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ABSTRACT 

Anew method is described for animating talking faces that are both cos-
metically and communicatively realistic. The animations can be driven di-
rectly from a small set of time-varying positions measured on the face at 
the video field rate or at lower rates by interpolating key frame configura-
tions derived by via point analysis. This method of animation provides 
distinct benefits for both industrial and behavioral research applications, 
because the kinematic control parameters are easily obtained and are 
highly correlated with the measurable acoustic and neuromuscular events 
associated with speech production. 
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KINEMATICS-BASED SYNTHESIS OF REALISTIC TALKING FACES 

During spoken communication, speakers'faces convey all sorts of relevant 
information, not the least of which are visible, time-varying correlates of 
the activity of the vocal tract that shapes the speech acoustics [l, 2]. Con-
trary to popular belief and the common practice of speech researchers and 
engineers tackling the problem of audiovisual synthesis and recognition, 
the visible correlates of speech are not limited to the small area enclosing 
the lips, oral aperture, and even the chin [for overview, see 3]. Rather, the 
entire face - certainly everything below the eyes - contributes informa-
tion about the speech signal [4, 5]. Also, visible correlates of the speech are 
not restricted to a small set of phonetic elements, defined by the shape and 
position of the most visible articulators: the lips and less directly jaw 
height. Instead, the correlation appears to be much more continuous 
throughout the production of speech [6]. 

To the extent that visible acoustic correlates can be computed, they are 
available to machine recognizers. Whether or not human perceivers make 
use of, or even detect, such information is a long-range goal of this re-
search. Ancillary to that is the need to animate synthetic talking faces that 
minimally contain the same audible-visible correlates observed in human 
orofacial motion. We term this'communicative realism', bearing in血 nd
that initially our focus will be limited to the visible-acoustic or phonetic as-
pects of facial motion [7], not the more comprehensive domains of facial 
expressions of emotion and paralinguistic gestures accommodating pros-
ody and discourse. 

A second criterion for animating talking faces that can prove useful in 
both industrial applications and behavioral research is that the animated 
faces should be cosmetically real. With very few exceptions [e.g. 8, 9], talk-
ing faces have been cartoon caricatures that do not look like real people. 

In what follows, a new system is described aimed at animating talking 
faces that are both cosmetically and communicatively realistic. Animations 
are driven by a small set of positions on the face measured at the video 
field rate. Lower bit rates (< 100 bps) can be achieved by interpolating key 
frame configurations of the measured positions derived by via point analy-
sis [10]. The animations can then be synchronized with the natural acoustic 
signal or with an highly intelligible acoustic signal synthesized from facial 
motion parameters [11]. 

Many cosmetic details of the full facial model are not yet implemented 
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(e.g., teeth, eyes, hair). However, unlike other systems, the model is driven 
by measurable parameters whose correlation to acoustic, articulatory, and 
physiological levels of observation have been examined [1, 12]. This makes 
the system extremely useful for audiovisual research and applications de-
velopment, and can serve as a common platform for integrating the full 
range of human orofacial behaviors such as expressions of emotion, com-
municative gestures and speech that tend, in reality, to all occur simulta-
neously. 

AUDIBLE-VISIBLE SYNTHESIS 

The kinematics-based method of animating talking faces entails three 
principal steps: data acquisition, analysis, and animation. 

Data Acquisition 

Two types of data are currently required, time-varying facial motion 
and static representations of the 3D head plus video texture map. These 
are shown in Figure 1. 

a. b
 

Figure 1. Basic head data for the two measurement systems: a. Marker posi-
tions for recording head and facial motion data; b. Original full-head mesh 
from a static 3D scan. 

Facial Motion and Acoustics. Three-dimensional position data were re-
corded optoelectronically (OPTOTRAK) for 18 orofacial locations (for ired 
positions, see Figure la) during recitations of excerpts from a Japanese 
children's story (Momotarou) by a male Japanese speaker. Position meas-
ures were digitized at 60 Hz along with simultaneous recording of the 
speech at 10 kHz. Since head motion is normally large relative to facial 
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motions, its effects on the absolute position of the facial measures must be 
removed. Therefore, rigid body head motion was also measured using 5 
ireds attached to a lightweight appliance worn on the head (see Figure la). 
A quarternion method [13] was used to decompose the head motion into its 
six rotations and translations and to calculate the independent motion of 
the facial markers [for processing details, see 14]. 

Static Face Scans. A set of eight full-head 3D scans and video texture 
maps covering a range of speech and non-speech orofacial configurations 
(see Figure 2) was obtained with a laser range scanner (Cyberware, Inc.). 
The set consisted of static configurations for the five Japanese vowels (/ a, 
i, u, e, o/) and three non-speech configurations: mouth wide-open, mouth 
closed with teeth clenched, and mouth closed but relaxed. Scan resolution 
was 512 x 512 pixels. The average resolution of each extracted face is 
somewhat less than 300 x 300, containing 71100 nodes and 141,900 poly-
gons. Feature contours for the eyes, nose, jaw, and lip contours (inner and 
outer) are identified for each scan along with the 18 positions approxi-
mating the placement of the ired markers. Node coordinates are converted 
from cylindrical (r, 0) to Cartesian 3D (x, y, z). 

a. 

b. 

Figure 2. Eight 3D faces extracted from full-head scans during sustained produc-
tion of a. five Japanese vowels -/a, I, u, e, o/ and b. three non-speech postures 
-open mouth, relaxed closed mouth, and clenched closed mouth. 
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Analysis 

The analysis techniques outlined below entail art for mesh initialization, 
field morphing for mesh adaptation, and multilinear techniques for ex-
tracting control parameters from the scanned face data. 

Face And Lip Mesh Adaptation. A generic mesh for the face (exclusive of 
the lips) consisting of only N = 576 nodes and 844 polygons is used to re-
duce the computational complexity of the original 3D scans. As can be seen 
in Figure 3a, nodes are most heavily concentrated periorally, along the 
nose, and especially around the eyes, but are fairly sparsely distributed 
elsewhere. The feature contours for eyes, nose, jaw, and lip outer contour 
are identified on the mesh (Figure 3b). For each of the eight face scans, the 
mesh is lined up along the feature contours and nodes are adjusted to 
match the 18 approximated marker positions. The remaining mesh nodes 

a. b. 

C. 

Figure 3. Mesh adaptation entails matching feature contours of the generic 
mesh (a.) with features for each scanned face (b). Generic mesh nodes are ad-
justed to match position measurement locations (c) and then the texture map is 
applied. 
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are then adjusted through field morphing [15] and the texture map is re-
attached (Figures 3b,c). 

Each adapted facial mesh is expressed as a col皿 nvector f containing 
3N nodes, representing the x, y, and z values for each 3D node. Since K = 8 
facial meshes were made, the ensemble of adapted mesh nodes is arranged 
in matrix form as 

F = [ f 1, £2, ... f』. (1) 

The "mean face"μ1 is then defined as the average value of each row of F, 
and subtracted from each column of F generating 

FO = [ foi, fo2, …fo』, (2) 

the matrix of facial deformations from the mean face. Any facial shape can 
now be expressed by the sum 

f = fo +μf" (3) 

The outer and inner lip contours specified in each face scan are used to 
constrain a lip mesh consisting of 600 nodes and 1100 polygons. Each con-
tour consists of 40 nodes on the lip mesh. A third lip contour is linearly in-
terpolated midway between the two original contours on the scanned 
surface. The lip mesh is then numerically generated using cubic spline in-
terpolation of the orthogonal triplets of control points from the three 
contours. Currently, the lip mesh is attached to the face mesh at the border 
of the outer lip contour and is passively deformed by the deformation of 
the face mesh, therefore it is not included in the estimation of the mean 
face or subsequent principal component analysis (PCA). 

Facial PCA. The principal components of F can be found by applying sin-
gular value decomposition (SVD) to the covariance matrix 

C1. = FO FOt, (4) 

yielding 

C1. =US Ut. (5) 

U is a unitary matrix whose columns contain the eigenvectors of C1. nor-
malized to unit length. Sis a diagonal matrix whose diagonal entries are 
the respective eigenvalues. 

Since the ensemble consists of eight facial shapes, only the first seven ei-
genvalues are larger than zero and consequently only the first seven col-
umns of U are meaningful. In fact, the first five eigenvectors account for 
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more than 99% of the variance observed in the data [Each eigenvalue of S 
denotes the variance accounted for by the respective eigenvector; thus the 
sum of all eigenvalues is the total variance]. 

The first seven columns of U are the principal components that can be 
used to express any facial shape as 

f。=U7a, (6) 

where U7 is the matrix formed by the first seven columns of U, and a is the 
vector of principal component coefficients determined by 

a=U/f。. (7) 

Since U7 is fixed, facial deformations can be represented by the seven co-
efficients contained in a. Thus, for the eight shapes derived from the 3 D 
scans, 

a= [a,1, Uz, …叫］． (8) 

Calculating the Linear Estimator. In order ultimately to drive the facial 
animation from time-varying marker data, it is first necessary to relate the 
18 marker locations with the rest of the mesh nodes for each of the eight 
adapted facial meshes. This is done by calculating a linear estimator, 
whose reliability is likely to be good given that the number of marker loca-
tions (18) is substantially larger than the number of eigenvectors (7) needed 
to recover the variance. 

For each face scan, the 54 (18 markers x 3 axes) positions were expressed 
by a column vector p. Since the values in p are a subset of the values of f, 
they can be extracted and arranged in the matrix 

P = [p1, P2, …p』.

Removal of mean position gives 

PO = [po1, po2, …po』.

(9) 

(10) 

PO and a were then used to determine a minimum mean squared error 

(MMSE) estimator: 

a =APO 

A = a pot (PO P01)―I. 

、
l
'

ノ

、
~

1

2

 

1

1

 

（

（

 

-8 -



Animating Facial Motion 

Once the linear estimator is determined from the eight facial scans, it 
can be applied to the position data measured by the OPTOTRAK on a sam -
ple by sample basis or through interpolation of via point arrays. 

Any vector p can be used to estimate the complete facial shape as fol-
lows: 

f =μ!" + fo 

f =μt + V7 a 

f =μt + V7 A po. 

(13) 

(14) 

(15) 

The natural head motion can be restored using the rigid body compo-
nents derived during data processing. Otherwise, the head can be fixed at 
any orientation desired. 

Direct Animation From Position. Since the marker data were obtained at 
60 Hz and the North American/Japanese video standard was used, the 
animation sequences can be generated simply by configuring one video 
field from the marker values at each time sample. Of course, the position 
data can be decimated to fit any desired animation rate such as 25 fps 
(European video), though rates at or below 15 fps (typical for QuickTime 
movies) are close to the threshold for the visual enhancement effect on 
speech [16]. 

Interpolation Of Via Point Arrays. An alternative and, from our point of 
view, more promising approach is to use via point analysis to extract ar-
rays of position values at a slower, user-configurable sampling rate. The 
via point arrays are extracted using a 5th-order spline function. This func-
tion is numerically equivalent to a kinematic smoothness function that 
minimizes jerk (rate of change of acceleration) [17] and is well suited to de-
scribing control of biological movements. First applied to planar arm 
movements by Flash and Ho_gan [18], the minimum jerk function has 
proved useful in predicting point-to-point movements as well as a range 
of via-point movements (analogous to key frames in animation) such as 
handwriting [10] and speech articulation [19]. Formally, the minimum jerk 
criterion provides unique solutions to trajectory control from knowledge of 
only the initial, final, and via-point positions and the movement duration. 
The function is given here for the case of planar movements where X, Y 
are Cartesian coordinates and t, is the movement duration: 
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c, =肛。り{(iJ+(~)} 
(16) 

Once extracted, the via point arrays represent key orofacial configura-
tions that are used to recover continuous facial deformations through in-
terpolation of the 5th-order spline function. The quality of the recovery 
with respect to the original motion of the face is controlled by the error 
criterion (in this case, maximum distance error) set by the user. A weaker 
error constraint results in fewer via point arrays and hence greater data 
reduction. Figure 4 shows position-time series for two dimensions of facial 
motion, the extracted via point arrays, and the position paths recovered 
through interpolation of the via points for the first 1.5 seconds of a sen-
tence utterance. Figure 5 gives a flavor of the data reduction and subse-
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Figure 4. Time-series for the speech acoustics and vertical position of the low-
est chin and the upper right (subject's left) cheek markers. Overlaid upon the 
solid (black) traces are the position (green) traces interpolated through the via 
points (circles). 
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quent interpolation of facial configurations between extracted via point 
arrays. 

EXTENSIONS TO THE BASIC MODEL 

In this section, we expand the scope of the facial animation model to 
other areas of our research in audiovisual speech production. 

Acoustic Synthesis From Faces 

In addition to driving facial animations, the facial motion data can be 
used to synthesize the speech acoustics through their correlation with the 
amplitude and spectral properties of the acoustics. The multilinear tech-
niques used to determine these correlations are described in detail else-
where [7, 11, 20]. Briefly, even a smaller number of position locations (11-
12) than the number used here (18) is sufficient to generate intelligible 

ー ＾
 

＼ 

Figure 5. The interpolation of via point arrays is shown partially (every sec-
ond or third frame, bottom). The three frames configured from via point ar-
rays are shown (middle) along with three video frames in which the original 
marker positions can be seen (top). 
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acoustics entirely from the face. What is crucial to the synthesis, however, 
is that points from the chin, the lips, and the cheek be used. 

Recovery Of Tongue Positions 

The importance of the cheek region can also be seen in the recovery of 
vocal tract configurations from the facial motion data described in the 
same studies. By aligning vocal tract (midsagittal lips, tongue and jaw) 
and facial data collected on different occasions from the same speaker for 
the same utterances, tongue position could be estimated from the facial 
motion at better than 83% reliability. Particularly surprising was that the 
tongue tip could be recovered at about 90% reliability. Removal of the 
cheek positions from the estimation substantially reduced the strength of 
the correlation with the tongue, further demonstrating that the visible cor-
relates of speech are not restricted to the lips and chin. It should be noted 
that from the standpoint of causality, estimation of vocal tract motion 
from facial motion is actually an inversion. The 1forward'estimation is 
that of the face from the vocal tract and has been done for an English 
speaker at better than 95% overall [7]. 

Synthesis Of The Tongue Tip 

The ability to recover the tongue tip motion from the face also suggests 
that a synthetic tongue tip could be realistically parametrized by the same 
facial motion data currently being used to animate the face. This will be 
implemented soon along with upper and lower dental arches. 

Access to the Physiology 

This speaker and four other speakers of French and English have been 
recorded for similar tasks using unilateral arrays of 11-12 position sensors, 
but with the addition of hooked-wire muscle EMG inserted into 8-9 oro-
facial muscles on the opposite side of the face. These studies, which are 
part of a long-range study of speech motor control [21-23], have shown 
that facial motion can be estimated from muscle EMG. Using simple 
autoregressive models (second-order AR) and a short delay (< 20 ms), fa-
cial motions can be estimated at better than 80% reliability [e.g., 11]. In 
fact, these same data are used to drive the muscle-based model of Lucero 
and colleagues described below [9]. Taken together, the high correlations 
among facial and vocal tract kinematics and orofacial muscle EMG su_g-
gest a single scheme of neuromotor control for the production of audiov1s-
ual behavior [for discussion, see 5]. 
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Text-To-Audible-Visible Speech 

As an extension of the via point analysis technique, the facial animation 
model can be driven concatenatively from text input using a codex of pho-
neme-specific via point arrays [10, 19]. Triphone-sized via point arrays are 
being extracted from recited sentence data such as those used in the analy-
sis of the current data as well as much larger sets of semi-spontaneous ut-
terances. Preliminary tests have shown that the extracted sets of via point 
arrays may be used to specify target configurations from text strings. The 
primary appeal of the via point technique is the suitability of its min血 urn
jerk criterion to describing biological movements, which exhibit inherent 
smoothness. 

ISSUES OF REALISM 

As can be seen in animation sequences derived using the statistical model 
presented here, the synthesized face bears a striking resemblance to the 
subject whose facial motion drives the model. The temporal match be-
tween the synthetic and the original behavior is essentially perfect, and the 
spatial deformations are on the whole faithfully recreated. The static 
shape of the upper lip is not quite right, which will exacerbate small esti-
mation errors, particularly at the attachment points for the lip mesh. 
Complex audiovisual synchronization is not required, whether the original 
audio signal or the acoustics synthesized from the same facial motion pa-
rameters are used. Also, since rigid body head motion is controlled inde-
pendently, faces can be presented at any orientation and with any degree 
of natural or unnatural motion. Finally, the faces can be synthesized from 
only five parameters, linearly derived from the kinematic data which are 
known to be highly correlated with the underlying muscle activity (EMG), 
position and shape of the tongue, and the speech acoustics. On the basis of 
these features, has cosmetic and communicative realism been achieved? 

Cosmetic Realism 

Cosmetically, this model generates recognizable faces superior to cari-
cature-style models such as those currently being developed for multime-
dia applications within the telecommunications industry. Its video and 
spatiotemporal realism also make our data-driven model better than those 
derived from Parke's FACS model [24]. For example, Massaro and Cohen 
[25] have extended Parke's FACS model [24] to audiovisual speech from 
text input for English. In addition to their cartoon-like quality, such models 
are controlled by static parameters that are themselves caricatures of 

-13 -



anatomical and physiological structures. Benoit and colleagues have 
adapted the same model for French text-to-audiovisual synthesis by add-
ing a 3D lip model whose parameters were statistically derived from static 
images for one speaker [26, 27]. The lip mesh used here is a heavily re-
engineered descendant of the French lip model. 

In terms of video-image quality, there are two types of model that sur-
pass ours in cosmetic realism. Among other things, these models can rep re-
sent hair, eyes, teeth, and even parts of the torso, all of which are missing 
from our current model. One type extends the muscle-based facial motion 
models developed by Waters and Terzopoulos [28, 29]. These models use 
video texture maps and the deformation of sparse 3D polygon meshes to 
synthesize realistic facial motion [30]. However, like their predecessor, the 
Parke model, these models do not use time-varying physiological measures 
either to verify or to parametrize the dynamics and subsequent behavior of 
the model system. At best, stylized estimates of skeleto-muscular and facial 
structure have been derived from static measures such as computer to-
mography [e.g., 29, 31, 32]. 

Several models of this type have been adapted for synthesis of facial 
motion associated with speech [e.g., 9, 33]. Lucero et al have extensively 
re-worked the structures controlling the model's dynamics, e.g., imple-
mentation of more realistic parameters constraining muscle force genera-
tion. The resulting model is now stable enough to be driven by the continu-
ous muscle activity signals (EMG) recorded contralaterally to the same 
sort of movement data used to drive our current model. Although much 
improved, the animation is computationally expensive and has yet to be 
synchronized with the acoustics. 

The second type of model achieving substantially better cosmetic realism 
than ours is the Video Rewrite system developed by Bregler and colleagues 
[8]. Video Rewrite concatenates audiovisual triphones into synthetic se-
quences allowing the speech of one person to be audiovisually dubbed onto 
the background image of another person. This is a very compelling system 
with possibly only one cosmetic drawback; by dubbing only the portion of 
the face containing the mouth and chin, there may be a visual conflict be-
tween the motion of the cheeks in the background image and the mouth-
chin of the dubbed portion. As discussed above, we have consistently found 
high correlations between the motion of the chin and the cheeks for all of 
the speakers examined thus far. An example of this is shown graphically in 
Figure 4 where, even though the range of vertical position for a location 
on the upper cheek is only about 1 mm., the time-series pattern matches 
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very closely that of the chin. 

Communicative Realism 

The extent to which the model is communicatively real is currently being 
tested in perception and functional MRI studies using model generated 
animations. Minimally we expect the results of the perception studies to be 
as good as those of the Parke model derivatives. Psychometric tests using 
such models [e.g., 34, 35, 36] have shown that audiovisual presentations in 
noisy acoustic conditions enhance speech intelligibility along the lines of 
that observed by Sumby and Pollack [37] for natural faces. However, the 
cause of the enhancement is not known. Indeed, recreating the general 
spatial (amplitude) and temporal (synchrony) properties of the audible-
visible behavior, as done in cartoon animation, may be enough to enhance 
the intelligibility of the acoustic signal somewhat, simply because the 
viewing listener is given visual information about the framing (prosody, 
syllable structure) that entrains the auditory system to detect phonetic 
content (consonant and vowel segments). 

A potential advantage of our data-driven model is the measurable 
cross-modal correlation between the acoustics and the facial motion data 
driving the model. Thus, we hope to determine the extent to which the in-
creased intelligibility of audible-visible stimuli (over audible alone) is due 
to the presence of visible information specific to visual phonetic and/ or 
higher (e.g., lexical, syntactic) processing levels, rather than simply the 
synchronization of audible and visible stimuli. 

SUMMARY 

The facial animation model proposed here offers cosmetic realism inso-
far as it generates faces that look like the original speaker. However, even 
without the many cosmetic improvements yet to be implemented, it has 
largely solved the problem of generating realistic motions from a small set 
of control parameters. These parameters have the significant additional 
advantage of being highly correlated with the other observable events as-
sociated with speech production; namely, the underlying physiological ac-
tivity, the deformations of the vocal tract that to a large extent are respon-
sible for the visible facial motions during speech, and finally the speech 
acoustics. No other model of facial motion can claim such a realistic grip 
on the production of audiovisual behavior. Of course, the model's commu-
nicative efficacy in human perception can be judged only by its effects on 
perceivers, a job currently underway. 
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