TR-H-221

Kohonen マップの シミュレーション

岩本俊弘(東京大),野村竜也

1997.6.12

ATR人間情報通信研究所

〒619-02 京都府相楽郡精華町光台2-2 TEL: 0774-95-1011

ATR Human Information Processing Research Laboratories

2-2, Hikaridai, Seika-cho, Soraku-gun, Kyoto 619-02, Japan

Telephone: +81-774-95-1011 Fax : +81-774-95-1008

©(株)ATR人間情報通信研究所

Kohonen マップのシミュレーション

岩本 俊弘* 野村 竜也[†]

1 SOM

1.1 SOM とは?

SOM とは、ニューロン間に幾何学的構造の あるニューラルネットワークであり、各ニュー ロンに入力信号ベクトルと同じ次元の荷重ベク トルが割り振られている。

ある入力信号を与えたとき、各ニューロンの 荷重ベクトルとの距離を計算し、その距離の もっとも小さいニューロンが勝者となる。つま り、入力信号を SOM に与えたときの出力は、 勝者ニューロンの位置である。

ある入力信号で学習を行うには、勝者ニュー ロンとその近く(この「近い」はニューロン間 にあらかじめ与えられた幾何学的構造によって 定義する)のニューロンの荷重ベクトルを、入 力信号に近付くように修正する。つまり、入力 信号が *Î* で、荷重ベクトル *w* を持ったニューロ ンを係数 *k* で修正するときは、*w* を *kI*+(1*k*)*w* と更新する。

SOM の各荷重ベクトルを収束させるには、 学習において入力信号に近付くように修正する ニューロンの範囲を時と共に狭くして、係数 *k* を小さくしていく。

1.2 入力信号

以下の 2 次元の入力信号に対し、 Kohonen の自己組織化マップ (SOM) のシミュレーショ ンを行った。

*東京大学工学部計数工学科 東京都文京区本郷 7-3-1

E-mail: t60653@hongo.ecc.u-tokyo.ac.jp
 [†]ATR人間情報通信研究所第6研究室
 〒 619-02 京都府相楽都精華町光台 2-2

E-mail: nomura@hip.atr.co.jp

- 範囲が矩形 (¹/₃ ≤ x ≤ ²/₃, ¹/₃ ≤ y ≤ ²/₃)の一 様分布
- 範囲が2つの矩形 $(\frac{1}{4} \le x \le \frac{5}{12}, \frac{5}{12} \le x \le \frac{3}{4}, \frac{1}{4} \le y \le \frac{3}{4})$ の一様分布
- 範囲が円形 $((x-0.5)^2 + (y-0.5)^2 < (1/4)^2)$ の一様分布
- 範囲が 2 つの円形 $((x 0.5)^2 + (y 1/3)^2 < (1/9)^2, (x 0.5)^2 + (y 2/3)^2 < (1/9)^2)$ の一様分布
- 正規分布 (分散 1/120)

$$egin{array}{rcl} f(x,y) &\propto& \exp\left(-60\left((x-0.5)^2\right) + (y-0.5)^2
ight)
ight) \end{array}$$

2つの正規分布の和(分散 1/120、中心間の距離√2/2)

$$f(x,y) \propto \exp\left(-60\left((x-0.25)^2 + (y-0.25)^2\right)\right) + \exp\left(-60\left((x-0.75)^2 + (y-0.75)^2\right)\right)$$

ただし、 f(x,y) は確率密度分布関数。

また、以下の3次元入力信号に対しても、シ ミュレーションを行った。

- 範囲が2つの直方体 $(\frac{1}{4} \le x \le \frac{5}{12}, \frac{5}{12} \le x \le \frac{3}{4}, \frac{1}{4} \le y \le \frac{3}{4}, \frac{1}{4} \le z \le \frac{3}{4})$ の一様分布
- 範囲が円柱 $((x 0.5)^2 + (y 0.5)^2 < (1/4)^2, 1/4 \le z \le 3/4)$ の一様分布
- トーラスの表面上 $(|x^2 + y^2 0.3^2| + z^2 = 0.06^2)$ の一様分布

1

1.3 シミュレーションの手順

近傍の縮小速度と、修正係数を色々試して、 入力分布を良く反映した結果が出るものを探し た。近傍の形は矩形で、 n 世代ごとに上下左 右を 1 ずつ狭めるようにした。修正係数は、 kT/(T + t) (k,T は定数、 t は世代数) とい う式で定義した。

SOM のニューロン数は、2 次元、1 次元と もに 100 である。

1.4 結果 (入力信号が2次元の場合)

以下、断わりがない限り 2 次元の SOM では、近傍の最初の大きさは前後に 5 ずつ、 (n,k,T) = (2500,0.1,2000) で 200000 世代 目、1 次元の SOM では、近傍の最初の大きさ は前後に 10 ずつ、 (n,k,T) = (400,0.4,1750) で 100000 世代目の荷重ベクトルである。

左側が 2 次元の SOM 、 右側が 1 次元の SOM である。

範囲が矩形の一様分布

(n, k, T) = (1500, 0.15, 1200) で、0, 10000, 100000 世代目の荷重ベクトル(左)と、0, 10000, 100000 世代目の1次元の SOMの 荷重ベクトル(右)である。

• 範囲が2つの矩形の一様分布

範囲が円形の一様分布

• 範囲が2つの円形の一様分布

• 正規分布 (分散 1/120)

2つの正規分布の和(分散 1/120、中心間の距離√2/2)

1.4.1 パラメータの影響

近傍の最初の大きさを上下左右に 3 ずつ、 (n,k,T) = (500,0.2,1750)で 100000 世代目 のものである。入力信号は、範囲が2つの矩形 の一様分布である。

この場合は、近傍の縮小が速すぎるので、ね じれが生じた。ただし、近傍の縮小を遅くする と、マップの収束が遅くなるので、適当な値を 選ぶ必要がある。

1.5 結果 (入力信号が 3 次元の場合)

断わりがない限り、近傍の最初の大きさは前後に 5 ずつ、 (n, k, T) = (2500, 0.1, 2000)で 100000 世代目のものである。

• 範囲が2つの直方体の一様分布

範囲が円柱の一様分布

 トーラスの表面上の一様分布上が2次元の SOM、下が1次元のSOMで、下のSOM のパラメータは1.4 章のものと同じであ る。

1.6 シミュレーションに用いたプログラム

後の拡張を容易にすることを主眼において設 計・実装した。そのため、FSOM(Fuzzy SOM), LVQ (学習ベクトル量子化)のシミュレータを 簡単な変更で実現できた。

またほとんどのパラメータを設定ファイルで 指定できるようになっているので、様々なパラ メータでシミュレーションを行ったり、結果を まとめる際にパラメータを確認するのに便利で ある。

結果の表示には、入力信号が2次元の場合に は、2次元平面上にニューロンの荷重ベクトル をプロットしたものを、SOM の幾何構造を表 現するために SOM 上で上下左右にとなりあう ニューロンの荷重ベクトルを線分で結んだもの を(ラスタイメージで)出力する。

3次元の場合は、各荷重ベクトルの数値を出 力し、別のプログラムで2次元の時と同様の図 形を回転させて見ることが出来る。

正規分布を持つ入力信号を発生させるのは難 しいので、[0,1]の一様分布に従う確率変数 10個の平均で近似した。この方法で発生させた 100000個の数の分布を正規分布と比べたとこ ろ、誤差は 5% ほどであった。

2 FSOM(Fuzzy SOM)

2.1 SOM との違い

FSOM の SOM との違いは荷重ベクトルに 分散成分があって

$$\exp\left(\sum_{j} \frac{\left(\mu_{ij} - x_{j}\right)^{2}}{\sigma_{ij}^{2}}\right)$$

という関数で勝者を決定することである。この 場合 μ_{ij} の更新則はSOM のものと同じであ り、 σ_{ij} の更新則は、

$$\Delta \sigma_{ij} = 2\gamma \sigma_{ij} ((\mu_{ij} - I_j)^2 - \sigma_{ij}^2)$$

である。

また、 SOM の近傍の概念のない FSOM も あり (ここでは FSOM2 と呼ぶ)、

$$f_{i} = \exp\left(-\alpha \sum_{j} (\mu_{ij} - I_{j})^{2} / \sigma_{ij}^{2}\right)$$
$$/ \sum_{d} \exp\left(-\alpha \sum_{j} (\mu_{dj} - I_{j})^{2} / \sigma_{dj}^{2}\right)$$
$$\Delta \mu_{ij} = \gamma f_{i} (I_{j} - \mu_{ij})$$
$$\Delta \sigma_{ij} = 2\gamma f_{i} \sigma_{ij} ((\mu_{ij} - I_{j})^{2} - \sigma_{ij}^{2})$$

という学習則で全ニューロンを更新するもので ある。 α を時と共に増加させて、 SOM の近傍 縮小と同様の効果を出す。

2.2 入力信号

以下の分布を持った2次元の入力信号を用い た。分布を詳しく書いていない物については1 章と同じである。

- 範囲が矩形の一様分布
- 範囲が2つの矩形の一様分布
- 範囲が円形の一様分布
- 範囲が2つの円形の一様分布
- 正規分布 (分散 1/120)
- 2つの正規分布の和(分散 1/120、中心間の距離√2/2)

 2つの正規分布の和 (分散 1/120 、中心間 の距離 0.3√2)

$$f(x,y) \propto \exp\left(-60\left((x-0.35)^2 + (y-0.35)^2\right)\right) + \exp\left(-60\left((x-0.65)^2 + (y-0.65)^2\right)\right)$$

正方形領域内に台形の確率密度分布を持つ
 もの2つの和

$$f(x,y) = \frac{1}{2}f_0(x+\frac{1}{6})f_0(y+\frac{1}{6}) + \frac{1}{2}f_0(x-\frac{1}{6})f_0(y-\frac{1}{6})$$

ただし、

$$f_0(x) = \begin{cases} 18(x - \frac{1}{4}) & (1/4 \le x \le 5/12) \\ 3 & (5/12 \le x \le 7/12) \\ -18(x - \frac{3}{4}) & (7/12 \le x \le 3/4) \end{cases}$$

2.3 FSOM の結果

以下、断わりがない限り 2 次元の SOM では、近傍の最初の大きさは前後に 5 ずつ、 (n,k,T) = (1500, 0.15, 1200) で 100000 世代 目のもの (左側)、1 次元の SOM では、近傍 の最初の大きさは前後に10 ずつ、 (n,k,T) =(400, 0.4, 1750) で 100000 世代目の荷重ベクト ν (右側) である。

ここで表示したものは、 (μ_{i1}, μ_{i2}) を中心とし、半径 (σ_{i1}, σ_{i2})の楕円である。

範囲が矩形の一様分布

範囲が2つの矩形の一様分布

200000 世代目の荷重ベクトル(左)と、1 次元の SOM の荷重ベクトル(右)であ る。

4

 $\mathbf{5}$

入力信号が出現しない部分にいくつかのニュー ロンがあるが、これは、SOM の近傍の概念の ない FSOM2 にとってはある程度仕方のないこ とである。つまり、 SOM では、勝者となれな いような荷重ベクトルを持ったニューロンも、 近傍の効果によって入力信号のある方へ引き込 まれるが、FSOM2 では、入力信号とかけ離れ た荷重ベクトルを持ったニューロンに対する f_i が非常に小さくなるために、入力信号のある方 へ動く速さが遅く、このように入力信号が出現 しない部分にニューロンが残ってしまう。

3 LVQ

3.1 LVQ とは?

ここでの LVQ は 2 種類の信号源(信号源 1、2)を区別するもので、信号源1用と、2 用の 2 つの SOM を用意し、信号源1 用の SOM は信号源 1 からの信号のみ、信号源 2 用 信号ベクトルを作って行った。

の SOM は信号源 2 からの信号のみを用いて、 SOM と同様に学習させた。ただし、 訓練信号 は一定の個数のものを繰り返して与えた。

ある入力信号がどちらの種類の信号であるか を判定するには、学習させた 2 つの SOM に信 号を与え、どの SOM が入力信号により近い荷 重ベクトルを持つかで判定する。

3.2 入力信号

以下の分布を持った2次元の入力信号を用い た。範囲は、[0,1]×[0,1]である。

2.2 つの正規分布の和 (分散 1/36、中心間の

3. 正方形領域内に台形の確率密度分布を持つ

3.3 シミュレーションの手順

信号源1、2ともに1000個ずつの信号ベク トルを用意して、それらを繰り返し用いて学習 させた。正答率の算出には、毎回各 2000 個の また、 FSOM の成績が芳しくなかったの で、FSOM の勝者決定に用いられる関数

と変更したもの (FSOM3と呼ぶ) を考案しシ ミュレーションを行った。

FSOM は、基本的に 2 章と同じであるが、 σ_{ii} の更新則は

$$\Delta \sigma_{ii}^2 = 2\gamma ((\mu_{ii} - I_i)^2 - \sigma_{ii}^2)$$

を使っている。

3.4 結果

を

各入力に対し、 SOM 、 FSOM 、 FSOM3 でシミュレーションを行った結果の正答率(信 号源を正しく推測したものの数を全体の試行数 で割ったもの)は下のようになった。ここでは それぞれのマップでもっとも成績の良かったも のを挙げた。

1 次元の SOM のパラメータはいずれも (n,k,T) = (1500,0.15,1200)である。2 次 元の SOM のパラメータは断わりがない限り (n,k,T) = (1500,0.15,1200)である。FSOM と FSOM3 のパラメータは断わりがない限り (n,k,T) = (2500,0.1,2000)である。

3.4.1 信号パターン1

いずれにおいても 100% に近い正答率が得ら わた

3.4.2 信号パターン 2

2 種類の信号に重なりがあるので、正答率は 最良で 87% である。この場合は他の場合と異 なりマップの種類による差が大きく、正答率も 良くない。これは、荷重ベクトルが信号分布の 疎な部分にも広がっていることによると考えら れる。特に FSOM の場合の成績が悪いが、 これは、信号分布の疎な部分にあるニューロン は、荷重ベクトルの分散成分が大きく、ニュー ロンの数は少なくても広い範囲の入力信号に対 して勝者となるためである。 FSOM3 では、分 散の大きなニューロンにペナルティを課すこと で、この問題を改善した。

2 次元の SOM と、 FSOM と FSOM3 の パラメータは (n, k, T) = (5000, 0.1, 2000) であ る。

また、FSOM に対し、パラメータ (n,k,T) = (5000,0.1,2000) で 10 回行ったところ下のよう にばらつきが見られた。 200000 世代目で 正答 率約 0.7 のグループと 0.6 のグループに分けら

にれらの何重ペットルの万和を見たところ、 信号の密な部分での差はあまり見られなかっ

たので、正答率は競合するマップの荷重ベクト ル分布に依存すると考えた。荷重ベクトル分布 は、マップの訓練用の入力信号ベクトルの分布 に影響されるので、正答率と競合するマップの 訓練用の入力信号ベクトルの分布の関連を見る ため以下の実験を行った。

縦軸は正答率を、横軸は競合するマップの訓 練ベクトルが、(正答率を求める方の)信号の 分布とどの程度重なっているかを表す数値であ る。

つまり、 $c_{i1}, c_{i2}, \vec{v}_{i1j}, \vec{v}_{i2j}$ をそれぞれ i 番目 のシミュレーションにおけるマップ 1,2 の正答 率、 マップ 1,2 に与えた j 番目の訓練ベクト ルとし、 $f_1(\vec{x}), f_2(\vec{x})$ をそれぞれ 信号源 1,2 の 確率密度分布関数として、 $(c_{i1}, k \sum_j f_1(\vec{v}_{i2j})),$ $(c_{i2}, k \sum_j f_2(\vec{v}_{i1j}))$ (ただし、 k は定数) を プロットしたのが上図である。正答率が訓練用 の入力信号ベクトルの分布に依存しているなら ば、右下がりのグラフになるはずである。

また、FSOM2 に対しても、(n,k,T) = (5000,0.1,2000) で 10 回シミュレーションを 繰り返したが、FSOM の時のようなばらつき は見られなかった。

この信号に対しては、他と異なり、10000 世 代あたりを境に正答率が減少した。荷重ベクト ルが外側に(信号の密度の疎な方へ)ゆっくり広 がっていくのが、原因であろう。また、FSOM では、信号の密な部分では分散成分が減少する のに対し、疎な部分にあるニューロンの分散成 分はほとんど変化しないことが、特に正答率が 低い原因と考えられる。

3.4.3 信号パターン 3

2 種類の信号に重なりがあるので、正答率は 最良で 95% である。 重なりが少ないので信号 パターン1 同様高い正答率が得られた。

3.4.4 まとめ

8

いずれにおいても良い成績を収めたのは、 1 次元の SOM である。ここで用いた信号 は全て、市松模様に分布している。このような 場合、1.4 章を見れば分かるように、2次元の SOM では、市松模様が交差する中央部を面で 横切るので横の広がりを持ち、誤答の原因とな るが、1 次元のSOM では線で横切るため、誤 答が起こりにくいことに依ると考えた。