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Abstract 
We introduce a constructive, incremental learning system for regression problems that models 
data by means of spatially localized linear models. In contrast to other approaches, the size and 
shape of the receptive field of each locally linear model as well as the parameters of the locally 
linear model itself are learned independently, i.e., without the need for competition or any other 
kind of communication. This characteristic is accomplished by incrementally minimizing a 
weighted penalized local cross validation error. As a result, we obtain a learning system that can 
allocate resources as needed while dealing with the bias-variance dilemma in a principled way. 
The spatial localization of the linear models increases robustness towards negative interference. 
Our learning system can be interpreted as a nonparametric adaptive bandwidth smoother, as a 
mixture of experts where the experts are trained in isolation, and as a learning system which 
profits from combining independent expert knowledge on the same problem. It illustrates the 
potential learning capabilities of purely local learning and offers an interesting and powerful ap-
proach to learning with receptive fields. 

1 Introduction 

Learning with spatially localized basis functions has become a popular paradigm 

in machine learning and neurobiological modeling. In the context of radial basis 

function networks (Moody & Darken, 1988; Poggio & Girosi, 1990), it was dem-

onstrated that these learning methods offer an alternative to learning with global 

basis functions, such as sigmoidal neural networks, and that their theoretical 

foundation can be solidly grounded in approximation theory (Powell, 1987). In 

neurophysiological studies, the concept of localized information processing in 

the form of receptive fields has been known since at least the work of 

Mountcastle (1957) and Hubel and Wiesel (1959). Since then, a wealth of experi-

mental evidence has been accumulated which suggests that information proc-

essing based on local receptive fields is a ubiquitous organizational principle in 

neurobiology that offers interesting computational opportunities (e.g., Zipser & 
Anderson, 1988; Lee, Rohrer, & Sparks, 1988; Georgopoulos, 1991; Field, 1994; 
Olshausen & Field, 1996; Daugman & Downing, 1995). 

In this paper we explore the computational power of local, receptive field-

based incremental learning with the goal of approximating unknown functional 

relationships between an incoming stream of input and output data. By incre-



mental learning we do not just mean that the parameters of the learning system 
are updated incrementally. We want to address a learning scenario in which after 
a new data point is incorporated in the learning system it is discarded and cannot 
be re-used, in which input and output distributions of the data are unknown, 
and in which these distribution may change over time. This situation resembles 
the learning of sensory and sensorimotor transformations in biology, and it also 
applies to a variety of artificial domains, ranging from autonomous robotic sys-
tems to process control. 

Given these constraints on incremental learning, two major problems need to 
be addressed. The first one is how to allocate the appropriate number of re-
sources, e.g., receptive fields, in order to deal with the tradeoff between overfit-
ting and oversmoothing, called the bias-variance dilemma (e.g., Geman, Bienen-
stock, & Doursat, 1992). The second problem of incremental learning comes from 
negative interference, the forgetting of useful knowledge while focusing on 
learning from new data. Methods to prevent these undesirable effects require 
either validation data sets, memorizing of all training data, or strong prior 
knowledge about the learning problem. However, none of these alternatives are 
available in the setting we have described as we want to avoid storing data and 
do not have knowledge about the structure of the learning task 

In order to address the problems of incremental learning, we will make use of 
nonparametric regression statistics (e.g., Scott, 1992; Hastie & Tibshirani, 1990). 
Nearest neighbor algorithms for pattern recognition and Parzen windows for 
density estimation are the best known methods out of this field (e.g., Duda & 
Hart, 1973). It is interesting to note that many nonparametric regression methods 
are essentially receptive field-based: predictions are made from data out of a re-
stricted local neighborhood around the query point. The size of the neighbor-
hood can be irregular, as typically is the case in nearest neighbor ap~roaches, or 
it can be a symmetric bell-shaped weighting function as in Parzen wmdows. Re-
ceptive fields in nonparametric regression are most often built on the fly, and 
they are discarded right after the prediction―a paradigm that has been termed 
lazy learning (Aha, in press). Necessarily, such nonparametric methods need to 
store training data. Another important characteristic is that predictions made are 
usually based on a single receptive field. Early on, this inspired the field of non-
parametric regression to pursue more complex models in a receptive field, for in-
stance, low order polynomials (e.~., Cleveland, 1979; Cleveland & Loader, 1995), 
while many neural network learmng algorithms focused on combining the acti-
vation strengths of many receptive fields to optimize predictions, as in radial ba-
sis function networks. 

In this paper we will demonstrate how a nonparametric regression approach 
can be used to build a receptive field-based learning system for incremental 
function approximation without the need to store the training and without dis-
carding receptive fields after using them. A locally linear model will be fitted in-
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crementally within each receptive field such that local function approximation is 
accomplished in the spirit of a Taylor series expansion. The new property of this 
learning approach is that each receptive field is trained entirely independently of 
all other receptive fields, whereby it adjusts the parameters of its locally linear 
model, the size and shape of its receptive field, as well as the bias on the rele-
vance on its individual input dimensions. New receptive fields are allocated as 
needed. The resulting algorithm, Receptive Field Weighted Regression (RFWR), 
achieves robust incremental learning. It also has some interesting relations to 
previously suggested learning methods. It can be interpreted as a mixture of ex-
perts system (Jacobs, Jordan, Nowlan, & Hinton, 1991; Jordan & Jacobs, 1994) 
where the experts are trained in isolation. It can also be interpreted as system 
where a set of experts is trained independently on the same problem, and which 
profits from combining these experts for making predictions (e.g., Perrone & 

Cooper, 1993). And finally, RFWR can be interpreted as a nonparametric mem-
ory-based learner (Atkeson, Moore, & Schaal, in press) which only stores data 
that are surprising. 

In the following section, we will first give some motivation of how we are go-
ing to attack the problems of incremental learning. In Section 3, we describe the 
details of our nonparametric incremental learning system. Section 4 provides a 
theoretical assessment of the statistical characteristics of our learning method, 
and Section 5 gives a variety of empirical evaluations. 

2 Incremental Learning 

2.1 Statistical Assumptions 

The assumed underlying statistical model of our problems is the standard re-
gression model: 

y = f(x)+t: (1) 

where x E罰 denotesthe n-dimensional vector of input variables, y E町 them-

dimensional vector of output variables, and f (-) a deterministic vector valued 

function mapping the input x to the output y. The additive random noise Eis as-
sumed to be independently distributed, E{Eぁ}= 0 for i =I: j, and mean zero, 

E{E Ix} = 0, but otherwise of unknown distribution (£{・} denotes the expectation 
operator). The input data is distributed according to the density p(x). 

2.2 Localizing Interference 

Interference in learning is a natural side-effect of the ability to generalize, i.e., to 
interpolate or extrapolate an output for an unseen input from previously learned 
data. Generalization is accomplished by allowing changes to the parameters of 
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the learning system to have non-local effects. If these effects reduce the overall 
correctness of predictions to a larger extent than they improve them, interference 
is called negative or even catastrophic. Incremental learning is particularly en-
dangered by negative interference because there is no direct way to balance the 
amount of positive interference (i.e., generalization) with the amount of negative 
interference: any parameter update is usually greedy; its only concern is with the 
reduction of the error of the current piece of training data. To see the statistical 
causes of interference, consider using the mean squared error criterion J to select 
a model JO to app roximate the true funct10n JO: 

- -
1 = E{lly -}(x)I「}= Illy-](x)ll2p(x,y)dxdy = Jlly-](x)lr p(yjx)p(x),dxdy 

_,, 

(2) 

If there is an infinite amount of training data, the result for JO will asymptoti-
cally only depend on the conditional distribution p(y Ix) (Papoulis, 1991): 

＋ 

](x)=E{ylx}= Jyp(ylx)dy 
(3) 

For a finite amount of training data, however, the estimate f(・) does depend on 
both the conditional distribution p(y Ix) and the input distribution p(x) (Fan & 

Gijbels, 1996). Thus, a stable model JO can only be obtained if neither of these 
distributions changes during learning. 

These considerations point towards the two major causes for negative interfer-
ence. If p(y I x) changes, i.e., the functional relationship between x and y is non 
stationary, the parameters in a learning system may have to change. Analo-
gously, if the data for learning are not sampled from a fixed input distribution 
p(x), the parameters of the learning system may also change. It is particularly a 
change of the input distribution p(x) which is likely to happen in incremental 
learning. Imagine a robot learning the dynamics model of its arm, a model which 
maps・joint positions, joint velocities, and joint accelerations to corresponding 
joint torques. Whenever the robot moves, it will receive valid data about this 
functional relationship. But, since the robot is加Hillingdifferent tasks at different 
times, the sampled data will come from quite different input distributions—for 
example, think of the difference between movements for cooking and move-
ments for playing tennis. 

One of the interesting properties of learning with localized receptive fields lies 
in their potential robustness towards interference. If learning is truely spatially 
localized, i.e., it is guaranteed that an update of the parameters of one receptive 
field has no effect on the parameters of another receptive field, interference will 
be spatially localized as well. This is illustrated in the example of Figure 1. Using 
a synthetic data set suggested by Fan and Gijbels (1995), we trained a 3-layer 
sigmoidal feedforward neural network (6 hidden units, using backpropagation 
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Figure 1: a) Results of function approximation of the function y=sin(2x)+2exp(-16x2)+N(0,0.16) 
with a sigrnoidal neural network, b) results of function approximation by a local receptive 
field-based algorithm, fitting locally linear models in each receptive field (note that the data 
traces "true y", "predicted y", and "predicted y after new training data" largely coincide), c) 
the organization of the (Gaussian) receptive fields ofb) after training. 

with momentum) on 130 noisy data points uniformly distributed in x E [-2.0, 0.5] 
("•" in Figure 1). The function fitting result obtained is shown by the "predicted 
y" trace in Figure la. Then we continued training the network on 70 new data 
points (" +" in Figure 1) drawn from the same function but with a changed input 
distribution x E [0.5, 2.0]. The network learned to accommodate these new data 
points, but by doing so, it also significantly changed its predictions for the previ-
ously learned data, although this data is largely far away from the new training 
data. This effect is due to the non-local nature of sigmoidal basis functions, and is 
prone to lead to catastrophic interference, as shown in Figure 1 a. 

We repeated the same experiment with our receptive field-based learning 
system, RFWR, which generates locally linear models in each receptive field (see 
also Figure 2a) and blends them for predictions (Figure 1 b). On the original 
training data, RFWR achieves comparable result to that of the sigmoidal neural 
network. After training on the new data, however, no interference is apparent. 
The original fit in the left part of the graph was not visibly altered, in contrast to 
the neural network. Looking at the size and distribution of the receptive fields in 
Figure lc, it is clear that this learned receptive field structure is unlikely to 
propagate interference to a large spatial extent. Robustness towards negative in-
terference is accomplished by localizing interferenc← the best we can do since 
interference cannot be eliminated for finite data samples. 
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Figure 2: a) Region of validity of a linear model given a permitted approximation error 0.; b) 
Function approximation with piecewise linear models. 

2.3 Defeating Resource Allocation 

Due to the bias-variance tradeoff (Ceman et al., 1992), every learning algorithm 
has to consider a model selection phase in order to find an appropriate compro-
mise between oversmoothing and overfitting. Usually, this is accomplished by 
setting certain meta parameters, for instance, the number of hidden units in a 
neural network, according to some model selection criterion, e.g., cross valida-
tion (Stone, 1974). Thus, the question most frequently asked in model selection is: 
"How many free parameters should be allocated in order to achieve a good bias-
variance tradeoff?" However, another appr_oach can be pursued: "Given a fixed 
number of free parameters, how should a given data set be spatially limited in or-
der to achieve a good bias-variance tradeoff for the remaining data?"—instead of 
adapting the complexity of the learning system, one can also adapt the complex-
ity of the region the data is drawn from. For general nonlinear function approxi-
mators, it is unclear how to answer this question. For spatially localized function 
fitting, however, this question translates into: "How should the extent of a re-
ceptive field be changed in order to make its associated fixed parametric model 
fit the data appropriately." Figure 2 illustrates this idea for the case of locally lin-
ear models. In the spirit of a Taylor series expansion, let us assume that we know 
how to learn the region of validity, i.e., the size of the receptive field, of a locally 

linear model such that its approximation error is at a pre-set value e (Figure 2a). 
Note that the approximation error should be larger than the error at the center of 

the receptive field, and that it exactly matches the pre-set value e: if the error 
were less, the receptive field would be expanded, and vice versa. This assures 
that every receptive field deals with the bias-variance dilemma individually: the 
bias is prescribed a priori, and the variance follows automatically. In order to ap-
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proximate the entire nonlinear function, we have to cover the input space with 
sufficiently many locally linear models. Importantly, it does not matter whether 
we allocate too many locally linear models: an average of the outputs of all linear 

models at a query point xq, each with an approximation error of 0, cannot have a 

larger error than 0. The example in Figure 2b demonstrates this effect: at any 
query point xq, the average of the individual predictions of the different linear 

models must lie inside the 0 bound. What is required is that every data point is 
handled by at least one locally linear model, and, due to averaging, the more 
overlapping linear models exist, the better a function estimate can be expected. 
Hence, this procedure is capable of addressing the resource allocation problem 
while avoiding the tendency to overfitting as each linear model covers as much 

space as possible within the 0 bound. 

2.4 Summary 

Given the discussion of the last two sections, a promising route to robust incre-
mental learning seems to be a local receptive field-based system that can also 
adjust the extent of its receptive fields. However, care must be taken how one 
goes about accomplishing this goal. Leaming methods based on competitive 
learning cannot achieve the properties described in the previous section. In com-
petitive learning, the size of a receptive field results from a global competition 
process of all local models to account for the training data. Therefore, changing 
the number of local models causes a change of the extent of all receptive fields 

and, thus, makes the approximation threshold 0 a function of the number of local 
models, and subsequently, the number of local models a critical choice for the 
bias-variance tradeoff―-exactly what we would like to avoid. The next section 
will explain how an alternative approach based on nonparametric statistics offers 
a route to achieve our goals without resorting to competitive learning. 

3 Receptive Field Weighted Regression 

The goal of RFWR is to construct a system of receptive fields for incremental 
function approximation. A prediction y for a query point x is built from the 
normalized weighted sum of the individual predictions y k of all receptive fields: 

Y=>::,
The weights wk correspond to the activation strengths of the corresponding re-
ceptive fields. They are determined from the size and shape of each receptive 

(4) 
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field, characterized by a kernel function. A variety of possible kernels have been 
suggested (e.g., Atkeson et al., in press). Smooth approximations are the easiest 
accomplished by smooth symmetric bell-shaped kernels. For analytical conven-
ience, we use a Gaussian kernel: 

wk = exp(_ _!_(x -c九 (x-c』)， whereDk= M訊
2 

which parameterizes the receptive field by its location in input space, ck E如 I

and a positive definite distance metric Dk, determining size and shape of the re-

ceptive field. For algorithmic reasons, it is convenient to represent Dk as an upper 

diagonal matrix Mk. Any choice of Mk ensures the positive definiteness of Dk. 

Within each receptive field, a simple parametric function models the relation-
ship between input and output data. Local polynomials of low order have found 
widespread use in nonparametric statistics (Nadaraya, 1964; Watson, 1964; Wa-
hba & Wold, 1975; Cleveland, 1979; Cleveland & Devlin, 1988). We will focus on 
locally linear models, as they accomplish a favorable compromise between com-
putational complexity and quality of result (Hastie & Loader, 1993): 

(5) 

yk = (x-ckf bk +b。,k=対f3k, x = ((x-ckい）T
(6) 

where f3k denotes the parameters of the locally linear model. 

To clarify the elements and parameters of RFWR, Figure 3 gives a network-
like illustration for a single output system. The inputs are routed to all receptive 
fields, each of which consists of a linear and a Gaussian unit. The learning algo-
rithm of RFWR determines the parameters・ck, Mk, and f3k for each receptive 
field independently, i.e., without any information about the other receptive fields, 
in contrast to competitive learning. RFWR adds and prunes receptive fields as 
needed, such that the number of receptive fields, K, will automatically adjust to 
the learning problem at hand. A one dimensional example of加nctionfitting 
with RFWR was already shown in Figure lb,c. It should be noted that the size of 
each receptive field adapted according to the local curvature of the function, that 
there is a certain amount of overlap between the receptive fields, and that the 
center locations have not been chosen with respect to any explicit optimization 
criterion. 

3.1 Leaming With RFWR 

Three ingredients of the algorithm need to be discussed: the update of the linear 
model parameters f3kl the distance metric Mk, and when and where to add and 
prune receptive fields. The centers ck are not changed after they are allocated. 
For the sake of clarity, we will drop the index k when possible from now on 
since each receptive field is updated in the same way. 
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Figure 3: A network illustration of Receptive Field 
Weighted Regression 

3.1.1 Learning the Linear Model 

Learning of /3 is straightforward since the problem is linear. It will be useful to 
leave the incremental learning framework for a moment and think in terms of a 
batch update. If we summarize the input part of all p training data points in the 
rows of the matrix X = (ふぷ…ふ）7, the corresponding output part in the rows 

of the matrix Y = (y1,y2, …, Yp凡 andthe corresponding weights in the diagonal 

matrix W = diag(wi, w2, …, w P), the parameter vector f3 can be calculated from a 

weighted regression: 

f3 = (X7WX) X7WY = PX7WY (7) 

This kind of locally weighted regression has found extensive application in non-
parametric statistics (Cleveland, 1979; Cleveland & Loader, 1995), in time series 
prediction (Farmer & Sidorowich, 1987, 1988), and in regression learning prob-
lems (Atkeson, 1989; Moore, 1991; Schaal & Atkeson, 1994; Atkeson et al., in 
press). The result for f3 in Equation (7) is exactly the same when f3 is calculated 
by recursive least squares from one sequential sweep through the training data 
(Ljung & Soderstrom, 1986). Given a training point (x,y), the incremental update 
of f3 yields: 

13n+I = 13n + W pn+IX e~v (8) 

where P""~ ±[ P" -r十~::;,:~] and e" +-fi"7X) 

，
 



This update is employed by RFWR. It is useful to note that recursive least 
squares corresponds to a Newton training method with guaranteed convergence 
to the global minimum of, in our case, a weig血tedsquared error criterion 
(Atkeson et al., in press). Furthermore, the recursive update avoids an explicit 
matrix inversion. Differing from the batch update in Equation (7), Equation (8) 

also includes a forgetting factor A. As the distance metric M will change during 
learning (see below), so will the weight w for every data point. For this reason, it 

is necessary to include Jin (8) in order to gradually cancel the contributions from 
previous data points where M was yet not learned properly (Ljung & Soder-
strom, 1986). 

3.1.2 Learning the Shape and Size of the Receptive Field 

Adjusting the shape and size of the receptive field is accomplished by adjusting 
the distance metric M. At the first glance, one might hope that this can be done 
by gradient descent in the weighted mean squared error criterion: 

1 p 

l=-Iw』Y;-y; 『where W= I,w 
w i=l i=l 

(9) 

which is the basis of the solution of locally weighted regression in Equation (7) 
(Atkeson et al, in press). Unfortunately, minimizing (9) may result in a quite in-
appropriate solution. If for each training point one receptive field is centered 
right on this point, and the corresponding M is chosen such that the receptive 
f~eld is so narrow that it is only activated by this data point, the corresponding 
lmear model can fit this one data point with zero error. The function approxima-
tion result would strongly tend towards overfitting. It is this property that has 
made learning algorithms resort to competitive learning with a fixed number of 
local receptive fields: the global competitive process will prevent receptive fields 
from modeling just one data point (assuming there are more data points than re-
ceptive fields) (e.g., Moody & Darken, 1988; Jordan & Jacobs, 1994). But allowing 
for such a global competitive process takes away the property of being a local 
learner, even if the receptive fields are actually spatially localized. 

An alternative way to avoid this overfitting effect is to use leave-one-out cross 
validation. The cost function to be minimized changes from Equation (9) to 

l p 

]=而苔w』Y;-Yi,-f 
(10) 

The notation Y,,-; denotes that the prediction of the i-th data point is calculated 
from training the learning system with the i-th data point excluded from the 
training set. Thus, it becomes inappropriate for a receptive field to just focus on 
one training point since the error measure is calculated from data which did not 
exist in the training set. Leave-one-out cross validation, however, is usually com-
putationally very expensive since a p-fold training of the learning system is re-
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quired, for p data points in the training set. Furthermore, for example for a sig-
moidal neural network, it might be unclear how to combine the resultant p dif-
ferent solutions to the learning parameters to a final solution. However, for linear 
regression problems, there is an exception rendering these concerns irrelevant. 
Due to the Sherman-Morrison-Woodbury Theorem (e.g., Belsley, Kuh, & Welsh, 
1980), Equation (10) can be re-written as: 

l p 
A 2 

]=-I囀Y;—む『＝逹 w;IIY;-Y』
W; ョ W i=l (1-Wぷ「Pえ，）2

(11) 

This equation states that the leave-one-out cross validation error can be obtained 
without p-fold training of the learning system., but rather by an adjustment of the 
weighted m.ean squared error with the help of the inverted covariance matrix P 
(cf. Equation (7)). Equation (11) corresponds to a weighted version of the PRESS 
residual error in standard linear regression techniques (Myers, 1990). Neglecting 
for a m.om.ent how this cost function can be m.inim.ized incrementally, we have 
obtained a criterion which can be used to adjust M (Schaal & Atkeson, 1994). 

Unfortunately, there is still a point of concern with Equation (11). Minimizing 
the locally weighted leave-one-out cross validation error results in a consistent 
learning system., i.e., with an increasing number of training data, the receptive 
fields will shrink to a very small size. The advantage of this behavior is that 
function approximation becomes asymptotically unbiased, i.e., consistent, but as 
a disadvantage, an ever increasing number of receptive fields will be required to 
represent the approximated function. This property can be avoided by introduc-
ing a penalty term in (11): 

]=―こ
1 P w』Y;―y』2 n 

wた1(1 -w. xTPx. 
2 +心D;~

I I I) i,j=I 

(12) 

where the scalar ydetermines the strength of the penalty. By penalizing the sum 
of squared coefficients of the distance metric D, we are essentially penalizing the 
second derivatives of the function at the site of a receptive field. This is similar to 
approaches taken in spline fitting (deBoor, 1978; Wahba, 1990) and acts like a 
low-pass filter: the higher the second derivatives, the more smoothing (and thus 
bias) will be introduced locally. Another positive effect of the penalty term is that 
the introduction of bias reduces the variance of the function estimate, a problem 
usually associated with local function fitting methods (Friedman, 1984). Section 4 
will analyze the exact properties of (12) in more detail. 

What remains is how to minimize (12) incrementally by adjusting M by gradi-

ent descent with learning rate a: 

Mn+! =Mn JJ 
-a-

紅

(13) 
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Applying the chain rule, the derivative of (13) can be written as 

立 二[Iw』y,-Y』2 " 囚閲,~, W(l-w,xf'Px,)2ゾ翌:)J 
(14) 

＝亨1,,,+J, J饂五3-+ iJ!,_ 
ぶ i=l i=l j=I如函ぶ

Without storing data in incremental learning, we cannot use cross validation and, 
thus, cannot obtain the true gradient in (14). The usual approach to derive a sto-
chastic gradient would be to drop the two sums in (14). However, such a gradi-
ent would be quite inaccurate since the first term of (14) would always be posi— 

tive: shrinking the receptive field reduces the weight of a data point and thus its 
contribution to the weighted error. It turns out that we are able to derive a much 
better stochastic approximation. Given one training point (x,y) and its associated 
weight w from (5), the derivative for this point can be approximated as: 

竺～ゞ □二三'--1_=竺がい三弘
紅 i=l加腱 W滋腱 i=l曲 W紅

(15) 

Summing (15) over all data points and recalling that W stands for the sum of 
weights (cf. Equation (9)), Equation (15) can be verified to result in Equation (14). 
Despite the term 11,;, it is now possible to obtain an incremental version of the 
stochastic derivative in (15) by introducing the "memory traces" W, E, H, and R 
(cf. notation in (8)): 

wn+l = A附 +w (16) 

En+l = AEn + we~vecv 

wxe Hn+l = AHn + CV'where h = WXTpn+l X 
1-h 
2 T ~ ~T 

Rn+l = ARn + w e e CV CV xx 

1-h 

The resulting incremental version of the derivative (15) becomes: 

dl 枷 p dl. 
ー→一I1.,+ w dl2 

閥ぶ1i=I西 wn+1紅

(17) 

where: 

枷 l T dD 
） -=--w(x-c 

JM 2 JM 
(x -c), 

rl 

212 It 

=2心D.. 
JD.. 

lj 

JM rl i,j=I lj JM 
rl 

JD .. 
lj 

JM 
=Mふ+Mふ (ois the Kronecker operator) 
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I 
p a1 l,i En+I 
—~—+ i=l珈 (wn+1)2

亡（豆ecv-(2 pn+Iぇ(y-ぇT13n+I汀@Hn -(2pn+I紅 pn+I)@Rn)

Deriving this derivative is possible due to the fact that an application of the 
Sherman-Morrison-Woodbury theorem allows us to take derivatives through the 
inverted covariance matrix P (Belsley et al., 1980; Atkeson & Schaal, 1995), and 

that a sum of the form LviQV; can be written as LviQv; = QRLv;vi, where the 
operatorRdenotes a element-wise multiplication of two homomorphic matrices 
or vectors with a subsequent summation of all coefficients, QRV =図QijV;j. It is 
interesting to note that the stochastic derivative (17) is not just concerned with 
reducing the error of the current training point as in many other learning algo-
rithms, but rather that it takes into account the previously encountered training 

data, too, through the memory traces (16). Thus, both the /3 and M update in 
RFWR are not greedy with respect to the current training sample, a characteristic 
which will contribute favorably to speed and robustness of incremental learning. 

3.1.3 Adding Receptive Fields and Automatic Bias Adjustment 

A new receptive field is created if a training sample (x, y) does not activate any of 
the existing receptive field by more than a threshold wgen. The center of the new 

receptive field becomes c = x, M is set to a manually chosen default value, M匂

and all other parameters are initialized to zero, except the matrix P. P corre-
sponds to an inverted covariance matrix of the weighted inputs (treating the con-
stant input "1" as the (n+ 1)-th input). A suitable initialization of P is as a diago-

nal matrix, the diagonal elements set to凡=1/凡wherethe coefficients r; are 
us叫 lysmall quantities, e.g., 0.001 (Ljung & Soderstrom, 1986). We summarize 

all r; in the (n + 1)-dimensional vector r = (小r2,…, rn+l)T. 

The parameters r have an interesting statistical interpretation: they introduce 

bias in the regression coefficients /3, and correspond to one of the common forms 
of biased regression, ridge regression (Belsley et al., 1980). From a probabilistic 

point of view, they are Bayesian priors that the coefficients of /3 are zero. From an 
algorithmic perspective, they are fake data points of the form 
[xr = (0, ... ぷ0,…） T,Yr = O] (Atkeson et al., in press). Under normal circumstances, 
the sizes of the coefficients of r are too small to introduce noticeable bias. How-
ever, ridge regression parameters have to be larger if the input data is locally 
rank deficient, i.e., the matrix inversion in (7) is close to singular. For high di-
mensional input spaces, it is quite common to have locally rank deficient input 
data. Although RFWR does not explicitly require matrix inversions, the rank de-

ficiency affects the incremental update in (8) by generating estimates of f3 with 
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very large variances, causing unreliable predictions. For this reason, we include 
the ridge regression parameters as an automatically adjustable quantity in 
RFWR. As for the distance metric, the update rule of r is gradient descent in the 
cost (12): 

rJJ 
rn+I = rn -a -

rぷ
(18) 

After each update of P, the change in r is added to P. Additionally, it is necessary 

to add back the fraction of r which was lost due to the forgetting factor 入—bias
should not to be forgotten over time. These two computations can be performed 
together and are surprisingly simple. Appendix 9.1 details this update and the 
stochastic approximation of oJ/or, which is analogous to the derivation of (17). 

3.1.4 Pruning Receptive Fields 

The last element in RFWR is a pruning facility. A receptive field is pruned if it 
overlaps too much with another receptive field. This effect is detected by a 
training sample activating two receptive fields simultaneously more than w prune. 

The receptive field with the larger determinant of the distance metric D is 
pruned. For computational convenience, det(D) can be approximated by立D;;
(Deco & Obradovic, 1996). It should be noted that pruning due to overlap aims 
primarily at computational efficiency, since, as discussed in Section 2.3, overlap 
does not degrade the approximation quality. 

The second cause for pruning is if the bias-adjusted weighted mean squared 
error 

En 
wMSE=―-wn 心Di

i,j=I 

(19) 

of the linear model of a unit is excessively large in comparison to other units— 
the bias adjustment term will be explained in Section 4. Empirically, there are 
usually two ways to adjust Min order to minimize (12). The one we normally 
want to avoid is M=O, i.e., the zero matrix. It indicates that the receptive field 
performs global regression instead of locally weighted regression. Global linear 
regression for a nonlinear function has a large wMSE. A simple outlier detection 
test among the wMSE of all receptive fields suffices to deal with such behavior. 
The receptive field is then reinitialized with randomized values. Normally, 
pruning takes place rarely, and if it happens, it is mostly due to an inappropriate 
initialization of RFWR. 

3.1.5 Summary of RFWR 

In sum, each RFWR subnet has three sets of adjustable parameters: /3 for the 
locally linear model, M for the size and shape of the receptive fields, and r for the 
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bias. The linear model parameters are updated by a Newton method, while the 
other parameters are updated by gradient descent. A compact pseudo-code 
overview of RFWR is shown below. 

Initialize the RFWR with no receptive field (RF); 
For every new training sample (x,y): 

a) For k=l to #RF: 
- calculate the activation from (5) 

update the receptive field parameters according to (13), and (18) 
end; 

b) If no subnet was activated by more than w gen; 
create a new RF with c=x, M=M def 

end; 
c) If two RFs are activated more than w prune-

erase the RF with the larger det(D) 
end; 

d) calculate the m=E{wMSE} and std=E{(wMSE-m)打゚・5of all RFs; 
e) For k=l to #RF: 

If I wMSE-m I > <p std, 
reinitialize receptive field with M = E Mdef 

end; 
end; 

The scalar cp is a (positive) outlier removal threshold, e.g., 炉 3.1冗andthe scalar E 

is a random value E=l + I N(O,l) I. This choice of E ensures that the new distance 
metric will result in a smaller receptive field which is less likely to converge to a 
M=O solution. 

3.2 Second Order Gradient Descent 

With little extra computation, it is possible to replace the gradient descent update 
of M in (13) by second order gradient descent to gain learning speed. In what 
follows, we adopt Sutton's (1992a,b) Incremental Delta-Bar-Delta (IDBD) algo-
rithm. The derivation of the algorithm remains as demonstrated in Sutton 
(1992a,b), only that his standard least squares criterion is replaced by our cost 
function (12), and that we apply IDBD to updating a distance metric. The idea is 

to replace the learning rate ex in (13) by an individual learning rate for each coef-
ficient of M of the following form: 

dl dl 
叩=M;1 -cx11+1―-, where ext = exp(/3:;+1) and /3:;+1 = /JD -0 h11 

(20) 
lj dM.. I} 

I} 
cJM .. 

Thus, the learning rates cxu are changed in geometric steps by gradient descent in 

the meta parameter f3u with meta learning rate 0. The term hu is updated as 
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h;j''~hij[三号］＋—心是， wherewe define [zf = {。~:ilie~:゚e (21) 

勾isinitialized to zero when a receptive field is created. It corresponds to a 

memory term which stores a decaying trace of the cumulative sum of recent 
changes to Mij. For more details see Sutton (1992a,b). In order to apply this sec-

ond order update, it is necessary to store the parameters aij, f3ij, and hij, and to 

compute the second derivative in (21). Appendix 9.2 gives an incremental ap-
proximation of this derivative which turns out to be quite simple. It is also possi-
ble to apply second order learning to the ridge regression update (18). Empiri-
cally, however, we did not find any significant improvements of doing so and, 
hence, only incorporated second order updates for the distance metric in RFWR. 

4 Theoretical Assessment of RFWR 

4.1 Asymptotic Properties of RFWR 

For the linear model f3 and the distance metric D asymptotic approximations can 
be derived. Assuming that the number of training data points p goes to infinity, 
that the variance of the noiseが islocally constant, and that the input distribu-
tion is locally uniform, the expected value of (12) can be written as 

E{J}~E{認(l:~:x:「:~:)'+y芦:}
(22) 

十ク3

J wlly-y『p(y[x)p(x)dydx 11 『wljf(x)-yl2dx n 

p→ =)~ ＋心D;}=- 吟＋心DJ+が

Jwdx 

＋ 

J wp(x)dx 
i,j=I i,j=l 

Next, the real function f(x) is represented as a Taylor series expansion at the 
center of the receptive field. Without loss of generality, the center is assumed to 
be at the origin in input space. We furthermore assume that the size and shape of 
the receptive field are such that terms higher than quadratic are negligible, and 
that for notational simplicity the output is one dimensional. Thus, Equation (22) 
can be re-written as 

1 
2 

『w(fo+frx+-xTFx-b。-brx dx 

E{J}""'-
2)  n 

怜＋心DJ+ぷ

f wdx 

(23) 

i,j=l 
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where fo, f, and F denote the constant, linear, and quadratic terms (Hessian) of 
the Taylor series expansion, respectively. The value of the integral in (23) re-
mains invariant for any volume preserving rotation of the input space. Thus, in 
order to solve (23), we assume that the input space has been rotated about the 
origin by the orthonormal matrix N, x→ Nx, such that D is diagonal. After in-
serting (5) into (23), we obtain: 

E{J}-(!0-b。)2十t[ (h; ;,? + (fo -b。慶+¾(い］ (24) 

l n n 

十一LL賓＋乃~j n 

2 D..D .. 
＋心況＋ぷ

i=I j=i+I 11 11 i,j=I 

By taking the partial derivatives with respect to all unknown parameters, we can 
derive the following asymptotic results: 

The eigenvectors of D align with the eigenvectors of F: If, for a moment, we as-
sume that the (diagonal) distance metric Dis given, and Fis to be determined 
such that (24) is minimized, the partial derivatives JE{J}j JF;j require that 

Fij = 0 for i'::/-j, i.e., F be diagonal. Thus, the converse result must hold that 

for a given diagonal F the distance metric D must be diagonal in order to 
minimize (24). 

The estimated locally linear model b is asymptotically unbiased: This follows from 
the fact that minimization of (24) with respect to b results in b=f. Note that 
this result holds even if F is non diagonal and we only estimate a diagonal D, 
as it might be the case in high dimensional spaces where estimating a full D 
becomes computationally too expensive or would require too much data. 

The penalty term introduces non vanishing bias: The expected bias at the center of 
the receptive field becomes a function of the penalty factor and the eigenval-
ues of F, denoted as尻：

r 0.25 

bias::::; 20_75 I:sgn(F;:)記 (25) 

The equality holds iff D and F have aligned eigenvectors. If we use a diagonal 
D for a non diagonal F, the receptive field become smaller, which subse-
quently reduces the expected bias, but will require a larger number of recep-
tive fields in the learning system. Note that, due to the square root in (25), the 
bias tends to be larger with larger eigenvalues凡;, i.e., in areas with high cur-
vature. This acts like a low pass filter in the function fitting process. 

The distance metric D will be a scaled image of the Hessian F: The expected coeffi-
cients of the distance metric become 
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D > 揺ii -
(2y) 

0.25 

(26) 

As above, equality holds iff D and F have aligned eigenvectors. From this 
equation it is also obvious that without the penalty term (i.e., for y→ O),the 
coefficients of D would asymptotically tend to infinity, as mentioned in Sec-
tion 3.1.2. 

In sum, these asymptotic results confirm that the penalty term in the cost 
function (12) has the desired characteristics: receptive fields cannot shrink to zero 
size, and a controlled amount of bias was introduced in the sense of low pass fil-
tering. It is interesting that the estimated locally linear model tends to become 
unbiased (under the assumption that 0(2) errors of the Taylor series are negligi-
ble). This implies that applications requiring a gradient estimate from the func-
tion approximator can expect reliable results. The calculation of the gradient es-
timate is a natural by-product of every lookup in RFWR. 

4.2 Some Helpful Statistical Estimates 

The asymptotic results above can be used to derive several statistical quantities 
which help monitoring and initializing RFWR: 

Penalty selection: From a maximal permissible bias and an estimate of the 
maximal eigenvalues anticipated in a specific learning problem, the required 
penalty-factor can be estimated as 

r= 
8bias!ax 

図sgn(凡:,_)jif.:]〕
(27) 

- Bias adjusted weighted mean squared error: Another derivation from (24) is the 
expected value of the cost function (12) 

n 

E{l}翌心：屈＋ぷ
(28) 

i,j=l 

wMSE=E{l}一心Di幻心DJ+ぷ
E 

＝ 
i,j=l i,j=l w 

where again the equality holds iff D and F have aligned eigenvectors. As 
shown in (28), the expected value for the weighted mean squared error 
(wMSE) can thus be formulated which is composed of the noise variance and 
a term due to the non vanishing bias in the local model. Thus, a bias adjusted 
weighted mean squared error, wMSE, can be formulated, as already given in 
Equation (19). 
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Real bias and prediction intervals: From (25) and (26), a pessimistic estimate of 
the real bias of a prediction becomes 

bias~.,, 鱈 LD(;
i=l 

(29) 

where D(; denotes the eigenvalues of D. Based on this estimate, bias adjusted 
prediction intervals—a variant of confidence intervals (e.g., Myers, 1990)一
can be approximated similarly as in Schaal and Atkeson (1994): 

l=y士(bias+t Sn孔~五) (30) 
a I 2, W" -dof" 

where Sn=ぷ嘉厄E, dor+I = Ado. 「+w2対pnx

The variable dof denotes the local degrees of freedom used by the locally lin-
ear model (Schaal & Atkeson, 1994; Atkeson et al., in press), and we gave its 
recursive estimation formula in (30) in analogue with Equation (16). sn is a 
bias adjusted estimate of the local standard deviation of the error. t 

a/2,W"-do_ド

is Student's t-value with (Wn -d町） degrees of freedom for a 100 * (1-a)% 

confidence bound. These prediction intervals assume a locally normal error 
distribution. 

5 Simulation Results 

5.1 Basic Function Approximation with RFWR 

First, we will establish that RFWR is capable of competing with state-of-the-art 
supervised learning techniques on a fixed training set. A sufficiently complex 
learning task that still can be illustrated nicely is to approximate the function 

z = max{e―10x2'e-soy2'1.25 e -5(好＋り）} + N(0,0.01) (3l) 

from a sample of 500 points, drawn uniformly from the unit square. This func-
tion consists of a narrow and a wide ridge which are perpendicular to each other, 
and a Gaussian bump at the origin (Figure 4a). Training data is drawn uniformly 
from the training set without replacement; training time is measured in epochs, 
i.e., multiples of 500 training samples. The test set consists of 1681 data points 
corresponding to the vertices of a 41x41 grid over the unit square; the corre-
sponding output values are the exact function values. The approximation error is 
measured as a normalized mean squared error, nMSE, i.e., the MSE on the test 
set normalized by the variance of the outputs of the test set. RFWR's initial pa-

rameters are set to Mdef = 5.0I (I is the identity matrix), r = 10―1,wgen =0.1, 

and w prune = 0.9 . The pruning and generation thresholds are of minor importance; 
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Figure 4: a) target function to be approximated; b) approximated function after 50 epochs of 
training; c) receptive fields in input space after 1 epoch, given by contour lines of 0.1 isoactivation 
and a④ mark for the centers (the training data is displayed by small dots); d) receptive fields af-
ter 50 epochs of training. 

they just determine the overlap of the receptive fields. The choice for the penalty 
term was computed from (2!) to tolerate a maximal bias of about 0.1. The default 
value for the distance metnc was determined manually such that an initial re-
ceptive field covered a significant portion of the input space. Ridge regression 
parameters did not play any role in this example and were omitted. 

A first qualitative evaluation of Figure 4 confirms that RFWR fulfills our ex-
pectations. The initially large receptive fields (Figure 4c) adjust during learning 
according to the local curvature of the function: they become narrow and elon-
gated in the region of the ridges, and they remain large in the flat parts of the 
function ((Figure 4d). The number of the receptive fields increased from 16 after 
one training epoch to 48, and the final approximation result was nMSE=0.02. 

We compared the learning results of RFWR with 3 other algorithms: standard 
global linear regression and a sigmoidal 3-layer backpropagation neural network 
as baseline comparisons, and the mixture of experts algorithm as a state-of-the-
art comparison CTacobs et. al, 1991; Jordan & Jacobs, 1994; Xu, Jordan, & Hinton, 
1995). Standard linear regression cannot accomplish a better result than 
nMSE=l.O on this example--the function has no linear trend in the chosen region 
of input space. The sigmoidal network was trained by backpropagation with 
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momentum in a variety of configurations using 20 to 100 units in the hidden 
layer (the output layer had one linear unit). These networks did not accomplish 
results better than nMSE=O.l within 20000 training epochs. Doubling the number 
of training samples and reducing the noise level to N(0,0.0001) finally resulted in 
nMSE=0.02 for a 100 hidden unit net after about 15000 epochs. By using the Cas-
cade Correlation algorithm (Fahlman & Lebiere, 1990) to fit our original 500 data 
point training set we confirmed that the function (31) seems to be a difficult 
learning task for sigmoidal networks: Cascade Correlation did not converge 
when confined to using only sigmoidal hidden units, while it achieve good func-
tion fitting (nMSE=0.02) when it was allowed to use Gaussian hidden units. 

A more natural and interesting comparison is with the mixture of experts 
(ME) system, particularly as suggested in Xu et al. (1995). In Xu et al. (1995), in 
contrast to the softmax gating network of Jordan and Jacobs (1994), the experts 
use a mixture of Gaussians as the gating network, and both the gating net and 
the locally linear models in each leaf of the gating net can be updated by an ana-
lytical version of the Expectation-Maximation (EM) algorithm (Dempster, Laird, 
& Rubin, 1977). Thus, the basic elements of this form of ME are the same as in 
RFWR-locally linear models and Gaussian receptive fields—while the training 
methods of the two systems differ significantly—competitive parametric likeli-
hood maximization vs. local nonparametric learning. As ME is not a constructive 
algorithm, the performance determining parameters are how many experts are 
allocated and how the system is initialized. The algorithm was tested with 25, 50, 
75, and 100 experts. Initially, the experts were placed uniformly distributed in the 
input space with an initial covariance matrix of the Gaussians comparable to the 
initialization of RFWR's distance metric. We conducted a similar test with RFWR, 
setting its determining parameter, the penalty y, to 10-6, 10-7, 10-8, and 10-10. 

Figure 5 summarizes the results. Each learning curve is the average of 10 
learning trials for each condition of the corresponding algorithm; the training 
data was randomly regenerated for each trial. Both algorithms achieve a 
nMSE=0.12 after only one training epoch―a typical signature of the fast recur-
sive least squares updating of the linear models employed by both algorithms— 
which is about what the sigmoidal neural network had achieved after 10000 to 
20000 epochs. Both algorithms converge after about 100 epochs. By adding more 
experts, the mixture of experts improves its performance to a best average value 
of nMSE=0.04 with a slight trend to overfitting for 75 experts. RFWR accom-
plishes consistently a result of nMSE=0.02 for all but the r =10-6 runs, with a 
slight tendency to overfitting for y =10-10_ One standard deviation error bars are 
indicated by the black bars at the beginning and end of each learning curve. 

It was surprising that ME did not achieve the same ultimate fit accuracy as 
RFWR. This behavior was due to a) the relative small training set, b) the rela-
tively low signal to noise ratio of the training data, and c) the way the gating 
network assigns training samples to each expert. By significantly increasing the 
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Figure 5: Average learning curves (solid lines) for a) ME, and b) RFWR. The black bars indicate 
one standard deviation error bars at the beginning and at the end of learning; for overlapping 
traces having approximately the same standard deviation, only one bar is shown. For RFWR (b), 

the increase of the number of receptive fields over time. (dashed lines) is indicated as well. 

amount of training data and/ or lowering the noise, the results of both algorithms 
become indistinguishable. It seems to be the method of credit assignment which 
makes a significant difference. The expectation step in ME uses normalized 
weights (i.e., posterior probabilities) to assign training data to the experts. Nor-
malized weights create much sharper decision boundaries between the experts 
than unnormalized weights as in RFWR. Thus, in the case of noise and not too 
much training data, the ME algorithm tends to establish too sharp decision 
boundaries between the experts and starts fitting noise. Given the underlying as-
sumption of ME that the world was generate by a mixture of linear models, this 
behavior may be expected. Since in our test cases, the world is actually a con-
tinuous function and not a mixture of linear models, the assumptions of ME are 
only an approximation, which explains why the algorithm does not perform en-
tirely appropriately. ・ 

The assumptions of RFWR are quite different: every receptive fields tries to 
find a region of validity which allows it to _a~proximate the tangent plane in this 
region with some remaining bias. In the sp1nt of a low order Taylor series expan-
sion, this is a reasonable way to proceed. Thus, RFWR achieves consistent results 
with low variance (Figure Sb). It is also interesting to see how the number of re-
ceptive fields of RFWR grows as a function of the penalty factor (Figure Sb). As 
expected from the derivation of the cost function (12), a very small penalty pa-
rameter causes the receptive fields to keep on shrinking and entails a continuous 
growth of the number of receptive fields. Nevertheless, the tendency towards 
overfitting remained low, as can be seen in they =10-10 traces in Figure Sb. When 
continuing learning until 10000 epochs, the nMSE saturated close to the current 
values for all penalty factors. The local cross validation term in (12) is responsible 
for this desirable behavior―when cross validation was not used, overfitting was 
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Figure 6: a) average nMSE of ME and RFWR after 1000 tra両 ngepochs (see text for further ex-
planations); b) mean and standard deviation of the regression coefficients of the irrelevant inputs. 

si印廿ficantlymore pronounced and the nMSE continued increasing for very 
small penalty factors. 

5.2 Dealing With Irrelevant Inputs 

In order to establish the usefulness of the ridge regression parameters, we con-
ducted a further comparison with ME. In sensorimotor control, it is unlikely that 
all variables given to the learning system are really relevant to the task. One can 
distinguish between three kinds of irrelevant inputs: a) constant inputs, b) 
changing inputs which are meaningless, and c) copies and linear combinations of 
other inputs. Ideally, one would like an autonomous learning system to be robust 
towards such signals. To explore the behavior of ME and RFWR in such cases, 
three additional inputs were added to the function (31): a) one input of 
N(0.1,0.001), b) one input with a Brownian walk in the interval [-0.1,0.1], and c) 
one input which was a copy of x with added Gaussian noise N(0,0.0025). Other-
wise, training data was generated uniformly by the function (31), but with re-
duced additive noise of N(0,0.0025) to improve the signal to noise ratio. For these 
tests, the ridge regression coefficients were initialized to 0.25 for each input. 

Figure 6 summarizes the average results of 10 trials for each algorithm. In 
Figure 6a, we show the mean nMSE and its standard deviation on two test sets. 
In Testl, the predictions were generated by using only the regression coefficients 
of the relevant inputs, i.e., f3。,/3i,/32,on the same 1681 point test set as in the ex-
periment of Section 5.1. This was to establish whether these coefficients adjusted 
correctly to model the target function. Both algorithms achieved good learning 
results on this test (Figure 6a). In Test2, we probed the robustness of the learned 
model towards the irrelevant inputs: we added the noisy constant, the Brownian, 
and the noisy x-copy input to the test set, but we also added an offset of 0.1 to 
each of these signals. If the algorithm learned that these inputs were irrelevant, 
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this change should not matter. However, if the irrelevant inputs were mistakenly 
employed as signal to improve the nMSE on the training data, the predictions 
should deteriorate. Figure 6a demonstrates that the results of RFWR remained 
virtually unaltered by this test, while those of ME became significantly worse. 
This outcome can be explained by looking at the standard deviations of the re-
gression coefficients of all the locally linear models (Figure 6b). In contrast to ME, 
RFWR set the regression coefficients of the irrelevant inputs (/33,/3凸） very close 
to zero, thus achieving the desired robustness. Such behavior was due to an ad-
justment of the corresponding ridge regression parameters: they increased for 
the irrelevant inputs and decreased to zero for the relevant inputs. As a note, we 
should point out that ME was not designed to deal with learning problems with 
irrelevant inputs, and that there are ways to improve its performance in such 
cases. However, this experiment clearly illustrates that it is necessary to deal with 
the problem of irrelevant inputs, and that local bias adjustment by means of 
ridge regression is one possible way to do so. 

5.3 Shifting Input Distributions 

As mentioned in the Introduction, it is easy to conceive of learning tasks where 
the input distribution of the training data changes over time. To test RFWR's per-
formance on such problems, we designed the following experiment. In three se-
quential episodes training data for learning (31) was uniformly drawn from three 
slightly overlapping input regions in the unit cube: 刀={(x,y,z) 1-1.0 < x < -0.2}, 
乃={ (x, y, z) I -0.4 < x < 0.4}, and I; = { (x, y, z) I 0.2 < x < 1.0}. First the algorithm 
was trained on刀for50,000 iterations and tested on I;, then trained on I; for 
50,000 iterations and tested on I; and乃， andfinally trained on I; for 50,000 it-
erations and tested on test data from all regions. Figure 7 gives an example of 
how learning proceeded. This test probes how much of the previously learned 
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Figure 8: Average learning curves (solid lines) and average number of receptive field/radial basis 
functions (dashed lines) for a) RAN, and b) RFWR. The black bars give the one standard devia-
tion at the beginning and the end of learning. 

competence is forgo廿enwhen the input distribution shifts. All parameters of 
RFWR were chosen as in 5.1 except for Mdef which was set to a slightly larger 

value of Mdef = 6.0 I. 
As the ME algorithm is not constructive and thus not well suited for learning 

with strongly shifting input distributions, we chose the Resource Allocating 
Network (RAN) of Platt (1991) for a comparison, a learning algorithm which is 
constructive, which has no competitive learning component, and which has in-
spired a variety of other algorithms. RAN is a radial basis function (RBF) net-
work that adds RBFs at the site of a training sample according to two criteria: a) 
when the approximation of the training sample error is too large, and b) when no 

RBF is activated by the training sample more than a threshold~value. Both cri-
teria have to be fulfilled simultaneously to create a new RBF. The spherical width 
of the RBF is chosen according to its distance to the nearest neighboring RBF. By 
using gradient descent with momentum, the RBF centers are adjusted to reduce 
the mean squared approximation error, as are the weights of the linear regression 
network in the second layer of the RBF net. The strategy of RAN is to start ini-

tially with very wide RBFs and to increase the threshold~over time until a pre-
chosen upper limit is reached, causing the creation of ever smaller RBFs at sites 
with large error. As in RFWR, we used Gaussians (Equation (5)) as the paramet-
ric structure of a RBF. 

Figure 8 summarizes the average of 10 learning trials for each algorithm. 
RFWR shows large robustness towards the shift of input distribution: there is 
only a minor increase of nMSE due to interference in the overlapping parts of the 
training data. In contrast, as can be seen in the "original RAN" trace of Figure Sa, 
RAN significantly increases the nMSE during the second and third training epi-
sode. Since RAN starts out with initial RBFs which cover the entire input space, 
interference is not properly localized, which explains the observed behavior. 
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Note that we already have excluded the constant term in the linear regression 
layer of RAN (Platt, 1991), a term that is globally active and would decrease the 
performance in Figure 8 even more. 

From the experience with RFWR, three possible improvements of RAN come 
to mind. First, instead of starting with very large RBFs initially, we can limit the 
maximal initial size as in RFWR to Mdef. Second, we can employ the hyper radial 

basis function technique of Poggio and Girosi (1990) to also adjust the width M 
of the RBFs by gradient descent as in RFWR (Furlanello, Giuliani, & Trentin, 
1995). And third, instead of having the time varying threshold~a global vari— 
able, we can define it as an individual variable for each RBF, thus removing the 
explicit dependency on global training time. By initializing RAN with 
Mdef = 6.01 as in RFWR, these modification resulted in a significant improvement 

of robustness of RAN as shown in Figure Sa. Note that this version of RAN re-
quires only half as many RBFs, converges more quickly, and achieves very low 
final approximation errors. As in RFWR, a localizing of the learning parameters 
lead to a significant improvement of robustness of incremental learning. 

5.4 S ensonmotor Learning 

As a last evaluation, we use a traditional example of sensorimotor learning1 the 
approximation of the inverse dynamics of a two-joint arm (Atkeson1 1989). The 
state of the arm is given by two joint angles, 01 and包(Figure9a). The inverse 
dynamics model is the map from two joint angles, two joint velocities, and two 
joint accelerations to the corresponding torques necessary to achieve the joint ac-
celeration in a given state. We assume that the arm controller makes use of a low 
gain feedback PID controller whose performance is enhanced by feedforward 
commands from the learned inverse dynamics (An1 Atkeson, & Hollerbach1 
1988). The torques for the shoulder and elbow joint are learned by separate net-
works as there is no reason to believe that a receptive field for the elbow torque 
should have the same shape as for the shoulder torque— for RFWR this would 
mean that both outputs have the same Hessian which is definitely not the case. 
The task goal is to draw a figure "8" in two parts of the work space. Figure 9a 
shows the desired and the initial performance without the feedforward com-
mands. Training proceeded in two steps: first the arm performed sinusoidal 
movements with varying frequency content in the area of the upper "8". A total 
of 45,000 training points1 sampled at lOOHz1 was used for training—each training 
sample was only used once in the sequential order it was generated. The learning 
results are shown in the top part of Figure 9b for RFWR, and Figure 9c for the 
modified RAN. Both algorithms were able to track the figure "8" properly. 

Next1 the algorithms were trained in an analogous fashion on 4瓦000samples 
around the lower figure "8". The bottom parts of Figure 9b,c show the corre-
sponding good learning results. However1 when returning to performing the up-
per figure "8"1 RAN showed significant interference (Figure 9ct although both 
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Figure 9: a) Initial performance of the two joint arm when drawing the figure "8" without feed-
forward control signals; b) performance of RFWR after learning; c) performance of RAN after 
learning. 

algorithms were initiated with the same Mdef = 6.01 (note that position, velocity, 
and acceleration inputs were normalized prior to learning to compensate for the 
differences in units). This effect highlights the difference between the learning 
strategy of RBF networks in comparison to the nonparametric statistics approach 
to modeling with locally linear model. RBF networks need a sufficient overlap of 
the radial basis functions to achieve good learning results—one RBF by itself has 
only limited function approximation capabilities, an effect discussed in the con-
text of hyperacuity (e.g., Churchland & Sejnowski, 1992). Gradient descent on the 
shape parameter M of the Gaussian RBFs quickly decreased M in our example to 
achieve an appropriately large overlap. This overlap, however, encourages 
negative interference, as is evident in Figure 9c. The 6-dimensional input space of 
this example emphasized the need for large overlap, while the 2-dimensional ex-
ample of the previous section did not highlight this problem. Experiments which 
used a fixed as in the original RAN algorithm did not achieve better learning 
results within a reasonable training time. Clearly there is always the unattractive 
solution of adding thousands of quite narrow overlapping RBFs. In the results of 
Figure 9, both algorithms allocated less than 100 receptive fields. 

6 Related Work 

The field which contributes the most to the development of RFWR is non-
parametric statistics. Cleveland (1979) introduced the idea of employing locally 
linear models for memory-based function approximation, called locally weighted 
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regression (LWR). In a series of subsequent papers, he and his colleagues ex-
tended the statistical framework of L WR to include multi-dimensional function 
approximation and local approximation techniques with higher order polynorni— 

als (e.g., Cleveland, Devlin, & Gross, 1988; Clevland & Devlin, 1988). Cleveland 
and Loader (1995) suggested local Cp-tests and local PRESS for choosing the de-
gree of local mixing of different order polynomials as well as local bandwidth 
adjustment and reviewed a large body of literature on the history of L WR. Hastie 
and Tibshirani (1990, 1994) give related overviews of nonparametric regression 
methods. Hastie and Loader (1993) discuss the usefulness of local polynomial re-
gression and show that locally linear and locally quadratic function fitting have 
appealing properties in terms of the bias/variance trade-off. Friedman (1984) 
proposed a variable bandwidth smoother for one dimensional regression prob-
lems. Using different statistical techniques, Fan and Gijbels (1992, 1995) sug-
gested several adaptive bandwidth smoothers for LWR and provided detailed 
analyses of the asymptotic properties of their algorithms. 

For the purpose of time series prediction, L WR was first used by Farmer and 
Siderowich (1987, 1988). Atkeson (1989) introduced the LWR framework for su-
pervised learning in robot control. Moore (1991) employed LWR for learning 
control based on learning forward models. In the context of learning complex 
manipulation tasks with a robot, Schaal and Atkeson (1994a,b) demonstrated 
how LWR can be extended to allow for local bandwidth adaptation by employ-
ing local cross validation and local confidence criteria. Schaal and Atkeson (1996) 
introduced the first non memory-based version of LWR. Schaal (in press) applied 
RFWR for value function approximation in reinforcement learning. Locally 
weighted learning for classification problems can be found, _e.g., in Lowe (1995). 
Aha (in press) compiled a series of papers on nonparametric local classification 
and regression learning, among which Atkeson, Moore, and Schaal (a,b, in press) 
give an extended survey on locally weighted learning and locally weighted 
learning applied to control. 

Besides nonparametric statistics, RFWR is related to work on constructive 
learning algorithms, local function apI?roximation based on radial basis functions 
(RBF), and Kohonen-like self-orgamzmg maps (SOM). A RBF function approxi-
mator with a locally linear model in each RBF was suggested by Millington 
(1991) for reinforcement learning. Platt (1991) suggested a constructive RBF-
based learning system. Furlanello et al. (1995b) and Furlanello and Giuliani 
(1995a) extended Flatt's method by using Poggio and Girosi's (1990) hyper radial 
basis functions and local principal component analysis. For learning control, 
Cannon and Slotine (1995) derived a constructive radial basis function network 
which used wavelet-like RBFs to adapt to spatial frequency; this is similar to lo-
cal bandwidth adaptation in nonparametric statistics and the adjustable receptive 
fields in RFWR. Orr (1995) discussed recursive least squares methods and ridge 
regression for learning with radial basis function networks. He also suggests sev-
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eral other methods, e.g., generalized cross validation, for regularizing ill-condi-
tioned regression. 

One of the most established constructive learning systems is Cascade Correla-
tion (Fahlman & Lebiere, 1990), a system sharing ideas with projection pursuit 
regression (Friedman, 1981). Related to this line of research is the Upstart algo-
rithm of Frean (1990), the SOM based cascading system of Littman and Ritter 
(1993), and the work of Jutton and Chentouf (1995). The first usage of locally lin-
ear models for regression problems in the context of SOMs was by Ritter and 
Schulten (1986) who extended Kohonen maps to fit locally linear models (LLM) 
within each of the units of the SOM. Related to this work is Smagt and Groen's 
(1995) algorithm which extended LLM to a hierarchical approximation in which 
each Kohonen unit itself can contain another LLM network. Fritzke (1994, 1995) 
demonstrated how SOMs can constructively add units, both in the context of RBF 
and LLM regression problems. Bruske and Sommer (1995) combined Fritzke's 
ideas with Martinetz and Schulten's (1994) Neural Gas algorithm to accomplish a 
more flexible topographic representation as in the original SOM work. A large 
body of literature on constructive learning stems from fitting high order global 
polynomials to data, for instance, as given in Sanger (1991), Sanger, Sutton, and 
Matheus (1992), and Shin and Ghosh (1995). Due to the global character of these 
learning methods, the danger of negative interference is quite large. Additional 
references on constructive learning for regression can be found in the survey by 
Kwok and Yeung (1995). 

The idea of the mixture of experts in Jacobs et al. (1991) and hierarchical mix-
tures of experts in Jordan and Jacobs (1994) is related to RFWR as the mixture of 
experts approach looks for similar partitions of the input space, particularly in 
the version of Xu et al. (1995). Ormeneit and Tresp (1995) suggested methods to 
improve the generalization of mixture models when fit with the EM algorithm 
(Dempster et al, 1977) by introducing Bayesian priors. Closely related to the hier-
archical mixture of experts are nonparametric decision-tree techniques, in whi~~ 
the seminal work of Breiman, Friedman, Olshen, and Stone introduced class1fじ

cation and regression trees (CART), and Friedman (1991) proposed the MARS al-
gorithm, a CART derivative particularly targeted at smooth function approxima-
tion for regression problems. 

Finally, adaptive receptive fields and the way receptive fields are created in 
RFWR resemble in part the classification algorithms of Reilly, Cooper, and El-
baum (1982) and Carpenter and Grossberg (1987). 

7 Discussion 

This paper aims at emphasizing two major points. First, truly local learning-i.e., 
learning without competition, without gating nets, without global regression on 
top of the local receptive fields— is a feasible approach to learning, and, moreo-
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ver, it can compete with state-of-the-art learning systems. Second, truly incre-
mental learning-i.e., learning without knowledge about the input and condi-
tional distributions, learning that must cope with continuously incoming data 
with many partially redundant and/ or partially irrelevant inputs—needs to have 
a variety of mechanisms to make sure that incremental learning is robust. A care-
fully designed truly local learning system can accomplish this robustness. 

In order to be a truly local learning system, RFWR borrowed in particular 
from work in nonparametric statistics. Following the definition of H司ek(1969), 
the term "nonparametric" indicates that the function to be modeled potentially 
consists of very large families of distributions which cannot be indexed by a fl-
nite-dimensional parameter vector in a natural way. This view summarizes the 
basic assumptions of our learning system, with the addition of prior knowledge 
about smoothness. It should be stressed that, if more prior knowledge is avail-
able for a particular problem, it should be incorporated in the learning system. It 
is unlikely that a nonparametric learner outperforms problem-tailored paramet-
ric learning-e.g., fitting sinusoidal data with a sinusoid is the best one can do. 
The examples given throughout this paper were to highlight when local non-
parametric learning can be advantageous, but there is no claim that it is generally 
superior over other learning systems. On the other hand, when it comes to 
learning without having strong prior knowledge about the problem, non-
parametric methods can be quite beneficial. For instance, Quartz and Sejnowski 
(submitted) claim that constructive nonparametric learning might be one of the 
key issues to understand the development of the organization of brains. 

In order to achieve its properties, RFWR had to make use of several new algo-
rithmic features. We introduced a stochastic approximation to leave-one-out local 
cross validation, i.e., cross validation which does not need a validation set any-
more. This technique can potentially be useful for many other domains as it only 
requires that the (local) parameters to be estimated are linear in the inputs. By 
employing a novel penalized local cross validation criterion, we were able to de-
rive locally adaptive multidimensional distance metrics. These distance metrics 
can be interpreted as local approximations of the Hessians of the function to be 
modeled. In order to speed up learning of the distance metric, we derived a sec-
ond order gradient descent method. Finally, the penalized local cross validation 
criterion could also be employed to achieve automatic local bias adjustment on 
the relevance of input dimensions, obtained by local ridge regression. Using all 
these features, the constructive process of RFWR only needs to monitor the acti-
vation strength of all receptive fields in order to decide when to create a new re-
ceptive field-most constructive learning system need to monitor an approxima-
tion error criterion as well, which can easily lead to an unfavorable bias-variance 
tradeoff. 

Despite the merits of RFWR, several issues have not been addressed in this 
paper and are left to future research. RFWR makes use of gradient-based learn-
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ing which requires a proper choice of learning rates. Even though we incorpo-
rated second order learning derived from Sutton (1992a,b), it is still necessary to 
do some experimentation with the choice of the learning rates in order to achieve 
close to optimal learning speed without entering unstable domains. It is also nec-
essary to choose an appropriate initial distance metric D (cf. Equation (5)), char-
acterizing the initial size of a receptive field. Too large an initial receptive field 
has the danger that the receptive field grows to span the entire input domain: the 
initial receptive field has to be such that structure in the data cannot be mistaken 
with high variance noise. As a positive side-effect of truly local learning, how-
ever, these open parameters can be explored by allowing just a small number of 
receptive fields on an initial data set and monitoring their learning behavior― 
each receptive field learns independently and there is no need to do parameter 
exploration with a large number of receptive fields. 

A last algorithmic point concerns computational complexity. Recursive least 
squares is an 0(炉） process, i.e., quadratic in the number of inputs, and the up-
date of a full distance metric is worse than 0(炉）• If the dimensionality of the in-
puts goes beyond about 10, a learning task with many receptive fields will run 
fairly slowly on a serial computer. Fitting only diagonal distance metrics allevi-
ates this effect and might be necessary anyway since the number of open pa-
rameters in the learning system might become too large compared to the number 
of training data points. 

This discussion naturally leads to the long standing question of how local 
learning methods can deal with high dimensional input spaces at all. As nicely 
described in Scott (1992), the curse of dimensionality has adverse effects on all 
systems which make use of neighboring points in the Euclidean sense, since the 
concept of "neighborhood" becomes gradually more counterintuitive when 
growing beyond 10 input dimensions, and it pretty much vanishes beyond 20 
dimensions: every point is about the same distance from every other point. In 
such domains, the parametric model chosen for learning-be it local or global― 
becomes the key to success, essentially meaning that any learning system re-
quires strong biases in high-dimensional worlds. However, it still remains un-
clear whether high dimensional input spaces have locally high dimensional dis-
tributions. Our experience in sensorimotor learning is that this may not be true 
for many interesting problems, as physical systems do not realize arbitrary dis-
tributions. For instance, a seven degree-of-freedom anthropomorphic robot arm, 
whose inverse dynamics model requires learning in a 21-dimensional input 
space, seems to realize locally not more than 4-8 dimensional input distributions. 
Thus, a future research goal will be to incorporate local dimensionality reduction 
as a preprocessing step in every receptive field (Vijayakumar & Schaal, submit-
ted). 

As a last point, one might wonder in how far a local learning system like 
RFWR could have any parallels with neurobiological information processing. 
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Particularly inspired by work on the visual cortex, one of the mainstream as-
sumptions about receptive field-based learning in the brain is that receptive 
fields are broadly tuned and widely overlapping, and that the size of the recep-
tive fields does not seem to be a free parameter in normal learning (as opposed to 
developmental and reorganizational processes after lesions, e.g., Merzenich, 
Kaas, Nelson, Sur, & Felleman, 1983). This view emphasizes that accuracy of en-
coding must be achieved by subsequent postprocessing steps. In contrast, RFWR 
suggest overlapping but much more finely tuned receptive fields, such that accu-
racy can be achieved directly by one or several overlapping units. Fine tuning 
can be achieved not only by a change of the size of the receptive field, but also by 
"plug-in" approaches where several receptive fields tuned for different spatial 
frequencies contribute to learning (Cannon & Slotine, 1995). To distinguish be-
tween those two principles, experiments that test for interference and generali-
zation during learning can provide valuable insights into the macroscopic or-
ganization of learning. In motor control, the experiments by Shadmehr and 
Mussa-Ivalidi (1994), Imamizu, Uno, and Kawato (1995), and Shadmehr, Brash-
ers-Krug, and Mussa-Ivaldi (1995) are examples of such investigations. 

Whether the learning principles of RFWR are biologically relevant or not re-
mains speculative. What we have demonstrated, however, is that there are alter-
native and powerful methods to accomplish incremental constructive learning 
based on local receptive fields, and it might be interesting to look out for cases 
where such learning systems might be applied. Receptive field-based local 
learning is an interesting research topic for neural computation, and truly local 
learning methods are just starting to demonstrate their potential. 
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9 Appendix 

ress10n Denvahves 9.1 Ridge Reg . 

Each ridge regression parameter can be conceived of as a weighted data point of 
the form [x, = 1/(0, …，1,0, .. Y,y, = OJ which was incorporated in the regression by 
the recursive least squares update (8). Thus, the derivative of the cost function 
(12) is a simplified version of the derivative (17): 
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By taking advantage of the many zero elements of the ridge "data points", the 
actual computation of this derivative is greatly sped up. 

There are several ways to incorporate the update of the ridge regression pa-
rameters in the matrix P, and it should be noted that we also need to add back 
the fraction of the ridge parameters which was forgotten due to the forgetting 
factor入ineach update of P (Equation (8)). It turns out, that there is a quite effi-
dent way to perform this update. At every update of a receptive field, the for-
getting factor effectively reduces the contribution of each ridge parameter by: 

f.,. .1.,i= (1-A)が
The update due to gradient descent is: 

f.,. grad,;= (T; 十△がーが
and the total increment becomes: 

(33) 

(34) 
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Due to the fact that the ridge vectors are all unit vectors, it is possible to update P 
by just executing a recursive least squares update for the increment, i.e., to add a 

ridge data point of the form [xr =△，(0, …，1,0, …） T, yr = O] for every ridge parameter 
by using Equation (8). This update can be accelerated by taking into account the 
zeros in the ridge points. An additional speed up can be obtained by not updat-
ing P every iteration but rather by accumulating the increments until they exceed 
a manually chosen threshold. 

9.2 Second Derivatives of Distance Metric Update 

The second derivative of the cost function (12) with respect to the coefficients of 
the distance metric is: 

JJ ふVP JJ 
一全―I 1.i+ 

w JJ2 

函 閥 伝1枷 wn+l函

(36) 
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This equation makes use of notation and results derived in (16) and (17). 
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