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Abstract 

Currently, most speech recognition technology involves some form of Dynamic Program-

ming (DP) to cope with the non-linear compressions and expansions of speech event durations. 

In choosing the particular version of DP now used in the Prototype-Based Minimum Error 

Classifier (PBMEC) (McDermott and Katagiri, 1992, 1993, 1994), we aimed to use an ap-

proach that was conventional, yet which also incorporated some of the latest advances in the 

fast evolving field of search. 

In this report we describe the use of one-pass DP (Sakoe 1978, Ney 1984), histogram based 

pruning (Ney et al., 1994) and A* based N-best search (Soong & Huang, 1991, 1994), in the 

context of PBMEC. Our primary goal in this report is to explain these different methods 

and their use in PBMEC. The motivation for choosing this particular configuration comes 

from considerations of speed and search accuracy. In addition, we contrast two different 

approaches to speeding up the search. The first, proposed by Soong & Huang (1994), consists 

in using a simple forward phase with a reduced grammar, followed by a detailed backward A* 

search using the full task grammar. The second is a simple time-synchronous pruning method 

proposed by Ney et al. (1994). Our results suggest that the latter method is more effective 

in reducing search time for the tasks we examined. 

The recognizer used throughout this study is the Prototype Based Minimum Error Clas-

sifier. 
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1 Introduction 

The application of Dynamic Programming (DP) to speech recognition has enjoyed widespread 

use since it was proposed [39] [34]. The purpose of the technique, in the context of speech 

recognition, is usually to generate the most likely path through an array of local matches 

between a given acoustic model and individual speech frames from an unknown utterance, 

in an efficient manner. For a known model sequence (e.g. it is known that the utterance 

should be modelled by the acoustic models for a particular word or sentence), DP provides a 

solution to the time-alignment problem of how to assign the speech frames in the utterance to 

acoustic models in the model sequence. When the model sequence is not known, (for example, 

if the utterance could be any of a large set of words or sentences), DP allows one to compare 

different model sequence assignments and find the best model sequence, e.g. the best word 

or sentence model for the utterance. DP does not directly address the additional question of 

finding not just the best string, but the top N-best strings; however, several schemes have 

been proposed to do so [44] [42] [48]. Another key issue in the use of DP is speeding up the 

search when large, complex grammars are used. Typically, some form of pruning is used. 

Our primary goal in this report is to describe the particular techniques adopted in the 

Prototype Based Minimum Error Classifier [32] system developed at ATR Human Information 

Processing Laboratories. In addition, we contrast two approaches to speeding up the search: 

1) pruning the forward search, i.e. limiting the search to a dynamically changing subset of 

the finite state machine representing the task grammar, and 2) using a simpler grammar (i.e. 

a smaller finite state machine) in the forward search (with no pruning), followed by A* based 

search using the full set of grammatical constraints for the task, in the backward search. Based 

on results for the ATR HIP Telephone Task, which involves the recognition of names spoken 

in isolation, we tentatively conclude that the first approach is simpler and more efficient than 

the second. 

2 Outline of search module configuration 

Before presenting a detailed description, we outline the system configuration and present 

our motivation in choosing this particular configuration. The PBMEC system's search module 

is an implementation of the following algorithms: 

Forward search: time-synchronous one-pass DP 

Time-synchronous search appears to offer more flexible and efficient pruning strategies 

than phoneme-synchronous search; furthermore, "immortal node" trace-back can be used to 

generate partial recognition results that are guaranteed to be part of the final recognition 

result, before the end of the utterance is reached. 
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Histogram-based pruning 

This pruning method [35) is a cheap and simple way of maintaining a constant number 

of active DP grid points (alternatively, "DP states") during the forward search. This is 

in contrast to pruning methods which allow the number of active states to grow larger or 

smaller depending on the "difficulty" of the search. The latter approach has some appeal, but 

the required computational effort is utterance dependent; the pruning parameters are thus 

somewhat harder to tune. In the following we present a comparison of these two approaches. 

Backward search: phoneme/word synchronous A* based N-best search 

Of the many N-best algorithms proposed, Soong & Huang's [44] [13] [14] is one of the few 

that is guaranteed to generate the true N-best strings -assuming a full search was used in 

the forward phase. It is also not expensive computationally. We will see in the following that 

the A* based backward search offers an interesting alternative to pruning for speeding up the 

forward search. 

3 Forward search, backward search, CPU time, pruning and opti-

mality 

A key variable in the tandem of forward and backward (N-best) search will be the gram-

matical constraints used in each phase. By grammatical constraints, we mean the allowed 

model sequences, as specified (in our implementation) by a finite state machine representing 

a grammar for the task. In this light, we now outline the computational requirements of 

the search procedure, ways in which the search can be speeded up, and how this may affect 

optimality. 

(It should be clear that the word "optimal" in the context of DP-based search describes 

a search that yields the string (acoustic model sequence) (or N strings) with the best (or 

N-best) accumulated path distance(s) through the DP grid. This notion of optimality is 

(unfortunately) not directly related to the correctness of the recognition output; the recognized 

string could be optimal in this sense, yet incorrect.) 

3.1 CPU time 

Forward search 

The time-synchronous DP algorithm we use in the forward phase can be outlined as a 

loop over frames of speech, and for each frame, a loop over states of the finite state machine. 

Thus, the complexity of the grammar, and ensuing size of the finite state machine, typically 

has a linear effect on search time of the forward phase if no pruning is used. 
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Backward search 

The A* based backward phase uses a stack of partial string hypotheses to direct its search. 

The search time of this phase will depend on how well the hypotheses can be evaluated. We 

will see that if the same grammatical constraints are used for forward and backward phases, 

the evaluation function will be exact; i.e., for a given partial string hypothesis, the evaluation 

function can tell us the score of the best possible way of completing that particular partial 

hypothesis. This allows an optimally efficient search with no backtracking. In this scenario, 

the CPU time required for the backward search is typically much smaller than that required 

by the forward search. (This is still the case if pruning was used in the forward phase -though 

the guarantee of optimality is lost.) 

On the other hand, if the A* phase uses a different set of constraints than the forward 

phase -say, a more complex set of constraints -then the evaluation of partial hypotheses is 

no longer exact, and a considerable amount of backtracking may be necessary. The closer the 

forward constraints are to the backward constraints, the less backtracking is necessary. 

3.2 Accelerating the search while preserving optimality? 

Pruning the forward search 

As the backward search, which uses scores computed in the forward phase, is typically 

much faster than the forward search, the most obvious approach to speeding up the search 

is to prune the forward search. This can be achieved by limiting the states searched at each 

frame to a subset of "active" states, rather than considering the whole set of states in the 

finite state machine. The histogram-based method we adopted is one way of mainting such a 

"beam" of active states. Of course, pruning comes at a cost: pruning too heavily will harm 

optimality. Though the degree of pruning can be tuned, the optimality of the search can no 

longer be guaranteed. The reason for this is that the true best path may start out with a 

poor score to a particular state in the beam, which may be pruned out of the search. 

u・ smg a simpler grammar in the forward search 

An alternative approach is to use a simpler set of constraints in the forward phase (without 

pruning), and then to perform a backward A* based N-best search using the full set of 

grammatical constraints for the target task. Since the grammar used in the forward phase 

is much simpler than before, the forward search is much faster. Furthermore, when certain 

conditions are met, the A* algorithm is able to use the scores obtained from the reduced 

forward search to guide the backward search effectively, while prese切 ingthe guarantee of 

optimality. However, as mentioned above, since the scores from the forward search are based 

on a simpler grammar, the backward phase is not as efficient as before, and will usually require 

more computational effort. It is not clear exactly how much more time will be required for 

the backward phase. (If the total resulting search time becomes unmanageable, pruning of 

the A* stack may be desirable. This, however, may seriously impact optimality.) 
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The concept of simple forward search followed by detailed backward search is described in 

[2), [13) and [14). 

The question we address here is whether this tandem of forward search with a simple 

grammar followed by backward search with the full grammar is more efficient than using the 

full grammar in both forward and backward phases, but with pruning in the forward phase. 

In the following, we review the PBMEC recognizer assumed here, before launching into a 

detailed description of time-synchronous DP, the A* algorithm for N-best string search, and 

experiments investigating the two different approaches described above. 
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4 The Recognizer 

The recognizer used here is the Prototype Based Minimum Error Classifier (PBMEC) 

system described in (30] (32]. A discriminant function for each category to be recognized (e.g. 

a phoneme, word or sentence) is defined in terms of a DP procedure to link reference vector 

based phoneme models together according to the grammar of the task at hand. 

Local distance 

At the lowest level, the phoneme models are taken to consist of a connected sequence of 

sub-phonemic states, illustrated in Figure 1. Each state is assigned a number of reference 

vectors, analogous to the mean vectors used in a continuous hidden Markov model. These 

are used to generate an Lp norm-based state distance e(xt, s), which is a function of a single 

feature vector Xt at time t (from an utterance x『=(xい…ぷt'…，xr))and reference vectors 

belonging to the state s: 

e(x,,,)~[ f)(x, -, げ（江戸(x,―吋）］ーく］ーも
i=l 

(1) 

where rf denotes the (adaptable) i-th reference vector of state s, I;;; is an adaptable positive 

definite "weighting" matrix corresponding to rf, and Is is the number of the reference vectors 

assigned to s. For a large (, the state distance becomes the distance to the closest reference 

vector, and each state can then be seen to correspond to a category in a Learning Vector 

Quantization classifier (20] [30]. 

Discriminant functions for phoneme/word/phrase categories 

A matrix of distances Dj,T,s is defined to be a matrix where each position (t, s) contains 

e(xt, s) for the states of category j. The discriminant function for each phoneme/word/phrase 

j can then be defined as: 

恥『）＝胃V,,(D;,r,s)]―r (2) 

where Ve (Dj,T,s) represents an accumulated sum, or path distance, along a possible DP path 

0 through a region of Dj,T,S, and where Sis the total number of states in category j. The 

decision rule here will be to choose the category with the smallest discriminant function value: 

decide CJ if gJ(x『)< gk(X『)for all k ,f. j. (3) 

In previous work [30] [31] [32] we have described in detail how the Minimum Classification 

Error / Generalized Probabilistic Descent framework can be used to train the above classifier. 

Here, however, our focus is purely on the computational aspects of the DP calculation that is 

necessary to find the best sequence of model states for a given, possibly unknown, utterance. 

In the following we refer to our implementation of PBMEC as the "pbmec program". This 

is the main recognizer program, that loads model files and grammar files, and can be used 

，
 



Lp norm of state distances propagated through network 

• 

lb 11 /b2/ /b3/ /b4/ 
、ぶ

sub-phonemic states 

e
 

t
 

a
 

t
 

s
s
 

r
 

o
h
 

ctac 

e
e
 

to 

＞
 

e
 

c
d
 

n
e
 

r
e
n
 

fe.lg 

Reass 

＿・遍

a
I
"

．．．
 
ロ・

ao董
璽
●
●
＿

-Iiig'薗躙
遍
ロ
・
ロ
識
口
纏
璽
口
＿

一
羅
鐵
賢
薗
畠
鵜
•
•
ロ
・
ロ

a

麟
璽
露
ロ
一

Figure 1: PBMEC at the finest grain. 

for recognition of utterances or MCE/GPD training over a set of training utterances. In the 

ATR HIP computing environment, typing /usr/hearing/recog/bin/$0S/pbmec by itself will 

generate an extensive help message. 
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5 One pass DP through Finite State Machine 

The grammar for any given task is represented as a tree structured finite state machine 

(FSM). This is illustated in Figure 5 for a grammar of names of ATR HIP Laboratories 

researchers . The finite state machine representation is well suited for use in a DP framework, 

as the DP grid can be viewed as a set of connected states in a directed graph. The DP 

calculation is guaranteed to find the lowest cost path through the graph, from start state to 

end state. Note that this representation is also consistent with the classifier representation. 

The PBMEC classifier states map directly onto states in the FSM. Thus, a state occuring in a 

particular instance of the vowel / a/ in the FSM represents a part of the grammatical/lexical 

constraints as well as a particular set of acoustic model parameters. If multiple states, or 

"sub-states" are used to represent the fine temporal structure of a phoneme, they are linked 

serially within that phoneme, with each sub-state usually able to loop onto itself, as shown 

in 1. 

Figure 2: Finite state machine representing a vocabulary of ATR researchers'names. 

DP [39] [34] is the search for the shortest path through a FSM (such as the one shown in 

5) given a set of local acoustic scores (representing the match between a frame of speech and 

all the states in the classifier) in time. It is convenient to visualize the calculation in terms of 

a score grid, with time going left to right from the beginning to the end of the utterance, and 

with the model states represented vertically, from the first to the last state (see Figure 5). 

In our use of DP, a path through the grid must start at the first frame and first state (i.e. 

the bottom left of the grid) and end at the last frame and last state ("fixed end-points"). The 

other constraints on what paths are legal are defined by the connectivity of the FSM. 

Given that a path is a sequence of state-frame assignments in time, the overall path score 

is the sum of the local acoustic scores corresponding to that sequence. The DP method for 

finding the shortest such path is to apply the following rule to each grid point, moving over 
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DP path scores are propagated in time through the FSM. 

the length of the utterance x『frombeginning to end: 

E(t,s)(x『)= e(xt, s) + min Et- T 
rER, 

l,r(X1) (4) 

where Rs is the set of all states that may legally precede state s according to the grammar. 

Application of this rule ensures that at each grid position, the cumulative distance Et,s(x『)

corresponds to the distance of the shortest path to that grid position. The distance of the 

shortest path for the whole utterance is thus contained in Er,s(x『)， i.e.in the grid position 

of the last frame and last state. 

The overall DP computation can thus be outlined as the following procedure: 

loop over frames Xt in utterance 

loop over all phonetic states p in FSM 

loop over pbmec sub-states s of phoneme p 

calculate E(t,s)(x『)= e(xt, s) + minrER, Et-1,r(x『)
end 

end 

end 

Using R to denote the average number of legal predecessors凡 foreach sub-state, the com-

putational effort required in this computation is of order O(T SR), i.e. the number of frames 

12 



in the utterance, times the number of states in the finite state machine, times the average 

number of predecessors to each state. The latter number will vary with the FSivI topology. 

(The FSMs we use are all left-right tree-structured within grammatical node expansions, so 

all states within an expansion (e.g. between "*" nodes in fig 5) have just two predecessors: 

themselves (via a self loop), and a single up-stream state. The self loops are not represented 

in the FSM description, but are assumed by the pbmec program, for all phonetic states. At 

grammatical nodes, such as the right-most "*" node in Figure 5, the number of predecessors 

may be large.) 

6 Generating a finite state machine description file from a grammar 

description file 

The practice so far has been for the pbmec program to read an ASCII file that explicitly 

describes a finite state machine. A separate program generates this FSM description file from 

a regular grammar description file. The grammar description language was inspired by HTK's 

and is very similar to HTK's in expressive power. We describe the generation and structure 

of FSMs to illustrate more concretely the discussion of DP and A* search in the following. 

An example of a grammar description file follows. 

mcdcvesuvius: cat foo.rgra 

I* To convert into a finite state machine descriptor (.fsm) file, 

use new_fsmify <grammar file name stem>. *I 

(<root>= silence <n> silence) 

(<n> = one I two I three) 

This can be converted to a FSM description file as follows: 

mcdcvesuvius: 

mcdcvesuvius: new_fsmify foo 

Got definitions in foo.rgra. 

Fsmifying definitions. 

Expanding <root_> 

Expanding <n_> 

Printing FSM to file foo.fsm 

Done. 

mcdcvesuvius: 
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mcdcvesuvius: cat foo.fsm 

Number of states= 20 

state O (<root_>) num_pred O pred () num_succ 1 succ (2) 

state 1 (<_root>) num_pred 1 pred (19) num_succ O succ () 

state 2 (silence) num_pred 1 pred (0) num_succ 1 succ (3) 

state 3 (<n_>) num_pred 1 pred (2) num_succ 2 succ (5 9) 

state 4 (<_n>) num_pred 3 pred (8 12 17) num_succ 1 succ (18) 

state 5 (o) num_pred 1 pred (3) num_succ 1 succ (6) 

state 6'(n) num_pred 1 pred (5) num_succ 1 succ (7) 

state 7 (e) num_pred 1 pred (6) num_succ 1 succ (8) 

state 8 (c) num_pred 1 pred (7) num_succ 1 succ (4) 

state 9 (t) num_pred 1 pred (3) num_succ 2 succ (10 13) 

state 10 (w) num_pred 1 pred (9) num_succ 1 succ (11) 

state 11 (o) num_pred 1 pred (10) num_succ 1 succ (12) 

state 12 (c) num_pred 1 pred (11) num_succ 1 succ (4) 

state 13 (h) num_pred 1 pred (9) num_succ 1 succ (14) 

state 14 (r) num_pred 1 pred (13) num_succ 1 succ (15) 

state 15 (e) num_pred 1 pred (14) num_succ 1 succ (16) 

state 16 (e) num_pred 1 pred (15) num_succ 1 succ (17) 

state 17 (c) num_pred 1 pred (16) num_succ 1 succ (4) 

state 18 (silence) num_pred 1 pred (4) num_succ 1 succ (19) 

state 19 (c) num_pred 1 pred (18) num_succ 1 succ (1) 

mcdcvesuvius: 

mcdcvesuvius: 

mcdcvesuvius: 

The pbmec program will treat FSM states as either 1) phonetic states that are associated 

with a set of PBMEC parameters (i.e. reference and weight vectors) necessary to calculate the 

state distance defined above 1, or 2) grammatical states that have no PBMEC parameters, and 

are merely used to connect the finite state machine and collect DP scores. The grammatical 

symbols typically correspond to the beginning and end of the expansion of a grammatical 

category, such as for "<n>" above: the symbol for state 3 is "<IL>", beginning the expansion 

for "<n>" (marked by the underbar to the right), and the symbol for state 4 is "<-n>", the 

end of the expansion (marked by the under bar to the left). The symbol "@" is a grammatical 

symbol inserted at the end of a sequence of phonetic states to tell the search module in 

the pbmec program to remember the DP exit scores along that arc. Note that the FSMs 

generated by new_fsmify are left-right tree-structured, i.e. symbols that are shared by the 

initial portions of alternative definitions are represented by the same states in the FSM. (This 

tree-structuring is perhaps the only significant difference in functionality between the FSM 

representation/ generation we use and that used in HTK). 
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The program /usr/hearing/recog/bin/SunOS/new_fsmify, run with no arguments, will 

provide the following help message: 

------------Usage: new_fsmify <grammar file stem>-------------

e.g. new_fsmify my_grammar 

(where my_grammar.rgra is a grammar file) 

Will generate a finite state machine (. fsm) corresponding to a 

regular grammar defined in <grammar file> (.gra). 

Here are some of the regular grammar definition guidelines: 

1) All grammatical symbols must be written as'<symbol>' 

2) The highest level symbol must be a symbol called'<root>' 

3) A definition must be of the form (<symbol> = [ ... ]) 

4) The right hand portion above('[ ... ]') can include: 

-references to other grammatical symbols, <other_symbols> 

-terminal symbols (these can have any characters OTHER than 

'<''>''?''*''+''I') 

5) References to grammatical symbols MUST AVOID RECURSION. 

Something like (<np> = word <np>) will cause the program to crash. 

The program handles regular grammars, not context free grammars. 

6) <symbol>? means that this symbol is optional. Using'?'with 

a terminal symbol will NOT work, eg'b?'cannot be used. 

7) <symbol>+ means one or more repetitions. 

8) <symbol>* means O or more repetitions. 

PBMEC does NOT handle this case gracefully; for now, using the 

markers'I','+'and'?'to represent O or more repetitions is recommended, 

e.g. (<phrase>= <word>? I <word>+) instead of (<phrase>= <word>*) 

9) Again, the characters?+ and* cannot be used with terminal symbols 

10) The'I'character means'or', as in 

(<name>= er i k I a 1 a in I sh i g er u) 

A definition must not end with a'I', eg (<v> = a I i I u I e I o I) 

is not correct. 

11) There must be at least one space between the 

characters'('')''='and I. (<v>=alilulelo) will not work. 

example 1: 

A C-V pair grammar can be defined using rules such as: 
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(<root>= <cv>) 

(<cv> = <c>? <v>) 

(<c> = b I d I g I p I t I k . . . .) 

(<v> = a I i I u I e I o) 

example 2: 

A connected word grammar can be defined using rules such as: 

(<root>= <word>+) 

(<word>= i chi In i I s a n2 Iyo n2 Igo) 

There is some redundancy, as 

(<cv> = <c> <v> I <v>)・ 1.s equivalent to 

(<cv> = <c>? <v>); 

however, the latter produces a more compact finite state machine. 

The reason for this is that the FSM is LEFT-RIGHT tree structured, and 

without an explicit declaration that something is optional, it will not 

group identical right-hand portions.) 

12) (added Jan. 1996) Definition of context loops: 

Context loops (e.g. phoneme pair/triple grammars) can be defined 

using the special category <CLOOP-something>. Such symbols will be expanded 

so as to loop all arcs back to _legal_ entry states, as defined by the presence 

of left context <L-something> and right context <R-something> markers. 

Thus, <L-a> b <R-c> refers to a'b'in the left context of an'a'and 

right context of a'c'. It will be looped back to any'c's that will accept 

a'b'as their left context, via the use of a <L-b> marker, or the use of no 

marker at all. Similarly, this'b'will refuse the connection (from the left) 

of any states that are not'a'states. 

More examples: 

<L-a> b <R-*> will only accept'a'states on the left, but can loop back to anything. 

<L-*> b <R-c> will accept anything on the left, but wiil loop back only to'c'states. 

Specifying start/exit states: 

'<CLOOP_START> something'will allow a connection from the start of the 

loop.'something <CLOOP_EXIT>'will allow a connection to the end of the 

loop. Only arcs that have these special hooks will be connected to the 

start/end of the loop. However, if <CLOOP_START> is not used at all 
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all arcs will be connected to the start of the loop, and similarly for 

<CLOOP_EXIT>. 

Example of a simple phoneme context grammar: 

(<root>= pau <CLOOP-phon> pau) 

(<CLOOP-phon> = <CLOOP_START> a <R-*> 

<L-a> b <R-c> 

<L-b> c <R-d> 

<L-c> d <R-a> 

<L-d> a <CLOOP_EXIT>) 

bugs, problems to mcdchip. atr. co. jp 

Of course, the representations and language definitions used here are subject to rapid 

change; the above describes only the choices current at the time of this writing. Some is~ues 

that may influence future changes include using a grammar definition language that is com-

patible with that used in other systems at ATR and elsewhere (e.g. HTK) and modifying 

the pbmec program to read the grammar description file directly and generate the finite state 

machine on the fly (as is done in HTK), rather than generating the latter in a separate step. 
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7 Beam Search 

A typical approach to pruning time-synchronous DP search is, for each frame that is being 

processed, to maintain a list of active states and remove states with scores below a certain 

threshold. The main DP loop described above (5) is thus modified to be: 

loop over frames Xt in utterance 

loop over active phonetic states p in FSM 

loop over pbmec sub-states s of ph~neme in p 

calculate E(t,s) (x『)= e(xt, s) + minrER, Et-1,r(x『)

end 

calculate new threshold 

using new threshold, generate new list of active phonetic states 

end 

end 

Beam search involves a number of additional steps, of course, that are not diplayed here. 

For instance, within the loop over the sub-states in a phoneme, a is checked to test whether 

the ,sub-state being considered is active or not. Furthermore, there must be a test whether 

the predecessor considered is active or not. Also, DP scores must be propagated through 

grammatical states that connect phonetic states together. This propagation occurs after one 

loop over the active phonetic states. Backpointers are also propagated. We should also 

mention that there are two vectors of DP scores, old and new; pointers to these vectors are 

switched at the end of the loop over active phonetic states in order to update the old scores. 

Figure 4 illustrates which states in the finite state machine are active over time when using 

pruning of this sort. Figure 5 shows both the state identities and their accumulated DP scores 

over time. 

Maintaining a Constant Beam Size 

The method proposed by Ney et al. [35] is to choose this threshold so as to preserve a 

constant number of states (corresponding to a desired beam width) during the DP process. 

This can be done by forming a cumulative histogram of state scores, i.e. that represents how 

many states have a score greater than a given score -see figures 7 and 7. The cumulative 

histogram can then be used to choose a threshold corresponding to a particular number of 

states. The advantage of this method is that it is very inexpensive computationally to form 

the above histogram and choose the threshold. Contrasted to methods where ranked lists or 

heaps of active states are maintained, this method is very simple. 

The accuracy of this pruning method depends on the number of bins used to form the 

histogram; in practice, we have found that using a number that is 10 percent of the desired 

beam width is sufficiently accurate for a broad range of beam widths. More bins could be 

used at negligible computational cost. 
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Figure 4: Active states over time when using a beam of 5 states for a finite state machine 

representing 4 isolated words. "Active states" are states which remain after score-based pruning, 

OR the successors of such states. 
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Active FSM state scores over time 
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Figure 6: Beam search for time-synchronous DP (One Pass DP): maintain a list of active states; 

remove states with scores below a certain threshold. 

Variable Beam Size 

The histogram pruning method is effective given the goal of choosing a threshold that 

maintains a constant number of active states. Our motivation for adopting this scheme is 

simply to control the computational requirements of the search, which will be directly pro-

portional to the specified beam width. This goal, of course, is not an absolute. Choosing a 

threshold is not necessarily tied to controlling the beam width accurately. It might be de-

sirable to prune heavily when the top scores are much better than the other scores (i.e. the 

system is "confident" in its top scores and doesn't need to examine other DP paths), and 

prune much less when the top scores are not much better than the other scores. In other 

words, the aggressiveness of the pruning could be a function of the difficulty in recognizing 

a particular utterance. Schemes that use the score of the last state in the DP network (such 

as that used in HTK) are similar in spirit in that one is typically less confident in a DP path 

at the beginning of the search than at the end, and thus the pruning can be increasingly 

aggressive as one progresses through the utterance. 

In order to illustrate the difference between these schemes, we compared the number of 

active states over time for a search using histogram pruning with a search using the score of the 

last state as the pruning threshold (Figure 8). One can see from this figure that histogram 

pruning effectively sets an upper limit on the number of active states at any frame of the 

search, while the number of active states varies widely for pruning based on the score of the 

last state. 
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The A* algorithm for speech recognition 

8.1 A* search 

The premise of A* search [33] is that the problem at hand is some sort of graph search 

Loosely defined, a graph is a set of nodes, some pairs of which are connected 

by a (directed) arc, from one member of each pair to the other. 

recognition, nodes will typically represent a phonetic symbol, and the arcs in the graph will 

be determine-d by the lexical and grammatical constraints of the task. Furthermore, the cost 

of a particular path through the graph will typically be related to a probability or distance of 

a match between observed (input) speech and an acoustic model for the phonetic symbol of 

problem. 

In the context of speech 

each node along the path. 

A general procedure for finding a complete path through the graph is to maintain a stack 

of partial paths (paths that originate with the start node, but have not yet reached the end 

node), use path costs to order this stack somehow, and expand the path at the top of the 

stack. Expansion of a path consists in creating new paths that now contain, in addition to the 

parent path, all the successor nodes that can be reached from the nodes on the parent path. 
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The new paths are then inserted into the ranked stack. When a path popped from the stack 

contains the end node (or "goal" node), it is output as a complete path, and the procedure 

terminates . If the stack is ranked in an arbitrary or inefficient manner, there is of course 

no guarantee that the path found through this procedure is a minimum cost path through 

the graph. If the stack is ordered by putting the longest paths at the top of the stack, the 

procedure ressembles a depth-first strategy, and if the shortest paths are put at the top of the 

stack, the procedure corresponds to a breadth-first strategy. 

Algorithm A 

More specifically, the TOTAL score estimate f'(p) of a complete path hypothesis p con-

strained to go through node n is defined as: 

J'(p) = g(n) + h'(n), (5) 

where g(n) is the actual score of an optimal path from the start node to node n (corresponding 

to the partial path that has been explicitly generated), and h'(n) is the score estimate from 

node n to the end node (corresponding to the remaining, not-yet-generated path between node 

n and the end node). f'(p) is the evaluation function that will be used to rank hypotheses 

during the search. The search procedure can then be outlined as follows: 

• Initialize a stack of partial path hypotheses with the start node. 

• LOOP: 

1. If the result stack contains N complete paths, exit. 

2. Take the top partial path off the hypothesis stack. 

3. If it is a complete path, put it on the result stack. 

4. If it is not a complete path, generate all its successor nodes, and put the resulting 

paths (original path plus successor node) on the stack. Use f'(p) to rank the stack. 

5. goto LOOP 

This general procedure, using an evaluation function to rank the stack, is referred to in 

(33] as algorithm A. 

Algorithm A* 

If the estimate h'(n) is a lower bound (i.e., a better score) of the true value h(n), the 

first complete path (i.e., the first path to reach the end node) output to the result stack is 

guaranteed to be the true best path through the graph; the second complete path output is 

guaranteed to be the next best path through the graph, and so on. When h'(n) satisfies this 

condition for ad両 ssibility,the search algorithm is called algorithm A*. 

The reason A* outputs the best path first can be described informally by considering that 

the total path score estimate, J'(p), is always lower in cost than the true path score f (p). 

Since f'(p) is used to rank the stack, the top path on the stack always has a score that is at 
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least as good as that of the true best path. Since A* always chooses the top path on the stack 

for expansion/output, if we suppose that the first path output by the A* search was NOT 

optimal, i.e. that f'(p) was larger than f(p), we reach a contradiction [33]. 

It is shown in [33] that the closer the estimate h'(n) is to the true value, h(n), the smaller 

the number of hypotheses that need to be checked. If the estimate is equal to the true value, 

the search will find the best path(s) in the smallest possible number of partial path extensions. 

(Note: in [33], the general graph search procedure actually generates a search graph, not 

a stack of paths. The best path is found at the end of the search by tracing back through the 

search graph. A search graph is a more compact representation than a list of paths, as the 

overlapping parts of different partial paths are not duplicated in the graph, whereas they are 

duplicated in the list. Many current applications of N-best string search in speech recognition 

use a search graph to represent the N-best candidates [45] [12].) 

8.2 A* for finding the exact N-best string candidates given an utterance 

and a speech recognizer 

A* search can be used in the context of speech recognition to generate the N-best string 

candidates given an unknown utterance. Given a finite state machine representing the gram-

matical/lexical constraints for a speech recognition task, the recognition problem can be 

formulated as a graph search problem. The scoring of paths through the graph will be related 

to the local matches between input frames and the acoustic models used by the recognizer. 

It is shown in (44] how Viterbi scoring can be used to generate partial path score estimates 

that satisfy the A* admissibility constraint. 

The "tree-trellis (forward-backward) algorithm" can be outlined as follows: 

• 1. For a given utterance, perform a time synchronous DP forward pass through the 

finite state machine, storing accumulated forward scores to each grammar node for 

each frame. 

2. Perform an A* search starting at the last state of the finite state machine. Ex-

tend and score paths backwards, adding the backward scores to the forward scores 

generated in (1) to obtain a total string score. 

The A* search component here is essentially as described above, except that here the 

search is performed backwards, from the end node to the start node. 

Size of the A* stack 

If the same finite state machine is used for both forwards and backwards scoring, the total 

path scores will be exact, i.e. the estimates will be equal to the true scores, and the search can 

directly follow the best path backwards, with no need to investigate paths of unknown ultimate 

merit. In this case, a stack of size N will be sufficient to generate the N-best hypotheses. 

If the forward estimates are NOT exact, no restriction must be placed on the size of the 

stack in order to generate the true N-best hypotheses. Conversely, if in the interest of reducing 
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computation time, a restriction on stack size is enforced, the N-best hypotheses found by the 

A* search are not guaranteed to be the true N-best hypotheses. 

In the following we describe this procedure in more detail. 

Generating a new partial backward string hypothesis 

A parent string hypothesis, taken from the top of the stack, is extended by generating all 

possible backward word contents through the finite state machine (i.e., all possible successors 

of the hypothesis), starting from the left-most side of the parent hypothesis. 

For example, let us say the stack contained the following partial hyp?theses: 

1. "jimukyoku desu" 

2.''desu" 

3. "kaigi desu" 

4. "desu ka" 

Each of these hypotheses has a single evaluation score (f'(p) below), as well as a vector of 

backward DP scores over time. The backward scores represent the DP scores from the end of 

each hypothesis string to its beginning (e.g., for the first hypothesis, the DP scores through 

"desu" and then through "jimukyoku"), matched backward (i.e. starting at the top right of 

the DP grid) over the entire length of the utterance. 

Being on top of the stack, "jimukyoku desu" will be removed, and・all its successors gen-

erated. Assuming that "kaigi" is a possible successor, then it could be extended to "kaigi 

jimukyoku desu." 

Scoring a new partial backward string hypothesis 

The new word content ("kaigi", in the example) is backward-DP matched against the entire 

utterance, in an isolated word fashion, but using the parent hypothesis'vector of backward 

scores over time to initialize the top row of the backward-DP match. 

The backward DP match generates a new backward score vector in the bottom row of the 

DP grid. This vector is added to the forward score vector at the edge of the new word content, 

yielding a total score vector. The best score in this vector is used as the overall score of the 

new hypothesis. This score will be used to insert the hypothesis into the stack in the right 

position. Figure 8.2 describes how the forward and backwai・d scores are added to generate a 

complete path score. 

The total score of the new path, "kaigi jimukyoku desu", is used to reinsert the new path 

back into the stack, which might now be: 

1. "desu" 

2. "kaigi jimukyoku desu" 

3. "kaigi desu" 
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4. "desu ka" 

The same procedure is performed for all the other successors of the parent hypothesis, 

"jimukyoku desu." The expanded and scored successor paths are all re-inserted into the 

stack, and the procedure is repeated. 

More formally, the total score of a path extension p to grammatical node m is defined as: 

f'(p) = m如 (g(m,t) + h'(m, t)) (6) 

This definition follows that in equation (5), with the addition of the time index (corresponding 

to the utterance frames). Here, g(m, t) corresponds to the explicitly, backward-generated 

scores over time for the best partial path from the end node back to node m, and h! (m, t) 

corresponds to the best forward scores (from start node to node m) over time, generated in 

the time-synchronous forward DP search. While the string content of the backward-generated 

g(m, t) is known (in the above example, this corresponds to "kaigi jimukyoku desu"), it is not 

clear what the string content of h'(m, t) is. What matters is that h'(m, t) is a lower bound 

on the cost of the optimal path between the start node and node m. Since DP was used in 

the forward phase to generate h'(m, t), this admis迅ibilitycondition is satisfied. 

Using f'(p) to rank the stack of hypotheses, the A* search proceeds from the encl node to 

the start node, continually extending partial paths backwards by one lexical unit at a time. 

The first complete path(s) output by the search will be the best path(s) through the finite 

state machine, given the particular utterance and the set of model parameters. 

Reducing the number of hypothesis expansions 

As each expansion of a partial hypothesis corresponds to a backward DP matching (in the 

above example, of the word "kaigi"), it is very desirable to reduce the number of expansions. It 

is shown in [13] how the search can be made more efficient by performing a kind of look-ahead 

(or look-back?), which explicitly considers the successors to a new partial path. 

Instead of using the overall best forward scores to node m, as described above, one can 

consider the best forward scores from all the possible successors (moving backwards through 

the finite state machine) to node m, taken individually. In other words, a separate forward 

score vector h'(m, t) is used for each possible successor. The merging of h'(m, t) and the back-

ward score vector g(m, t) is then performed for each of the successors, giving each successor 

a score. The evaluation score of the new partial hypothesis is based on the best successor (as 

before), but a ranked list of the other successors is attached to the new partial hypothesis, 

which is re-inserted back into the stack. When, at a later stage of processing, that partial 

hypothesis is removed from the top of the stack for expansion, the score of the next best 

successor is used to give the same partial hypothesis a new evaluation score; this is in turn 

re-inserted into the stack, along with the 1-best successor extension of the hypothesis. 

This more detailed scoring of a new hypothesis allows the search to avoid expanding 

successors which turn out not to be very good. Thus, the overall number of expansions is 

reduced. We have not yet implemented this procedure. 

27 



1) Partial Backward Hypothesis: 
e.g. "jimukyoku desu" 

backward scores 

2) Backward DTW 

of "kaigi" 

new bkwd scores 
ィ― -~,'I'-,,. -々---fwd scores , 、，9 、- ---- ---

, , , ,、, ,--- -- ---
, ,, ,, ------ ----

ヽヽ ，＇ ，ヽ,---- 、-- ----,、, ,, ,, --- --
、＇，ヽ,,- ,, ----------

--

Nth 

grammar 
node 

Mth 
grammar 
node 

, , , ,、,,、-----~、-:----- . 
,, ------ ゞ，、、クヽ __ FORWARD DTW Best forward paths. 

、,--~ 咋名--
;{'1.-a"'- String contents could be different 

t=O TIME 
~ 

t=T 

Figure 9: A* generation and scoring of a new partial string hypothesis in the context of speech 

recognition 

8.3 A* algorithm to speed up the search for the optimal path 

So far we have stressed the ability of the A* algorithm .to produce the true N-best string 

candidates efficiently (assuming that the forward scores are admissible, i.e. that no pruning 

is used in the forward phase, and that the grammatical constraints of the forward phase are 

either the same as or looser than those used in the backward phase.) However, the fact 

that the search allows one to use in the forward phase a looser set of constraints suggests an 

application of A* that goes beyond finding the N-best candidates: speeding up the overall 

search by using a simplified grammar in the forward phase, followed by an A* search using 

the full grammar in the backward phase. This application has been investigated by Huang 

et al. [13] [14]. It is not clear, however, how much more efficient this procedure is. The 

simpler the forward constraints, the faster the forward search, but the slower the backward 

A* search. When the forward constraints are much weaker than the backward constraints 

(the latter being the "final" set of constraints for the target task), the forward score estimates 

are much smaller than the true forward scores. The A* admissibility condition is satisfied, but 

the search now has to evaluate more candidates that at first seem promising but turn out to 

have high costs. However, there may be a combination of forward and backward constraints 

that balances the forward and backward search costs in a manner that yields a lower overall 

search cost than a full search, or even than a beam search (up to certain beam sizes). In 

addition, as mentioned above, the stack used during the A* search can be limited to a preset 

maximum size. In general, this removes the guarantee of optimality, but may effectively speed 
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up the search, while preserving good recognition accuracy. We investigate these questions in 

the next section. 
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9 Experiments 

In the preceding, we described 1) a fixed-width beam pruning method for time-synchronous 

dynamic programming in the forward phase, and 2) an A* based method that allows both 

a) generation of N-best candidates and b) a possibly faster overall search by using a simple 

grammar in the forward time-synchronous phase, followed by an A* search using the full 

target grammar. We also mentioned that it might be desirable to prune the stack used during 

A* search, in order to reduce computational time. 

We aimed to compare the recognition accuracy and computational cost of 1) and 2b). 

Specifically, given a finite state machine that represents the target task (e.g. isolated word 

recognition for a given vocabulary), and a smaller finite state machine that represents a simpler 

set of constraints (i.e., one that overgenerates the target strings), we compared: 

Approach I: Forward -beam search through target FSM; Backward -A* 

search through target FSM 

Same target task finite state machine backwards and forwards, but various degrees of 

pruning in the forward search (the histogram pruning method of Ney et al. [35]) (followed by 

A* search in the backward phase to generate the N-best candidates). 

Cost. The bulk of the computation occurs in the forward pass; the backwards A* search 

merely finds the N-best string candidates, which for a small N, does not significantly affect 

the overall search time. Using histogram beam pruning, the cost is directly proportional to 

the length of the utterance and the beam width. 

Accuracy. As beam pruning is used, the forward scores are not guaranteed to be the true 

forward scores; there is no guarantee of A* admissibility in the N-best search. The accuracy 

is linked to the beam width, but the precise relationship is unknown. 

Approach II: Forward -full search through simplified FSM; Backward -

A* search through target FSM 

No pruning but use of a simplified FSM (e.g. unconstrained phoneme grammar or un-

constrained syllable grammar) in the forward pass, followed by a backward A* search using 

a finite state machine corresponding to the target task. Partial path hypotheses will be ex-

panded backwards one phoneme at a time; only phoneme successors that are allowed by the 

target finite state machine will be considered. 

Cost. The forward phase is now a very small component of the overall search time. 

It is the backward phase that essentially determines the overall search cost. Each partial 

path expansion involves a backward DP matching (alternatively, "phoneme verification") of 

a (legal) successor phoneme. These ve;ifications are computationally expensive. The overall 

cost of the backward search is difficult to estimate, as it depends on the relation between 

the forward estimates (based on the simple forward grammars) and the true scores according 
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to the backward (target) grammatical constraints. Limiting the stack size offers a way of 

controlling the search cost. 

Accuracy. If the stack size is not limited, the forward scores are admissible, and the A* al-

gorithm used in the backward phase is optimal; i.e., it will find the best string candidate given 

the utterance and the model parameters. (Of course, the best candidate is not necessarily the 

correct one.) If the stack size is limited, the guarantee of optimality is lost. 

9.1 Database 

The database we used to investigate these two approached for speeding up the search 

is a set of utterances recorded at ATR HIP Laboratories for the purpose of designing a 

speaker independent telephone-based isolated word recognition system, that would recognize 

the names of HIP researchers and forward telephone calls to them. We used 570 utterances 

for training, 114 for testing, from about 40 speakers, recorded at 8 kHz over the telephone. 

The utterances were transcribed using a set of 25 phonemes. Speech frames were represented 

as 16 FFT Bark scale coefficients, calculated every 5 ms with a window size of 20 ms. 

9.2 Finite state machine design 

The new_fsmify program described above (in the ATR HIP environment, /usr /hearing/recog/bin/new _fs 

was used to generate two left-right tree-structured finite state machines for vocabularies of 63 

names and 311 names, respectively. These are the two target tasks. In addition, finite state 

machines were generated for a much smaller set of constraints: 1) an unconstrained conne如ed

phoneme grammar, 2) an unconstrained syllable (mora) grammar (the latter is illustrated in 

Figure 9.2). In order to speed up the backward A* search after a forward search with the 

simple FSMs, right-left tree-structured FSMs for the target tasks were generated. These are 

used to direct the A* search through only the lexically meaningful paths of the unconstrained 

phoneme/syllable FSM. 

9.3 Recognizer design 

As no labels were available, a segmental k-means procedure (in the ATR HIP environment, 

/usr/hearing/recog/bin/kmeans_seg) was used to automatically segment the utterances, and 

output a set of sub-phonetic states with accompanying mean vectors for each phoneme. These 

were used to initalize the PBMEC model (with the (diagonal) weighting matrix initialized at 

the identity matrix). MCE/GPD training was performed using a full beam (i.e. no pruning) 

for 10 epochs and different values of the loss function parameter Ql [32], for the 63 names 

recognition task. On testing data, again with a full beam, the best set of reference vectors 

produced a correct recognition rate of 95.6 percent. 
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Figure 10: FSM representing an unconstrained connected syllable grammar 

9.4 Results 

Approach I, performance vs. beam width 

Figure 11 contrasts test data performance for the two name recognition tasks as a function 

of beam size, expressed here as a fraction of the total number of states in the finite state 

machine. The computational cost of the search is directly linked to the beam size, which, 

through the histogram pruning method, is nearly constant throughout the search. 

Approach II, performance vs. stack size 

Ideally, Approach II would be fast enough that it would not require limiting the stack size. 

Nonetheless, we investigated the impact on recognition accuracy of limiting the stack size. 

Figures 12 and 13 show test data performance for the two name recognition tasks as a 

function of stack size. The size of the vocabulary used (63 or 311) is the largest that the stack 

will ever grow, corresponding to the total possible number of paths through the finite state 

machine. 

Approach II, number of phoneme verifications vs. stack size 

The limit on stack size does not directly reflect the computational cost of the search. 

Rather, it is the number of phoneme verifications during the backward phase that will deter-

mine computation time. Every time a partial path is extended backward by one phoneme, a 

new phoneme-synchronous backward-DP procedure must be carried out over the whole length 

(or a large segment) of the utterance. (We refer to this match as a "phoneme verification.") 

Thus, the more extensions required by the A* algorithm, the slower the search. We first 

show the average number of phoneme verifications per utterance required by the A* search 
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"Exact" search: forward FSM = backward FSM 
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Figure 11: Performance vs. beam size (as fraction of the maximum number of states) for 63 

names task and 311 names task. 

as a function of the limit on stack size, for both target tasks, in figures 14 and 15. Here the 

unconstrained syllable grammar was used in the forward phase. 

Approach II, performance vs. number of phoneme verifications. 

Finally, we show plots of performance vs. the number of phoneme verifications, indirectly 

controlled by limiting the size of the stack, in figures 16 and 17. Again, the unconstrained 

syllable grammar was used in the forward phase. 
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A'search: free phoneme/syllable forward FSM, 63 word backward FSM 
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Figure 12: Performance vs. stack size for free phoneme/syllable forward search followed by full 

lexical backward search, 63 names task 

10 Discussion 

Use of beam search in forward phase(Approach I) 

First, a general comment about pruning in the forward, time-synchronous phase: Ney's 

histogram pruning method works well and is easy to implement. In general, pruning time-

synchronously is probably more flexible that maintaining a beam in a phoneme synchronous 

search, as pruning is effectively performed at a finer grain. As a consequence, the overhead of 

pruning is higher for time-synchronous approaches than more phoneme or word synchronous 

approaches. 

More specifically, one sees from Figure 11 that even when the beam is just a small fraction 

of the overall number of states in the targe~FSM, recognition accuracy is quite high. This is 

particularly true for the larger task, where a beam of 20 percent of the total number of states 

is sufficient to ensure a recognition accuracy that is as high as when performing a full search. 

Use of simplified FSM in forward phase (Approach II) 

In an isolated word recognition scheme, for a vocabularly of 300 words, approach II re-

quires an average of about 1200 phoneme verifications for each utterance, or nearly half of 

the maximum, to achieve optimal search accuracy. For the smaller task, nearly 0.7 of the 

maximum number of phoneme verifications is required. In both cases, a much larger fraction 

of the maximum number of verifications is required than for beam search in order to obtain 

similar recognition performance. In this sense, the beam search is much more efficient. 
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A* search: free phoneme/syllable forward FSM, 311 word backward FSM 
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Figure 13: Performance vs. stack size for free phoneme/syllable forward search followed by full 

lexical backward search, 311 names task 

On the other hand, the overhead of performing backward phoneme synchronous DP 

matches is less than the overhead of performing time synchronous DP matches for phoneme 

states in the context of beam pruning. Time synchronous beam search performs its pruning 

at a more fine grained method than a phoneme synchronous search. It typically involves 

frequent checks on whether a state is active, whether its predecessor is active, and so on. In 

contrast, the pruning in phoneme synchronous search is at a higher level, which decides (here, 

through use of the A* stack) whether or not to match a phoneme model over the entire length 

of the utterance, or some large segment thereof. Once the decision has been made, the DP 

match for that phoneme proceeds with no local decisions on whether to match a particular 

grid point. Thus, there is less overhead. (Conceivably one could perform time-synchronous 

beam search in the backward direction also.) In this light, the notions of beam size compared 

to maximum number of states, or number of verifications compared to the maximum, cannot 

be compared directly. We should also consider pure CPU time, and for instance, show plots 

of CPU time versus performance. 

Figures 14 and 15 suggest that the A* search spends a considerable amount of time inves-

tigating paths that turn out not to be very good. Clearly, this is linked to the discrepancy 

between the forward score estimates, based on simplified FSMs, and the true path scores based 

on the target FSMs. Here, the differences between free phoneme/syllable forward FSM and 

backward lexical FSM are quite large. Providing a syllable grammar instead of a phoneme 

grammar helps a little. 

35 



# phone verifications vs stack size, 63 name task 
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Figure 14: Average number of phoneme verifications per utterance vs. maximum stack size, 63 

names task (the maximum number of phoneme verifications for this task is 584.) 
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Figure 15: Average number of phoneme verifications per utterance vs. maximum stack size, 311 

names task (the maximum number of phoneme verifications for this task is 2598.) 
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task 
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Improving the A* forward estimates, reducing the number of verifications 

In order to reduce the number of A* path expansions, two methods come to mind. The 

first is to score partial hypotheses in a more sophisticated manner, described above, which 

uses a ranked list of scores for the new partial hypothesis, each score in the list corresponding 

to a successor of the new hypothesis. This allows the stack ranking to be based on scores that 

in effect look ahead one level of expansion without performing that expansion. This method 

will clearly reduce the number expansions. However, it only affords one level of look ahead. 

The sucessor-based scores are themselves limited by the accuracy of the forward estimates. 

This brings us to the other way in which the number of path expansions may be reduced: 

making the forward esimates more accurate. This could be done by the method described in 

[13], where rather than a grammar of connected phonemes or syllables for_ the forward phase, 

a grammar of connected sub-words is used. The sub-words are 1紅 gerchunks of the words in 

the lexicon than are phonemes or syllables. The constraints of a sub-word grammar are thus 

closer to the constraints of the target grammar. Therefore the forward scores will be closer 

estimates of the true path scores according to the target grammar. This will make the A* 

search more efficient. However, the forward phase will now be more costly. 

We have not investigated either of these methods. 

Dispensing with backward search? 

Both approach I and approach II assume the use of A* search in a backward phase. 

One could question this assumption; an all forward pass method (with simple backtracking 

through pointers, and/or production of the "immortal paths" as needed) may be more suited 

to pipelining a recognition system. The forward-only A* method proposed by Noda and 

Sagayama [36] may offer a way to apply A* to a more easily pipelined system. 

11 Conclusion 

From the simple and somewhat rough comparison presented here, it seems that time-

synchronous beam search through the target finite state machine is a simpler, faster and 

more robust method than the more involved combination of simple forward time synchronous 

search followed by detailed, A* based, phoneme synchronous backward search. The former 

method can apparently provide high recognition accuracy even with a beam that is just a 

small fraction of the overall number of states in the target finite state machine. This is not 

the case for the latter approach, at least for the tasks we examined. In this light, though 

the pbmec program provides the option for using a different grammar in the backward search 

than used in the forward search, our current focus in developing the HIP telephone-based 

recognition system ,is on the simpler approach where the same finite state machine, that for 

the target task, is used in both forward and backward phases, and histogram-based beam 

pruning is used to speed up the forward search when necessary. 

｀
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The comparison presented here was quite useful to us in deciding what direction to adopt 

regarding the search component of our recognizer. However, a more careful examination of 

1) the properties of time synchronous beam search vs. phoneme synchronous beam search, 2) 

the relation between forward and backward A* estimates, and 3) experimental evaluation on 

additional tasks, is necessary before pronouncing the final word on the relative merits of the 

two approaches investigated here. 

The main purpose of this report was to describe the use of DP search in the context of 

the ATR HIP pbmec recognizer. Our particular use of DP is quite standard and close to the 

state of the art. What could be improved is the efficiency of our computer implementation of 

the search components, which still has considerable overhead, for example in maintaining a 

time-synchronous beam of active states, or managing the A* stack. Hopefully, we have made 

the use of DP search in a speech recognizer more comprehensible to the researcher not versed 

in the intricacies of this rapidly expanding domain. 
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