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Abstract 

In this paper, we propose an associative memory system based on parametrically 
coupled chaotic elements. The proposed system is obtained by adding a new parameter 
control to our previously proposed system. A chaotic activity in the early association 
stage makes an e缶dentassociation over the memories that are stored by means of an 
autocorrelational learning. When the system successfully recalls the target memory, 
the system's motion is dominated by a spatially coherent oscillation, while unstable 
motions remain when the system fails to make the association. In addition, the system 
has a large memory capacity. A comparison between the proposed system and an 
approach with a nonmonotonic output function is also shown. 
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1 Introduction 

In this paper, we propose an associative memory system based on parametrically coupled 
chaotic elements. In the system, a chaotic activity in the early association stage makes 
an efficient association over the memories that are stored by means of an autocorrelational 
learning. When the system successfully recalls the target memory, the system's motion 
is dominated by a spatially coherent oscillation, while unstable motions remain when the 
system fails to make the association. In addition, the system has a large memory capacity. 
A biological neural network, i.e., a brain, is an ensemble of a large number of nonlin-

ear and analog neurons, whose connections are asymmetric and highly structural. In such 
a complex system, one can naturally expect complex dynamics, including oscillations and 
chaotic activities, to occur. In the cat visual cortex, for example, stimulus-specific synchro-

nized oscillations have been reported by Eckhorn et al. (1988) and Gray and Singer (1989). 
Skarda and Freeman (1987) investigated oscillations of EEG (electroencephalogram) in the 
rabbit olfactory system, and reported that almost periodic activity occurs for a percepti-
ble specific odor, while chaotic activity occurs for a novel odor. This result implies that 
a rabbit memorizes an odor as a spatially patterned oscillation and chaos represents the 
state of "I don't know." Babloyantz and Destexhe (1986) analyzed human EEG in various 
mental states, and suggested that chaos has a role in makin旦aresponse to external stimuli. 
These physiological studies imply that oscillatory and chaotic activities in biological neural 
networks are relevant to their information-processing function. 
It is considered that the above-mentioned oscillatory and chaotic activities mainly origi-
nate from the network's asymmetric connections. Based on this assumption, many nonequi-
librium neural network models have been studied, whose spatiotemporal complexity is at-
tributed to the network's mutual excitatory and inhibitory (E-I) connections (Baird, 1986; 
Li & Hopfield, 1989; Freeman et al., 1988; Yao & Freeman, 1990; Tsuda, 1992). A similar 
approach is based on a network whose component is a pair of elements connected to one 
another by E-I connections (Wang at al., 1990; Konig & Schillen, 1991; Schillen & Konig, 
1991; Grossberg & Somers, 1991). Each component works as an oscillator due to the E-I 
connections. All of the above-mentioned models intend to "mimic" biological neural network 

models, though further breakthroughs are needed to properly achieve this. The dynamics 
of neural network models with asymmetric connections has been investigated theoretically 
(Amari, 1972a; Amari, 1972b; Sompolinsky & Kanter, 1986; Babcock & Westervelt, 1987; 
Sompolinsky et al., 1988; Riedel et al., 1988). 
From a macroscopic viewpoint, there have been many studies on networks consisting of 
oscillatory or chaotic elements (Kaneko, 1989; Kaneko, 1990; Aihara et al, 1990; Inoue & 
Nagayoshi, 1991; Kuramoto, 1991; Lumer & Huberman, 1992), where oscillatory and chaotic 
activities are mainly attributed to a single element's behavior. Chaotic neural network 
models among them are biologically motivated. A single neuron, e.g., a squid giant axon, 
experimentally exhibits chaotic activities (Holden et al., 1982; Matsumoto et al., 1987). 

The Hodgkin-Huxley equations, which quantitatively describe the ionic currents of the squid 
giant axon, also exhibit chaotic responses. Based on these observations, Aihara et al. (1990) 
proposed a chaotic neural network model whose element exhibits chaotic behavior due to its 
refractoriness and output nonlinearity. 

Kaneko (1989; 1990) proposed several spatiotemporal chaotic models. His models are 
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based on coupled chaotic elements, where each element evolves in time according to the 
logistic map, and the couplings are of the nearest neighbor type (Kaneko, 1989), or of the 
global coupling type (Kaneko, 1990). The global coupling model is called the "Globally 
Coupled Map (GCM)," and many interesting characteristics, such as hidden coherence in 
turbulent states (Kaneko, 1992), have been reported. However, there have yet been no studies 
applying such interesting characteristics to engineering information-processing problems. 
From an engineering viewpoint, it is important to implement information processing 
similar to that in the human brain. Let us consider the associative memory (Kohonen, 
1977), which has been utilized in many engineering fields such as pattern recognition and 

database retrieval. Associative memory is also considered to have an important role in the 
hippocampus (Treves & Rolls, 1992). 
Autocorrelation associative memory models were independently proposed by Nakano 
(1972), Anderson (1972), and Kohonen (1972). Hopfield (1982; 1984) pointed out the relation 
of the autocorrelation associative memory model to binary spin systems, and introduced 
asynchronous dynamics in which an association process corresponds to a minimization of 
the network's Lyapunov function. In this sense, his model employs equilibrium dynamics. 
He employed binary state variables (Hopfield, 1982) and analog variables (Hopfielcl, 1984). 
The analog model is equivalent to the mean-field-theory (Peterson & Anderson, 1987) of 
the Boltzmann machine. Hopfield (1982) also showed by computer simulations that his 
binary model with N neurons can store about 0.15N memory patterns, and if the number 
of memories exceeds that value all of the memories become unstable. Amit et al. (1985a; 
1985b) applied the replica theory (Sherrington & Kirkpatrick, 1975) for analyzing spin-glass 
systems to the binary Hopfield model. They showed that there are equilibria near the stored 
memories when the number of memories is smaller than 0.138N and they become unstable 
when the number exceeds the capacity. The replica theory was also applied to the analog 

Hopfield model, and similar results were obtained (Shiino & Fukai, 1990; Kuhn et al., 1991). 
Peretto (1988) gave another approach based on signal-to-noise analysis. Amari and Maginu 
(1988) investigated the recalling process based on the neuro dynamical theory, and obtained 
the memory capacity of 0.16N. This result is a little larger than those of the other methods, 
due to the fact that the theory only considers the correlation between the signal and the 
crosstalk for a single evolution step. If longer-term correlations are considered, the result 
coincides with those of the other methods (Okada, 1995). It should be noted that the memory 
capacity values obtained by the above-mentioned methods allow a small discrepancy between 
the stored pattern and the recalled pattern. If it is not allowed, the capacity is asymptotically 
N/(2 log N) (Weisbuch & Fogelman-Soulie, 1985; McEliece et al., 1987), which in no longer 
proportional to the number of neurons. 

Morita (1993) showed by computer simulations that the memory capacity of the Hopfield 

model is noticeably expanded by replacing the conventional Heaviside or sigmoidal output 
function with a nonmonotonic output function. He reported that the memory capacity 
becomes about 0.32N. Yoshizawa et al. (1993) showed that the memory capacity is theoret-
ically 0.4N when the parameters are optimally determined. Shiino and Fukai (1993) applied 
their theory based on the signal-to-noise analysis to a variant model with a nonmonotonic 
output function, and obtained a similar result for the memory capacity of 0.42N. Moreover, 

Yoshizawa et al. (1993) suggested that it seems that there are no spurious memories, and 
the network becomes chaotic when it fails to make a proper association, namely, the "I don't 
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know" state. It should be noted that in all of the studies above, memories have been repre-
sented as fixed-point attractors of the dynamical systems, while memories are physiologically 

attributed to dynamical activities. 
On the other hand, recently, many associative memory systems based on nonequilibrium 
dynamical systems have been proposed (Nara et al., 1993; Hayashi, 1994). Among them, we 
have previously proposed an associative memory system (Ishii et al., 1996) based on Kaneko's 
GCM. In our system, each memory is represented as a spatially coherent oscillation, and the 
learning rule is of the autocorrelational type. However, in our system, both the memory 
capacity and the basin volume for each memory are larger than in the Hopfield model 
employing the same learning rule. This result implies that the chaotic dynamics employed in 
our system is more efficient than the relaxation dynamics employed in the Hopfield model. 

Nevertheless, even in our system, spurious memories (Gardner, 1986), i.e., the system's 
equilibria that do not correspond to any of the proper memories, exist, which inhibit the 
system from having a larger memory capacity and larger basin volumes. 

The system will be improved if we employ a better learning or coding scheme such as the 
generalized-inverse matrix method (Kohonen, 1977; Kanter & Sompolinsky, 1987), sparse 
coding (Palm, 1980; Amari, 1989), mean field theory learning (Peterson & Hartman, 1989), 
or another. In this paper, however, we aim to reduce spurious memories in our associative 
memory system by modifying its dynamics. In our new system, spurious memories are 
noticeably reduced, thereby resulting in a larger memory capacity than the original system. 
Our research is inspired by the study of nonmonotonic output functions (Morita, 1993; 
Yoshizawa et al., 1993; Shiino & Fukai, 1993). In this paper, we experimentally compare our 
new system with a variant system with a nonmonotonic output function. ¥tVe also give an 
interpretation as to why such an improvement can be achieved in our new system. 

This paper is organized as follows. In Section 2, we introduce our previous associative 
memory system based on GCM, and a model with a nonmonotonic output function. In 
Section 3, we propose the new system. The behavior of the new system is described in 
Section 4. In Section 5, we experimentally evaluate the new system. In Section 6, we discuss 
the reason why such an improvement can be achieved in the new system. Section 7 sums up 
the paper. 

2 A ・ssoc1at1ve memory systems 

An associative memory is an information-processing problem that is described as (Hertz et 
al., 1991) "storing a set of patterns in such a way that when presented with a new pattern, the 
network responds by producing whichever one of the stored patterns most closely resembles 
the new pattern." 

Let {ぐ，ぐ，…，ぐ IぐE{l, -1}汀bea set of N-dimensional binary patterns (memories) 
to be stored. (f denotes the ith element value in the kth binary pattern and p is the number 
of stored patterns. The binary patterns are randomly prepared, namely, the probability of 
翌=1 is 0.5. Here, we prepare an autocorrelation matrix of the set of patterns: 

p 

J 
1 

iJ ・・= N こ魯j.
k=l 

(1) 
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Jii = O for all i. In this paper, we study dynamical systems employing the autocorrelational 
learning rule (1), i.e., Hebbian learning. 
Memory capacity means the largest number of memories that can be stored in a system. 
p / N is called the storage rate. In order to see the behavior of a system, let us define the 

overlap at time t as: 
l N 

m(t) =一LOi(t)ら，
N 
i=l 

(2) 

where e is the target memory and O(t) is the system's output at time t. When the overlap 
is equal to 1, the system's output is equal to the target. vVhen the overlap is around 0, the 
system's output has no correlation with the target. 

2.1 Associative memory based on GCM 

We previously proposed a modified GCM model called "S-GCM" (Ishii et al., 1996), which 
is designed for information-processing applications, e.g., associative memory. Our S-GCM 
employs a cubic map called an S-MAP instead of the logistic map employed in the origi叫
GCM. This modification makes it easy for each unit to represent one bit, i.e., -1 or 1. Our 
S-GCM has attractors called "cluster frozen attractors" over a wide range of its parameters. 
Therefore, our S-GCM can represent binary spatial patterns as its attractors. In this section, 
we introduce our basic associative memory system based on S-GCM (Ishii et al., 1996). 
Our basic model is given by 

[System C:F] 
N 

叫+1) = (1 -c)fに(t))+こ-I:方（叫t))
N 
j=l 

fi(x) = f(x; CYi) = D'.iゲ—叩 +x xE[-1,1], 

ヽ
~
ヽ
ー
ー
／
a

b

 

3

3

 

（
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where Xi(t) denotes the ith unit's value at time t, N is the number of units, and t denotes 
the discrete-time. Eis a constant parameter. The main part of each unit's dynamics is given 
by the cubic function S-MAP (3b). The remaining portion, i.e., a summation part in (3a), is 
defined as feedback from the "mean-field." The S-MAP f has a bifurcation parameter a, and 
it produces chaos with a specific value of a. Its function shape and the bifurcation diagram 
over the bifurcation parameter a are shown in Figures 1 (a) and 1 (b), respectively. Due to 
the symmetric function shape of the S-MAP, two-cycle periodicity is likely to be dominant 
in each unit's motion in CF; namely, an element tends to take positive values and negative 

values alternately. Such two-cycle periodicity can be regarded as a binary representation by 
distinguishing the two phases, as will be shown below. 

In order to use C:F as an associative memory system, let us de且nethe input and output 
methods. First, we define a function V that converts a binary vector I E { -1, 1} N to a 
continuous state vector V (I) E [-1, 1 JN as: 

V(I)i = {臼+rand
X―十rand

if Ii = l 
if Ii= -1 

(4) 

where x+ and x-are two-cycle periodic solutions of the S-MAP with a = O:min (= 3.4), 
namely, f(豆） = x-and f(x―) ＝豆（豆 >O>x―). rand is a small random value. In order 
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to input an N-dimensional binary vector I to C:F, the initial state is set asぉ(0)= V(I). 
In order to get an output O(t) from Cデ attime t, we just apply the sign function to x(t), 
namely, O(t) = sgn(x(t)), where sgn(x) = 1 (-1) if x 2 0 (< 0). Since two-cycle periodicity 
is dominant in C:F, the binary output at time t + l is often identical to the reverse of the 
output at time t, i.e., O(t + 1) = -O(t). In the following, an output of C:F is observed at 
an even time step. Therefore, our output method assigns 1 and -1 to each phase of the 

dominant two-cycle periodicity. 
Since a is the bifurcation parameter of the S-MAP, we say that when ai is large, the ith 
element is chaotic, and when ai is small, the element is stable. In our system, the evolution 

of叩 in(3) is de恥edas follows: 

凶=O:i + (O:i -O:min) tanh(-/3xi碕）
N 

碕=L JijXゎ
j=l 

ヽ
、
ー
／
、
~a

b
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where amin and {3 are constant parameters. In (Sa), ai is additionally controlled so as not to 
exceed D'.max = 4.0. Parameters are set at E = 0.1, a而n= 3.4, and {3 = 0.2. The parameter 
control (5) is done once every four time steps, i.e., at t = 4, 8, 12, …， in order to suppress the 
effect of small perturbations in the system. In this sense, the control (5) is described without 
using t. In C:F, x and u are called the system's state and the system's internal potential, 

respectively. 
Let us see the behaviors of C:F. Figure 2 shows the time-series of the overlap (2), when 
the input I is given so that the initial overlap m(O) is set at various specific values. Figures 
2(a) and 2(b) show p = 0.125N and p = 0.250N, respectively. When the number of stored 
patterns is relatively small, i.e., 0.125N, C:F can recall a target pattern if the initial overlap 
is large. However, the basin of attraction disappears when the number of stored patterns is 

large, i.e., 0.250N. 
Figures 2(a) and 2(b) imply that the memory capacity of Cデ islarger than 0.125N but 

smaller than 0.250N. According to our experiments, the memory capacity of C:F is estimated 
at 0.186N (Ishii et al., 1996), which is about 50% larger than that of the Hopfield model. 
Furthermore, Cデ hasa larger basin volume for each stored pattern than the Hopfield model, 
unless the target pattern is very biased (Ishii et al., 1996). 
Figure 3 shows an example association process. N = 100, p = 10, the initial overlap 
m(O) = 0.6, and the association was successful. In Figure 3(a), highly chaotic motions 
are observed at the early association stage. As time elapses, these motions become quiet, 
and the association is completed successfully when the system falls into a 4-cluster frozen 
attractor. Since Figure 3(a) shows the time-series for every four time steps, the above-
mentioned dominant two-cycle periodicity cannot be observed. Figure 3(b) shows the time-
series of the overlap m(t) during this association process. 



l
(
 

2.2 Nonmonotonic output function 

Next, we introduce a differential equation system with a nonmonotonic output function 
(Morita, 1993). Here, we adopt an end-cut-off type function as a nonmonotonic output 
function, which has been used by Shiino and Fukai (1993). The model is defined as 

[System NM] 

N 

妬＝一附+I: JijF(uj) 
j=l 

(6a) 

F(u) = { sgn(u) 

゜
if lul < 0 
if lul 2: 0 (6b) 

where ui denotes the time derivative of ui, with respect to the continuous-time t. A system's 
output at time t, O(t), is sgn(u(t)). 記三 F(u)and u are called the system's state and the 
system's internal potential, respectively, although the state of the system can be described 

only by u. 
Shiino and Fukai applied their theory based on the signal-to-noise analysis to a model 

(6), and obtained the maximum memory capacity of 0.42N for 0~0.7. This result was also 
experimentally confirmed in their paper, and the capacity value with the end-cut-off type 
output function was found to be larger than Morita's experimental result (Morita, 1993), 
0.32N, and a theoretical estimation by Yoshizawa et al. (1993), 0.4N. This variance in the 
memory capacity values stems from the difference of the nonmonotonic function shapes. 
Next, let us take a look at the behavior of NM. Figures 4(a) and 4(b) show the time-series 
of the overlap (2), when the initial overlap m(O) is set at various values. The parameter 0 
was set at 0.7, and each initial internal potential was set at u = 0.61, where I is the input 
binary pattern. Figures 4(a) and 4(b) show p = 0.25N and p = 0.50N, respectively. When 
the number of stored patterns is relatively small, i.e., 0.25N, NM can recall a target pattern 
from a fairly distant initial state. However, the basin of attraction disappears when the 
number of stored patterns is large, i.e., 0.50N. 

In Figure 4(a), we can see that when the system cannot recall the target pattern, the 
system's behavior continues to be unstable. This feature is very important for an associative 
memory system. In the conventional Hopfield model, since the autocorrelation matrix (1) 
is a condensed representation of the stored patterns, there is no way to know whether the 
obtained association result is successful or unsuccessful, i.e., a proper memory or a spurious 
memory. With the nonmonotonic output function, however, we can know when the ob-
tained result is unsuccessful because unstable motions remain in such a case (Nlorita, 1993; 
Yoshizawa et al., 1993). There is another important feature in NM. When the system can 
recall a target pattern, it seems that there is no discrepancy between the system's output and 
the target pattern, even if the system is near memory saturation (Yoshizawa et al., 1993). 
Although this feature is theoretically ensured only when the storage rate is relatively small 
(Shiino & Fukai, 1993), our experiments show that there is almost no discrepancy even when 
the storage rate is large. Namely, the system can recall the complete pattern of a target. 
It is known that in the Hopfield model there is a discrepancy between the output and the 
target, when the system is near memory saturation (Amit et al., 1985b; Hertz et al., 1991). 

ーー ニ
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Figure 2(b) 

Time-series of the overlap m(t) in CF. Parameters are set at: 
CXmin = 3.4, E = 0.1, and (3 = 0.2. Initial values of ai are set at 3.5 
for every i. The abscissa denotes the time (t = 4, 8, 12, …, 4 X 1000). 
N = 256. (a) p = 32 = 0.125N. (b) p = 64 = 0.250N. 
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An example association process of C:F. N = 100, p = 10, the initial 
overlap m(O) = 0.6, and the association was successful. (a) Time-
series of all the units are plotted every four time steps. The abscissa 
denotes the time (t = 4, 8, 12, …，4 x 500). (b) Time-series of the 
overlap m(t). 
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Time-series of the overlap m(t) in NM, where N = 256 and 0 = 0.7. 
The differential equation (6) was calculated by the Euler method 

with the time-interval ot = 0.01, and the initial internal state was 
set at u(O) = 0.61, where I is the input binary pattern. The 
abscissa denotes the continuous-time t. (a) p = 64 = 0.25N. (b) 
p = 128 = 0.50N. 
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3 Model description 

The associative memory system C:F introduced in Section 2.1 has a better ability than the 
Hopfield model, although our system and the Hopfield model employ the same autocorrela-

tional learning scheme (1). The reason is considered to be as follows. In C:F, with its chaotic 
dynamics in the early association stage, the system state can escape from spurious memory 
states. On the other hand, since the Hopfield model employs a gradient-descent dynamics 
that minimizes its Lyapunov function, it cannot escape from the spurious minimum of the 
Lyapunov function. Nevertheless, even in C:F, spurious memories exist, which inhibit the 
system from having a larger memory capacity or larger basin volumes. 
In order to deal with the problem, we propose a new associative memory system. 

[System PCCE] 

Xi(t + 1) = f(xi(t); 叫t))
f (x; a) = ax3 -ax + x. 

(7a) 

(7b) 

Like in C冗叩(t)denotes the ith unit's value at discrete-time t, and f is the S-MAP. The 
proposed model (7) is an ensemble of chaotic elements that are primarily independent of each 
other but dependent through the bifurcation parameter a. In Cデ， eachelement is dependent 
on the others in its value through homogeneous couplings. However, in the proposed model, 
we discard the direct couplings. This reason will be described below. The evolution of ai is 
defined as follows: 

凶＝叫id+(amid -Cl'min) tanh(-/Jxぷ）
N 

碕=(1-心）糾十 K,I:1勺g(叫 Xj
j==l 

g(a) = {~ 
(a -az)/(au —叫

if a>叫
if a < a1 
otherwise 

(8a) 

(8b) 

(Sc) 

where O'.mid, O'.min, (3, K,, a1, and au are constant parameters that satisfy O'.min く a1~ 叫＜

叫 ax= 4.0, O:minく知id< O:max, /3 > o, and O <氏≪1.Each o:i is additionally controlled 
so as not to be larger than amax• The evolution (8) is done once every 4 time steps, i.e., at 
t = 4,8,12…In this sense, the evolution is described without using t. In the following, we 
call the dynamical system, (7) and (8), Parametrically Coupled Chaotic Elements (PCCE). 
In order to use PCCE as an associative memory system, let us define the input and 
output methods. To input a binary pattern J to PCCE, we set u(O) = I and叫0)= V(I), 
where Vis defined by (4). A system's output at time t, O(t), is given by sgnは(t)).x and 
u are called the system's state and the system's internal potential, respectively. y三 g(o:)x
is called the system's effective state. In the following experiments, the system parameters 

are set at: o: 両 d= 3.5, O:min = 3.1, a1 = 3.4, O:u = 3.5, (3 = 2.0, and K, = 0.05. 
Let us discuss the meaning of the new parameter control method (8). (Sa) has a similar 

role to (5a). If the term (-x国）， whichis called the ith partial energy, is large and positive, 
叩 becomeslarge, and if the ith partial energy is small and negative, ai becomes small. f3 
is the parameter that determines the sharpness of this control. Next, in order to see the 
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difference between (5b) and (Sb), let us consider a case where g(0:i) = 1 for every i, for a 
while. In this case, (Sb) is a Euler difference equation of the differential equation: 

N 

妬＝一附+I:J戸 j,
j=l 

(9) 

which is identical to the de恥itionof the Hopfield model's internal potential. (5b) corre-

sponds to the MFT version of (9). At an equilibrium state of PCCE with g(ai) = 1, (8b) is 
almost equivalent to (5b). Since PCCE never equilibrates, however, (5b) and (8b) differ in 

their stability. Although the system does not equilibrate, since (-~i 叩糾） at an equilibrium 
state has the same functional form as the conventional energy function, the term (-xi叫 is
called the ith partial energy in PCCE. 
The most important modification is the existence of g(a) (8c), which is called the gain 
function (Ishii, 1994). Figure 5 shows the function shape of the gain function. As this figure 
shows, the gain is 1 for a relatively large a value, i.e., when the unit's state is chaotic, while 
the gain is O for a relatively small a value, i.e., when the unit's state is stable. The meaning 
of this gain function will be discussed in Section 6. 
In Cデ， eachelement is dependent on the others through homogeneous couplings. Such 
direct couplings are important in the system, because with the control method (.Sa) the 
system falls into a cluster frozen attractor (see Figure 3(a)), which is regarded as a successful 

association result. However, with the control method (8a) the system does not equilibrate 
at a cluster frozen attractor, because the parameter ai varies one by one. Figure 6 shows an 
example association process of PCCE. According to our preliminary experiments, if we add 
homogeneous couplings to PCCE, its memory capacity expands a little. However, since the 
role of the couplings is not clear in PCCE, we discard the couplings in order to simplify the 
model definition in this paper. 

1•············································· 
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Function shape of the gain function g. 
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An example association process of PCCE. N = 100, p = 40, the 
initial overlap m(O) = 0.6, and the association was successful. (a) 
Time-series of all the units are plotted every four time steps. The 
abscissa denotes the time (t = 4, 8, 12, …，4 x 500). (b) Time-series 
of the overlap m(t). 
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4 System behavior 

Figure 7 shows the time-series of the overlap m(t) of PCCE, when the input is given so that 
the initial overlap m(O) is set at various values. Figures 7(a), 7(b), and 7(c) show p = 0.25N, 
p = 0.50N, and p = 0.75N, respectively. As Figure 7(a) shows, when the number of stored 
patterns is relatively small, i.e., p = 0.25N, the system can recall the target from an input 
that is distant from the target. When the number of stored patterns is relatively large, i.e., 
p = 0.50N, the basin of attraction becomes small as Figure 7(b) shows. In this case, if the 
input is close to the target, the system can recall the target, while if the input is far from 
the target, the system fails to make the association. When the number of stored patterns 
is very large, i.e., p = 0.75N, even if the input is set at the target pattern itself, the state 
becomes distant from it as time elapses as Figure 7(c) shows. This means that the system 

cannot store so many patterns. 
Figure 7(b) shows that the memory capacity of PCCE is larger than 0.5N, which is much 
larger than those of the Hopfield model (0.138N) and our previous model C:F (0.186N). It is 
also larger than those of the differential equation models with nonmonotonic output functions 

(0.32N ~ 0.42N). 
Let us now look at the microscopic behavior of a PCCE association process. In the 
experiment, N = 256,p = 0.5N = 128, initial overlap m(O) = 0.5, and the association was 

successful. Figures 8 (a), 8 (b), and 8 (c) show the time-series of xぃu1,and 0:1, respectively. 
These figures show that the first element did not change its output during the process. 
Figures 9(a), 9(b), and 9(c) show the time-series of xか四， anda:2, respectively. These 
figures show that the second element changed its output from 1 to -1. It should be noted 
that in both the first and second element's states, two-cycle periodicity is dominant like in 
C冗 whichis not seen in Figures 8(a) and 9(a), because both figures show the time-series for 
once in every four time steps. In Figure 8, the internal potential u1 continues to be positive, 
and the bifurcation parameter a:1 remains small so as not to exceed the band-merge point of 
the S-MAP (see Figure l(b)). The element's state then preserves the input's sign, as Figure 
8(a) shows. In contrast, in the case of Figure 9, the internal potential u2 changes its value 
from positive to negative as time elapses. This causes a temporal increase of the bifurcation 

parameter a:2 so as to exceed the band-merge point of the S-MAP. The element's state then 
no longer preserves the input's sign and x2 turns negative as Figure 9(a) shows. 
Figure 10 shows the time-series of the activation rate, which is given by (長Lig(叫），
during this successful association process. After a short transient period of O :s; t/ 4 < 100, 
the activation rate becomes almost constant at about 0.45, which means that about 45% 

of the units affect other units. If we define the activation rate in NM (6) as (11 Li [叩I),
this rate can be controlled by the parameter 0, because the rate after a target memory is 
successfully recalled is close to the parameter 0 value (Shiino & Fukai, 1993). This can be 
confirmed when the storage rate (p/N) is almost Oas follows. An equilibrium state of (6) is 
given by 

ふ ~F(t ふXj) = F (亨り (i = 1, ... , N), (10) 

where hk三長Lj翌Xjis called the effective overlap with the kth memoryぐinNM. Since 
p/N~0, the effect of Jii = 0 is ignored in (10). When an equilibrium state x corresponds 
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to the targetぐい (k> 1) can be neglected compared with h1. In addition, by multiplying 
both hands of (10) by砧l/N and summing over i, one can obtain 

が=F(hり．

If the discontinuous function F (6b) is replaced by the continuous function: 

叫~{c:;;(l)0 -u)/5 

゜

if Jul< (0-c5) 
if (e -c5) s I u I < e , 
if Jul~e 

(11) 

(12) 

equation (11) has a solution: h1~0 for 0 < l. Here, 0 < t5≪0. Since the function F (6b) 
is given as the limit t5→ +o of F8 (12), h1 becomes close to 0 and it sticks to that value as 
the differential equation (6) converges. Further explanation of h 1~0 is given in (Shiino & 
Fukai, 1993). From h1 = 0, we know that the activation rate becomes 0. However, since NM 
often oscillates with 0 = 0.45 even if it starts from the target memory, it is difficult in NM 
(6) to reduce the activation rate to 45%. 
The activation rate is relevant to the stability of a successful retrieval state. When 
a retrieval state corresponding to a target memory is hig叫ycorrelated with the non-target 
memories, the retrieval state becomes unstable. This situation actually occurs in the Hopfield 
model with a larger number of memories than the capacity value. If we can make the 
activation rate low so that the retrieval state has a small correlation with the non-target 

memories, the memory capacity will increase, like that achieved in the generalized-inverse 
matrix method (Kohonen, 1977; Kanter & Sompolinsky, 1987). The activation rate can be 
made fairly small in PCCE, which prevents a successful retrieval state from being disturbed 
by the noise from non-target memories so as to make the retrieval state stable. 
In order to see further, let us define several order parameters. Equation (Sa) means that 
if Xi and硲haveopposite signs, the ith element is disturbed so that Xi and碕takethe same 
sign. In (Sb), 叫isaltered by the term Li Jij9(叫Xi三 LiJijYi, which can be decomposed 
as 

N 

L JijYj 
j=l 
(/ (辻f}Y;)+~ 鯰喜Y;―長Xi
＝繹+t罰—長叩，

k=2 

(13) 

where e is the target pattern, and hk 三点 I:i~fYi is called the effective overlap with the 
kth memoryぐinPCCE. The termがiscalled the sig叫 term.The second term of (13) is 
called the crosstalk noise term. The third term corresponds to the zero diagonal elements 
of the autocorrelation matrix (1), Jii = 0. The signal term works to give each附 thecorrect 
sign, while the crosstalk noise term disturbs it. To see the effect of the crosstalk noise term, 
a variance of the crosstalk noise is defined as (Coolen & Sherrington, 1993) 

N P 
r(t)三一 L(h予．
p k=2 

(14) 
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A signal term and a crosstalk variance can be defined for Cデ orNM, with the de恥ition

hk 三責 ~i~fxi. Then, x is also called the effective state in C:F and NM. 
Figures ll(b), ll(c), and ll(d) show the association processes of C:F, NM, and PCCE, 
respectively, in a two-dimensional phase space of the signal term and the crosstalk variance. 
For comparison, Figure ll(a) shows a similar figure in the analog Hopfield model with zero 
temperature, which is defined by (6) with F = sgn. Each figure shows a successful association 
process starting from an input that is close to the target, m(O) = 0.75, and an unsuccessful 
association process starting from an input that is distant from the target, m(O) = 0.25. 
The Hopfield model stores 0.08N memories, Cデstores0.125N memories, NM stores 0.25N 
memories, and PCCE stores 0.5N memories. In C:F, when a proper association is clone, 

the signal term becomes large as time elapses. When the association fails, the signal term 

becomes large temporarily in the early association stage, and then becomes small in the 
later association stage, while the crosstalk variance increases in the whole association stage. 
This phenomenon is quite similar to that observed in the Hopfield model, which has been 

theoretically studied by means of signal-to-noise analysis (Amari & Maginu, 1988; Coolen & 
Sherrington, 1993; Okada, 1995). In NM, although an association process involves unstable 

motions, the process in the two-dimensional phase space is qualitatively similar to that of 

C:F and the Hopfielcl model. The signal term is smaller than that in C:F and the Hopfield 

model, due to the low activation rate (:::::: 0. 7). The crosstalk variance becomes much smaller 

than that in C:F and the Hopfield model, thereby obtaining a larger memory capacity than 
the two models. The sig叫 termin PCCE is even smaller than that in NM, due to the low 
activation rate (~0.45) and the small values of the system's state x. The crosstalk variance 
is reduced more significantly than the signal term. Note that at the beginning of a PCCE's 

association process, the signal term and the crosstalk variance are Oas Figure ll(cl) shows, 
because the gain of every unit is 0. However, since the input is preserved by the system's 
state x and the internal potential u, the system can make a proper association. 

When the crosstalk variance is much smaller than the signal term, the dynamics is con-

sidered to be good, because an association process is not disturbed by the crosstalk term. 

Such good dynamics is implemented in PCCE more significantly than in the other models. 

vVhen PCCE can recall a target, the crosstalk variance becomes very small, as can be seen 

in Figure 11 (cl). This phenomenon can also be o bservecl in NM (see Figure 11 (c)). The 
small crosstalk variance for a successful association process in PCCE implies that the ef-

fective state y is almost uncorrelated with the non-target memoriesぐ(k= 2, …，JJ) (see 
(14)). This will be discussed further in Section 6. In addition, the unstable motions in the 
early association stage are larger in PCCE than in NM, which is considered to be another 

reason for the improvement as an associative memory system. It should be noted that when 
the association is successful, the chaotic motions of PCCE in the later association stage are 
localized so that the overlap is not disturbed by them. 



18 

0.8 

0.6 

4
 ゜

1

)

 

w
 

0.2 

0゚ 50 100 150 200 250 300 350 400 450 500 
1/4 

Figure 7(a) 

0.8 

4
 

6
 
0

0

 
(

1

)

E

 

0.2 

0゚ 50 100 150 200 250 300 350 400 450 500 
V4 

Figure 7(b) 



19 

0.8 

0.6 

4
 ゜

1
)
U』

0.2 

゜
゜

50 100 150 200 250 
1/4 
300 350 400 450 500 

Figure 7(c) 

Time-series of the overlap m(t) in PCCE, where N = 256. 
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3.5, (3 = 2.0,"" = 0.05. The abscissa denotes -the discrete-time t. 
(a) p = 64 = 0.25N. (b) p = 128 = 0.50N. (c) p = 192 = 0.75N. 
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cessful association process shown in Figures 8 and 9. 
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Time-series of the second element that changed its output from 1 
to -1 during the association process. (a) Time-series of x2. (b) 
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Association processes in a two-dimensional phase space of the signal 
term and the crosstalk variance. Each figure shows a successful 
association process starting from an input that is relatively close 

to the target, m(O) = 0.75, and an unsuccessful association process 
starting from an input that is relatively distant from the target, 
m(O) = 0.25. N = 256. (a) The Hopfield model with 0.08N~20 
stored patterns. (b) C:F with 0.125N = 32 patterns. (c) NM with 
0.25N = 64 patterns. (d) PCCE with 0.5N = 128 patterns. 
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5 Evaluation 

In this section, the new system PCCE is evaluated as an associative memory system. Here, 

let us compare PCCE with NM. 
Figure 12(a) shows the experimental results of the critical overlap of PCCE for various 
storage rate (p/ N) values. The critical overlap denotes the farthest initial state from the 
target pattern from which the system can associate the target. The critical overlap also 
indicates how large the basin of attraction is: the smaller the critical overlap, the larger 
the basin of attraction. Since the basin of attraction generically has a very complex shape 
instead of a sphere-like shape, the critical overlap depends on the stored patterns, target 
pattern, and initial conditions, as well as the storage rate. Therefore, it is estimated as an 
averaged value. In order to obtain Figure 12(a), we tried to perform association processes 
50 times for each storage rate value. The circles and the error bars in Figure 12(a) denote 
mean values and standard deviations, respectively, for the 50 trials. For comparison, Figure 

12(b) shows similar experimental results for NM. 
In PCCE, when the system can recall the target, there seems to be no discrepancy 
between the system's output and the target pattern. Therefore, we can experimentally 
obtain an "absolute" memory capacity in PCCE. This phenomenon is similar to that in 
NM (Yoshizawa et al., 1993), although the theory by Shiino and Fukai (1993) shows that 
the phenomenon is ensured when the storage capacity is fairly small. From Figure 12(a), 
we can see that PCCE has a large memory capacity, which is estimated as 0.58N. On 
the other hand, NM's memory capacity is estimated as 0.39N in Figure 12(b), which is a 
slightly smaller capacity value than the result obtained by Shiino and Fukai (1993). Thus 
the memory capacity of PCCE is about 50% larger than that of NM and about three times 
as large as that of C:F. However, PCCE has smaller basins of attraction than NM when the 
storage rate is small. 
The noise from the crosstalk term is small when the storage rate is small, as can be seen 
in (13). As will be discussed later, PCCE is considered to have a hysteresis mechanism. With 
a small storage rate, since the disturbance of the noise is too small to beat the hysteresis 
effect, the association ability is small. However, when the storage rate is not small, the noise 

from the crosstalk term is large enough to make a proper association, although a storage 
rate that is too large is also harmful for a proper association. vVe guess this is the reason 
why the basins of attraction are smaller in PCCE than in NM especially when the storage 
rate is small. 

By comparing Figures 4(a) and 5(a), we can see that unstable motions in a failure case 
are stronger in NM than in PCCE. It seems that PCCE has near equilibrium states that 
are distant from the target, like spurious memories, when PCCE has a small storage rate 
(p/N = 0.25). The above-mentioned small association ability for a case with a small storage 
rate also implies the existence of spurious memories. Since the distinction between proper 
memories and spurious memories is important for an associative memory, this feature might 
be a defect of our system. In the following, we discuss it further. 

Table I shows the overlap and the rate of bitwise flips after a fairly long time for both NM 
and PCCE. The overlap and the rate of bitwise flips are calculated for successful association 
results and unsuccessful association results separately. In NM, even after the output becomes 
equal to the target, fluctuations of the output sometimes remain, as can be seen in Table 
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I. However, since the output does not veer from the target, such a case is regarded as a 

successful association. In NM, the number of stored patterns is 0.3N, the initial overlap is 

m(O) = 0.44, the overlap is averaged in 10.0 S t :S 15.0, and the rate of bitwise flips is the 
rate of units that flip in 10.0 :S t :S 15.0. In PCCE, the number of stored patterns is 0.5N, 
the initial overlap is m(O) = 0.6, the overlap is averaged in 1000 S t/4 S 1500, and the 
rate of bitwise flips is the rate of units that flip in 1000 S t/ 4 S 1500. In the two systems, 
the initial overlap is set at a little (about 12%) smaller value than the critical overlap (see 

Figures 12(a) and 12(b)), and the overlap and the flip rate are observed after a fairly long 
time to make it possible to ignore the transient period. These experimental conditions are 

determined so that the comparison becomes fair. In NM, the system's internal potential u is 

updated 1000 times before t = 10.0, because the time-interval for the Euler method is 0.01. 
In PCCE, the internal potential u is updated 1000 times before t/ 4 = 1000. 
When PCCE fails to make the association, the overlap is larger and the bitwise flip rate 
is smaller than those in NM. Namely, unstable motions for failure cases are weaker in PCCE 

than in NM. These results imply that PCCE has more states that almost equilibrate at 

a distant position from the target than NM. Nevertheless, especially when PCCE is near 
memory saturation, i.e., p~0.58N, it is possible to discriminate successful association 
results from unsuccessful results by checking the bitwise flips after the transient period. In 

the experiment shown in Table I, the flip rate is 0.0 when an association is successful, and 
it is a positive value when an association is unsuccessful. We can thus discriminate between 

them, although the difference is not as apparent as in NM. The unstable behavior for an 
unsuccessful association corresponds to the "I don't know" state (Parisi, 1986; Skarda & 
Freeman, 1987). It should be noted that the system's stability depends on the parameter (3. 
If /3 is set at a smaller value, the memory capacity rises to about 0.63N at /3 = 1.0, though 
the above-mentioned discrimination becomes less prominent. If /3 is set at a larger value, 
the discrimination becomes more prominent, though the memory capacity becomes slightly 
smaller. We can also observe a similar trade-off phenomenon for parameter氏

Table I The overlap and the rate of bitwise flips after a 

long time. In NM, the number of stored patterns is 0.3N, the 
initial overlap is m(O) = 0.44, the overlap is averaged in 10.0 :S 
t S 15.0, and the rate of bitwise flips is the rate of units that flip 
in 10.0 S t S 15.0. In PCCE, the number of stored patterns is 
0.5N, the initial overlap is m(O) = 0.6, the overlap is averaged in 
1000 S t/4 :S 1500, and the rate of bitwise flips is the rate of units 
that flip in 1000 S t/4 :S 1500. Each overlap value is obtained 
by averaging the results for at least 100 sets of memory patterns. 

Each column of the bitwise flip rate shows "average士standard
deviation" over the sets. 

し_J 三 Ibitwise flip rate j 
NM success 0.999 0.002土0.008
failure 0.251 0.377士0.056

PCCE success 1.000 0.000土0.000
failure 0.560 0.114土0.041
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6 Discussion 

In the new system PCCE, the dynamics is so improved that its memory capacity becomes 
much larger than that of the old system C:F. This improvement corresponds to the im-
provement of NM in comparison with the conventional Hopfield model. Let us discuss here 
the role of the gain function (8c). For discussion, first, let us consider the reason why a 
significant improvement is achieved in NM in comparison with the Hopfield model. 
In NM, two major improvements are achieved. One is the large memory capacity, and 
the other is the reduction of spurious memories. First, let us consider the reason why it 
achieves a large memory capacity. From (10), an equilibrium state x of the system, which 
is assumed to correspond to the target memory e1, is given by 

年=F(訳＋罰＋言召h') (15) 

In order to consider the effect of the non-target memoryぐ， letus neglect the third term of 
the internal potential in (15) as a noise term with mean 0. By multiplying both hands of 
(15) by~;IN and summing over i, one can obtain 

N 

炉=(1/N)~F (忍（国＋が）．
i=l 

(16) 

Let us assume that e1 andぐhavea correlation c, which means that召＝召 forN(l + c)/2 
units and a = -~; for N(l -c)/2 units. Since h1~0, 

h2 ((1 + c)/2)F(h1 + h2) + ((1 -c)/2)F(-h1 + h2) 
{ (c -1)/2 if炉＞〇
(c+ 1)/2 if h2 :So 

(17) 

holds. From -1 :S c :S 1, the possible solution of (17) is h2 = 0, which implies that 
the correlation between the equilibrium state x and the non-target memory e becomes 
0. Namely, the nonmonotonic output function works to orthogonalize the equilibrium state 
from the non-target memories. This description gives an interpretation for the effect of 

the nonrrionotonic output function, which holds with p = 2. However, the small crosstalk 
variance for a successful association case, which can be observed in Figure ll(c), implies this 
intuitive interpretation is also true with p > 2. 
In order to discuss the cases where the number of non-target memories is proportional to 
N and cannot be neglected, we need the help of the signal-to-noise analysis done by Shiino 
and Fukai (1993). According to their theory, when the storage rate is relatively small, e.g., 
p/N < 0.14 for 0 = 0.7, there is a phase where the crosstalk variance becomes 0. This implies 
that the correlation between x andぐ(k> 1) for a successful association is O in the phase. 
Even when the storage rate is larger than those in the phase, the theory suggests (Okada, 
p. c.) that the crosstalk variance for a successful case is quite small, which has also been 
confirmed experimentally (Shiino & Fukai, 1993). Further discussion is beyond the scope of 
this paper. 

-- -----—•—---- --------------' 
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Next, let us consider the reason why NM achieves a reduction of spurious memories. The 
Hopfield model with a monotonic output function, i.e., the Heaviside or sigmoidal function, 
converges to one of the equilibria, which corresponds to either a proper memory or a spurious 
memory. However, by employing a nonmonotonic output function, some of the equilibria 
are no longer stable. Therefore, nonmonotonicity works as adding a perturbation to each 
equilibrium state. With a monotonic output function, it is considered that a proper memory 
has in general a larger energy barrier between the adjacent equilibrium state than a spurious 
memory. Therefore, if we add a perturbation to each equilibrium state, spurious memories 
can become unstable whereas proper memories maintain stability. This reminds us of the 
reduction of spurious memories in the analog Hopfield model (Hopfield, 1984) compared 
with the binary model. Ozawa et al. (1994) have theoretically shown that the distribution 

of spurious states becomes significantly smaller than that of the Hopfield model (Gardner, 

1986). 
Therefore, a nonmonotonic output function has two roles. It works as an orthogonalization-
like mechanism between the eザectivestate x and the non-target memoriesぐ(k> 1), and it 
makes spurious memories unstable by adding some disturbance to the system state. These 
improvements are achieved by suppressing the gain of a unit having a large internal potential 
value in NM. 
In our old system CF de且nedby (3) and (5), when (-x叫 isnegative, O:i becomes 
small so that the ith unit becomes stable. Therefore, the system equilibrates at a state 
where Xi and u~have the same sign. This mechanism is almost the same as that in the 
Hopfield model, implying that there are spurious states also in CF. In order to expand the 
memory capacity and to reduce spurious states, we designed the gain function (8c). In (8a), 
if the internal potential u~(Sb) has the same sign with叩 andits absolute value is large, 
the parameter o:i becomes small so that the gain of the ith unit becomes small with the 
gain function (8c). Therefore, the gain function (8c) suppresses the gain of a unit having a 
large internal potential value like in NM. Although there are also several remaining effects, 
including the piecewise linearity of the gain function (8c), the above-mentioned resemblance 
of the control (8) to the nonmonotonic output function is the most important improvement 
in PCCE. Thus, with the gain function (Sc), the correlation between the system's effective 
state y and the non-target memoriesぐ(k> 1) becomes small like in NM. This can be seen 
in Figure ll(d). In addition, the perturbation originating from the gain suppression by (8c) 
makes the spurious states of CF unstable, whereas the proper memories maintain stability. 
Accordingly, the gain function (8c) of PCCE is similar to the nonmonotonic output 
function (6b) in NM. It is unclear then why PCCE has a larger memory capacity than that 
of NM. It is known that the differential equation model with a nonmonotonic output function 
can have a larger memory capacity if the network has positive self-loops (Morita, 1993; Shiino 
& Fukai, 1993). However, these positive self-loops produce spurious memories, because they 
make any states stable. The PCCE's characteristics mentioned in the previous sections, 
namely, a large memory capacity, relatively small basin volumes, and weak instability in 
failure cases, suggest that there is a self-stabilizing mechanism similar to that with the 

positive self-loops. In fact, this observation is partly true. Equation (Sa) indicates that if 
the ith partial energy, (—叫）， is positive, the bifurcation parameter of the S-MAP becomes 
large so that the ith unit possibly flips in its output. However, since O:mid is set at a smaller 
value (= 3.5) than the band-merge point of the S-MAP (~3.6) there is a hysteresis in this 

^~ 
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flip mechanism; if the ith partial energy is positive but small, the ith unit does not flip in 
its output. Such a hysteresis mechanism is similar to the self-stabilizing mechanism of the 
positive self-loops. Therefore, some part of the above-mentioned characteristics of PCCE 
can be attributed to the hysteresis mechanism that is involved in the control of chaos (8a). 
If the parameter O'.mid is set at a larger value, e.g., amid = 3.6, the effect of the hysteresis 
disappears so that the memory capacity becomes small, the basin volumes for the small 
storage rate cases expand, and the instability in failure cases becomes large. Figure 13 
shows the experimental results of the critical overlap for O'.mid = 3.6, which shows that a 
PCCE with that parameter value has a memory capacity of 0.40N and large basin volumes 
for a small storage rate. 
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Figure 13 

Critical overlap of PCCE for various storage rate values. Parame-

ters are set at amid = 3.6 and O:min = 3.2. The other parameters are 
the same as those in Figure 12(a). Fifty sets of stored patterns were 
prepared and the first pattern was recalled for each set. The circles 
and the error bars denote mean values and standard deviations, 
respectively, for the 50 trials. 
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In our associative memory system PCCE, memories are stored by means of a condensed 
autocorrelation matrix, i.e., Hebbian learning. When the system encounters an initial state 

that is close to one of the stored memories, the system searches for the proper、memorywith 

strong chaotic motions in the early association stage. When the system can successfully 

recall a proper memory, the system almost equilibrates in a spatially coherent oscillation, 

while localized chaotic motions remain. When the system fails to make the association, the 

chaotic motions are large enough to become non-localized, which corresponds to the "I don't 

know" state. Especially when the system is near memory saturation, successful association 

results can be discriminated from unsuccessful results, by checking the existence of such 

non-localized chaotic motions. Furthermore, our new system has a large memory capacity 

due to the nonlinear gain function. The gain function suppresses the gain of a unit whose 

internal potential is large, i.e., its chaos is weak. 

7 Conclusion 

We previously proposed an associative memory system C左 whichhas a larger memory 
capacity and larger basin volumes than the Hopfield model employing the same autocorre-

lational learning scheme. This implies that the chaotic dynamics employed in our system 

is more efficient than the relaxation dynamics employed in the Hopfield model. Neverthe-

less, even in C:F, spurious memories do exist. In this paper, we aim to reduce the spurious 

memories modifying its dynamics and to expand the memory capacity. 

Intuitively, a spurious memory occurs due to the correlation between the retrieval state 

and the non-target memories. Therefore, if one can lower the correlation, spurious memories 

can be reduced. In addition, the low correlation makes the retrieval state corresponding 

to the target memory stable, so the memory capacity can be expanded. In the differential 

equation model with a nonmonotonic output function, the correlation lowering is achieved by 

suppressing the gain of a unit with a large internal potential value. This control corresponds 

to the gain suppression of a unit with a low chaos parameter in our new system, PCCE. 

Experiments also show that our new dynamics achieves the correlation reduction. Therefore, 

PCCE has a large memory capacity, which is estimated at 0.58N. In addition, especially 

when PCCE is near memory saturation, we can discriminate between successful association 

results and unsuccessful results by checking the existence of non-localized unstable motions. 

When the system successfully recalls the target memory, the system's motion is dominated 

by a spatially coherent oscillation with some localized chaotic motions, while non-localized 

chaotic motions remain as the "I don't know" state when the system fails to make the 

association. This discrimination is very important for an associative memory system. If 
the discrimination is not necessary, the memory capacity can be raised to about 0.63N by 

setting the parameter f3 at 1.0. 
。
I
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