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ABSTRACT 

Object recognition and categorization are both concerned with the understanding of 

how input information matches with memorized object information. It is therefore 

surprising that these two fields have evolved independently, without much cross-

fertilization between their research. It is the main objective of this paper to lay out 

the basis of a dialogue between object recognition and categorization research, with 

the hope of raising issues the could cross-fertilize both domains. To this end, this 

paper develops diagnostic recognition, a framework which formulates recognition 

performance as an interaction of task constraints and object information. We argue 

and present examples suggesting that diagnostic recognition could be applied to the 

understanding of everyday object recognition. 

,
 



3
 

Object recognition and categorization research are both concerned with the 

question "what is this object?" To recognize an object as a car is not very different 

from placing the object in the car category. In both cases, the problem is to 

understand how input information matches with memorized information. For 

example, if handle and container or equivalent information represent cups in memory, 

a cup recognition/ categorization is only possible if this information is perceptually 

available. 

Given such profound similarity, it is surprising that object recognition and 

categorization have evolved separately, without much cross-fertilization between 

their research. The reason for this could be a difference of focus: Typical 

categorization studies have sought to understand the rules governing the formation of 

categories (e.g., the representation of cup is the combination of the features handle 

and container), while recognition researchers have mostly looked into the perceptual 

aspects of the recognition process (e.g., the perceptual representations of handle and 

container that enable the cup recognition). However, recent debates on the possible 

interactions between categorization and perception have suggested that the 

principles governing the formation of categories should be more tightly coupled with 

the perceptual aspects of recognition (Goldstone, 1994; Schyns & Murphy, 1991, 

1994; Schyns, Goldstone & Thibaut, in press; Thibaut, 1991). It is proposed that 

such interactions will promote the emergence of new, more powerful theories of 

visual cognition. 

It is the main objective of this paper to lay out the basis of a dialogue 

between object recognition and categorization studies, to raise issues that could 

cross-fertilize both fields. To this end, the first section develops diagnostic 

recognition, a framework which integrates two main factors: The task constraints of 

categorization studies, and the perceptual information of recognition theories. It is 

important to stress from the outset that diagnostic recognition is not a new theory of 
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object recognition. Instead, it is a broad framework which proposes one possible 

answer to the question: "How could we frame issues common to object recognition 

and categorization theories?" The first section illustrates with two examples how 

recognition/ categorization performance can result from interactions between task 

constraints and perceptual information. The remaining sections discuss implications 

of diagnostic recognition for the study of "everyday object recognition." 

The diagnostic recognition framework: Interactions of task constraints and object 

information. Even everyday observation reveals that a single object fits into many 

possible categories. For example, an object may be recognized as a Porsche, a car, or 

a vehicle. On other occasions, it may be called a toy, an expensive gift, a public 

nuisance, or a public danger which sometimes leads to scrap metal. Categorization is 

highly flexible and people tend to place an object into one category or another 

depending on their goals and actions. 

It is always worth stressing that different classifications of an identical object 

tend to change the information requirements of recognition tasks. For example, when 

assigning a visual event to the Porsche, collie, sparrow, Mary or New York category 

comparatively more specific information might be necessary than when categorizing 

it as a car, dog, bird, human face or city. I will not consider all possible object 

classifications here, but instead focus on the information constraints associated with 

the hierarchical organization of categories; the idea that an object belongs to a 

sequence of progressively more inclusive categories such as Porsche, car, vehicle. 

Within this hierarchy, I will concentrate on the initial, or so-called "perceptual" 

classifications (e.g., Porscheりrcar), instead of the abstract classifications (e.g., 

vehicle) which are arguably more detached from the perceptual input. Henceforth, 

task constraints will denote the visual information needed to place the input into the 

hierarchy of perceptual categories. Although task constraints have traditionally been 
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the province of categorization research, they are an irreducible factor of any 

recognition task, and the first factor considered in diagnostic recognition. 

The second factor is the nature of the perceptual information available to 

form hierarchically organized categories. Objects form categories because they "look 

alike" --i.e., they share cues such as a similar silhouette or global shape, distinctive 

sets of parts sin迅arlyorganized (e.g., nose, mouth, eyes, ears, hair and their 

structural relationships), or characteristic surface properties (e.g., smooth vs. 

discontinuous, symmetric vs. asymmetric, and textural, color and illumination cues). 

Generally speaking, there are perceptual limitations to the extraction of image cues. 

For example, two objects could share a similar global silhouette, but have very 

different internal features (think, e.g., of Navon's letters, 1977). The Global-

Precedence effect predicts that the availability of the silhouette should precede in 

time the availability of the internal features (e.g., Navon, 1977; though see also Grice, 

Graham & Boroughs, 1983). Such perceptual limitation constrains the spectrum of 

object sin迅aritiesand the categories that can be spontaneously formed. The 

perceptual availability of object information has traditionally been the province of 

perceptually-oriented object recognition researchers. However, perceptual cues are 

an irreducible factor of any object categorization, and the second factor of diagnostic 

recognition. 
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Diagnosticity-Driven Recognition 

Recognition Phenomena 
(viewpoint-dependence, coarse-to-fine, …） 

Task Constraints 
(nature of the categorization) 

l l l 
Obj ect Information 

(shape, color, texture, illumination) 

▲
 

I ..,._. Cue Diagnosticity 

Figure 1. This figure illustrates the main components of diagnostic 

recognition: task constraints and object information, whose interactions give 

rise to cue diagnosticity. Diagnostic recognition claims that cue diagnosticity 

could explain the usage of image information subtending many recognition 

phenomena. 

Diagnostic recognition seeks to frame recognition performance as an interaction 

of task constraints and perceptual object information, the two factors just discussed 

(see Figure 1). This is how it would work: When the information required to assign 

an object to a category matches with input information, a subset of object cues 

become particularly useful (i.e., diagnostic) for the task at hand. Diagnosticity is the 

first component of recognition performance. However, perceptual limitations on the 
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extraction of this diagnostic information could also affect recognition performance. 

Thus, the interaction of task-dependent diagnosticity and perceptual limitations 

could explain the usage of information in the input image. The main claim of 

diagnostic recognition is that differences in usage of information could account for a 

wide range of recognition phenomena (e.g., viewpoint-dependence vs. independence, 

basic-level recognition and scale-dependent recognition). 

We should be careful in pointing out that diagnosticity is already a 

component of most object recognition and categorization theories. However, we 

believe that its impact has not always been fully appreciated. For example, the 

diagnosticity of features for different classifications has been thoroughly studied in 

categorization research (e.g., Anderson, 1991; Elio & Anderson, 1981; Estes, 1986; 

Gluck & Bower, 1988; Kruschke, 1992; Nosofsky, 1984, 1986; and many others), but 

these theories often adopt a stance of: "You tell me what the object cues are, and I 

will tell you how they are integrated to perform the object categorization" (Schyns et 

al., in press). Consequently, they place little constraint on what may count as an 

object cue, and they tend not to incorporate perceptual limitations in their 

explanations of performance. However, the second illustration of diagnostic 

recognition presented below will show that perceptual factors will need to be 

integrated in complete explanations of even very simple categorizations. 

Opposedly, object recognition researchers are well aware of the importance of 

perceptual object cues. However, they sometimes overlook the influence of task 

constraints. When object recognition researchers use performance to infer the format 

of an object representation, there is always a danger of "over-representing" the 

information demands of a particular task in the theory, and "under-representing" the 

object cues that could be diagnostic of other tasks. Example 1 will illustrate the 

importance of studying multiple task constraints when inferring representation 

formats from recognition performance. In sum, we believe that complete theories of 
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object recognition and categorization could benefit from a thorough integration of the 

two aspects of diagnostic recognition. 

Exam le 1: Dia ostic reco ition and view oint-de endence. One of the 

most challenging problems of object recognition is to explain the relative invariance of 

recognition to changes of an object's orientation. This is not to say that object 

recognition is fully viewpoint-invariant; there are now many independent evidence 

suggesting that a large number of objects are better recognized when shown from 

particular viewpoints (e.g., Biilthoff & Edelman, 1992; Edelman & Biilthoff, 1992; 

Palmer, Rosch & Chase, 1981; Rock & Di Vita, 1987; Perrett, Oram, Harries, Bevan, 

Benson & Thomas, 1991; Tarr & Pinker, 1989; Vetter, Poggio & Biilthoff, 1994). 

Subjects label such object views as "better" and are faster to categorize the objects 

shown in these views. Typically,''viewpoint-dependent recognition" refers to a 

monotonic increase in recognition performances (reaction times and/ or error rates) 

with increasing misorientation from the preferred views. Evidence of such 

viewpoint-dependent recognition has been reported for familiar (e.g., Palmer et al., 

1981), unfamiliar (e.g., Perrett & Harries, 1988; Rock & Di Vita, 1987), realistic and 

artificial objects (e.g., Biilthoff & Edelman, 1992; Tarr & Pinker, 1989), and 

conditions of viewpoint-dependence have become a central issue in object 

recognition. 

However, the debate is still open about the interpretation of the phenomenon. 

One interpretation uses viewpoint-dependence to tease apart formats of object 

representation (see Biederman & Gerhardstein, 1995; Tarr & Biilthoff, 1995). For 

example, the "view-based approach" claims that objects are stored in memory as 

collections of discrete views and that dependence to a view reveals that it is 

effectively stored in memory. In contrast, structural, or model-based accounts argue 

that recognition is viewpoint-independent, at least over a limited range of 

viewpoints, mostly because recognition uses viewpoint-independent perceptual cues 
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(non-accidental properties of object edges, Lowe, 1987) which form geons, the 

primitives of memorized object representations (Biederman, 1987). 

Alternatively, diagnostic recognition is agnostic about the specific object 

representation format: It emphasizes the available image information (shape, part, 

color, or other derived cues) that is diagnostic for a particular object categorization. 

Viewpoint-dependence to one (or a subset of) view(s) would then be determined by 

the availability of diagnostic information in these views, rather then by how that 

information is represented in memory (Hill, Schyns & Akamatsu, in press). To 

illustrate, many views would convey sufficient information to categorize Mary's face 

as "face." However, many fewer views would authorize to classify the same face as 

"Mary" (because Mary's features are visible only from a restricted subset of views). 

These two categorizations of an identical face might change the information 

requirement of the task, the face cues that are diagnostic, and the subset of views 

that are preferred for recognition. Within the range of views in which diagnostic cues 

are visible, there could be geometrical and perceptual limitations on their extraction 

from the image. For example, although the nose of a face is visible in all views 

between the two profiles, its length (if it was important to identify Mary) might be 

easier to measure from a 3 / 4, or profile view than from the frontal view. These 

lin廿tations,together with task constraints, would in the example predict that length-

of-nose (in fact, its perceptual implementation) would only affect viewpoint-

dependence when this cue was diagnostic of the categorization--i.e., in the "Mary," 

not the "face" classification. 

Hill, Schyns and Akamatsu (in press) tested for the possibility of such 

relative patterns of viewpoint-dependent face recognition. Their subjects learned one 

view of a face and were tested on their generalization to other views of the same 

face. One set of experiments used shaded models of 3D laser-scanned faces, to 

isolate the influence of shape-from-shading cues (see Figure 2, the top left picture). 
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A second set of experiments added color and texture to the shaded models, to 

analyze the role of these supplementary cues (see Figure 2, the top right picture). 

Together, these two experiments framed viewpoint-dependence as an interaction 

between fixed task demands and variable stimulus information. 

As a class, faces share geometrical object information to which perception 

could be attuned. One such property is their approximate bilateral symmetry 

(Vetter, Poggio & Biilthoff, 1994) which allows occluded cues to be inferred from a 

single learned view. Consequently, the learned view and its symmetric might be 

identified with equal accuracy, and possibly better than any other unseen views. 

Such effect of symmetric object information should be particularly salient with 

shaded face models, for which no other cue than shape is available from the image. 
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Figure 2. This figure (adapted from Hill, Schyns & Akamatsu, in press) 

illustrates the main results of an experiment on viewpoint dependence in face 

identification. The top left picture shows the face views of the shape-from-

shading condition. The bottom left histogram presents patterns of viewpoint-

dependent performance for the identification of shaded stimuli. The top right 



picture shows the face views of the shape plus texture conditions, and the 

bottom right histogram presents the viewpoint-dependent performance for the 

identification of these stimuli. 
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Results of Hill et al. (in press) are summarized on Figure 2. The bottom left 

histogram illustrates that subjects who learned a three-quarter view recognized 

almost as efficiently the symmetric three-quarter, while performance decreased 

monotonically with rotation in depth for subjects who learned the profile, or the full-

face view (see also Schyns & Biilthoff, 1994), confirming the role of symmetric face 

information in explanations of viewpoint-dependent identification. 

The addition of color and textural cues in the same identification task 

affected performance (see Figure 2, the bottom right histogram). It was found that 

learning a three-quarter view now elicited good generalization to all views (of those 

tested). Also, a symmetric peak appeared to the other profile when learning a 

colored profile. Color and textural cues offered supplementary object information 

which reduced the overall viewpoint-dependence. 

Evidence of such preferred views could prompt an object recognition 

researcher to hypothesize that these views (or their information content) actually 

represent faces in memory. However, there would be a difficulty with this strategy if 

each change categorization changed the overall pattern of performance. Object 

representations should be quite independent of the considered task. That is, they 

should ideally support many (not just one) categorizations of an object. Pilot 

studies were run that changed the categorization task, the other factor of diagnostic 

recognition. Using face sets identical to those of the identification task, subjects 

were now instructed to solve a generalization of gender across viewpoints. 

Performance was at chance with shaded faces, but it was near ceiling with textured 
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faces, with no marked dependence on viewpoint in either case. This contrasted with 

the viewpoint-dependent performance observed for identity judgments. 

In summary, this example suggested that viewpoint-dependent vs. 

independent recognition performance might be fruitfully framed as an interaction 

between the multiple categorizations of an object and its perceptual information. If a 

categorization requires selective input information, and if its extraction depends on 

viewpoint, recognition performance might reflect the requirement of "getting a good 

view" of the diagnostic cues. We come back in the General Discussion to the 

implications of changing task constraints for the study of object representations. 

Example 2: Obiect information and catep;orization. As explained earlier, 

categorization research as a whole may have underestimated the importance of 

perceptual information in their explanations of performance. In typical experiments, 

(see, e.g., Bruner, Goodnow & Austin, 1956; Bourne, 1982; Shepard, Hovland & 

Jenkins, 1961), subjects were shown simple colored geometric shapes and were 

instructed to learn the rules for their categorization. These rules were logical 

combinations of the features that were clearly demarcated in the stimuli. For 

example, subjects could learn that the rule "red and circle" categorized the objects, 

but there was little doubt about the featural analysis of the stimuli. 

Even though perception is not a tabula rasa, there are occasions when a 

relevant perceptual analysis of the incoming stimulus is not readily available. For 

example, novices reading chest X-rays (e.g., Christensen, Murry, Holland, Reynolds, 

Landay & Moore, 1981), sexing chicken (Biederman & Shiffrar, 1987), and 

categorizing dermatosis (Norman, Brooks, Coblenz & Babcock, 1992) do not seem to 

grasp the relevant object cues that structure these categories. Even when told what 

the diagnostic cues are, novices are not always able to see them in the image. In such 

cases, a significant part of learning the categories could involve learning the object 

information that structure them. 
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Here is how it would work: When a fragment of a stimulus distinguishes 

between members and nonmembers of categories, the fragment could become a new 

cue of perceptual analysis (Schyns & Murphy, 1994). That is, object cues would not 

necessarily be always fixed and perceptually given, as is often assumed in 

categorization theories, but rather flexible and perceptually adjustable to the 

experience and the categorization history of the individual. Consequently, two 

individuals with different categorization histories (think, e.g., of experts vs. novices 

of chest X-rays or dermatosis) might differently perceive and analyze an identical 

stimulus for its categorization. This could be a potential difficulty for existing object 

categorization theories which typically assume that category learning consists of 

selecting and weighting fixed perceptual evidence. 
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Figure 3. This figure illustrates the design of Schyns and Rodet's (in press) 

feature creation experiment. From left to right, the top pictures are Martian 

cell exemplars from the XY, X, and Y categories, respectively. From left to 
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right, the bottom pictures are the features xy, x, and y, defining the categories. 

Note that the feature xy is a composition of feature x and feature y. Subjects 

in the XY->X-> Y (vs. X-> Y->XY) group learned the category in this order. 

貨
ー
＇

Schyns and Rodet (in press) provided an "existence proof" that identical 

stimuli could be orthogonally perceived as a result of different categorization 

histories. Their experiments used three categories of unknown stimuli called 

"Martian cells" (see Figure 3). Categories were defined by specific blobs common to 

all members to which irrelevant blobs were added (to simulate various cell bodies). 

Figure 3 shows, from left to right, an exemplar of the XY category, and exemplar of 

X, and a Y exemplar. Figure 3 also shows the cues x, y and xy defining each 

category. Note that xy is the conjunction of x and y. One subject group was asked 

to learn X before Ybefore XY (X->Y->XY); the other group learned the same 

categories, but in a different order (XY->X-> Y). 

Results showed that while all subjects reliably classified X, Y and XY test 

stimuli (revealing that both groups saw, attended to and used the x cue and they 

cue), their categorizations of X-Y test cells were orthogonal. X-Y tests were used to 

tease apart a conjunctive (x&y) vs. a configural (xy) perceptual analysis of XY: the 

components x and y were presented independently—i.e., non adjacently. Only one 

subject group (X>Y->XY) categorized X-Y cells as XY; the other group categorized 

these cells as either X or Y. Together, results of this experiment suggested that 

different object cues were learned to perceptually analyze and categorize identical 

visual stimuli. 

As explained earlier, object categorization theories tend to place little 

constraints on what may count as an object cue. However, Example 2 demonstrated 

that one cannot just assume the features on which classification operates. Even very 

simple categorization problems such as distinguishing between three categories X, Y 



and XY might not have an obvious featural solution. If the individual's history of 

categorization affects the object cues that perceptually analyze the input, complete 

categorization theories will not only have to explain the ways in which object 

features are combined to form concepts, they will also have to explain the 

development of the perceptual object information which subtend these categories. 
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In summary of these two examples, it appears that there is much to be gained 

by considering in greater depth the possible interactions of task constraints and 

perceptual object information in object recognition/ categorization theories. The face 

recognition example insisted on the impact of task constraints on viewpoint-

dependent performance, and the Martian cell example stressed the role of object 

information on explanations of simple categorization rules. 

"Everyday object recognition" Although the categorization of faces and 

Martian cells are clear instances of recognition, they do not appear to be typical of a 

more generic form of recognition which occurs when people categorize a car, a chair, 

a dog or similarly common objects. Instead, face (and Martian cell) recognition is 

often pictured as a more specialized (or expert) form of recognition. This questions 

the applicability of diagnostic recognition to the explanation of "everyday object 

recognition." But what is everyday object recognition? More precisely, what 

information demands does it impose on common categorization tasks, and which 

object information does it use in the input? These issues are essentially intertwined, 

but we will first explore the task demands of everyday object recognition before 

discussing its object information. 

The task demands of "everyday object recognition." As explained earlier, 

classic categorization research has shown that the interactions between the human 

perceiver and the objects of his/her world specify several hierarchical levels of 

categorization. Following Rosch, Mervis, Gray, Jolmson, and Boyes-Braem's (1976) 

seminal research, three of these levels are often isolated: the superordinate (animal, 
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vehicle, fttrniture), the basic (dog, car, chair), and the subordinate (collie, Porsche, 

Chippendale chair). Although these categorizations are all important, Rosch et al. 

showed that one of them had a privileged status. When subjects were asked to 

spontaneously name pictures of common objects, Rosch demonstrated that they 

preferentially used basic-level names (see also Jolicoeur, Gluck & Kosslyn, 1984). 

Similarly, when asked to verify that a picture belonged to a particular category, 

subjects'decisions were faster for the basic-level (Rosch et al., 1976). Together, these 

findings suggested that the initial contact between the object percept and its 

semantic information occurs at the basic level, also know in object recognition research 

as primal access (Biederman, 1987), or entry point (Jolicoeur et al., 1984). Current 

thinking attributes supplementary processing on visual input to achieve subordinate 

categorizations. Consequently, a significant portion of object recognition research 

has focused on basic-level categorizations, or been criticized for not addressing the 

basic-level. 

If we agree that basic-level categorizations reflect everyday object recognition, 

then it is particularly important to understand the structure of object categories at 

this level, to understand their information demands on recognition tasks. The basic 

level is often pictured as the most inclusive level at which objects "look alike" in 

terms of their shape. One determinant (but not the only one) of shape is part 

structure: Objects with common parts tend to have a common shape. Tversky and 

Hemenway (1984) found a dramatic increase in the number of parts listed from the 

superordinate to the basic level; non part cues increased from the basic to the 

subordinate level, but little increase was found for parts. Thus, Tversky and 

Hemenway suggested that "the natural breaks among basic-level categories are 

between clusters of parts" (1984, p. 186). This claim is the basis of Biederman's 

(1987) very influential Recognition By Components (RBC) theory, which represents 

basic-level categories with part-based descriptions--specifically, with different Geon 



Structural Descriptions, Biederman & Gerhardstein (1993). Hence, the widely held 

assumption in object recognition research that shape, as is represented by parts, 

constitutes the information demands of everyday, basic-level categorizations. 
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Difficulties with part information for all basic-level tasks. Two issues should be 

distinguished in explanations of the basic-level phenomenon: (1) The information 

demands of everyday recognition: Are parts really necessary and sufficient to 

distinguish between all memorized basic-level categories? (2) The available object 

information: Is perception so organized that it actively seeks parts in the input 

image? On the one hand, if parts were indeed the information demands of everyday 

recognition, it would make good evolutionary sense that perception would have 

evolved to become primarily attuned to the parts of objects. On the other hand, if 

parts were not strictly necessary to distinguish between basic-level categories, a 

perceptual primacy for this information would be harder to justify in visual 

development. 

We should be careful in stressing that the issue here does not concern the 

relevance of object shape in general for the basic level, but the relevance of one 

particular shape representations--namely, part structure. There is evidence that a 

"part-centric" conception of basic level could be misguided. For example, Murphy 

(1991) has demonstrated that other cues than parts could determine the basic-level. 

Research in expert categories (Tanaka & Taylor, 1991) has also suggested that the 

basic level is neither absolute nor unimodally specified, but that it could instead 

fluctuate with category expertise. Finally, available evidence that parts are the point 

of contact for basic-level are either based on feature listings, or on reaction times. 

Unless part representations were theoretically related to the basic-level, evidence 

that suggests parts should be experimentally confronted to alternative shape 

descriptions--e.g., silhouette, 2D edge configurations, or representations of the imag~、
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at a coarser descriptive level. The following sections review each of these arguments 

in turn. 

1. A basic level without parts. Since Rosch's seminal research, an important 

issue has always been the extent to which the basic-level is determined by the 

organization of categories, or by the perceptual constraints of visual cognition. 

Murphy (1991; see also Murphy & Brownell, 1985) suggested that the basic level was 

a consequence of the informativeness and distinctiveness of a category representation in 

memory. Representations are informative when they are linked with a lot of concrete 

object features; a representation is distinctive to the extent that it differs from 

contrast representations. In general, the more specific a representation the more 

informative it is, but the less distinctive it is from other representations (Murphy, 

1991). Thus, subordinate categories tend to score high on informativeness (e.g., two 

brands of cars convey detailed information), but low on distinctiveness (e.g., two 

brands of car are similar in overall appearance, at least more so than a brand of car 

and a type of shoe). In distinction, superordinate categories score low on 

informativeness, but比ghon distinctiveness (e.g., vehicle and furniture have different 

shapes, parts, colors, textures, and so forth). On this account, the basic level would 

simultaneously be the most informative and distinctive; it is a compromise between 

the accuracy of categorization at a maximally general level and the predictive power 

of a maximally specific level (Murphy & Lassaline, in press). 

It is worth stressing that the constraint of optin廿zingcategory 

informativeness and distinctiveness bears on the memory organization of object 

categories. In principle, any object cue (or subset of cues) could be used, as long as it 

achieves the optimum. This "opportunistic" conception of visual cognition predicts 

that part descriptions would only specify the basic level when they optimized the 

informativeness and distinctiveness (i.e., the diagnosticity) of the considered 

category organization. 
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In a series of experiments with artificial stimuli, Murphy (1991) questioned 

the necessity of parts for basic-level structure. His reasoning was that addition of 

nonpart information (here, mainly color and texture) to a part-based basic structure 

should not speed up the basic level advantage, if parts were the sole determinant of 

performance. Alternatively, if the basic level depended on the informativeness and 

distinctiveness of categories, the addition of other cues to the basic-level should 

make these categories more informative and distinctive, therefore faster to identify. 

Results showed that adding color and texture to a part-based basic-level enhanced 

the basic-level advantage. Furthermore, subordinate categorizations times increased 

with the addition of new cues (because subordinate categories were now less 

distinctive, sharing similar color and texture across exemplars), and superordinate 

categorization times decreased (because they were more distinctive). A separate 

experiment showed that massing nonpart information (color, size and texture) at the 

superordinate level eliminated the advantage of a basic-level defined by parts: The 

diagnosticity of nonpart cues at one level suppressed the diagnosticity of part 

information at the basic level. These results lead Murphy (1991, p. 436) to conclude 

that "parts are neither necessary, nor sufficient to establish a basic-level structure… 

categorization into basic categories uses all kinds of information, not just part-based 

information." In sum, this suggests that the information demands of basic-level, 

everyday recognition could be whichever object information (not just parts) that 

happens to maximizes category informativeness and distinctiveness in memory. 

Although these conclusions could have profound implications for object 

recognition, Murphy's (1991) results could also have a limited impact. First, we 

must stress that the experiments demonstrate that a basic-level effect can be obtained 

with other object cues than parts. Although this contrasts with the standard 

assumption that parts are necessary, the effect was obtained with artificial stimuli 

whose part structure might not tap the same perceptual processes as real-world 
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object. Secondly, it must be pointed out that shape could very well optimize the 

informativeness and distinctiveness of real-world object categories, and so these 

could still be primarily organized around their shape at the basic level. However, it 

is important to stress that the optimum can in principle involve any object 

information that is available to the individual categorizer. Consequently, any 

experimental set up testing for the basic-level should contrast multiple object cues 

(different, not just one, types of shape representations such as an object's silhouette, 

its description at a coarse scale, its luminance contours, its shading, plus textural 

and chromatic cues) to determine the actual information demands of everyday 

recognition. The following discussion suggests that these demands could change with 

the individual's perceptual expertise with an object category. 

2. A relative basic-level. If parts were the only "search keys" of perception 

into basic-level object memory, and if possible parts were always sampled from a 

fixed set as in Biederman (1987), the entry-level to recognition might appear as being 

fixed once and for all in the hierarchy of categorization: The basic-level would 

systematically be this level at which categories differ in terms of their Geon Structural 

Description (Biederman & Gerhardstein, 1993), irrespectively of the considered 

category (e.g., cars, rocks, valleys, kitchen appliances, and so forth). 

However, research in conceptual expertise has questioned the absolute 

character of the basic level. Tanaka and Taylor (1991) showed that conceptual 

expertise enhances the speed of access of subordinate categories, which become at 

least as accessible as basic-level categories. In a category verification task, their 

subjects (dog and bird experts) first heard a category label (superordinate, basic and 

subordinate) and then were asked to indicate whether a picture was an exemplar of 

the category. For expert categories (bird or dog), the subordinate categorization was 

as fast as the basic-level categorization. Furthermore, the authors also discovered 

that experts'subordinate categories were associated with more cues than were their 
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novice categories. As explained earlier, these supplementary features could increase 

the informativity and distinctiveness of the expert subordinate category, and 

correspondingly change the entry point of recognition. 

Although this "basic-to-subordinate shift" was only reported for dog and bird 

experts, it nonetheless demonstrates how different expertise levels with identical 

object sets affects their categorization. In a similar vein, although we probably all are 

experts in faces, the "other race effect" in which people perceive faces of their own 

race with greater facility than those of another race (Brigham, 1986) reveals that this 

expertise is limited to the subcategory of faces of our own race. If experts and 

novices used different sets of cues to describe identical objects (and Example 2 

demonstrated that this was possible), the informativeness and distinctiveness of 

their categorization levels would differ, as might the entry point to recognition. As 

Tanaka and Taylor (1991) suggested, the basic-level could be in the eye of the 

beholder. 

Together, the conclusions of Tanaka and Taylor (1991) and the "existence 

proof" of new feature learning of Schyns and Rodet (in press) question the origin of 

relevant object cues for recognition. There is evidence that new categorizations can 

induce the extraction of new object information, but evidence is strictly limited to 

artificial and unfamiliar "Martian" categories. Could the principles of feature 

learning be extended to more familiar object categories (e.g., dogs, chairs, cars and so 

forth)? For example, could the requirements of distinguishing between many man-

made object categories and the perceptual principles of edge description interact to 

progressively constrain the development of a more complicated vocabulary of regular 

shape prirnitives--e.g., Biederman's (1987) geons? Future research could reveal that 

the learning of new object cues only applies to the learning of very specialized (or 

subordinate) categories such as X-rays, dermatosis, birds (or dogs) for bird (or dog) 

experts and so forth. Alternatively, it may turn out that feature learning mechanisms 
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pervade the very early stages of conceptual development (when the first categories 

and their structuring features must be learned), but that mature categorizers (who 

tend to know the relevant perceptual analysis of most objects) only synthesize new 

features when they become experts in specific categories (Schyns & Rodet, in press). 

It is now an empirical issue of developmental psychology and computational 

modeling to seek out the perceptual and task factors that could promote the 

development of everyday object representations. 

Lessons from task constraints. Everyday object recognition probably occurs at 

the basic-level. In attempting to characterize the information demands of a basic-

level task, it appears that there might not be a single criterion that is necessary and 

sufficient to determine the entry point to recognition. In contrast to the idea that the 

entry point is rigidly determined by a demands of part information, there is 

suggestive evidence (1) that the basic level is the optimal level of informativity and 

distinctiveness of a category, (2) that parts are neither necessary, nor sufficient to 

determine this level, but that (3) other cues (e.g., color, texture, size, and so forth) 

could deter血 neentry level, and (4) that the individual's perceptual experience with 

a category could change the defining cues of, and the entry level to, this category. 

Thus, the information demands of a basic task could be relative and dependent on 

the individual's experience with this particular object category. 

Task constraints suggests that different categorization levels of an identical 

object (minimally the basic and subordinate) should be considered before the basic-

level can be assessed. If the entry level is the most inclusive level at which objects 

"look alike," the entry point could change. To illustrate, the identification of a face 

is often thought to be a clear-cut subordinate categorization (because faces have a 

similar global shape). However, different views of an individual look more alike 

than the same views of different persons. Thus, our basic categorization of faces of 

our own race could be at the level of the individual (the level at which face views 
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look more alike) instead of at their assumed "basic" level, the "face" categorization 

(the level at which faces views look more different). Note that this effect might be 

inverted with faces of another race: Faces with which we are generally less familiar 

could look more similar from the same viewpoint. Of course, all the implications of a 

flexible basic-level are pure speculations, but they nonetheless highlight the potential 

impact of interactions between information demands and perception. 

The erce tual ob'ect information of ever da reco'tion. Everyday 

recognition does not occur in thin air; it uses the perceptual information available 

from the visual array. We know that object information is outwardly bounded by 

the retinal output (a million-dimensional space), but neuroanatomical and 

computational data suggest that this space is gradually projected (recoded) onto a 

much smaller dimensional space of object cues. Unfortunately, too little is known 

about this dimensionality reduction and the perceptual constraints it imposes on 

classification processes. Instead of attempting the impossible task of listing all likely 

information sources, the next section examines the reduced set of object cues that 

determine performance in leading object recognition theories. We then relate these 

cues to the information demands of the categorization tasks they subserve, and 

discuss how task constraints and object information interact to determine 

performance in current recognition theories. 

Current thinking in object recognition predicates that perception delivers 

shape cues to match against spatio-visual object representations in memory. To 

illustrate, in Biederman's (1987) RBC theory the assumption that parts are the 

information demands of basic-level recognition justifies the projection of the 2D 

retinal input onto a space of Geon Structural Descriptions (GSD, Biederman & 

Gerhardstein, 1993). This reduced object description is obtained in two stages. The 

first stage computes the edges of the input image. The second stage seeks 2D, non-

accidental, viewpoint-invariant properties of edge descriptions (e.g., collinearity, 
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curvilinearity, symmetry, parallelism, cotermination, see Lowe, 1987; Kanade, 1981). 

Collection of viewpoint-invariant features individuate the geons composing the input 

object. 

Together, these mechanisms suggests viewpoint-invariant recognition 

performance at the basic-level. More precisely, RBC predicts viewpoint-invariance 

performance whenever (1) the input object is decomposable into geons, (2) different 

GSDs represent different objects in memory, and (3) the same GSD is recoverable 

from different viewpoints (Biederman & Gerhardstein, 1993). It is important to note 

that explanations of performance involving geons will, by construction of RBC, 

necessarily overlap with explanations involving the viewpoint-invariant features that 

compose geons. To date, there is no conclusive evidence that real-world object 

recognition uses geons as a reduced object description space. 

In opposition to RBC, the view-based approach predicts viewpoint-

dependent performance to stored object views. In attempting to define more 

precisely what constitutes a "view," Tarr and Kriegman (1996) recently began to 

explore how available viewpoint-dependent shape information could determine 

performance. As an observer changes its vantage point, drastic changes often 

occur in the qualitative appearance of an object. For a given geometrical object 

class (e.g., smooth objects), qualitative changes may be described with a 

vocabulary of viewpoint-dependent features (local and multi-local edge 

configurations, see Tarr & Kriegman, 1996). These features partition the viewpoint 

space of an object into stable regions (in fact, into the views of an aspect graph of 

this object, Koenderink & Van Doorn, 1979). Hence, viewpoint-dependent 

recognition performance could partially result from enhanced perceptual sensitivity 

to viewpoint-dependent shape information. Tarr and Kriegman's (1996) 

psychophysical experiments demonstrated that this was the case, at least for some 

of the visual cues predicted by their theory. 
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Viewpoint-dependence/independence revisited. From the above discussion, it 

appears that although RBC and the view-based approach use shape information for 

recognition, they radically differ on the exact nature of the perceptual object cues 

that represent objects in memory. RBC suggests that perception detects 2D, 

viewpoint-independent cues that serve to reconstruct 3D geons, but Tarr and 

Kriegman showed that humans were sensitive to 2D, viewpoint-dependent edge 

configurations. Consequently, both theories should in principle1 predict different 

recognition performance. 

It is important to emphasize that the presence in the image of viewpoint-

dependent vs. independent cues is entirely determined by the geometry of the input 

object and its projection on the retina (the image formation process). Consequently, 

both types of cues could be available to object recognition mechanisms, 

independently of whether recognition uses viewpoint-dependent (views) or 

independent (geons) object representations. Thus, whether performance will be 

viewpoint-dependent or independent shifts to the recognition conditions in which 

one type of image cue, or the other, is being used. Diagnostic recognition suggests 

that image cues are used when they are diagnostic of a particular object 

categorization. What are, then, the object categorizations that would preferentially 

require viewpoint-dependent vs. independent cues? More specifically, what kind of 

information demands would underlie the usage of each cue class? 

Object recognition suggests a generic answer: Basic-level categorizations 

would generally require viewpoint-independent image cues, and subordinate 

categorizations would demand viewpoint-dependent cues (e.g., Biederman, 1987; 

1 It should also be noted that RBC effectively predicts viewpoint-dependent 
performance in many practical situations of recognition. Rotation in depth of many 
real-world objects is such that different views will often convey different information 
(part included, think, e.g., of a human body rotating in depth). Consequently, 
Biederman and Gerhardstein's (1993) condition number three for viewpoint-
independent performance (that the same part structural description is recovered 



26 

Farah, 1992; Jolicoeur, 1990; Tarr & Pinker, 1990). However, the previous analysis・ 

of task constraints at the basic level would question the generality of this claim, 

because basic information demands might flexibly tune to different types of object 

cues, some of which resulting from perceptual expertise with an object class. 

Although speculative, this suggests that viewpoint-in/ dependent performance might 

not so much depend on a generic categorization level (basic or subordinate) as it 

would depend on the particular cues that structure the entry point of the individual 

categorizer, and whether the extraction of these cues is local and/ or viewpoint 

dependent, or global and/ or viewpoint invariant. If basic-to-subordinate shifts 

occur when people gain expertise with real-world objects, then it becomes difficult to 

associate either viewpoint-dependence, or independence with a generic 

categorization level. Viewpoint-in/ dependent should depend on the object class, its 

geometric, chromatic and textural information, and the cues that optimize the 

informativeness and distinctiveness of this category for the individual categorizer. 

To summarize, our speculation, then, is that differences in the information 

demands of the categorizer might explain much of viewpoint-

dependent/independent performance in recognition studies, because available object 

information is a function of the theory-independent image information process (see 

also Liu, 1995; Tarr & Kriegman, 1996, for a similar view). Further studies of 

perceptual learning in object recognition血 ghtilluminate these issues. 

GENERAL DISCUSSION 

It was the main goal of this paper to establish a dialogue between object 

recognition and object categorization theories, with the hope of raising issues that 

could cross-fertilize their research. To this end, I developed diagnostic recognition, 

a framework in which object recognition and categorization phenomena are 

expressed as interactions between the information demands of specific 

from different viewpoints) will not always be met, and both RBC and view-based 
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categorization tasks and the rich perceptual information available from the input 

object. Diagnostic recognition insists on the task-dependent diagnosticity of 

perceptual object cues to understand object recognition and categorization 

phenomena. Two examples illustrated the opposite benefits that object recognition 

and categorization theories could obtain from considering the two factors of 

diagnostic recognition. The face recognition example showed how object 

recognition could benefit from more extensive studies of multiple task constraints, 

and the categorization of Martian cells example suggested that perceptual object 

information might need further considerations in very simple categorization 

problems. 

The second part of the paper extrapolated the approach of diagnostic 

recognition to the account of "everyday recognition" performance. Everyday 

recognition was equated with the basic-level of the categorization hierarchy. 

Examination of information demands at the basic-level from a categorization 

perspective suggested that it was the optimal level of informativity and 

distinctiveness of a category, that parts were neither necessary nor sufficient to 

structure this level, but that many other cues could elicit a basic level phenomenon. 

It was also suggested that the individual's perceptual experience with an object 

category could change the defining perceptual cues of this category, as well as its 

entry level. 

Turning to the object information used in leading object recognition theories, 

it was first observed that perception is often assumed to initially deliver shape 

cues to match against memory representations. These shape cues are either 

viewpoint-dependent or viewpoint-invariant, but this is a function of the image 

formation process. The usage of one or another type of cues that account for 

recognition performance was then related to the information demands of different 

theories will predict viewpoint-dependence. 



categorization tasks, suggesting that diagnosticity did not only apply to expert 

categories. 

There is a similarity between the framework presented here and the ideal 

observer approach to recognition (Bennett, Hoffman & Prakash, 1993; Liu, Knill & 

Kersten, 1995). Both diagnostic recognition and the ideal observer insist on 

available object information and the perceptual constraints on its extraction that 

could influence performance (see also Liu, in press). However, actual 

developments of the ideal observer do not include task constraints which "acts" 

on different object information to assign them different diagnosticities. For 

example, Liu (in press, p. 5) states that " ... the prediction from a viewpoint-

independent representation should be that the performance only depend on the 

information content of the input image." However, there is suggestive evidence 

that recognition performance is also dependent on task constraints. Extensions of 

ideal observers might need to include the notion of flexible task constraints. 

Implications of diagnostic for studies of object representations. Diagnostic 

recognition is a framework in which the information goals of object categorization 

tasks are considered before their perceptual representations. Although this is 

good, generally recommended hygiene of theory construction (e.g., Marr, 1982), it 

presents nonetheless serious limitations for the study of object representations. 
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Ideally, an object representation should offer sufficient information to solve 

many, not just one categorizations--with the additional possibility of incrementally 

adding new perceptual information to the representation, when this information 

represents a new categorization (Schyns & Murphy, 1994). The recognition task and 

its associated information demands should then tap into this or that facet of the 

object representation, and elicit this or that aspect of recognition performance. 

An argument could be made that diagnostic recognition is ill-suited to the 

goal of studying object representations. The reason is simply that thinking from task 
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constraints to their perceptual representations could over-represent the considered 

information demands in the proposed representation. For example, if it was 

discovered that the information demands of an object categorization were X, then it 

would be an easy step to assume that the representation of this object was 

effectively that X. But then, how would we know whether X represents the object, or 

the task? For this reason, a first methodological recommendation would be to 

multiply task constraints before inferring representation formats. At the limit, 

representations and task demands would be more independent. 

It is interesting to note that leading recognition theories are two poles on the 

spectrum of independence of representations from task constraints. RBC's 

representations (geons) directly mirror the assumed information demands (parts) of 

the basic-level. However, even if parts were functionally required for the basic-level, 

it would still remain an empirical issue that they are explicitly represented in 

memory. The view-based approach stands on the opposite side of the spectrum of 

independence from task constraints. Unless more clearly specified, an object view 

could potentially represent all the information that can ever be demanded from an 

object seen from this view--parts included. In other words, views are too powerful a 

representation, and it is an important research goal to attempt to reduce the high-

dimensionality of a view to a low-dimensional subset of image features (e.g., Tarr & 

Kriegman, in press). 

It nonetheless remains that diagnostic recognition might be better suited to 

explain recognition performance than representation formats. Performance involves 

both object and input representations: The input image must first be encoded with 

object cues for matching against memorized representations. Because there is no 

general theory specifying the information content of the 2D projections of 3D objects, 

behavioral performance might not be sufficiently powerful to isolate issues of object 

formats from issues of input information (see also Liu, in press). Performance that 
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血 ghtbe attributed to a particular object format might also be attributed to the 

interaction between task demands and the usage of specific image cues. For these 

reasons, diagnostic recognition suggests that object and input representations should 

be unified and constitute the set of image cues that are available for different object 

categorization tasks. 

Diagnostic recognition and scenes. We conclude this discussion with a specific 

example of interactions between perceptual information and task constraints taken 

from scene recognition. Although a scene is not an object, but many objects, the 

issues the example will raise can be directly transposed to object recognition and 

categorization studies. We start with a discussion of image information for scene 

categories, and then show how its usage could change with the diagnosticity of cues. 

Computational vision and psychophysics studies have emphasized the 

importance of simultaneously processing images at multiple spatial resolutions, or 

scales (Blackemore & Campbell, 1969; Breitmeyer & Ganz, 1976; Burt & Adelson, 

1983; Campbell & Robson, 1968; Canny, 1986; de Valois & de Valois, 1990; 

Ginsburg, 1986; Mallet, 1989; Marr, 1982; among many others). Starting with the 

observation that recognition algorithms could hardly operate on the raw pixel values 

of digitized images, vision researchers investigated multi-scale representations to 

organize and simplify the description of events. Coarse-to-fine processing summarizes 

the idea that it may be computationally more efficient to first derive a coarse and 

global (albeit imprecise) description of the image before extracting more detailed (but 

considerably noisier) information (Marr, 1982; Watt, 1987). Evidence of coarse-to-

fine processing in humans was reported for face (e.g., Breitmeyer, 1984; Fiorentini, 

Maffei & Sandini, 1983; Sergent, 1982, 1986), object (e.g., Ginsburg, 1980) and scene 

recognition (e.g., Parker, Lishman & Hughes, 1992; Schyns & Oliva, 1994), and for 

simpler patterns (see de Valois & de Valois, 1990, for a review). 
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Figure 4. This figure (adapted from Schyns & Oliva, 1994) shows examples of the 

hybrid stimuli. Hybrids were constructed by combining the Low Spatial 

Frequency (LSF) components of the amplitude and phase spectra of one scene 

(e.g. a highway) with the High Spatial Frequency (HSF) components of another 

scene. The top picture mixes the LSF of a highway and the HSF of a city. The 

bottom picture mixes the LSF of a city with the HSF of a highway. 

ャ

To illustrate perceptual spatial scales, consider the two pictures presented on 

Figure 4 (from Schyns and Oliva, 1994). Combinations of fine-grain edges at the fine 

scale should reveal that the top picture is a city scene and the bottom picture a 

highway scene. However, if you squint or blink while looking at Figure 3, the top 

picture should become a highway and the bottom picture a city (if the demonstration 

does not work, step back from Figure 4). 

Even though it is now well established that the visual system operates at 

multiple scales, their selection for recognition is still a matter of on-going research. 

One possibility is that perception extract the coarse before the fine (a constraint on 

available image information) and therefore coerces a mandatory coarse-to-fine 

recognition scheme. Alternatively, the information demands of a categorization 

could bias recognition to operate at the task-diagnostic scale. For example, while 

coarse scale information might be sufficient to categorize a picture of New York as 

"city," a "New York" categorization of the same picture might require comparatively 

finer scale cues (see Figure 4). 
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Figure 5. This figure (from Oliva & Schyns, 1996) illustrates the stimuli used in 

the sensitization phase of the reported experiment. The top picture is a 

LF /Noise hybrid composed of the LF of a city added to structured Noise in 

HF. The bottom picture is a HF /Noise resulting from the addition of the HF of 

the same city and LF structured noise. 

In a two phase experiment, Oliva and Schyns (1995) tested that such 

interaction between mandatory scales perception and categorization demands could 

promote orthogonal classifications of identical hybrid stimuli. In a sensitization 

phase, two subject groups (the Low Spatial Frequency, LSF, and the High Spatial 

Frequency, HSF, groups) were instructed to categorize hybrids which were 

meaningful at only one scale, the other scale being structured noise (see Figure 5). It 

was expected that these stimuli would sensitize visual processes to operate at the 

diagnostic scale (either LSF or HSF). The testing phase followed immediately, 

without any transition. Without subjects being aware, the two scale components of 

the test hybrids were both meaningful (as in Figure 4). Results revealed that the 

groups categorized test stimuli at the scale diagnostic of the task (either LSF or HSF, 

depending on the group). Thus, identical pictures elicited mutually exclusive 

categorizations, without subjects being even aware of the other meaningful scene. 

These results illustrate the point of this manuscript that recognition 

performance (here, coarse-to-fine recognition) might be better explained as 

interactions of information demands (locating diagnostic cues) and available image 

information (here, perceptual spatial scales). The task-dependent, orthogonal 

classifications of identical hybrids raise important issues for low-level perception 

research. There is evidence that the percept of the hybrids was scale-specific (coarse 

or fine), although independent evidence suggests that all scales (coarse and fine) were 

effectively registered. Would a nonlinear, task-driven tuning of low-level scale iJ 
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perception scotomized the subjects'percept to the diagnostic scale? Although this 

would mean that task constraints can have a strong impact on low-level perception 

(see also Example 2), hybrids stimuli could be used to address empirically such 

ISsues. 

Hybrids multiplex scene information in scale space. Thus, they offer dense 

perceptual information to classification processes; information that could be 

differentially repackaged if task constraints necessitated such flexible encodings. 

Scale information also raises issues for object recognition researchers. For example, 

the results suggest that diagnostic scene cues are already available at coarse scales. 

What are these cues? How are they structured and represented? What 

categorizations do they subtend? How do categorizations integrate information 

across scales? Although expert categorizations would probably seek detailed, fine 

scale information, there might cases of expertise that require discriminations of the 

overall structures of objects and scenes. Which ones of these global and local cues 

are viewpoint-dependent/independent? In sum, the study of perceptual spaces, 

their component features, the conditions of their availability, and the information 

they bring for different categorizations seem to be the way forward in object 

recognition studies. 
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