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Abstract 

This report discusses application of Discriminative Feature Extraction (DFE) to speech recog-

nition. The report is an opportunity to discuss DFE implementation on speech recognizers. The 

implementation process is viewed in detail in the context of filter-bank optimization. Choice of learn-

ing rate parameters, smoothing of the loss, optimization methodology are described for an accurate 

application to speech recognition. As illustration, application of DFE to cepstrum optimization is 

studied, for a multi-speaker vowel recognition task. It is shown that DFE-based cepstrum are more 
robust than conventional Mel-scale based cepstrum coefficients. 

ー



Contents 

1

2

 

Introduction 3
 

Discriminative Feature Extraction 

2.1 Formalization .......................................... . 

2.2 Misclassification measure 

2.3 Loss definition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 

2.4 Optimization methodology ... 

2.4.1 Choice of the learning rate 

2.4.2 Modular optimization . . 

Classifier and feature extractor mteraction . . . . . . . . 2.5 

3
 

DFE-based cepstrum representation design 

3.1 Filter bank-based cepstrum 

3.2 Filter bank representation ............. . 

4
 

4.2 
4.3 

Pbmec-based implementation 

4.1 Recogmzer structure . . . . . . . . . 

4.1.1 Misclassification measure and loss 

DFE-based design ....................................... . 
PBMEC-input derivatives . . . . . . . . . . . . . 

5
 

Filter bank parameters adaptation 

5.1 Filter bank weight adjustment ......... . ．．．．．．．． 
5.2 Center frequency adjustment 
5.3 Bandwidth adjustment ........ . 

5.4 Gain adjustment 

3

3

4

4

6

7

8

8

 

6
 

6.4 

6.5 

Application to vowel segments recogmt10n 

6.1 Task and Classifier structure ................................. . 
6.2 Experimental conditions and results 

6.3 Feature extract10n process analysis ...... . 
6.3.1 Center frequency optimization 

6.3.2 Bandwidth optimization task . . . . . . .... 

6.3.3 G ain optirn1zat10n task . . . . 

6.3.4 Weighting optimization task . . . . . . . . . . . . . . . . . 

6.3.5 Simultaneous optimization of center frequency, bandwidth and gain 

Using DFCC on standard recogmzer . . ....................... 
. d 1 ・Full opt1m1zat10n an se ect1ve opt1rn1zat10n . . . . . . . 

7

A

 

Conclusion 

Appendix 

， ， ， 
10 

10 

11 

11 
12 

13 

13 

13 

14 

14 

14 

14 

14 

16 
16 

17 

18 

19 

19 

20 

21 

22 

23 

ぅl



DFT 
LPC 
Filter Banks 

HMMs 
Neural Nets 
Prototype-Based 

Pattern 
Classification 

「「―------「―------「l
I I 

I 
TRAINING: MCE/GPD adjustment I _________________ _. 

Figure 1: Block Diagram of DFE-based Speech recognizer Design 

1 Introduction 

The discriminative feature extraction approach was previously introduced as a method to efficiently ex-
tract features for achieving minimum error at the output of the recognizer. However, basic characteristics, 
such chain rule learning or choice of parameters were left undetailed. This report is intended to provide 
these information which might be needed to efficiently implement DFE on speech recognizer. As illus-
tration of DFE, we discuss DFE application to filter-bank based cepstrum aiming at japanese vowel s 
recognition using the prototype based minimum error classifier [4]. 

Cepstrum coefficients, either based on filter bank or LPC model of speech, have been widely used in 
speech recognition. The popularity of cepstral coefficients is mainly due to the fact that they provide a 
good compactness of information by appropriate decorrelation of features. This enables the use of simple 
metrics such the Euclidean metric as measure of similarity with prototype patterns. 

For a filter bank-based cepstrum, performance depends on appropriate design of the filter bank. In 
previous work [3], we proposed a method for designing various filter bank parameters aiming at minimum 
classification error. The filter bank outputs were log energies that fed a classifier based on an Euclidean 
distance measure. Here, we present an extension of this method by performing the distance measure on 
the cepstral domain. 

The report is organized as follows: In section II, we describe the Discriminative Feature Extraction 
method (DFE). This includes discussion on t the selection of parameters such as learning rates, loss 
function, the optimization methodology and the interaction between the classification module and the 
feature extraction module during learning. In Section III, we discuss DFE application to cepstrum 
optimization. Implementation details using PBMEC are shown in section IV. Details of filter bank 
optimization scheme are presented in section V. Finally, section VI describes the application of DFE-
based cepstrum to vowel recognition. 

2 Discriminative Feature Extraction 

2.1 Formalizat10n 

Let us consider the task of recognizing speech pattern of I(categories, {C1, ... , Ck, ... , CK}. The cat-
egories could be phonemes, syllables, words or sentences. We assume our pattern recognizer to be a 
modular system, consisting of a front-end feature extractor and a back-end classifier. A desirable ap-
proach to the overall design of the recognizer must link the two modules appropriately. 

Let us assume that the speech signal S is expressed as a sequence of frames X = { x1, ... , Xt ... , xy} 
where Xt is a vector containing time domain or spectral domain information, prior to any data reduction 
process. The elements in Xt consist of raw speech representation and are still containing spurious or 
redundant information which must be selected according to the task. This selection is to be carried out 
by the feature extraction process. 
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The feature extraction process is a transformation和 (X)= Y, with parameter 0, which maps X to 

a corresponding feature pattern Y = {yぃ..・,Yt, ・.. , 巧}; here, we assume that the feature extraction 
performs on a frame-by-frame basis. Thus, Yt = :Fe (xt) is the corresponding feature pattern of the frame 
Xt, The components of Yt are simply the outputs of the feature extraction. 

In classical pattern recognition, the classifier C(-) takes Y as input and operates according to the 

following decision rule: 
C(Y) = Ci if i = argmin燭 (Y;A) (1) 

where gk(Y; A) is a discriminant function which estimates the degree to which Y belongs to Ck: distances 
and probabilities (likelihoods) are widely used discriminant functions (2]. A is the parameter set of the 
classifier, which provides an accurate tuning of the decision rule. Here, we assume that the decision rule 
is based on the minimum value of the discrimination function. 

Thus, classical methods assume s for a separate design of the classifier {gk(Y; A)} and the feature 
extractor咋(・).However, by substituting Y by :Fe(X) in (1), we have an integrated recognizer design 
defined by a set of discriminant functions {gk (和(・);A) = 9k((・); <I>)} with equivalent parameter set屯

We can now work directly with a recognizer defined by a super parameter set屯 Accuratetuning of the 
parameter set <I>, which leads to an optimal overall recognizer, could not be achieved when assuming the 
separability <I>= (0,A). Thus, in DFE-based pattern recognition, the recognizer decision is made by the 
following rule: 

C(X) = Ci if i = argmin燭 (X;cI>). (2) 

The Discriminative feature extraction method implies the use of discriminative training as a mean 
for optimizing the overall recognizer. In Discriminative training, the target is to maximize the degree 
of separability between categories, instead of maximizing the ability of a model to represent a given 
category. For this purpose, DFE mainly relies on the MCE/GPD formulation. Within this framework, 3 
points must be to be clearly defined: 

• A Misclassification measure. 

• A smooth approximation to the 0-1 step wise error function. 

• The optimization scheme. 

A typical DFE-based speech recognizer is illustrated in Fig. 1. 

2.2 Misclassification measure 

Given the observation pattern X E Ck, the feature extractor transforms X into a more compact repre-
sentation Y. The discrimination ability of the recognizer is estimated by the use of a misclassification 

measure dk(Y; A) which depends on the set of discriminant functions {gk(Y; A)h:=:1i, ... ,K}・The mis-
classification measure emulates the classification decision in scalar values: A pos1t1ve value means a 
misclassification and a negative value implies correct classification. 

For instance, considering the classification rule of (1), a misclassification measure for the spectral 
pattern Y could be defined as follows: 

¼ 
叫和(Y);J¥)= d,(Y;J¥) =g,(Y;J¥)-[亡互如(Y;A)}'] , (3) 

where 1J is a positive number which controls the relative contribution of the competing categories in 
the decision process. 

,_ 

2.3 Loss definition 

The loss (cost) of the decision of assigning X to category Ck, denoted by£k(X, <Q), is a function of the 
misclassification measure dk(Y; A) and is a smooth approximation of the minimum error cost function, 
e.g 0-1 step function. The smoothness of the loss is required by the use of a gradient-based optimization 
process during learning. Many approximations exist and we here present few basic choices. 
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Sigmoidal loss 

The sigmoid is widely used function in feed-forward neural network as the neuron transfer function. Its 
shape is shown in Fig. 2. It is defined as 
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loss(d)=sigmoid(d) =1/(1 + exp(-3"d)) 
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= aC(d)(l -C(d)) 

ー1
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Figure 2: Sigmoid loss function and its derivative. 

Exponential 

The exponential-based approximation is not as widely used as the the sigmoidal loss function but it is a 
good approximation to the 0-1 step wise function. Its shape is shown Fig.3 and it is defined as 

£(d) = (1 -exp(-ad))l(d > 0), a 2:: 0 

t(d) = aexp(-ad)l(d > 0) 
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Figure 3: Exponential loss function and its derivative. 
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Error function 

A loss function based on the error function erf(•) is shown in Fig. 4 and its definition is 

£(d) 

e'(d) 

1 1 = -erf(ad) +ー， a2: 0 
2 2 
a 

＝一exp(-(ad)り
FA 

where the error function is defined as 

erf(d) = 2__ f 00 

._fi d 

exp(一炉）dv 

loss(d)=0.5'erl(2'd+0.5) 

-2 

。
Figure 4: Error-function-based loss and its derivative. 

2.4 Opt・. 1m1zat10n methodology 

The target in the DFE paradigm is to find the optimal values of both 0 and A. Thus DFE treats both 0 
and A as adjustable parameters, while the original MCE/GPD implementation treats only A as adjustable 
parameters for recognition. Any optimization method could be used for this purpose (a batch-type or 
adaptive optimization algorithm). In this paper, we consider the use an adaptive, descent optimization 
which updates, the recognizer parameters 0 and A every time one training sample is given. 

The training aims at reducing the ultimate error measure, i.e., the expected loss 

.C(<I>) = Ex [ek(x, <I>)] 

= Ex伯（和(X),A)], 

‘
,
l
‘

、
~
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(10) 

(11) 

(12) 

where it is assumed that the expectation for our observation sample space exists. The probabilistic descent 
theorem then guarantees that asymptotically (infinite repetition), the following adaptive adjustment 

4>[T + 1] = 4>[T]一crU
祝(X,<I>) 

a<I> 
(13) 

will lead to at least a local optimal status of <I> (a status of <I> which realizes a local minima of£(<I>)), 
where U is a positive-definite matrix, Er is a small, monotonically-decreasing, positive number, called the 
learning rate, and <I>[r] denotes a status of <I> at iteration T. The adjustment rule of (13) includes the use 
of a chain rule of differential calculus for adjusting the feature extractor module. 
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Figure 5: Different types of learning rates. 

2.4.1 Choice of the learning rate 

In gradient descent learning, performance usually depends on an accurate choice of the learning rate. In 
theory, the learning should obey the stochastic constraints: 

00 

LET  ＝ 00 (14) 
T=l 

00 

こ己 ＜ oo, (15) 
r=l 

for leading to the minimization of the expected loss. 
In practice, infinite training is not possible. Similar to other MCE/GPD applications, DFE simply 

tries to reduce the classification errors over the given finite training pattern set. Various learning rate 
strategies can be used for this purpose. One classical example is to choose 

(1) 
T 

€ ＝―:こ＿
aT + b' 

where the parameters a and b are chosen such that 

か＝€。 (1 -~) 

(16) 

(17) 

for a finite number of iterations N. 
Sometimes, a fast learning is needed at the first iterations. Thus, Darken [1), proposed the "search-

then-converge learning rate", which is defined for an infinite number of iterations as 

(2) 
1十土エ．

€ = t。 €。 T。

1十 土 二 T 
2 ・

+r 
€。 T。

~ T。

This learning scheme obeys the following properties: 

亭～€。 when r≪r。
(2) a 

€ ~ - when r≫r。
T 

(18) 

(19) 

(20) 

which means that the learning rate is approximately constant (equal to f。)for iterations which are much 
smaller that~。 and decreases linearly at rate a for iterations which are far greater than T0. For a finite 
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number of N iterations, this learning scheme could be approximated by 

(2) (2) 
(3) 
r = 

Er ―EN 
€ 

(2) (2). 
€。― EA「

(21) 

Fig.5 shows the behavior of this two types of learning rates for fixed number of iterations. 

2.4.2 Modular optimization 

The learning rule of (13) shows the interaction between the classifier's parameter and feature extractor's 
parameter. However, in practice, if both parameters are different in nature, a straightforward use of (13) 
may lead to instability (no immediate convergence). It might be useful, in light of better comprehension 
of the interaction of the feature extractor process to run a selective optimization scheme according to 
the type of parameters. This is done through an appropriate choice of the positive definite matrix U 
according the type of parameters to be optimized. That is, let U = (Ul, U2] such that (13) is replaced 
by 

A(r+l] = A(r]-E7Ul 
訓(Y,A)

8A 

0[r + 1] = 0(r] -PrU2 
祝(Y,A)

80 

(22) 

(23) 

where Er and Pr are small positive numbers, representing the classifier learning rate and the feature 
extractor learning rate, respectively. 

Selective optimization enables to use different convergence speed for the classifier parameters and the 
feature extractor parameters which would permit more adaptability and interaction between the two set 
of parameters. The relation between Er and Pr is-crucial for accurate learning. The use of Pt = J(ct) 
where f(・) is a monotonic mapping called the modulating Junction is advisable. This is equivalent to an 
adaptive learning speed between the feature extractor and the classifier. However, the use of higher order 
functions might also be appropriate. Few suggestions are: 

• Pr= O'.Pnに） where a< 1. 

• Pr = a log(Pnに） + 1). 

where Pnに） = Er伽 (er)and qn is an-th order polynomial with n = 0 or n~2. 
Another approach is to train, separately, classifier and feature extractor (separate optimization). 

Within this framework, one can train first the classifier and then feature extractor or vice-versa. 
The two methods (selective optimization and separate optimization) are merely equivalent in term of 

convergence but may not lead to the same minima in the parameter space. The selective optimization 
is convenient in practice for a straightforward optimization of the overall recognizer. It enables the 
achievement of a more flexible interaction between the feature extractor and the classifier as well as 
accelerates the overall training convergence. That is, in this framework, one can control the convergence 
speed and convergence nature for each of the module. However, the modulating function j(-) which 
sets the link between the two sets of parameters during learning should be carefully chosen. Separate 
optimization is a convenient way to use. DFE on already optimized classifiers in order to optimize the 
feature extractor. It provides a convenient way to adaptively optimize the feature extractor as data 
becomes available. This case of training each module separately seems to contradict the DFE concept, 
but it may provide a practical way to easily retrain (or adapt) pre-designed status of either the feature 
extractor or the classifier. 

2.5 Classifier and feature extractor interaction 

The basic rule when optimizing the feature extractor by DFE is given in (23). Let 0 represents any 
optimizable parameter of the feature extractor. Let X be any given training token of known category. 
As said before, X is a sequence of raw frames Xt = [xt,1 f. Let Y be the corresponding feature pattern, 
which is also the input to the classifier. Y is also a sequence of frame Yt = [Yt,i]九fori E {1, ... , L }. 0 
will adjusted by the following iterative process: 

0[r + 1] = 0[r] -p,. V2b0 (24) 
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where 

胡＝
冽(X,<I>) 

80 
T L 

= LL 冽(X,<I>) 

t=l i=l DYt,i 

OYt,, 

ae・ 

、_
J5
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祝 (X,4>) 
The term depends on the structure of the classifier and represents the derivative of the 

髯
祝(X,4>)

classifier error according to the i-th feature of frame t. The set of is called the classifier's 
如，i.

切putderivatives since it characterizes the derivative of the loss versus the mput to the classifier. The 
如 i

second term --2..... is the derivative of the i-th feature of frame t versus the feature extractor parameter 

0. The set~is called the feature extractor output-derivatives because it characterizes the derivative 
細

of the output of the feature extractor versus the feature extractor parameter. Thus, feature extraction 
module optimization is done on a frame-by-frame basis. 

Thus, in the modular framework of DFE, the classifier will participate in DFE training by providing 
the input-derivatives to the feature extraction module. These derivatives depend only on the classifier. 
The feature extractor will use these s derivatives to update itself. This process is described in detail in 
the next sections. 

3 DFE-based cepstrum representation design 

3.1 Filter bank-based cepstrum 

In filter bank modeling of the speech spectrum, the cepstrum is computed at the output of the filter 
bank. In this paper, we focus on a filter bank model simulated on the DFT domain by weighting of 
the DFT bins with the magnitude frequency response of the filter. Thus, for a sequence of speech 
vectors X = {x1, ... ,xt,··•,xT} in which Xt = [叩，1,...'叫ふ・ • ・,Xt,F『isthe magnitude spectrum of 
the frame (short time window position); 叫，frepresents the f-th element of frame-vector1. F is the 
maximum frequency. A Q-channel filter bank model transforms each Xt into a lower dimensional vector 
et = [et,1, ... , et,c, ... ,, et,Q戸suchthat an output feature et,c is the windowed log energy of the c-th 
channel: 

,,,. ~log,, (晨゚.(f)x,,t), foe e~1, ... , Q, (27) 

where Be represents the channel interval and Bc(f) the weighting at frequency f provided the c-th filter. 
From the vector of log energies, the cepstrum vector Ct = [ct,1, ... , Ct,i, ... , Ct,L『iscomputed via a 

discrete cosine transform: 

叫=?;白，cCOS (号(c-0.5)]) , (28) 

for i = 1, ... , L, where Lis the number of cepstral coefficients. Here the cepstrum vectors are the inputs 
to the classifiers (the cepstrum vector Ct is having the role of the feature vector Yt of session II). 

3.2 Filter bank representation 

For practical requirement and commodity of gradient-based optimization, the magnitude response 0c(f) 
of the c-th filter is constrained to a Gaussian-form: 

Be(!)='Pc exp (一此(p('Yc)-p(f))2) , (29) 

for c = 1, ... , Q, where the trainable parameters f3c > 0 and'Ye determine bandwidth and center frequency, 
and'Pc is the trainable "gain" parameter in the c-th channel. p(f) maps the linear frequency f onto the 
perceptual representation. For instance, a Mel scale mapping will produce Mel cepstral coefficients 
(MFCC). The block diagram of cepstrum optimization by DFE is shown in Fig. 6. 

1 Concretely, f is an integer describing the sequence of DFT bins 

，
 



Classification 

Figure 6: Block diagram of DFE-based cepstrum optimization. 

DFE-optimized cepstrum coefficients (DFCC) are designed by appropriate optimization of center fre-
quency, bandwidth and gain. To find the relevant parameter and reduce the complexity thereof, each 
parameter could be adjusted independently while others are fixed. Thus, center frequency-optimized cep-
strum coefficients (C-DFCC), bandwidth~optimized DFCC (B-DFCC), gain-optimized DFCC (G-DFCC) 
and weighting-optimized DFCC (W-DFCC) could be designed by such a method. Here the term "weight-
ing" refers to optimizing each frequency weight without keeping the Gaussian constraint. For generating 
a globally efficient model, a simultaneous optimization of center frequency, bandwidth and gain (CBG-
DFCC) could be carried out. 

mec- ase e1nentation 4 Pb b d impl 

4.1 Recognizer structure 

The recognizer used in the following is the Prototype-Based Minimum Error Classifier (PBMEC) structure 
described in [4]. It is a finite state machine, similar to a Hidden Markov Model (HMM) but with use of 
Lp-norm of distances instead of probabilities, which embeds a DTW procedure to provide the final score 
of an input pattern. Thus, the experiments described throughout this paper could easily be extendible 
to a HMM-based speech recognizer, using Viterbi decoding. 

A category (phoneme/word/sentence) is represented as a string of phonetic models, in which each 
phonetic model consists of a concatenation of sub-phonemic states. Each state is assigned a number of 
references vectors similar to mean vectors within an HMM-state. 

Concretely, we are given a finite set of P phonetic models, i.e, 

A={入1'...'入か．．．，入p}, l::Sj:'.SP (30) 

where入jis composed of a set of prototypes vectors distributed among the states of the model: 

入｛｝
l<s<S . = r・ J,s,m 1 < m < l¥lI. (31) 

rj,s,m represents the m-th prototype vector of the s-th state of model入jand Tj,s,m,i is the i-th 
component of rj,s,m・Sis the total number of states. The number of reference vector per states is M. 

The distances between an input spectral frame-vector x to state s of category j is an Lp-norm of 
distances defined as 

M → 
如 (x;≪I>)= {1 a(c, rj,s,m)―v} (32) 

where a(c, rj,s,m) = (c -rj,s,m)(c -rj,s,m) T is the Euclidean distance between c and rj,s,m・c is the 
cepstral representation of x and v is a positive constant. 

The discriminant function g k (X; cl>) for each string category k is the sum of states-distances along 
possible DTW paths for that category: 

叫 X;む)~tt瞑 (X;il>)―·}→ (33) 

where V心k(X; <I>) is切k-thpath distance as found by the DTW procedure in recognizing category k.'11 
is the maximum number of paths considered. 
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For a large v, (33) is reduced to 

R 
gk(X;<I>) = LDれ、入(t),ゆb(t)(Xt;4>), 

t=l 

(34) 

which is the sum over the best DTW path加 (fromnow on, 叡 willlabel the best DTW path of category 
k). 心い(t)is the current phonetic model at time t and叡，s(t) is the current state at time t along the叡

DTW path of the string category k. 

4.1.1 Misclassification measure and loss 

For a pattern X of category C, the misclassification measure叱(X;<I>) is here defined as 

1 
K 

I{_ l {1c gk(X; 4>) —~}-t 
gc(X連）

where K denotes the total number of categories (the vocabulary size). This misclassification measure is 
believed to be more robust since e the range of the misclassification measure values is narrower than the 
ones provided by the form given in (3). See [4] for further explanations. 

A large (value was used which means that only the best incorrect path was considered. Thus, the 
definition of equation (35) could be simplified to 

dc(X沖） =1-
｛ 

(35) 

dc(X; cI>) = 1 -
gw(X; cI>) 

gc(X渾）
(36) 

where gw corresponds to the best incorrect category. The loss is a piece wise linear approximation to 
the 0-1 step wise function as shown in Fig. 7. 

A
 

S
S
O
f
 

.-i 

>-
Misclassification measure (d) 

Figure 7: A piecewise loss approximation of the ideal loss function 

Note that the misclassification measure used here performs learning at the string level. During 
learning, the gradients of the errors are propagated back to adjust reference_ vectors within each state, 
down to the parameters of the front-end filter bank. The next session will be detailing this phase. 

4.2 DFE-based design 

DFE-based cepstrum design is optimizing various parameters of the filter bank while using a cepstral 
distance measure in the classification process. If A denotes the set of parameter of the classifier and 0 
the parameter set of the filter bank, the overall recognizer parameter <I> = { 0, A} is adaptively updated 
after presentation of each pattern X aiming at minimizing a smooth error count measure. The classifiers 
parameters consist of the set of prototypes for each phonetic model, i.e, A = {ふ},j E {l, ・ ・ ・, P}. The 
filter bank parameters are composed of the set of weighting, center frequency and gain, i.e, 0 = {ゆ＝
｛厄比，({Jc,0c(f)} }, for c E {l, ・ ・ ・, Q}. 

Given a training token X, belonging to a known category (words/phoneme/sentence), the adaptation 
rule for the classifiers parameters i s・  

巧，s,m,i[T+ l] =巧，s,m,i[T]-Et Ul的，s,m,i (37) 
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f t 5 where the re erence vector mcremen r・ J,s,m,i ・1S 

祈・
祝 (X,1>)

J,s,m,i =妃，s,m,i . (38) 

The feature extractor proceeds in two steps. For each frame Xt = [xt,J『(forf = { 1, ... , F}) of the 
power spectrum signal X, first, a vector of log energies€t = [et,c]叉 forc = {1, ... , Q}, is calculated. 
Secondly, the cepstrum vector Ct = [ Ct,i]九 fori = { 1, ... , L}), is generated. The adjustment of filter 
bank parameters must consider these two steps. Let¢be any parameter of the filter bank. Since¢ 

has a physical meaning, we need to make sure that its value remain positive. This is done by using the 

transformation 

¢ = exp(り）

and then performing the following adjustment: 

¢[r + 1] ＝り[r]-prU2蒻

(39) 

(40) 

where 

品＝
冽 (X,<I?) 

品
T L 

＝区〗
祝 (X,<l?)

t=l i=l OCt,i 

OCt,, 
一0の

、̀
,＇ノ、ー．＇ノ

1

2

 

4

4

 

（

（

 

. fi 祝(X,<P) 
Then the key calculations are the class1 er's input-derivatives which depend on the classifier 

如，i

which characterize the feature extractor structure and the feature extractor's output derivatives 
如，i

一
珈

process. In the next sections, we provide the details of the input-derivatives for PBMEC and feature 
extraction's output derivatives when using Gaussian-shaped filters. 

4.3 PBMEC-input derivatives 

In the PBMEC context, each input frame is compared against a set of a reference vectors within a state 
of a certain phonetic model as decided by the DTW procedure along a certain category. Given a spectral 

pattern X, ifい (t)and叫，s(t) are the current phonetic model and the current state along the咋 DTW
path at time t of category k, then, according to (34), 

祝(X,<I>)

OCt,i 

= t 況(X,<I>) f aD,j;k山），如,(t)(Xti<I>) 加 (c,r心u(t),心k.,(t),m)(43) 

k=l aDい (t),叫 (t)(Xt;<I>)m=l 加 (c,r心ぃ(t),叫 (t),m) 如，t

From (32), we have 

加 (c,r,i,い (t)ふ .,(t),m) =―珈(c,rい (t)'心k.,(t),m)

如，i or心い(t),叫 (t),m,i . 

Thus, 

祝 (X,<I>)

8ct,i 

K M 

区こ
祝(X,<I>) 

= --
k=l m=l 

K M 

＝一LLbrい (t)叫 (t),m,i
k=l m=l 

(44) 

(45) ・ヽ

(46) 

訓(X,cl>) 
where Jr心い(t),叫 (t),m,i= or is the increment of the i-th component of them-th refer-

心い(t),心い(t),m,i
ence vector of the current state at time t of path心kdefining category k (See [4] for further information). 

Thus, for PBMEC, the input derivatives are simply the negative sum over the increment of all reference 

vectors along DTW paths. This is due to the use of the Euclidean distance as a frame-level distance. If 
one uses the form of the misclassification measure given in (36), only the correct and the best incorrect 

path needed to be considered. 
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5 Filter bank parameters adaptation 

如，t
Here, we focus on expanding the feature extractor's output derivatives -=-. These derivatives do not 

如
depend on the back-end classifier, but only on the structure of the filter bank. Thus, the formula displayed 
in this section could be used on any recognizer which uses the filter bank model described in this paper. 

Taking account of the cepstrum transformation, we have 

如，t
Q 

＝ I:~ 邑 (47) 
厖 c=l 如，c 厖

Q C .) a 切T etc 
＝ I: cos -(c-o.s)~ (48) 

c=l Q 珈

The above computation is only needed because of the cepstrum transformation and is not necessary if 
one uses log energies as input to the classifier. The key steps for filter bank optimization is the calculation 

Oet,c 
of -=-, for each channel c. The general chain rule is 

⑳ 

F 
fJet,c oet,c 

品＝区ー一
/=1 

80c (f) 

80c(J) 
ー・

8¢> 
(49) 

如，c
This signifies that, first, one needs to compute the derivative for each frequency f, before 

訊 (f)
訊 (f)

expanding to _ according to the type of parameter厄.According to (27), 
8¢ 

Oet,c Xt,f 

80c(J) ＝ (50) 
log(lO)Ec(Xt) 

where 

ふ(xt) ＝ こ似f)xt,f
/EBc 

＝ exp10(et,c) 
is the output energy of frame Xt in the c-th channel (without the log transformation). 

訊 (J)
Now, let us expand -=-according to the parameter厄．

珈り

5.1 Filter bank weight adjustment 

Let us consider the case in which¢is the weight of a given channel cat frequency f (¢= 0c(J)). This 
is the "weighting" optimization scheme where the filter bank weight are adjusted without keeping the 

Gaussian constraint. For 0c(f) = exp(0c(f)), we have 

80c(f) A 

- =  = x(c, c) x(f, f) 0c(f) 
訊 (i)

where 

x(a,b) = {『
5.2 Center frequency adjustment 

ifa-/-b 
otherwise 

(51) 

(52) 

Let¢represent the center frequency of a channel c. In the center optimization case, since the perceptual 
mapping function is monotonic, it is easier to consider the center frequency in the perceptual domain. 
Thus¢=令=p('Yc), where令 representsthe center frequency of channel c in the perceptual domain. 
For令=exp(可） and from (29), it follmvs that 

a0cU) 
-=-ぁe

= -2/3c (テ~- p(f)) 0c(f) テ~x(c, c). (53) 

13 



5.3 Bandwidth adjustment 

Here¢is the parameter /30 of channel c-th. Let /30 = exp(国） • From (29), it follows that , 

訊 (f) 2 

訊
―=―此（名一 p(f))0c(f) x(c, c) 

5.4 Gain adjustment 

¢is the parameter'Pc of channel c-th. For'Pc = exp(声），

80c(f) 

疎写
= 0c(f) x(c, c). 

Thus, the derivative of the weight versus the log of the gain within a channel is equal to the weight. 

The summary of filter bank optimization by DFE is given in the Appendix. 

6 Application to vowel segments recognition 

6 .1 Task and Classifier structure 

(54) 

(55) 

The task is to recognize the 5-class Japanese vowel uttered under various contexts by several speakers. A 
database of 500 sentences spoken by 5 speakers (3 males and 2 females) was used to extract 1750 tokens 
for training and 1750 token for testing. The training body and the testing body was balanced among the 

speakers and the vowel-category. 
The speech signal was digitized at 12kHz and stored at 16 bits. A Hamming window of 21ms was 

used for the production of the spectral frames, prior to filter bank analysis and cepstrum computation. 

6.2 Experimental conditions and results 

In the following experiment, the original filter, before training was based on the Mel scale. The Mel 
scale maps the perceived frequency of a pure tone onto a linear scale. Hence, various analytical approx-
imations of the original Mel scale has been derived from psychoacoustic experiments, all of them being 
approximatively linear below 1 kHz and logarithmic above lkHz. In this paper, we used the following 

approximation, as provided by [5]: 

m(f) = 2595 log10 (1 + f 
700 

）． (56) 

It is common practice to choose a lower number of cepstrum coefficients as compared to the number 
of filters. This is motivated by the fact that a higher number of filters permits a better resolution of 
spectral characteristics and a lower number of cepstral coefficients will reduces the dimensionality of the 
feature. However, reducing the feature vector dimensionality also means that fewer information are given 

to the recognition process. . 
For investigation, two kind of feature representation was tested. The first representation (representa-

tion I) uses the same number of filters and cepstrum (Q = 16, L = 15). 15 cepstrum coefficients is due 
to the fact the 16-th cepstral components is zero. The second representation (representation II) uses 20 

filters with 10 cepstral coefficients (Q = 20, L = 10). In both cases, the filters were initially aligned in 
the Mel scale. A K-means algorithm was ran to select the initial set of PBMEC's prototypes, prior to 

MCE/GPD (no training offeature extraction module) or DFE training (simultaneous training of classifier 

and feature extractor). MCE/GPD training was carried out as baseline for MFCC testing. DFE training 
produced the various DFCC. DFCC was produced in a segment classification basis, using only one state 

of PBMEC with 1 and 3 prototypes per category in the first representation case and 1 prototype per 

category in the second representation case. 
The best results achieved across the optimization methods (Full optimization and Selective optimiza-

tion) are summarized in Table 1 and Fig. 8 for representation I and in table 2 for representation II. 

In representation I, C-DFCC, W-DFCC and CBG-DFCC show the best results so far in the testing 
set. In particular, the performance of C-DFCC are rather close to the performance of CBG-DFCC. 

The meaning of these results is that center frequency optimization (spacing) contributes the most in the 
quality of cepstral features. W-DFCC put an emphasis on single optimum frequency which has resulted 

into the best of the DFCC in the training set. 
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In representation II, the best performance is achieved by C-DFCC in the testing set, although W-
DFCC and CBG-DFCC show the best results in the training set. Thus, when looking across the two 
types of representations, the center frequency optimization contributes the most to the performance. 

types of features 1 prototype/class 3 prototypes/ class 
train test train test 

k-means 29.77 27.14 25.31 23.71 

MFCC 13.1 15.5 11.82 14.05 

C-DFCC 12.4 14.3 11.14 13.37 
B-DFCC 12.0 14.9 10.97 13.65 
G← DFCC 13.0 14.9 11.6 13.7 

W-DFCC 10.4 14.3 10.7 12.9 

CBG-DFCC 12.4 14.2 11.02 13.54 

Table 1: Experimental results using Mel-based DFCC in terms of error rates in the vowel recognition 
task for Q=16 and L = 15. 

29「― K-MEANS 

27ト I •一• training -testing 

25『

23 

"" ^  ~苔~ 21 
19 

U-l ちヒ： 1 7 

1sl 

MFCC 
B-DFCC G-DFCC 

I 
C-DFCC W-DFCC CBG-DFCC 

13 ¥- I I I I I 
':~ 
7 

Figure 8: Error rate averaged over classifier size for various cepstral parameters for representation I. K-
means labeled the performance of the original K-means algorithm before Minimum Classification Error 
training. 

types of features train test 
k-means 21.02 22.34 

MFCC 13.08 15.5 

C-DFCC 12.17 14.5 

B-DFCC 12.08 14.6 

G-DFCC 13.3 15.2 

W-DFCC 11.88 14.9 

CBG-DFCC 11.9 14.9 

Table 2: Experimental results using Mel-based DFCC in terms of error rates in th vowel recognition task 
for Q=20 and L= 10. 

For both representation, it could be noticed that optimizing any parameter of the filter bank model 
showed an improvement of the system performance. The best improvement are achieved when optimizing 
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the center, the "weighting" and the main three parameters at the same time. Optimizing tht; gain showed 
less improvement of the original model 

Formant location in the training data 
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Figure 9: Formant location in the traing data as found by an LPG-based root finding algorithm. 

6.3 Feature extraction process analysis 

Formants are essential feature in recognizing vowels. For a deeper analysis of DFCC, we will analyze how 
the resulting filter bank model performs formants resolutions. Figure 9 shows an histograms of formants 
location in the train database as found by an LPC-based root finding method. It can be seen that Fl 
formants are mostly located in the region below 1 kHz, whereas most F2 formants are contained in the 
region between 1 and 3 kHz. 90 % F3 formants spans the region between 2.5 and 3.5 kHz. 

6.3.1 Center frequency optimization 

Figure 10 illustrates the modified filter bank after center frequency optimization by DFE for the two 
representation. 

It could be seen that for both representations, modifications have occurred in the 1.5 kHz region (F2 
domain), where some filters have moved closer for an emphasis of this region. The same observation 
stands for the filters in the 2.5 kHz region. More noticeable is the shift toward lower value of the center 
frequency to accentuate the 4kHz region, where F3 formants are located. 

It seems that the spacing of the filters have been modified for a better resolution of the formants 
independently of the cepstral representation. This may explain the better performance achieved by this 
model for both representations. 
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Figure 10: Left: Resulting Mel-scale based filter bank center optimization task for L= 15 and Q = 15. 
Right: Resulting Mel-scale based filter bank center optimization task for L= 20 and Q = 10. Each 
channel is plotted versus its modified center. 

6.3.2 Bandwidth optimization task 

Optimization of the filter bank through the parameter /Jc will maximize or minimize the contribution of 
those regions which may be important for minimum error. Note that, the center frequency are fixed, thus 
optimization is done on pre-chosen perceptually based regions. For better visualization of the bandwidth, 
we introduce the notion of "corresponding bandwidth value" (CBW) of a channel. The CBW of a channel 
is the interval in the Hertz domain between the two frequencies whose weighting is half of the weighting 
at the center frequency of the channel. 

Figure 11 shows the CBW versus the center frequencies of the filter bank model for the two represen-
tations. In general, most filters above the 3 kHz region have seen a significant change of their bandwidth 
value. In contrast to the original model, the obtained bandwidth values are not a monotonic function of 
the center frequencies. Note that a decrease in CBW value signifies that the filter tend to select fewer 
frequencies in the channel. 

In representation I, the 13th and the 14th filters have recorded a decrease of the CBW of more than 
200Hz but compensated by the 15th and 16th filters whose bandwidths have recorded an increase of their 
CBW of more than 300Hz. 

In representation II, the 15th filter have increased its CBW value of almost 2kHz, fully covering the 
3kHz region, in detriment of the surrounding filters. 

These models leads to good performance on the training set (12.0%) while showing a relatively poor 
generalization on the testing set:14.9% for representation I and 14.6% for representation II. 
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Figure 11: Left: Resulting Mel-scale based filter bank bandwidth optimization task for Q = 16 and L = 
15. Right: Resulting Mel-scale based filter bank bandwidth optimization task for Q = 20 and L = 10. 
The CBW is plotted versus center frequency in each channel. 

6.3.3 Gain optimization task 

The gain optimization puts an emphasis on those outputs relevant to minimum error. 
Figure 12 shows the value of the gain (the parameter cpc) versus the center frequency in each channel 

for both representations. It can be seen that both representations show a similar shape although the 
value range is different: both accentuate and de-accentuate similar regions of the spectrum. 

Filters in the region below 1.5 kHz frequency region have shown a small decrease of the gain parameter. 
While the filters above the 4kHz have shown significant increase of their gain value. Note that only high 
value of the gain should have a noticeable effect on the performance of the system because of the use of 
the logarithm in calculating the log energies which tends to attenuate the small modifications of the gain 
value. The sharp increase of the gain in the region above 4kHz may be similar to a pre-emphasis which 
accentuates higher frequencies. 
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Figure 12: Left: Resulting Mel-scale based filter bank gain optimization task for Q= 16, L = 15. Right: 
Resulting Mel-scale based filter bank gain optimization task for Q = 20, L = 10. The valure of'Pc are 
plotted against the center frequencies in the channels. 
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6.3.4 Weighting optimization task 

As said, before each parameter Be(!) can be optimized independently without keeping the Gaussian 
constraint. 

As can be seen from Fig. 13, the resulting model did not keep the Gaussian form of the frequency 
response. One can notice that v.ithin certain channel, several optimum frequency have been emphasized. 
The fewer number of channel in representation I has resulted in filters with higher energies than filters in 
representation II. In representation I, filters in the region below 1.5kHz have not shown any significant 
increase of the weighting. 

The elections of multiple optimum frequencies within a channel may, in a sense, be compared to the 
search for the the best within-channel optimum frequency as in center optimization case. However. the 
higher number of free parameters may inhibit generalization. 

Original filter bank mooel Original filter bank model 
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Figure 13: Resulting Mel-scale based filter bank weighting optimization. Left: Resulting Mel-scale based 
filter bank weighting optimization task for Q= 16, L = 15. Right: Resulting Mel-scale based filter bank 
weighting optimization task for Q = 20, L = 10. 

6.3.5 Simultaneous optimization of center frequency, bandwidth and gain 

A global optimization of the filter bank maybe achieved by optimizing at the same time, the center, the 
bandwidth, the gain. This enables an efficient interaction between the three parameters while reducing 
the degree of liberty which may lead to the over training dilemma. 

Hence, in representation I, the best results on the testing set have been achieved so far by this 
model: 14.2% on the testing set with similar result in the training set with the center optimization case. 
When looking at the DFE-adjusted models of Figure 14, one can see that the center frequencies have 
more contribution in the modification of the filter bank. Thus, the spacing of the filter clearly puts an 
emphasis on well-defined region: the 1-2 kHz region (F2 domain), the 2.5 kHz region covered by 11th 
filter (F2 region) and 12th filter and the 3.5 -4 kHz region (F3 domain). One should note that , a similar 
filter spacing was achieved in the center optimization task. The bandwidth and the gain have remained 
relatively stable. 

It seems that, when optimizing all the parameters at the same time, DFE focuses on finding the optimal 
spacing for minimum error by center frequency modifications and put less emphasis on bandwidth and 
gain modification when using the Mel scale. 
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Figure 14: Resulting Mel-scale based filter bank CBG optimization task. Left: Resulting Mel-scale based 
filter bank CBG optimization task for Q= 16, L = 15. Right: Resulting Mel-scale based filter bank CBG 
optimization task for Q = 20, L = 10. 

6.4 Using DFCC on standard recognizer 

One may wonder how DFCC behaved in classically trained systems (i.e non-DFE trained system). Hence, 
we performed an experiment in which the baseline recognizer, used in the previous experiment, was trained 
using CBG-DFCC on the same vowels recognition task. CBG-DFCC were generated d using the filter 
bank obtained from the simultaneous optimization of center frequency, bandwidth and gain. Figure 15 
gives an idea of MFCC and CBG-DFCC representations of the same utterance. DFCC representation 
seems to show a more stable representation across the frames than the MFCC. 
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Figure 15: Cepstral representation of an utterance of vowel /o/ using MFCC and CBG-DFCC. Left: 
MFCC representation.Right: CBG-DFCC representation. 

Table 3 illustrates the performance of CBG-DFCC on 1ICE/GPD-trained standard recognizers. The 
recognizer here is the same as the baseline (one prototype/class) where the input pattern are CBG-DFCC 
without adaptation of the filter bank parameters (static-CBG-DFCC). 
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Static-CBG-DFCC I~ 巴ド竺
12.4 14.8 

Table 3: Performances of CBG-DFCC in the vowels recognition task using a classical MCE/GPD trained 
system. 

It can be seen that Static-CBG-DFCC performs better than MFCC on both the training and testing 
set. Moreover, as can been seen from Table 1, it achieved a similar performance on the training set 
with the CBG-DFCC (12.4%) but with a poorer generalization (14.8%) as compared to CBG-DFCC 
(14.2%). These results suggest that using DFE-extracted features on classical recognizer may increase 
the performance although a DFE-based recognizer enables a better integration of the feature extractor 
and classifier. 

6.5 Full opt'・ 1m1zat10n and selective optimization 

A DFE-based speech recognizer requires an accurate tuning of parameters for optimality. In classical 
MCE/GPD-based optimization scheme, the decreasing learning rate E7 is chosen as 

€-r =€ (1 -iv) 
where N is total number of iterations and E is the learning at the beginning of the training set. Needless 
to say, Er determines the performance of the system, given a fixed number of iterations N. 

In previous sections, we have proposed the use of the selective optimization for an efficient adaptability 
and interactivity of the two modules. Full optimization (use of the same learning rate for feature extractor 
and classifier) is the standard method. How the two methods of optimization behave when adapting 
center frequency, bandwidth, gain at the same time,. is shown in Figure 16. It can be seen that, the 
selective optimization realizes better performance (i.e lower error rate) in both the training set and the 
testing while showing a more stable curve across a wide range of the learning rate ratio. The solution 
consists of finding the accurate learning rate ratio between the feature extractor an the classifier. However, 
the performance depends on the task as well as the optimized parameter. In fact, full optimization can 
viewed as special case of selective optimization in where the classifier's and feature extractor's learning 
rate ratio is equal to 1. 
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of the system versus the learning rate when adapting all parameters using the same learning rate for all 
parameters. Right: performance of the system versus the ratio between classifier learning rate and 
feature extractor learning rate. 
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7 Conclusion 

DFE implementation was described along with an application to cepstrum optimization. The DFE op-

timization scheme which includes the choice of the learning rate, the use of a selective optimization 

algorithm according to the type of parameter and an accurate application of the chain rule when opti-
mizing the feature extractor, was shown in detail. For illustration, the method was applied to cepstrum 

optimization using the prototype-based minimum error classifier. DFE-cepstrum were shown to be more 
robust than classical Mel-based filter bank cepstral parameters. 
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A Appendix 

Filter bank optimization by DFE 

For a pattern X = { xい..., Xt ... , XT} where each Xt = [xt,1, T・ ... , Xt,t, ... , Xt,F] 1s a power-spectrum 

frame and et = [et,1, ... , et,c, ... ,, et,Q]互isthe corresponding vector of log energies. f represents the 

FFT bins. We have 

叫 ~log,. c~. ゚ ,(J)x,,I)'

for c = 1, ... ; Q, and 

0c(J) ='Pc exp (-f3c (名一p(f))2),

for c = 1, ... , Q where 0c(J) is the weight at frequency f provided by the c-th filter. 
If¢is any filter bank parameter, the adaptation rule is 

<j;[T+ 1) ＝ exp (log(¢[r]) -Pr U2品） (57) 

with 

品＝｛言言土cos(号(c-0.5))エ,,,o,,,

区区互cOt,c
t=l c=l 

if cepstrum transformation of size L. 

(58) 

if no cepstrum transformation. 

• 和 isthe classifier's i-th input derivative of the t-th feature-vector. For PBMEC, we have 

K M 

恥＝一LL叩い(t),如，,(t),m,i・

k=l m=l 

• Ot,c is the feature extractor c-th output derivative of the t-th feature-vector (the derivative of the 
filter bank output in channel°c versus the filter bank parameter召）. Ot,c does not depend on the 
classifier. 

Ot,c 
Oet,c 

= -
8¢ 

F 

= I: Vt,c,f~c,f 
/=1 

(59) 

with 

Vt,c,f = 
叫，f

log(lO)Ec (xt) 
and &c(Xt) = L 0c(f)xt,f = exp10(et,c), 

fEBc 
(60) 

and 

~c,f = 

x(c, c) x(f,J) 0c(f) 

-2fJc (fc -p(f)) 0c(f) テ~x(c,c) 

這 C(テ~- p(f))2 0c(f) x(c, c) 

0c(f) x(c, c) 

if¢is the weight 0c(}). 

if¢is the center frequency令 ofchannel c 

as expressed in the perceptual domain. 

if¢is the is the parameter /3;; 
controlling the bandwidth of channel c. 
if¢is parameter <p;; of channel c-th, which controls the gain. 

(61) 

where 
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