training data, thus alleviating the over-learning 

problem. 

DFE can not circumvent, however, the over-learning problem completely: DFE is a data-driven 

training and its design result relies on the nature of finite samples available in the training stage. 

Thus, naturally, a careful design manner that entirely covers the task including training data 

preparation is severely required even in the use of DFE. 

Since the problem setting of classification usually assumes that patterns to classify are repre-

sented a priori in the fixed feature space, over-learning in classifier design is often studied in the 

conventional approach where one attempts to alleviate it by controlling the representation capabil-

ity of classifier. In contrast, since DFE designs the feature space itself in the data-driven manner, 

such a conventional approach rnay be inadequate for further analyses of the characteristics of DFE, 

such as its over-learning mechanism. A new mathematical framework is needed for analyzing the 

feature representation and the classification decision, both determined jointly by DFE. This can be 

an important future research issue. 

One main purpose of the DFE design is to improve classification accuracy of a preset recog-

nizer by appropriate selection of features through a computational training. However, this design 

framework should also be recognized for a another contribution: DFE can feed-back the knowl-

edge acquired by machine-decision-oriented feature representation to traditional expertise regarding 

characteristics of input pattern and/ or human capability. 
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Appendix A 

Fundamentals of speech recognition 

A.1 What is Speech 

The speech signal is the main mean of communication between human beings. Building machines 

that can understand human speech is therefore a natural investigation. However, despite having 

been the subject of intensive research for the last 4 decades, speech recognition by machine still 

has long way to go. Speech is highly variable in a number of ways. One person voice is different 

from another's voice and even the same speaker can not utter the same word in exactly the same 

way on two occasions. Another problem is that the duration of a word change usually at utterance 

depending on the manner of pronunciation. Also, ambiguity is a problem: there is no acoustic 

difference between the words "to", "two" and "too". Furthermore, speech signals are continuous 

and in fluent conversation, there are no pauses between the words, which requires a segmentation 

to be taken place before speech analysis and decoding. 

In general, the idea is to divide the problem into smaller problems. So, only some particular 

aspects of speech recognition are considered. Usually, the task is divided according to the back-end 

application. For instance, for a voice-controlled remote control system, one only needs to recognize 

few digit numbers. This problem falls into the context of isolated word recognition. That is, 

trying to recognized single word or a sequence of words separated by a period of silence (connected 

word recognition). Continuous speech recognition, however, does not assume predefined boundaries 

between words。

Restriction can also be made on the number of speakers using the system or the vocabulary in 

use. For instance, a speaker independent recognition requires that any speaker should have his voice 

recognized by the machine. If only selected speakers can get their voice recognized, the problem 

is said to be speaker dependent recognition. The number of words recognized by the system is 

obviously a decreasing function of the number of speakers. 
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A.2 Various Views of Speech 

The way the speech signal shall be regarded before processing, is inherently linked to a specific 

interpretation regarding the nature of the speech signal. This gives rise to various acoustic-modeling 

methods. 

A.2.1 Speech production 

In this framework, the speech signal is regarded as the output of the speech production system, 

which carries the characteristic of the vocal apparatus such as vocal tract resonance, vibration of 

the vocal cords, or nasal cavities. The speech recognizer tries to separate influence of each part of 

the vocal apparatus and determine which one constitutes the invariant parameter able to be use 

for decoding. 

A.2.2 Speech perception 

Human speech perception is certainly the most astounding speech recognizer. Hence speech per-

ception research can provide the basis for building accurate speech recognizers. Such a system tries 

to simulate the human auditory reception process by extracting speech parameters and classifying 

them as it is done in the ears, the auditory nerves and the brain. The difficulties of such an approach 

is that it relies on psychoacoustics findings, which itself depends on sophisticated instrumentation. 

A.2.3 Acoustic modeling 

The speech is simply considered as a random mathematical signal The speech signal is passed 

through the general signal analysis techniques (Fourier frequency spectrum analysis, principal com-

ponent analysis, statistical decision procedure, and other mathematical schemes) to establish the 

identity of the input speech. Decoding relies on statistical pattern recognition decision theory. This 

constitutes the most widely used decoding method in the speech field. The most widely power-

fol methods nowadays are based on hidden Markov models, which provide a powerful to model 

dynamic pattern. 

A.3 Speech Recognition by Machine 

The main processes underlying a speech recognition nowadays include the capture of speech utter-

ance (data acquisition), the analysis of the raw speech into some suitable set of parameters (feature 

extraction), the comparison of these features with some previously stored knowledge (pattern clas-

sification) and the making of the decision. 

Most systems rely on digital data representation, which signifies sampling the speech signal 

and quantizing it before processing. Special precautions must be made in choosing the sampling 

rate. Typical sampling rate range from 8 to 16 kHz with a bit storage of at least 12 bit/samples. 
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A anti-aliasing filter may be required to avoid under-sampling effect which may occurs when the 

signal bandwidth is unknown. 

The data acquisition process is made, for example, by a microphone. Then a preprocessor 

transforms the speech signal into some useful representation (feature extraction). After isolating 

the word from the surrounding silence (segmentation), the unknown speech unit is compared with 

some pre-stored knowledge and the result is produced (classification/recognition). 

All these processes are intertwined and inter-dependent and do not show a clear barrier between 

them. For instance, data acquisition also performed some form of signal parameterization thus, 

overlapping with the feature extraction process. However, it is always, possible, to represent each 

process as a "black box system", with clear a input-output subject to analysis. 

A.3.1 Speech representat10n 

Speech representation constitutes the most important process in the speech recognition since it 

affect the overall recognizer. Various constraints underly the speech parameterization process. The 

resulting features must carry the relevant information, given the task at hand. the first difficulty is 

encountered in "what" constitutes those relevant parameters given the high variability if the signal. 

An accurate feature extractor must also discard the irrelevant parameters. For instance, in multi-

speaker word recognition task, information concerning speakers, manner of speaking, background 

noise, channel carriers, must be removed and only word-specific information be kept. This feature 

extraction is a difficult task and a great deal of research have been done in the last 50 years to find 

the invariant of the speech signals for an exhaustive search in speech signal processing techniques. 

The representation of speech signals can be divided into two parts : the time-domain features 

and the frequency-domain features. Time-domain based speech representation treats the signal in 

the time domain to find regularities. Early speech recognizers relied on these features for recogni-

tion. Time-domain features could be: 

• Energy or Amplitude of the signal. 

• Autocorrelation function of the speech waveform. 

• Linear predictive coding coefficients (LPC). 

• Voiced/unvoiced, pitch value measured in the waveform. 

• zero crossing rate. 

Frequency domain representations decompose the signal along a set of basis functions. Spectrally-

based features constitutes the most widely method of speech parameterization nowadays. 

Fourier transforms-based features are the basis for most speech recognizers. Short-time Fourier 

transforms provides a straightforward method of estimating the spectral dynamic of the speech sig-

nal. Discrete Fourier Transform (DFT) and Linear Predictive coding (LPC) are the main methods 

of short time Fourier spectrum estimation. The speech signal is divided into overlapping frames 
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by a sliding window (especially chosen to smooth out the spectral resolution), and the spectral 

analysis is run at each window position producing a set of spectral vectors which represents the 

spectrogram of the speech signal. The spectral frames may be further processed to enhance some 

spectral region of the spectrum or derive new features. Examples of frequency-domain features are: 

• Filter bank output. 

• FFT-based filter bank. 

• LPC cepstral parameter. 

• FFT-based cepstral parameters (MFCC, BFCC, LFCC). 

A.4 Reduction Techniques 

The speech wave produces a great amount of data. Due to limited computer memory. It may be 

difficult to handle it all. There are data reduction techniques are proposed. 

A.4.1 V 
． 

ector quantizat10n 

This technique codes each frame of the speech data into a prestored reference vector. The set of 

this reference vectors is called a codebook. In other words, all the speech frames are represented by 

this codebook. For computational ease, the number of codes in the codebook is, in many cases, a 

power of 2(2りsuchthat bis the number of bits in each vectors. It seems obvious to say that speech 

recognition performance depends on the production of this codebook. Generally this codebook is 

generated by a splitting procedure that minimizes the average distortion. 

T1me-normahzat10n A.4.2 . 

In the field of word recognition, one of the most important problem is that as uttered a word rarely 

has the same duration in different realizations. A solution should be to normalize all each speech 

pattern in order to make them the same size. This is called " Linear time normalization". There 

is also a "Non-linear time normalization" proposed for larger vocabularies. DTW is one of such 

non-linear normalization technique, for example. 

A.5 Speech decoding 

After data acquisition and parameterization of the speech waveform, the next step is to recognize 

the pattern composed of speech features. In general, the recognition processed is passed through 

of classification of part the pattern into smaller unit such as phonemes and then recognition is 

done based on this classification. Sophisticated approaches exist for speech classification and/ or 

decoding. The most widely used methods based on Hidden Markov Model and Neural Network. 

236 



The simplest way to build a speech recognizer might be to store speech knowledge through 

the form a pre-chosen templates, representing the words/phonemes/sentences and compare the 

incoming patterns with presto red pattern (called templates), using an appropriate distance measure. 

This approach constitutes early speech recognition system and is described below 

A.5.1 Pattern matching 

The basic principle of the pattern matching approach is to compare the unknown speech x with a 

set of reference patterns (Pi). Several ways of comparison are given and each depends on the choice 

of the distance and the pattern alignment. Below is a description of the most common system of 

comparison, named Dynamic Time Warping (DTW). 

A.5.2 Dynamic time warping (DTW) 

Let's consider an unknown speech signalの＝｛互…，叫…，巧}to be compared with a set of 

reference patterns Pi, where each Pi is itself a N dimensional vector: 

Pi= [Pi,1,Pi,2, …，Pi,N戸

The DTW algorithm aligns the sequence of vectors in a two-dimensional field・and process the 

distance through an optimal path. This optimal path is found using the principle of the dynamic 

programmmg. 
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Figure A.l: Principle of DTW 

The cumulated distance Cat a given point (i,j) of a path is : 

L 

C(i,j) = L d(i(l),j(l))w(l) 
l=l 
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where (i(l),j(l)) for l = 1, …, .L describe the different point of the path and w(l) is a weighted 

function. So, the distance between the speech S and one reference pattern Pk is defined as : 

D(X, Pk) = min C(M, N) over all paths. 

There are various constrains such as limiting the search of the path slope and many search 

algorithm (for example the Beam search) that provide less computationally expensive suboptimal 

path. The recursive dynamic programming algorithm that yields the optimal path is as follows: 

D(i,j) = d(i,j) + [D(i-1,j -1),D(i,j -1),D(i -1,j)] 

where d(i,j) describe the local distance between the two frames i and j and D(i,j) is the cumulated 

distance. Thus, dynamic programming involves local optimization which leads to a global solution. 

DTW is also used in connected words recognition. In this case, we must find the path through the 

boundaries separating the words. The principle however is the same. 

A.5.3 Statistical decision rule 

The pattern matching approach uses a metric as a similarity measures with the set of reference 

patterns. However, the speech signal is highly variable and the use of a simple distance is far 

from being sufficient to provides the required robustness in most applications. The alternative 

nowadays is to represent a given category Cj (a word/phone) by a probability densities functions 

P(叫切） • Stochastic modeling approaches in speech recognition is the most widely used method 

pattern classification in particular under the Hidden Markov framework. Their best interest is due 

to the fact that there is no need for time-normalization and statistically-based framework makes 

room for robustness. The principle is as follows. 

x belongs to Ci if Pr(Ci Ix) = m1:1,x Pr(C』x).
J 

(A.l) 

Pr(Cj Ix) denotes the a posteriori probability to have category C j, given the speech signal 

x. However, these probabilities are not available directly and should estimated. This is usually a 

Maximum Likelihood Estimation is carried out to estimate the class-conditional probability density 

functions p(叫Cj)using training data (Neural Network can also be used to estimate the a posteriori 

probabilities of a class given the data). Thus, given p(xlCj) and using the Bayes'rule 

Pr(C炉）＝
p(xlCj) Pr(Cj) 

and the computation of Pr(Cりleadsto the rule of "the Maximum Likelihood Classifier": 

for equi-probable categories. 

Pr(叫Ci)=maxPr(尤 ICj)
J 
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Hidden Markov Modeling (HMM) is the most popular stochastic method used nowadays on 

speech recognition. It popularity mainly originated from the fact that it is well suited to the 

dynamic nature of the speech signal since it divides the speech signal into states thus enabling local 

properties modeling. A set of algorithm such Expectation-Maximization (EM), with convergence 

proofs are available which make possible an iterative estimation of the model parameters, given 

available data. 

A.6 Language Modeling 

The output of the speech recognizer is often passed on to a Natural Language Processor system, 

which attempts to model the structure of the language and the conceptual relationships of words 

according to the application. The language model comprehends syntax (the language structure), 

semantics (the meaning of encoded language concepts) and a lexicon (the vocabulary). Modeling the 

syntax can be done in various ways. The most popular approaches uses parsers, formal grammar, 

finite-state language models and statistical models such as n-gram. 
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Appendix B 

Back-propagation for classification 

The back-propagation training algorithm is an iterative gradient algorithm designed to miminize 

an error criterion of a feed-forward network. Each category is assigned an output node. The largest 

output is chosen as decoded category of the recognizer. We suppose M categories. 

I. Initialize the weights: set the weights to small values 

T 
2. Present an input vector [xi, x2, …., xn] knowing its category Ck-For MSE, get teacher output 

T [ti, t釦….,t叫；ち＝伽 for加 kroneckernotation. 

3. Get corresponding output values [01, 02, ….,OM『.For MCE, compute misclassification mea-

sure. 
よ

dk =-Ok+森，森＝［土心贔oJ]77 ,'f} > 0 

4. Compute error E 

E~{½ 比,1(o;-8立 fmMSE

s1gm01d(dk) for MCE 
(B.1) 

5. Adjust weight, recursively starting from the output nodes back to the hidden nodes. The 

adjustment is as follows 

Wij[T + 1] = Wij[Tj + E泣バ乃

匹： weight from node i to node j at iteration r; 年： output of node i; f.7 : learning at iteration 

r; ▽ j : error term (gradient) of node j; 

• if node j is an output node then 

For MSE: 

For MCE 

▽ j = oj(l -Oj)(も一〇］）

E(l -E) for j = k 

▽ j = { _E止~) (島）,-, for j ,f k 
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• if node j is an internal node node 

▽ j=切(1-坊）こ▽叫l

where l spann all nodes linked with node j in the layer above node j. 

6. go to step 2 
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Appendix C 

Filter bank optimization by DFE 

For a pattern s『={s1, ... ,st,・・・,sT} where each St = [st,1,・・・,st,f,・・・,st,F戸isa power-

spectrum frame and叫=[xt,1, • • •, 叫，i,・ ・ ・,Xt,J戸isthe corresponding vector of log energies. 

f represents the FFT bins. We have 

知 ~Iog10(I; 叫f紅}
fEBi 

for i = 1, ... , I, and 

印=ai exp [一店{p(,i)-p(J)}2] 

for i = 1, ... , I where Wi,f is the weight at frequency f provided by the i-th filter. 
If¢is any filter bank parameter, the adaptation rule is 

¢[r + 1] = exp (log(¢[r]) -p7U2品）
with 

品＝

T Q I 

塁 I:cos(竺(i-! 
t=l q=l i=l 

I 2))石，心t,i

T I 

if cepstrum transformation of size Q. 

LL石，iOt,i
t=l i=l 

if no cepstrum transformation. 

(C.l) 

(C.2) 

況伍(s『心））
• 和 isthe classifier's i-th input derivative of the t-th feature-vector. Iぃ= 8xt,i if 

冽 (dk(s『；り）
no cepstrum transformation. 叫= if there is cepstral tranformation. For 

如，q

Prototype-based or Gaussian Mixtures HMMs, 

N・ 
M 吋

互＝ーI:I:or弱，n,i"
j=ln=l 

where 6r i . is the increment of the n-th prototype vector of state心Ioccupied at the time 
心t,n,i 

t along the path of categoty C j. 
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• Ot,i is the feature extractor i-th output derivative of the t-th feature-vector (the derivative of 

the filter bank output in channel i versus the filter bank parameter¢). Ot,i does not depend 

on the classifier. 

with 

and 

い=1

where 

x(i, i) x(J, !)wu 

Ot,i = 
釦 t,i

F 

品 = LVt,i, 応，f
/=1 

St,f 
叫，i,f= 

log(lO)exp10 (xt,i) 

if¢is the weight w. ・ ・i,f 

2/3;: r;: (r;: -p(J)) wiJ x(i, i) if¢is the center frequency ri = p('Yi) of channel i 

as expressed m the perceptual domain. 

＿俎(p('Yi)-p(f))2叫 fx(i, i) if cp is the is the parameter (3:; 

controlling the bandwidth of channel i. 

(C.3) 

(C.4) 

Wi,f X(i, i) if¢is parameter o勾ofchannel i-th, which controls the gain. 

0 ifa-1-b 
x(a, b)~{ 1 otherwise (C.6) 
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