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Speech Fundamental Frequency Estimation 

Alain de Cheveigne 

Abstract 

Several methods for voiced speech Fundamental Frequency (Fo) estima-

tion were implemented and evaluated on a database of speech recorded together 

with a laryngograph signal. A first approach was based on an algorithm origi-

nally designed for concurrent speech (two-voice) F。estimation.The idea was 

that, by modeling the speech signal as the sum of two periodic signals, the algo-

rithm would deal with common causes of F。estimationfailure: strong harmon-
ics or subharmonics (diplophony), changes in amplitude and spectrum (mod-

eled by the algorithm as a local beat pattern), periodic interference (hum, inter-

fering speech, reverberation), etc .. The approach turned out to be less effective 

than expected and was abandoned. The second approach, based on a careful 

error analysis of the classic AMDF algorithm, resulted in several new schemes 

to avoid errors. Combined, these schemes reduced errors over the database in 

a ratio of 3.5 for a male voice and 9 for a female voice, and allowed the algo-

rithm to outperform the standard ESPS get_fO algorithm by a factor of about 

2. 
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1 Introduction 慟

r'

Fundamental frequency estimation is an old and elusive problem that has inspired 

much effort and many ingenious ideas. Hess's treatise on the question [29] covers 

the period up to 1983, but many schemes have been proposed since [38, 31, 22, 5, 

34, 1, 2, 3, 6, 4, 7, 8, 9, 10, 11, 12, 16, 17, 18, 20, 23, 25, 26, 27, 30, 33, 36, 37, 40, 

41, 42, 45, 19, 32, 35]. 

In this section we review some recent ideas in the field of F,。estimation,and dis-

cuss a few points that need clarifying. In the next section we present our methodol-

ogy and database, and derive some useful statistics about signal characteristics that 

correlate with F,。estimationerrors. We then describe a number of improvements 

to the classic AMDF (Average Magnitude Difference Function) algorithm [46], and 

evaluate each one using a laryngograph-labeled database. The final version of the 

algorithm is compared with other F,。estimationschemes. 
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1.1 Approaches to F 
．． 

0 est1mat10n 

A rich variety of ideas for F,。estimationcontinues to be published each year. Un-

fortunately many "new" ideas are fundamentally equivalent to earlier ones, and run 

into the same difficulties. Attempts such as those of Ney [ 40], Hess [29], and more 

recently Doval [ 19], to classify schemes and clarify their interrelations are most wel-

come. 

Most methods model the signal as a periodic function of time. Supplied with a 

truly periodic input (with a period in the range that they were designed to process), 

almost all will function perfectly. Some notable exceptions are: 

• low-pass filtering, that only works if a fundamental frequency component is 

present, 

• the cepstrum method, that assumes that the spectrum is periodic (often true for 
speech, not true in general), 

• inverse filtering, that seeks a unique epoch per period. 

Apart from particular weaknesses such as these, all methods are faced with the 

same fundamental difficulty due to the imperfect periodicity of signals such as speech. 

This was well analyzed in the theses of Doval [19] and Geoffrois [24]. For any pe-

riodic function there is a countably infinite set of strictly positive numbers T such 

that: 

Vt, s(t) = s(t + T) (1) 

The set allows a smallest element Ti。thatis the mathematical period. This notion is 

well defined in the case of perfect periodicity, but not so in the case of approximate 

periodicity. The problem is not so much the definition of approximate periodicity: 

that is easily done by relaxing some of the constraints in Eq. 1, either restricting the 

condition to some particular range oft, or else replacing equality by some form of 
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"similarity", or possibly even allowing the "constant" pseudo-period T to vary within 

limits over the range oft: 

Vt E range, s(t) ~ s(t + Xリ (2) 

The set of Ts for which this is true, and therefore its smallest element, depends on 

the parameters that define approximate periodicity. A slight change may cause a big 

jump of the pseudo-period: algorithms based on this definition are not robust. If the 

definition is made more severe, the jump is towards a multiple of the "true" period. If 

it is relaxed, the jump may be to a divisor corresponding to a strong harmonic. These 

"subharmonic" and "superharmonic" errors (often inaccurately called "octave" er-

rors) are thus a consequence of the ambiguity of the definition of the "period" of an 

imperfectly periodic signal. 

In practice, the usual course is to search for a design or parameters that give the 

best tradeoff between the two types of error. It is usually possible to adjust an esti-

mation algorithm to reduce the occurrence rate of one type of error, usually at the 

expense of the other. Sometimes the bias is implicit, as in the gradual tapering of the 

autocorrelation function (see item 3 of Section 1.3). In other cases it may depend 

on a large set of parameters that allow for endless adjustment and "tinkering". Any 

insight that can reduce the need for blind adjustment is welcome. 

The problem may be viewed in terms of projection in a vector space of functions. 

The notion of "approximate" periodicity is akin to the projection of the signal on 

a subspace of perfectly periodic signals. The precise projection (and therefore the 

period estimate) depends on details of the distance that serves to define the closest 

member of the subspace [ 19). Various methods differ in this respect, each searching 

for a distance that will somehow prove more reliable than others. 

A different course is to replace the set of periodic functions by a larger set of sig-

nals that are approximately periodic (but whose period may nevertheless be defined 

unambiguously). The set might contain frequency-or amplitude-modulated periodic 

signals (with certain constraints on the modulation), or sounds produced by a vari-

able source and a constant filter (or vice-versa), or typical notes of a set of musical 

instruments, etc. [19). The idea is that the signal to estimate will be better matched by 

a well defined quasi-periodic function than by a periodic signal. This supposes that 

certain assumptions can be made about the class of signals to be estimated. These can 

take the form of a priori knowledge (for example of speech production), or they may 

be learned. The probabilistic approach of Doval [ 19) is probably the most sophisti-

cated and well-argumented example of the learning paradigm, but there are other 

examples [5, 32). The risk is of course that assumptions (learned or otherwise) may 

prove to be wrong for some class of signals, for which performance will be degraded 

rather than improved. 

Geoffrois [24) argues that, given the inherent difficulty of F。estimation,one 

should concentrate instead on the more realistic goal of estimating the variation of 

F。withtime. F,。changesare perceptually salient, and may be correlated with into-

native features [39). Nevertheless, there remain applications for which an absolute 

F。estimationis useful. 

3
 --- ,・・ 

， 

: 
i 



A powerful strategy is to combine evidence over time, on the assumption that F,。
varies without discontinuous jumps. For example several candidates may be selected 

for each frame, and a path traced among them using a DP-matching or HMM algo-

rithm [40, 47, 24, 19). Among the possible criteria for choosing a canditate estimate 

are F0 proximity with the previous estimate, "plausibility" scores for each candidate, 
and information about the direction and rate of F,。changederived from a F,。-change
estimation algorithm [24, 39). The success of such an algorithm depends on: 

• The presence of the correct estimate among candidates, 

• The quality of "plausibility" information and continuity constraints that favor 
the correct estimate, 

• The lack of similar support for rival candidates. 

There is a risk that the algorithm may lock on to an incorrect path at some point, 

and continue to enforce it thereafter. Other problems are that the behavior is rather 

difficult to predict and analyze, and that the extra parameters encourage more tinker-

ing. As far as possible, efforts should be devoted to improving the basic estimate, 

before handing it over to correction algorithms. 

．ー

1.2 Error factors 

Well-known factors that cause F,。estimationerrors are: 

• Changes in F。,overall amplitude and spectral shape due to articulation, that 

cause successive periods to be different, so the repetition of a motive is no 

longer evident and the assumptions of stationarity or slow variation used by 

processing schemes are violated. 

• Strong harmonics that masquerade as a fundamental, causing "octave" (more 

accurately: "harmonic") errors. 

• The fact that period-to period similarity also occurs over period multiples, caus-
ing "sub-octave" (more precisely: "sub-harmonic", or "super-period") errors. 

In some cases vocal fold vibration itself is irregular (diplophony, creaky voice, 

etc.), in which case F。isdifficult to define [27, 21 ]. Later on we discuss statistics 

that relate the F。errorrate to various characteristics of the speech signal (amplitude, 
amplitude change, F。,F。change,spectral change). 

1.3 Windows 

It is worthwhile clarifying a few points concerning windows. 

1. Size and shape are usually chosen to obtain spectral peaks of suitable shape 

and width. There is however another important consideration. If a short-term 
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transform such as STFf, autocorrelation, AMDF, etc. is applied to a quasi-

periodic signal, the integration can be seen as a low-pass filter that removes 

most of the energy at the fundamental and harmonics, leaving only the "DC" 

component representing the quantity to be estimated. This smoothing allows 

the estimate to be sampled reliably. If the window is too short the estimate 
fluctuates during the period, and the sampled estimate depends arbitrarily on 

the sampling phase. For effective smoothing, a square window must be at least 

as long as the longest period expected, and most other windows must be at 

least twice as long. The longer the stabler, with due regard to the conflicting 

constraints of tracking pertinent signal variations. 

2. A consequence of the previous remark is that variable-window analysis tech-

niques that have been proposed for F,。estimation[31, 22, 35] are likely to give 

unstable estimates. For example, if the autocorrelation function is calculated 

with a window size proportional to lag, the low-lag part of the function is the 

result of integration with a relatively short window. Given a periodic signal 

to estimate, the portion of the ACF with lag shorter than the period is insuffi-

ciently smoothed, and therefore unstable. Since F,。estimationrelies on com-

parison between different parts of the ACF, it too will be unreliable. 

3. The, usual definition of the autocorrelation function 

l n-T  

acj(T) =—こふSi+T
n i=l 

is unfortunate for two reasons. One is that the integration time is short when 

the lag T is large, which makes the estimate unstable as explained previously. 

The other is that the overall decrease of ac f (T) with T causes a bias towards 

shorter period estimates. This is sometimes cited as an advantage, as it avoids 

locking to subharmonics. We suggest that such a bias, if useful, had better be 

applied explicitely. 

In conclusion, a square integration window should be at least as long as the longest 

anticipated period. Other shapes may need to be at least twice as long. Window size 

should not vary, either explicitely or implicitely due to the limits of the total analysis 

window (for example if the ACF is calculated by FFf). Lag-domain functions such 

as ACF and AMDF are calculated up the longest expected period, and the calcula-

tion thus involves a total duration of two to three periods, which is the figure usually 

cited as a minimum window size. 
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2 Methods 

We wished to evaluate various F。estimationalgorithms. The task was to estimate 

F。ofspeech in a range of 50 to 800 Hz (4 octaves). Each algorithm or variant was 

evaluated quantitatively on a database of speech recorded with a laryngograph sig-

nal. Evaluation was differential: the effect of each "improvement" was assessed by 

comparing error rates with and without it, and an "absolute" measure of overall per-

formance was made by comparison with a single well-known baseline algorithm 

(AMDF)1. 

2.1 Database 

The evaluation database consisted of speech and laryngograph data recorded together. 

It is easier and more reliable to estimate F,。fromthe laryngograph (Ix) track than 

from the speech waveform (for example by hand-labelling of pitch markers), although 

problems related to aperiodic phonation (fry, diplophony, etc.) still remain. As there 

is no single definition of F,。inthat case, such portions were marked as unvoiced in 

the database. 

Speakers were one japanese female (FHS) and one british male (NC). Speech 

was recorded in quiet conditions, with a microphone placed relatively close to the 

speaker's mouth. Speech and laryngograph (Ix) signals were digitized with 16 bit 

resolution at a sampling rate of 16 kHz. Their alignment was verified by calculating 

the cross-correlation between the half-wave rectified differentiated Ix, and the twice-

differentiated speech waveform. From the position of the cross-correlation peak, the 

delay between Ix and speech (due to propagation time from glottis to microphone) 

was judged to be between 0.56 and 1.0 ms. 

For practical reasons, only a subset of the available data for each speaker was 

used. Within each file only the voiced portions (according to a laryngograph-based 

criterion) and at least 50 ms of speech on both sides were retained. For each speaker 

a subset of 100 files was selected. For NC (male) this represented 353s of speech, of 

which 153s were voiced. For FHS (female) it represented 398s of speech, of which 

272s were voiced. The selected files were those that caused the largest number of 

gross errors for the baseline algorithm, in proportion to voiced duration. 

The average F。was230 Hz for FHS and 99 Hz for NC. Appendix B gives more 

detailed statistics in the form of histograms, including histograms that relate errors 

made by the baseline algorithm to signal characteristics: F,。,F。change,amplitude, 

amplitude change and spectral change. 

2.2 Laryngograph-based F。esthnate
The laryngograph measures the resistance of body tissues between two electrodes 

applied to the speaker's throat, on both sides of the larynx. The resistance varies 

during the glottal cycle, and falls sharply when the glottal folds meet. Movements 

1 This process would be greatly enhanced if a standard freely sharable database were available. 
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of the subject's body or articulators also cause large resistance variations on a slower 

scale. These are partly eliminated by a feedback loop that acts like a high-pass fil-

ter, but there remains a large "DC" component in the laryngograph signal that must 

be eliminated. The laryngograph waveform was differentiated to obtain a series of 

pulses coinciding with glottal closure. Spurious pulses were eliminated by an algo-

rithm detailed in Appendix A, and the F,。wascalculated as the inverse of the spacing 

between pulses. The laryngograph F,。estimateis authoritative, so it must be prepared 
with care. 

From the lx signal was also derived a voicing decision based on glottal pulse 

regularity. Roughly speaking, at least three regularly-spaced pulses were required 

for a speech portion to be declared "voiced". Aperiodic phonation such as fry or 

diplophony was classified as "unvoiced". We have no clear definition of F,。topro-

pose in that case and it would be unfair to expect an F,。estimationalgorithm to do 

any better. The criterion is rather severe in terms of speech production (a reason-

able alternative would be to say that any glottal pulse, even isolated, is a form of 

"voicing"). However it is essential that we eliminate all possibility of error of our 

authoritative F,。algorithm.Voicing detection was automatic, and parameters were 

adjusted to remain "on the safe side". One must keep in mind that the database may 

therefore be a bit biased on the "easy" side. 

2.3 Error rating 

Error rates for waveform-based estimation were measured by comparison with the 

laryngograph-based estimate. Errors were counted according to the following rules: 

• If the speech period estimate was within 20% of the Ix period estimate, it was 
considered correct. 

• If it was within 20% of a Ix period multiple, a subharmonic error was counted. 

• Otherwise a gross error was counted. 

A deviation greater than 20% corresponds to the definition of a "gross pitch er-

ror" used by Bagshaw [3] and is equivalent to the 0.25 oct criterion of Krubsack and 

Niederjohn [34]. It corresponds to the lms criterion of Rabiner et al. [43] at an F,。
of 200 Hz. We ignored "fine pitch errors", as any of a number of techniques can be 

used to refine accuracy once a coarse estimate is available. Instead we concentrated 

our efforts on deriving this coarse estimate reliably, which is the major difficulty of 

F。estimation.
It is customary to pool "gross" and "subharmonic" errors together. Nevertheless 

we count subharmonic errors apart, as they reflect the basic equivalence of periods 

and superperiods rather than a malfunction of the algorithm. The techniques that 

allow to avoid them are different from the techniques that avoid other types of error. 
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2.4 Baseline speech F。estimationalgorithm 

The classic AMDF (Average Magnitude Difference Function) [46] was chosen for 

the baseline algorithm. The AMDF is defined as: 

i+L 

Ai(T) =~I録ー Sk--rl
k=i 

where i is the analysis index, Lis the length of the (square) integration window, and T 

is the lag. The absolute value of sample-to-sample differences corresponds to a city-

block distance, but other choices are possible. For example the squared difference 

corresponds to Euclidean distance, and in this case the "AMDF" is closely related to 

the autocorrelation function [ 40]. Given our conventions, A(T) is the distance be-
tween a fixed window extending to the right of analysis point i, and a sliding window 

shifted T samples to the left (past). 

The period is estimated as the absolute minimum of the AMDF within a range 

of allowable period values: 

P。=argmin(Ai)Pmin<i<Pmaェ

The values of P min and P max were chosen to allow a range of F。sof 50 Hz to 800 
Hz. The window length was 20ms, or one period of the lowest expected F。.
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Fig. 1 Histograms of deviation of the baseline algorithm F,。estimateJi-om the cor-
rect value, for male speaker NC (top) and female speaker FHS (bottom). Note the 

logarithmic ordinate. 
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Gross error rate for NC was 5.4%, and subharmonic error rate was 0.98%. Gross 

error rate for FHS was 0.27%, and subharmonic error rate was 10.l %. The error 

distributions for NC and FHS are very different (Fig. 1). One explanation is that the 

different F。distributionsrelative to the search range allow different kinds of error. 

For example, the pitch range of NC being low, there is little room for subharmonic 

errors. 

2.5 Time alignment of baseline and larygograph estimates 

To produce a period estimate, AMDF integrates information over a certain portion of 

the waveform, whereas the laryngograph F。estimatormeasures the delay between 

two pulses. How should these estimates be time-aligned? For the Ix estimate, our 

convention is to associate with each point of an interpulse interval the period that 

separates them (if it is short enough to be within range). For the AMDF, the period 

estimate is associated with each analysis point (left edge of the fixed window). The 

estimate of each AMDF analysis point is compared to the Ix estimate for the interval 

where it is situated. This rough alignment can be improved by introducing a time 
shift between the estimates. Fig 2 shows how the error rate varies with alignment for 

both speakers for a modified version of AMDF (Section 4.3). The minimum occurs 

when the speech is delayed relative to the Ix by 5 to 1 Oms. For each algorithm tested, 

it is important to perform a similar check of time alignment. 
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3 DDF algorithm 

This algorithm was meant to be the main object of our work. It turned out to be dis-

appointing, and was finally abandoned. We describe it nevertheless. 

The Double Difference Function (DDF) algorithm was designed for F,。estima-
tion of two concurrent voices. It is a two-parameter extension of the Average Mag-

nitude Difference Function (AMDF) algorithm. Speech, modeled as the sum of two 

periodic functions, is fed to two cascaded time-domain comb filters. The parameter 

space is searched for a pair of lags (within a certain range) that minimizes filter out-

put. This pair constitutes the estimate of the fundamental periods of the two voices 

[13]. 

The idea is to apply this algorithm, designed for 2 voices, to the task of estimating 

theF。ofa single voice. The rationale is the following. By modeling a single voice as 

the sum of two periodic signals, the algorithm should be able to cope with a number 

of phenomena that make F,。estimationdifficult: 

• A strong harmonic, modeled by one of the voice estimates. 

~A subharmonic (diplophony, etc.), modeled by one of the voice estimates. 

• A change in amplitude or spectrum, modeled locally as a beat pattern between 

two signals of similar period. 

• Harmonic interference (voice, hum, computer noise, reverberation, etc.) 

An additional motivation comes from evidence that the auditory system might 

employ a mechanism similar to time-domain comb-filtering to segregate concurrent 

harmonic sounds [15]. This suggests the interesting hypothesis that the same mech-

anism might involved in pitch perception of approximately periodic sources such as 

speech. 

The algorithm produces two estimates, one of which must be chosen using a post-

processing algorithm such as mentioned in the introduction. Our key assuption was 

that one of the two estimates would be correct with a greater probability than if we 

took the best and second-best candidate of a single-voice algorithm, as would nor-

mally be used by a post-processing algorithm. It turned out that this assumption was 

false. Defining error rate as the proportion of frames for which both estimates were 

incorrect, the error rate was 4.5% for NC (male) and 5.4% for FHS (female) for the 

DDF algorithm. For the best and second best estimate of the ordinary AMDF algo-

rithm, the figures were very similar: 5.7% for NC and 5.4% for FHS. Thus, contrary 

to expectations, the DDF algorithm did not guarantee at least one correct estimate 

among the two it provided. 

A possible explanation of this fiasco is the following. The two-period signal model 

is indeed a better match to voiced speech than the one-periodic signal model, but the 

set of allowable period pairs is not sufficiently constrained. Take for example a peri-

odic signal that is the sum of two components (for example harmonics 3 and 4). The 

algorithm can choose the fundamental period, but also any combination of multiples 

of the periods the two components, many of which lead to incorrect F。estimates.
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This simple example demonstrates how the algorithm can fail to find the period of a 

perfectly periodic signal. 
Since the DDF algorithm involves exhaustive search and is extremely time con-

suming we decided, given its lack of clear advantage in terms of performance, to 

abandon it. 
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4 Improving AMDF 

First of all we examine the pattern of errors made by standard AMDF, searching 

for the causes. Then we explore a number of schemes to address these causes. Each 

scheme is implemented in isolation and compared to standard AMDF. Finally, schemes 

are combined to obtain an F,。estimationmethod that is considerably more reliable 

than standard AMDF. 

4.1 Error analysis 

The histograms of errors committed by the baseline algorithm (Appendix B) reveal 

factors that are correlated with error rates. Correlation does not imply cause, but the 

insight that the histograms provide is nevertheless useful. 

Errors are common when signal level is low (Figs. 5, 10). Explanations are: 

• At the end of an utterance the level falls while phonation often becomes irreg-
ular. 

• Certain articulatory events cause both a fall in level and a rapid spectral change 

that interferes with F,。estimation.
• A叫 ysisof low-level portions is easily contaminated by neighboring high-

level portions. 

Errors are common when there is a change in level, at least for the male speaker 

NC (Fig. 7). The relation is here likely to be causal, as a level change makes period-

to-period comparisons less good. In addition, a change in level introduces an esti-

mate bias in methods such as AMDF or autocorrelation that involve a sliding win-

dow, because the norm over the sliding window varies with lag. For increasing level, 

AMDF is biased toward shori periods and autocorrelation towards long periods. For 

decreasing level the bias is in the opposite direction. For NC, errors are more com-

mon for a decrease in level than an increase, probably because decreases are associ-

ated with the end of an utterance, where phonation becomes irregular. 

Errors are common when F。islow (Figs. 6, 11). This may be partly a conse-

quence of the limits of the search range that put a constraint on the possible errors. 

A second possible explanation is that F。tendsto fall at the end of an utterance where 
phonation is irregular. A third is that period-to-period similarity tends to be less good 

for long periods. 

Errors are common when there is a change in F。(Fig.8, 13). The explanation is 

that the period changes during the analysis window, and the algorithm has difficulty 

estimating this moving target. This seems to be particularly the case for the female 

speakerFHS (Fig. 13). 

Finally, errors are associated with spectral changes (estimated in terms of period-

to-period cepstral distance), but this relation is not very strong (Figs. 9, 14). 

12 



4.2 Amplitude normalization 1 

This scheme aims to compensate the estimation bias that occurs when the sliding 

window shifts to higher-or lower-level signal portions. The AMDF (defined in Sec-

tion 2.4) is divided by the average of the norm over fixed and sliding windows: 

i+L 

刈(T)= 2A(T)/ L(lskl + isk-rl) 
k=i 

Gross error rate was 3.3% (baseline: 5.4%) for NC and 0.25% (baseline: 0.27%) for 

FHS. Subharmonic error rates were practically unchanged. 

4.3 Amplitud 
． 

e normalization 2 

This variant involves amplitude-normalization of the waveform followed by stan-

dard AMDF. This form of normalization compensates not only for bias, as the pre-

vious scheme, but also for other consequences of amplitude change. Each waveform 

sample is divided by the norm over a window centered on that sample: 

i+L/2 

s; = s;/ I: I叫
k=i-L/2 

Window size L is a parameter. If too large, fast changes are not properly compen-

sated. If too small, the modulation of the fine structure within the period is attenu-

ated. L was given the same size as the AMDF integration window (20 ms). 

Gross error rate was 2.5% (baseline 5.4%) for NC and 0.39% (baseline: 0.27%) 

for FHS. Subharmonic errors were increased (1.9% vs 0.98% for NC; 12.9% vs 10.1 % 

for FHS), as a consequence of the greater waveform similarity at long lags. 

4.4 Amplitude normalization 3 (Barry Verco's idea) 

This idea was originally proposed by Barry Vercoe (MIT). An AMDF-like function 

is defined as: 
i+L 

応） =~d(2sk ー (sぃ+ Sk+T)) 
k=i 

Each sample is compared to the average of samples situated T samples on both side. 

If the amplitude change is linear, the average of samples one period in the past and 

one period in the future should be equal to the current sample, so the effect of the 

amplitude change should be canceled. The scheme might also reduce the effect of 

period-to-period timbre differences, if one assumes that speech follows a locally lin-

ear trajectory in timbre space. 

Gross error rate was 4.6% for NC (baseline 5.4%) and 0.23% for FHS (baseline: 

0.27%). Subharmonic errors were somewhat reduced (0.47% vs 0.98% for NC; 8.2% 

vs 10.1 % for FHS). Overall, the performance of this elegant scheme is disappointing. 

It is possible that it is handicapped by the relatively large analysis window needed 

by windows sliding in opposite directions. 
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4.4.1 Split window AMDF 1 

The previous three schemes addressed amplitude change. This scheme addresses F。
change, that Figs. 8 and 13 show is highly correlated with F。estimationerrors. Fig. 

3 shows that the F。maychange by up to 0.05 octave (approximately 5%) over a 

duration of 10 ms (one half the window size). It is easy to understand that such a 

large period change makes period-to-period comparison more difficult. A shorter 

integration window alleviates this problem, at the expense of stability of analysis. 

Some authors have proposed to preprocess the waveform by a time warp [40, 44]. 

The drawback is that that the warp distorts the fine structure of the period together 

with the period itself, and thus is not well adapted to the hypothesis of an F,。change
with constant (or uncorrelated) spectral shape. 

15x10 
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Fig. 3 Histogram of F。changeover JO ms. Open: speaker FHS,filled: speaker NC. 

One crude solution is to split the window into two portions, and allow a small 

difference in lag to be introduced between both halves. The optimum difference is 

found by exhaustive search within a士5%range. 

Gross error rate was 3.6% (baseline: 5.4%) for NC, and 0.25% (baseline: 0.27%) 

for FHS. 

4.5 Split window AMDF 2 

A more sophisticated scheme is to introduce a linear war-pin the AMDF calculation, 

and choose the warp factor ("angle") that gives the deepest minimum. For speed, 

the integration window is divided into 16 16-sample slices. For each slice a partial 

AMDF is calculated. Then all 16 partial AMDFs are summed, with a certain warp 

factor along the lag axis. Nine wa叩sare allowed, spanning the range -5 to +5 oc-

taves/s. The warp produces fractionary indices. Array lookup with a fractionnary 

index may be implemented either by linear interpolation between array values for 

adjacent indices immediately inferior and superior to the fraction nary index, or more 

simply (and faster) by taking their min. The latter scheme also produces lower error 

rates. 

Gross error rate was 3.8% (baseline 5.4%) for NC and 0.27% (baseline 0.27%) 

for FHS. Despite the greater sophistication, error rates were no better than for the 

previous scheme. 
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4.6 Mean-normalized AMDF 

The AMDF has a dip at zero lag, often followed by secondary "spurious" dips re-

lated to strong harmonics. These may happen to be deeper than the dip at the period, 

because of short-term correlations that enhance similarity at short duration, causing 

a "too-high" error. The problem is acute if the search range includes short periods, 

or if some form of bias is introduced to avoid subharmonic errors. 

This problem may be addressed by dividing the AMDF function at each lag by 

the mean of the AMDF over shorter lags [13]: 

応）＝叫(T)/L A(k), A~= 1 
k=l 

This new function starts at 1 rather than zero, and the first dips are de-emphasized. 

Gross error rate was 2.1 % (baseline: 5.4%) for NC, and 0.23% (baseline: 0.27%) 

for FHS. Subharmonic errors were little affected. 

4. 7 First minimum below threshold 

Up till now we have ignored subharmonic en-ors. In practice they are a nuisance, and 

all the more so as any bias introduced to avoid them them may result in more errors 

of other kinds. Contrary to gross errors, subharmonic errors tend to occur when the 

waveform is highly periodic. Adjacent periods may happen to be slightly less simi-

Jar than non-adjacent p_eriods, because of limited sampling resolution, a noise burst, 

etc .. Taking the global minimum thus leads to choosing a subharmonic. A simple 

scheme to avoid this is to choose the first dip that falls below some threshold. If no 

dip falls below threshold, the absolute minimum is used. For this to work properly, 

the AMDF must first somehow be normalized, and for that reason it is convenient to 

combine this scheme with the previous one (mean-normalized AMDF). 

Combining the previous and present schemes (with a threshold of 0.4), the sub-

harmonic error rate fell from 0.99% to 0.73% for NC, and from 10.1 % to 0.92% for 

FHS (a more than 10-fold reduction!). The gross error rate remained practically un-

changed. 

4.8 Euclidean vs city-block distance 

The city-block distance (sum of absolute differences) of AMDF takes into account 

waveform differences in proportion to their size. In contrast, the more common Eu-
clidean distance (sum of squares) gives more importance to large localized differ-

ences than to smaller distributed differences: 

i+L 

A;(T) = L (sk -sk-7)2 

k=i 

With Euclidiean distance, the gross error rate was 5.2 % (baseline 5.4 %) for NC 

and 0.30 % (baseline: 0.27%) for FHS. Subharmonic error rates were not affected. 
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One may choose instead to de-emphasize large local differences by taking the 

square root: 
i+L 

Ai(T) =~Ifこロニロ
k=i 

Gross error rate was 5.4% (baseline 5.4%) for NC, and 0.28% (baseline: 0.27%) 

for FHS. The fourth root produced similar results. Neither square nor root offers a 

significant advantage over the absolute difference. 

4.9 Sampling rate 

Limited sampling rate degrades the period-to-period match if the signal period is not 

a multiple of the sampling period. This is likely to to be particularly troublesome if 

F。ishigh. A solution is to upsample the signal before calculation. 

With an upsampling factor of 2, the gross error rate was 4.6% (baseline 5.4%) for 

NC and 0.27 % (baseline 0.27 %) for FHS. Contrary to expectations, the improvement 

in rate was greatest for NC, despite the fact that FHS has a smaller average period. 

The subharmonic error rate for FHS was however reduced: 6.8% (baseline: 10.1 %). 

Computation time varies in principle with the square of the upsampling factor, 

but in practice sparse calculation techniques (see below) allow the dependency to be 

linear. 

A simple hack that gives results similar to upsampling is to set the difference 

Is i -si-r I to zero everywhere it changes sign as a function of r. With this hack, 

gross error rates were 4.6% (baseline 5.4%) for NC and 0.25% (baseline 0.27%) for 

FHS. 

4.10 LPC residual 

The LPC inverse filter has been proposed as a preprocessor for FO estimation. The 

residual of a 16th order LPC analysis was calculated (using SpeechTools "lpc_run" 

and "residual" programs), and substituted for the speech waveform. 

The gross error rate was 7.5% (baseline 5.4%) for NC and 0.27% (baseline0.27%) 

for FHS. Subharmonic error rates were also somewhat increased: 2.0% for NC (base-

line 0.99%) and 14.6% for FHS (baseline 10.1 %). LPC inverse filtering is not effec-

tive. 

4.11 Putting it all together 

In the previous paragraph the schemes were tested in isolation. Here they are com-

bined: speech waveform amplitude normalization, split window, mean-normalization, 

and choice of the first minimum below threshold. 

The gross error rate was 1.1 % (baseline 5.4%) for NC and 0.24% (baseline 0.25%) 

for FHS. The subharmonic error rate was 0.73% for NC (baseline 0.99%) and 1 % for 

FHS (baseline 10.l %). Together, the schemes reduced the total error rate (gross + 
subharmonic) by a factor of 3.5 for NC, and 9 for FHS. The main parameters are 
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integration window size (20 ms) and threshold (0.4). Little effort was invested in 

tuning them, so it is unlikely that the method was tailored to our database. 

4.12 Comparison with a standard algorithm 

The ESPS program get_fO was run on the same data, with default parameters except 

for maximum F,。(800instead of 550) and frame interval (lms instead of 10 ms). 

Gross error rate was 3.1 % for NC, and 0.26% for FHS. Subharmonic error rate 

was 0.22% for NC, and 14.6% for FHS. The total error rates for standard AMDF, 

ESPS and "improved" AMDF are summarized in the following table: 

NC 

百s

standard 

AMDF 

6.4% 

10.8% 

ESPS "improved" 

get_fO AMDF 

3.3% 1.8% 

2.8% 1.2% 

On our database the improved AMDF made about half as many errors as the standard 

ESPS get_fO program. 

5 Conclusion 

Analysis of errors made by the classic AMDF F,。estimationalgorithm showed the 

importance of non-stationarities such as changes in level and F。.A scheme involving 

the use of a two-voice F。estimationalgorithm to deal with these and other sources 

of error proved disappointing. A more pragmatic approach that involving modifica-

tions of AMDF to address each source of error was more successful. Error rates were 

reduced by a factor of 3.5 to 9 relative to standard AMDF, and were smaller by a fac-

tor of about 2 than error rates of the standard ESPS get_fo algorithm. All evaluations 

used a database of male and female speech recorded together with a laryngograph 

track. 
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A Laryngograph-based F。estimation
Our evaluation scheme relies critically on the reliability of the reference F。estimate
derived from the laryngograph signal. The Ix F。estimationalgorithm is therefore 

described in some detail. 

Objectives are: (1) Automatic estimation with no man叫 correction,to save time 

and avoid inconsistent estimation criteria between different parts of the database, (2) 

No unvoiced portions labelled incorrectly as voiced, and no estimation errors within 

voiced portions, to avoid causing the speech-signal estimation algorithm to be un-

justly penalized on these portions, (3) Few voiced->unvoiced labelling errors (these 

are more tolerable, but there should be as few of them as possible to avoid eliminat-

ing "difficult" portions from the database), (4) Good accuracy of the estimate at all 

times, (5) Practically unlimited F。range.
Smoothing, median filtering and postprocessing in general are rejected, as they 

tend to be incompatible with objective (2). 

Reliable F,。estimationfrom the lx is easier than from the speech waveform, but 

it is not trivial. The lx signal tends to have a strong, slow-varying "DC" component 

that must be filtered out by high-pass filtering, and this tends to reinforce noise com-

ponents. The amplitude of the voice component may vary with the electrode position 

relative to the vocal folds, or the quality of skin contact, and these vary with artic-

ulation or movements of the speaker. The signal contains many "events", unrelated 

to vocal phonation, and these must be ignored when estimating the F。.
Criteria for selecting voice-related events are strength and regulatity. Voice pulses 

tend to be strong, but they are sometimes weak, particularly at the beginning and end 

of phonation. Conversely, spurious pulses are for the most part weak, but a good 

proportion are strong. Voice pulses tend to occur in regularly spaced series, but: (a) 

Spacing changes with F。,(b) The series may contain intervening spurious pulses that 

complicate estimation of the regularity. Specifically, regularity of first-order inter-

pulse intervals is not sufficient and one must consider higher-order intervals. This 

introduces the well know problem of distinguishing between the period and super-

periods. (c) Voiced series may be short (as short as a single pulse!). Phonation often 

ends with a few pulses that are essentially aperiodic. Aperiodic phonation may also 

last longer (diplophony, creaky voice). (d) Spurious pulses may appear from time to 

time to be regular. 

The lx estimation algorithm proceeds in several steps, some of which are illus-

trated in Fig. 4: 

1. The lx signal is mildly smoothed by convolution with a square window (0.2 

to 0.5 ms). 

2. It is negated and differentiated. 

3. The result is half-wave rectified, and each peak (positive-going excursion) is 

replaced by a single pulse, equal to the sum of samples in the peak and placed 

at its center of gravity. 

4. Any pulse occuring within A seconds of another pulse, and weaker than that 

pulse is eliminated. A is set to P min/2, where P min is the minimum expected 

fundamental period. 

,
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5. Any pulse weaker than B times one of its immediate neighbors is removed. B 

is set to 0.2. 

6. The regularity of the position of each pulse is tested by a criterion related to 

autocorrelation. First, an autocorrelation function is calculated based on the 

pulse. Then, the average is taken of similar functions calculated based on neigh-

boring pulses. The product of the two is taken and summed. The square of the 

average function is also taken and summed. If the ratio of the two falls below 

C, then the pulse is eliminated. C is set to I 0. 

7. Every pulse belongs to three triplets of consecutive pulses. For every pulse, the 

regularity of the three triplets is determined. If all three triplets are irregular, 

the pulse is eliminated (conversely, if a pulse eliminated in step 6 passes the 

test, it is rehabilitated). A triplet is regular if the intervals it defines differ by 

less than D. Dis set to 10%. 

8. Pulse groups are defined as groups of pulses separated by intervals shorter 

than P max, delimited by intervals greater than P max. The average pulse height 

in each group is calculated and compared to the maximum average over all 

groups. If the ratio is below threshold E, the entire group is eliminated. In the 

calculation of the average, the pulse count in the denominator is increased by 

F, to give an extra handicap to groups containing few spikes. E is set to 0.05, 

and F to 10. 

9. Voice groups are defined as groups of consecutive spikes, regularly spaced as 

defined in 7, and starting and ending by a pulse that belongs to only one regular 

triplet. Speech is defined as voiced within a voiced group, and the fundamen-

ta! period at each instant is defined as the interval between the previous and 

following pulse. 

Remarks: Step 1 serves to attenuate high frequency noise and reduce the number 

of spurious pulses produced in steps 2-3. Step 2 emphasizes glottal closure, and step 

3 produces a schematic representation indicating the instant and amplitude of each 

glottal closure pulse. Step4 removes pulses that cannot possibly representphonation-

related glottis closures within F。limits.Step 5 further eliminates spurious pulses, 

particularly within and at the edge of voice groups. Step 6 applies a regularity crite-

rion based on all-order intervals. This criterion is biased against weak pulses. Step 

7 applies another regularity criterion based on first-order intervals. It would ineffec-

tive if step 6 had not eliminated most spurious pulses within voice groups. Step 8 

gets rid of groups of small pulses, mainly due to high-frequency noise, that occur 

outside voice groups. They may be regularly spaced by chance or as a result of the 

elimination of irregular pulses. Amplitude is the surest criterion to get rid of them. 

The criteria may eliminate genuine glottal closure pulses if they occur in short 

groups of weak or irregular pulses, or if they are isolated and don't form a regular 

spacing with at least two other pulses. Three isolated pulses may survive if they are 

strong and form regular intervals. An abrupt F。stepis allowed and won't cause a 

voicing boundary. However an F。"impulse"(due to a single oversized or undersized 

interval) will trigger a voicing boundary. 
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. Overall, this Ix-based F。estimationalgorithm satisfies all our objectives, in par-
ticular objective (2). 
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Fig. 4 Steps in processing the la,yngograph signal (lx). From top to bottom: Ix, dif— 

ferentiated lx, pulse train representing center-of-gravity of positive excursions, se-

lected pulses, period plot. 
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Error statistics 

The histograms in this section summarize the distribution of signal characteristics 

(level, FO, level change, FO change, spectral change) over the database, and show 

how the number of errors made by the baseline waveform FO estimation algorithm 

covaries with them. Figures 5 to 9 are fot the male speaker NC, figures 10 to 14 are 

for the female speaker FHS. 

Common to both NC and FHS is the tendency for errors to be more common 

when either F,。orlevel is low. This correlation may be due to the fact that phonation 
is unstable at the end of breath groups, when both level and F。fall.Also common 

is the tendency of errors to occur when there is a large period-to-period change in 

F。(Figs.8 and 13). Note that "F,。change"may reflect irregular phonation in ad-

dition to genuine frequency sweeps. For both NC and FHS the correlation between 

error probability and period-to-period spectral change (measured as RMS cepstrnm 

change) is weak. This is somewhat unexpected. 

NC and FHS differ on one account: error probability depends on level change for 

NC (Fig. 7) but not for FHS (Fig. 12). 
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Fig. 5 Top, open bars: distribution of frames as a function of RMS level; filled bars: 

distribution of errors. Bottom: error probability. Speaker NC. 
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C Speed 

Both AMDF and DDF involve exhaustive search and are therefore time consuming. 

If Wis the size of the integration window in samples, L is the maximum lag range, 

and R is the frame rate in Hz, AMDF requires a number of operations on the order 

of W x L x R, while DDF requires operations on the order of W x L x L x R. 
This section reviews several schemes that allow calculation time to be consider-

ably reduced. 

Cl . Running calculation 

If the frame period in samples (Fp = Fs/ R) is less than the window size, then some 
calculations are performed several times on the same samples. For example, if the 

window size is 320 samples, and the frame period 16 samples, then the same cal-

culations are repeated 20 times. An obvious solution is to store the results. At each 

皿 alysisindex i, a partial AMDF calculation is performed: 

i+Fp 

叫T)= I: Jsk -Sk-rl 
k=i 

This partial AMDF is stored in a list of partial AMDFs, long enough to span the size 

of one window. The AMDF may then be calculated as: 

i+W/Fp 

ふ(T)= I: 侭汀
J=i 

eventually with some form of window weighting. If no weighting is used (square 

window), a running AMDF may be maintained and updated: 

ふ(T)= A;-1 + a;T - ai-W/FpT 

This scheme reduces calculations by a factor of l1V / Fp, in our case 16. We ap-

plied it systematically. Computation time no longer depends on the frame rate, so 

there is no reason not to choose the rate most adequate for the application. 

The scheme requires extra space to store the list of partial AMDFs. To avoid this 

requirement one may perform a running integration with exponential decay [22, 31 ]. 

This is equivalent to applying an exponentially-shaped window with a tail towards 

negative time. 

D Sparse calculation 

It is usually beneficial to apply a mild degree of low-pass filtering to the waveform. 

In that case the waveform varies little over a span of a few samples, and one may 

perfo1111 the AMDF calculation using a sparse summation: 

W/n 

A;(T) =~is; 十jn- Si+Jn-r I 
j=O 

We applied a 16-point smoothing to the waveform and performed calculations at 

intervals of 8 samples, resulting in a speed-up factor close to 8. Sparse calculation 

increases somewhat the error rates. Note that sparse calculation is not equivalent to 

down-sampling the waveform: calculations are still performed at sample intervals 

along the lag dimension. 
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E Sum-to-criterion 

Both AMDF and DDF search for a global minimum. If an upper bound on the min-
imum value is known, the summation (over the window) at each search point may 

be interrupted as soon as that bound is exceeded. For example if it is known that the 

"depth" of the minimum is less than 10% of the average AMDF value, calculations 

may be reduced by a factor close to 10 (depending on the statistics of the terms of the 

summation). The upper bound is updated each time a calculation produces a smaller 

value. The scheme is most effective if the starting value of the search parameter pro-

duces an AMDF value close to the minimum. The estimate of the previous frame is a 

good starting point. With this scheme, computation time depends on the waveform: 

computation is faster if the waveform is nearly periodic. 

This scheme was not implemented, as it is difficult to concile with some of the 

other schemes. It might be of use in a final implementation. 

ヽ

F Search-to-criterion 

The mean-normalized AMDF scheme proposed earlier chose the first minimum that 

fell under a certain threshold. Calculations need not continue after that minimum is 

found. This saves computation in a proportion that depends on the degree of peri-

odicity (a below-threshold minimum must exist) and the F。(theminimum is found 
faster for a short period). 

This scheme was not implemented. 

G Multi-level search 

There are various ways in which computation may be saved by splitting the search 

into levels of increasing resolution. For example the DDF algorithm may be per-

formed iteratively, by searching one lag dimension at a time (in other words, by per-

forming AMDF on the waveform filtered by a comb-filter tuned to the previous pe-

riod estimate). 

Multi-level search explores a smaller proportion of the search space than exhaus-

tive search, and may therefore miss a global minimum. For this reason, and because 

of the extra complexity involved, multi-level search was not used. 

9
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