
TR -H -194

Dynamic Programming
for the

Prototype-Based Minimum Error Classifier

Erik McDermott

1996~5. 23

ATR人間情報通信研究所
〒619-02 京都府相楽郡精華町光台2-2 合 0774-95-1 011

ATR Human Information Processing Research Laboratories

2-2, Hikaridai, Seika-cho, Soraku-gun, Kyoto 619-02 Japan

Telephone: +81-77 4-95-1011

Facsimile: +81-774-95-1008

◎（株）ATR人間情報通信研究所

Dynamic Programming

for the

Prototype-Based Minimum Error Classifier

Erik McDermott

ATR Human Information Processing Research Laboratories,

Hikari-dai 2-2, Seika-cho, Kyoto 619-02, Japan

Abstract

Currently, most speech recognition technology involves some form of Dynamic Program-

ming (DP) to cope with the non-linear compressions and expansions of speech event durations.

In choosing the particular version of DP now used in the Prototype-Based Minimum Error

Classifier (PBMEC) (McDermott and Katagiri, 1992, 1993, 1994), we aimed to use an ap-

proach that was conventional, yet which also incorporated some of the latest advances in the

fast evolving field of search.

In this report we describe the use of one-pass DP (Sakoe 1978, Ney 1984), histogram based

pruning (Ney et al., 1994) and A* based N-best search (Soong & Huang, 1991, 1994), in the

context of PBMEC. Our primary goal in this report is to explain these different methods

and their use in PBMEC. The motivation for choosing this particular configuration comes

from considerations of speed and search accuracy. In addition, we contrast two different

approaches to speeding up the search. The first, proposed by Soong & Huang (1994), consists

in using a simple forward phase with a reduced grammar, followed by a detailed backward A*

search using the full task grammar. The second is a simple time-synchronous pruning method

proposed by Ney et al. (1994). Our results suggest that the latter method is more effective

in reducing search time for the tasks we examined.

The recognizer used throughout this study is the Prototype Based Minimum Error Clas-

sifier.

ー

Contents

1 Introduction 5

2 Outline of search module configuration

Forward search: time-synchronous one-pass DP

5

5

Histogram-based prunmg . 6

Backward search: phoneme/word synchronous A* based N-best search. 6

3 Forward search, backward search, CPU time, pruning and optimality 6

3.1 CPU time . 6

Forward search . 6

Backward search . 7

3.2 Accelerating the search while preserving optimality? 7

Pruning the forward search . 7

Using a simpler grammar in the forward search 7

4 The Recognizer

，

Local distance . 9

Discriminant functions for phoneme/word/phrase categories 9

5 One pass DP through Finite State Machine 11

6 Generating a finite state machine description file from a grammar descrip-

tion file 13

7 Beam Search 18

Maintaining a Constant Beam Size 18

Variable Beam Size 21

8 The A* algorithm for speech recognition 22

8.1 A* search . 22

Algorithm A . 24

Algorithm A* 24

8.2 A* for finding the exact N-best string candidates given an utterance and a

speech recogmzer 25

Size of the A* stack 25

Generating a new partial backward string hypothesis 26

Scoring a new partial backward string hypothesis 26

Reducing the number of hypoth・ es1s expans10ns 27

8.3 A* algorithm to speed up the search for the optimal path 28

2

ー

9 Experiments

Approach I: Forward -beam search through target FSM; Backward -A* search

through target FSM 30

30

Approach II: Forward -full search through simplified FSM; Backward -A*

search through target FSM 30

9.1 Database 31

9.2 Finite state machine design 31

9.3 Recognizer design 31

9.4 Results ... 32

Approach I, performance vs. beam width 32

Approach II, performance vs. stack size . 32

Approach II, number of phoneme verifications vs. stack size 32

Approach II, performance vs. number of phoneme verifications. 33

10 Discussion 34

Use of beam search in forward phase(Approach I) 34

Use of simplified FSM in forward phase (Approach II) 34

Improving the A* forward estimates, reducing the number of verifications . . . 38

Dispensing with backward search? 38

11 Conclusion 38

3

List of Figures

1 PBMEC at the finest gram. 10

2 Finite state machine representing a vocabulary of ATR researchers'names. . . 11

3 DP grid corresponding to a part of the finite state machine shown above. The

best DP path scores are propagated in time through the FSM. 12

4 Active states over time when using a beam of 5 states for a finite state machine

representing 4 isolated words. "Active states" are states which remain after

score-based pruning, OR the successors of such states. 19

5 Active FSM state scores over time. The states in the finite state machine are

lined up on one axis, and the DP scores of states that have not been pruned is

plotted over time. Task: 311 names task. 20

6 Beam search for time-synchronous DP (One Pass DP): maintain a list of active

states; remove states with scores below a certain threshold. 21

7 Ney's histogram pruning method: use score corresponding to the desired beam

width (number of states) as the threshold. 22

8 Number of active states over time for DP search using 1) (top) no pruning, 2)

(middle) last state score pruning 3) (bottom) histogram pruning. Histogram

pruning is a simple way of maintaining an approximately fixed number of actives

states during the search. Task = 311'isolated words. 23

9 A* generation and scoring of a new partial string hypothesis in the context of

speech recogmt10n . 28

10 FSM representing an unconstrained connected syllable grammar 32

11 Performance vs. beam size (as fraction of the maximum number of states) for

63 names task and 311 names task. 33

12 Performance vs. stack size for free phoneme/syllable forward search followed

by full lexical backward search, 63 names task 34

13 Performance vs. stack size for free phoneme/syllable forward search followed

by full lexical backward search, 311 names task 35

14 Average number of phoneme verifications per utterance vs. maximum stack

size, 63 names task (the maximum number of phoneme verifications for this

task is 584.) . 36

15 Average number of phoneme verifications per utterance vs. maximum stack

size, 311 names task (the maximum number of phoneme verifications for this

task is 2598.) ・. 36

16 Performance vs. average number of phoneme verifications per utterance, 63

names task . 37

17 Performance vs. average number of ph~neme verifications per utterance, 311

names task .. ・........................... 37

4

1 Introduction

The application of Dynamic Programming (DP) to speech recognition has enjoyed widespread

use since it was proposed [39] [34]. The purpose of the technique, in the context of speech

recognition, is usually to generate the most likely path through an array of local matches

between a given acoustic model and individual speech frames from an unknown utterance,

in an efficient manner. For a known model sequence (e.g. it is known that the utterance

should be modelled by the acoustic models for a particular word or sentence), DP provides a

solution to the time-alignment problem of how to assign the speech frames in the utterance to

acoustic models in the model sequence. When the model sequence is not known, (for example,

if the utterance could be any of a large set of words or sentences), DP allows one to compare

different model sequence assignments and find the best model sequence, e.g. the best word

or sentence model for the utterance. DP does not directly address the additional question of

finding not just the best string, but the top N-best strings; however, several schemes have

been proposed to do so [44] [42] [48]. Another key issue in the use of DP is speeding up the

search when large, complex grammars are used. Typically, some form of pruning is used.

Our primary goal in this report is to describe the particular techniques adopted in the

Prototype Based Minimum Error Classifier [32] system developed at ATR Human Information

Processing Laboratories. In addition, we contrast two approaches to speeding up the search:

1) pruning the forward search, i.e. limiting the search to a dynamically changing subset of

the finite state machine representing the task grammar, and 2) using a simpler grammar (i.e.

a smaller finite state machine) in the forward search (with no pruning), followed by A* based

search using the full set of grammatical constraints for the task, in the backward search. Based

on results for the ATR HIP Telephone Task, which involves the recognition of names spoken

in isolation, we tentatively conclude that the first approach is simpler and more efficient than

the second.

2 Outline of search module configuration

Before presenting a detailed description, we outline the system configuration and present

our motivation in choosing this particular configuration. The PBMEC system's search module

is an implementation of the following algorithms:

Forward search: time-synchronous one-pass DP

Time-synchronous search appears to offer more flexible and efficient pruning strategies

than phoneme-synchronous search; furthermore, "immortal node" trace-back can be used to

generate partial recognition results that are guaranteed to be part of the final recognition

result, before the end of the utterance is reached.

5

Histogram-based pruning

This pruning method [35) is a cheap and simple way of maintaining a constant number

of active DP grid points (alternatively, "DP states") during the forward search. This is

in contrast to pruning methods which allow the number of active states to grow larger or

smaller depending on the "difficulty" of the search. The latter approach has some appeal, but

the required computational effort is utterance dependent; the pruning parameters are thus

somewhat harder to tune. In the following we present a comparison of these two approaches.

Backward search: phoneme/word synchronous A* based N-best search

Of the many N-best algorithms proposed, Soong & Huang's [44] [13] [14] is one of the few

that is guaranteed to generate the true N-best strings -assuming a full search was used in

the forward phase. It is also not expensive computationally. We will see in the following that

the A* based backward search offers an interesting alternative to pruning for speeding up the

forward search.

3 Forward search, backward search, CPU time, pruning and opti-

mality

A key variable in the tandem of forward and backward (N-best) search will be the gram-

matical constraints used in each phase. By grammatical constraints, we mean the allowed

model sequences, as specified (in our implementation) by a finite state machine representing

a grammar for the task. In this light, we now outline the computational requirements of

the search procedure, ways in which the search can be speeded up, and how this may affect

optimality.

(It should be clear that the word "optimal" in the context of DP-based search describes

a search that yields the string (acoustic model sequence) (or N strings) with the best (or

N-best) accumulated path distance(s) through the DP grid. This notion of optimality is

(unfortunately) not directly related to the correctness of the recognition output; the recognized

string could be optimal in this sense, yet incorrect.)

3.1 CPU time

Forward search

The time-synchronous DP algorithm we use in the forward phase can be outlined as a

loop over frames of speech, and for each frame, a loop over states of the finite state machine.

Thus, the complexity of the grammar, and ensuing size of the finite state machine, typically

has a linear effect on search time of the forward phase if no pruning is used.

6

Backward search

The A* based backward phase uses a stack of partial string hypotheses to direct its search.

The search time of this phase will depend on how well the hypotheses can be evaluated. We

will see that if the same grammatical constraints are used for forward and backward phases,

the evaluation function will be exact; i.e., for a given partial string hypothesis, the evaluation

function can tell us the score of the best possible way of completing that particular partial

hypothesis. This allows an optimally efficient search with no backtracking. In this scenario,

the CPU time required for the backward search is typically much smaller than that required

by the forward search. (This is still the case if pruning was used in the forward phase -though

the guarantee of optimality is lost.)

On the other hand, if the A* phase uses a different set of constraints than the forward

phase -say, a more complex set of constraints -then the evaluation of partial hypotheses is

no longer exact, and a considerable amount of backtracking may be necessary. The closer the

forward constraints are to the backward constraints, the less backtracking is necessary.

3.2 Accelerating the search while preserving optimality?

Pruning the forward search

As the backward search, which uses scores computed in the forward phase, is typically

much faster than the forward search, the most obvious approach to speeding up the search

is to prune the forward search. This can be achieved by limiting the states searched at each

frame to a subset of "active" states, rather than considering the whole set of states in the

finite state machine. The histogram-based method we adopted is one way of mainting such a

"beam" of active states. Of course, pruning comes at a cost: pruning too heavily will harm

optimality. Though the degree of pruning can be tuned, the optimality of the search can no

longer be guaranteed. The reason for this is that the true best path may start out with a

poor score to a particular state in the beam, which may be pruned out of the search.

u・ smg a simpler grammar in the forward search

An alternative approach is to use a simpler set of constraints in the forward phase (without

pruning), and then to perform a backward A* based N-best search using the full set of

grammatical constraints for the target task. Since the grammar used in the forward phase

is much simpler than before, the forward search is much faster. Furthermore, when certain

conditions are met, the A* algorithm is able to use the scores obtained from the reduced

forward search to guide the backward search effectively, while prese切 ingthe guarantee of

optimality. However, as mentioned above, since the scores from the forward search are based

on a simpler grammar, the backward phase is not as efficient as before, and will usually require

more computational effort. It is not clear exactly how much more time will be required for

the backward phase. (If the total resulting search time becomes unmanageable, pruning of

the A* stack may be desirable. This, however, may seriously impact optimality.)

7

The concept of simple forward search followed by detailed backward search is described in

[2), [13) and [14).

The question we address here is whether this tandem of forward search with a simple

grammar followed by backward search with the full grammar is more efficient than using the

full grammar in both forward and backward phases, but with pruning in the forward phase.

In the following, we review the PBMEC recognizer assumed here, before launching into a

detailed description of time-synchronous DP, the A* algorithm for N-best string search, and

experiments investigating the two different approaches described above.

8

4 The Recognizer

The recognizer used here is the Prototype Based Minimum Error Classifier (PBMEC)

system described in (30] (32]. A discriminant function for each category to be recognized (e.g.

a phoneme, word or sentence) is defined in terms of a DP procedure to link reference vector

based phoneme models together according to the grammar of the task at hand.

Local distance

At the lowest level, the phoneme models are taken to consist of a connected sequence of

sub-phonemic states, illustrated in Figure 1. Each state is assigned a number of reference

vectors, analogous to the mean vectors used in a continuous hidden Markov model. These

are used to generate an Lp norm-based state distance e(xt, s), which is a function of a single

feature vector Xt at time t (from an utterance x『=(xい…ぷt'…，xr))and reference vectors

belonging to the state s:

e(x,,,)~[f)(x, -, げ（江戸(x,―吋）］ーく］ーも
i=l

(1)

where rf denotes the (adaptable) i-th reference vector of state s, I;;; is an adaptable positive

definite "weighting" matrix corresponding to rf, and Is is the number of the reference vectors

assigned to s. For a large (, the state distance becomes the distance to the closest reference

vector, and each state can then be seen to correspond to a category in a Learning Vector

Quantization classifier (20] [30].

Discriminant functions for phoneme/word/phrase categories

A matrix of distances Dj,T,s is defined to be a matrix where each position (t, s) contains

e(xt, s) for the states of category j. The discriminant function for each phoneme/word/phrase

j can then be defined as:

恥『）＝胃V,,(D;,r,s)]―r (2)

where Ve (Dj,T,s) represents an accumulated sum, or path distance, along a possible DP path

0 through a region of Dj,T,S, and where Sis the total number of states in category j. The

decision rule here will be to choose the category with the smallest discriminant function value:

decide CJ if gJ(x『)< gk(X『)for all k ,f. j. (3)

In previous work [30] [31] [32] we have described in detail how the Minimum Classification

Error / Generalized Probabilistic Descent framework can be used to train the above classifier.

Here, however, our focus is purely on the computational aspects of the DP calculation that is

necessary to find the best sequence of model states for a given, possibly unknown, utterance.

In the following we refer to our implementation of PBMEC as the "pbmec program". This

is the main recognizer program, that loads model files and grammar files, and can be used

，

Lp norm of state distances propagated through network

•

lb 11 /b2/ /b3/ /b4/
、ぶ

sub-phonemic states

e

t

a

t

s
s

r

o
h

ctac

e
e

to

＞

e

c
d

n
e

r
e
n

fe.lg

Reass

＿・遍

a
I
"

．．．

ロ・

ao董
璽
●
●
＿

-Iiig'薗躙
遍
ロ
・
ロ
識
口
纏
璽
口
＿

一
羅
鐵
賢
薗
畠
鵜
•
•
ロ
・
ロ

a

麟
璽
露
ロ
一

Figure 1: PBMEC at the finest grain.

for recognition of utterances or MCE/GPD training over a set of training utterances. In the

ATR HIP computing environment, typing /usr/hearing/recog/bin/$0S/pbmec by itself will

generate an extensive help message.

10

5 One pass DP through Finite State Machine

The grammar for any given task is represented as a tree structured finite state machine

(FSM). This is illustated in Figure 5 for a grammar of names of ATR HIP Laboratories

researchers . The finite state machine representation is well suited for use in a DP framework,

as the DP grid can be viewed as a set of connected states in a directed graph. The DP

calculation is guaranteed to find the lowest cost path through the graph, from start state to

end state. Note that this representation is also consistent with the classifier representation.

The PBMEC classifier states map directly onto states in the FSM. Thus, a state occuring in a

particular instance of the vowel / a/ in the FSM represents a part of the grammatical/lexical

constraints as well as a particular set of acoustic model parameters. If multiple states, or

"sub-states" are used to represent the fine temporal structure of a phoneme, they are linked

serially within that phoneme, with each sub-state usually able to loop onto itself, as shown

in 1.

Figure 2: Finite state machine representing a vocabulary of ATR researchers'names.

DP [39] [34] is the search for the shortest path through a FSM (such as the one shown in

5) given a set of local acoustic scores (representing the match between a frame of speech and

all the states in the classifier) in time. It is convenient to visualize the calculation in terms of

a score grid, with time going left to right from the beginning to the end of the utterance, and

with the model states represented vertically, from the first to the last state (see Figure 5).

In our use of DP, a path through the grid must start at the first frame and first state (i.e.

the bottom left of the grid) and end at the last frame and last state ("fixed end-points"). The

other constraints on what paths are legal are defined by the connectivity of the FSM.

Given that a path is a sequence of state-frame assignments in time, the overall path score

is the sum of the local acoustic scores corresponding to that sequence. The DP method for

finding the shortest such path is to apply the following rule to each grid point, moving over

11

鳳

s
g
i
u
i
s

DTWrule:

t-1

◎

↓
/

＠
の
）
E(t,"ch")

min(E(t-1,"ch"),
E(t-1, "a"))

＋

e(x_t, "ch")

•
time

Figure 3: DP grid corresponding to a part of the finite state machine shown above. The best

DP path scores are propagated in time through the FSM.

the length of the utterance x『frombeginning to end:

E(t,s)(x『)= e(xt, s) + min Et- T
rER,

l,r(X1) (4)

where Rs is the set of all states that may legally precede state s according to the grammar.

Application of this rule ensures that at each grid position, the cumulative distance Et,s(x『)

corresponds to the distance of the shortest path to that grid position. The distance of the

shortest path for the whole utterance is thus contained in Er,s(x『)， i.e.in the grid position

of the last frame and last state.

The overall DP computation can thus be outlined as the following procedure:

loop over frames Xt in utterance

loop over all phonetic states p in FSM

loop over pbmec sub-states s of phoneme p

calculate E(t,s)(x『)= e(xt, s) + minrER, Et-1,r(x『)
end

end

end

Using R to denote the average number of legal predecessors凡 foreach sub-state, the com-

putational effort required in this computation is of order O(T SR), i.e. the number of frames

12

in the utterance, times the number of states in the finite state machine, times the average

number of predecessors to each state. The latter number will vary with the FSivI topology.

(The FSMs we use are all left-right tree-structured within grammatical node expansions, so

all states within an expansion (e.g. between "*" nodes in fig 5) have just two predecessors:

themselves (via a self loop), and a single up-stream state. The self loops are not represented

in the FSM description, but are assumed by the pbmec program, for all phonetic states. At

grammatical nodes, such as the right-most "*" node in Figure 5, the number of predecessors

may be large.)

6 Generating a finite state machine description file from a grammar

description file

The practice so far has been for the pbmec program to read an ASCII file that explicitly

describes a finite state machine. A separate program generates this FSM description file from

a regular grammar description file. The grammar description language was inspired by HTK's

and is very similar to HTK's in expressive power. We describe the generation and structure

of FSMs to illustrate more concretely the discussion of DP and A* search in the following.

An example of a grammar description file follows.

mcdcvesuvius: cat foo.rgra

I* To convert into a finite state machine descriptor (.fsm) file,

use new_fsmify <grammar file name stem>. *I

(<root>= silence <n> silence)

(<n> = one I two I three)

This can be converted to a FSM description file as follows:

mcdcvesuvius:

mcdcvesuvius: new_fsmify foo

Got definitions in foo.rgra.

Fsmifying definitions.

Expanding <root_>

Expanding <n_>

Printing FSM to file foo.fsm

Done.

mcdcvesuvius:

13

mcdcvesuvius: cat foo.fsm

Number of states= 20

state O (<root_>) num_pred O pred () num_succ 1 succ (2)

state 1 (<_root>) num_pred 1 pred (19) num_succ O succ ()

state 2 (silence) num_pred 1 pred (0) num_succ 1 succ (3)

state 3 (<n_>) num_pred 1 pred (2) num_succ 2 succ (5 9)

state 4 (<_n>) num_pred 3 pred (8 12 17) num_succ 1 succ (18)

state 5 (o) num_pred 1 pred (3) num_succ 1 succ (6)

state 6'(n) num_pred 1 pred (5) num_succ 1 succ (7)

state 7 (e) num_pred 1 pred (6) num_succ 1 succ (8)

state 8 (c) num_pred 1 pred (7) num_succ 1 succ (4)

state 9 (t) num_pred 1 pred (3) num_succ 2 succ (10 13)

state 10 (w) num_pred 1 pred (9) num_succ 1 succ (11)

state 11 (o) num_pred 1 pred (10) num_succ 1 succ (12)

state 12 (c) num_pred 1 pred (11) num_succ 1 succ (4)

state 13 (h) num_pred 1 pred (9) num_succ 1 succ (14)

state 14 (r) num_pred 1 pred (13) num_succ 1 succ (15)

state 15 (e) num_pred 1 pred (14) num_succ 1 succ (16)

state 16 (e) num_pred 1 pred (15) num_succ 1 succ (17)

state 17 (c) num_pred 1 pred (16) num_succ 1 succ (4)

state 18 (silence) num_pred 1 pred (4) num_succ 1 succ (19)

state 19 (c) num_pred 1 pred (18) num_succ 1 succ (1)

mcdcvesuvius:

mcdcvesuvius:

mcdcvesuvius:

The pbmec program will treat FSM states as either 1) phonetic states that are associated

with a set of PBMEC parameters (i.e. reference and weight vectors) necessary to calculate the

state distance defined above 1, or 2) grammatical states that have no PBMEC parameters, and

are merely used to connect the finite state machine and collect DP scores. The grammatical

symbols typically correspond to the beginning and end of the expansion of a grammatical

category, such as for "<n>" above: the symbol for state 3 is "<IL>", beginning the expansion

for "<n>" (marked by the underbar to the right), and the symbol for state 4 is "<-n>", the

end of the expansion (marked by the under bar to the left). The symbol "@" is a grammatical

symbol inserted at the end of a sequence of phonetic states to tell the search module in

the pbmec program to remember the DP exit scores along that arc. Note that the FSMs

generated by new_fsmify are left-right tree-structured, i.e. symbols that are shared by the

initial portions of alternative definitions are represented by the same states in the FSM. (This

tree-structuring is perhaps the only significant difference in functionality between the FSM

representation/ generation we use and that used in HTK).

14

The program /usr/hearing/recog/bin/SunOS/new_fsmify, run with no arguments, will

provide the following help message:

------------Usage: new_fsmify <grammar file stem>-------------

e.g. new_fsmify my_grammar

(where my_grammar.rgra is a grammar file)

Will generate a finite state machine (. fsm) corresponding to a

regular grammar defined in <grammar file> (.gra).

Here are some of the regular grammar definition guidelines:

1) All grammatical symbols must be written as'<symbol>'

2) The highest level symbol must be a symbol called'<root>'

3) A definition must be of the form (<symbol> = [...])

4) The right hand portion above('[...]') can include:

-references to other grammatical symbols, <other_symbols>

-terminal symbols (these can have any characters OTHER than

'<''>''?''*''+''I')

5) References to grammatical symbols MUST AVOID RECURSION.

Something like (<np> = word <np>) will cause the program to crash.

The program handles regular grammars, not context free grammars.

6) <symbol>? means that this symbol is optional. Using'?'with

a terminal symbol will NOT work, eg'b?'cannot be used.

7) <symbol>+ means one or more repetitions.

8) <symbol>* means O or more repetitions.

PBMEC does NOT handle this case gracefully; for now, using the

markers'I','+'and'?'to represent O or more repetitions is recommended,

e.g. (<phrase>= <word>? I <word>+) instead of (<phrase>= <word>*)

9) Again, the characters?+ and* cannot be used with terminal symbols

10) The'I'character means'or', as in

(<name>= er i k I a 1 a in I sh i g er u)

A definition must not end with a'I', eg (<v> = a I i I u I e I o I)

is not correct.

11) There must be at least one space between the

characters'('')''='and I. (<v>=alilulelo) will not work.

example 1:

A C-V pair grammar can be defined using rules such as:

15

(<root>= <cv>)

(<cv> = <c>? <v>)

(<c> = b I d I g I p I t I k)

(<v> = a I i I u I e I o)

example 2:

A connected word grammar can be defined using rules such as:

(<root>= <word>+)

(<word>= i chi In i I s a n2 Iyo n2 Igo)

There is some redundancy, as

(<cv> = <c> <v> I <v>)・ 1.s equivalent to

(<cv> = <c>? <v>);

however, the latter produces a more compact finite state machine.

The reason for this is that the FSM is LEFT-RIGHT tree structured, and

without an explicit declaration that something is optional, it will not

group identical right-hand portions.)

12) (added Jan. 1996) Definition of context loops:

Context loops (e.g. phoneme pair/triple grammars) can be defined

using the special category <CLOOP-something>. Such symbols will be expanded

so as to loop all arcs back to _legal_ entry states, as defined by the presence

of left context <L-something> and right context <R-something> markers.

Thus, <L-a> b <R-c> refers to a'b'in the left context of an'a'and

right context of a'c'. It will be looped back to any'c's that will accept

a'b'as their left context, via the use of a <L-b> marker, or the use of no

marker at all. Similarly, this'b'will refuse the connection (from the left)

of any states that are not'a'states.

More examples:

<L-a> b <R-*> will only accept'a'states on the left, but can loop back to anything.

<L-*> b <R-c> will accept anything on the left, but wiil loop back only to'c'states.

Specifying start/exit states:

'<CLOOP_START> something'will allow a connection from the start of the

loop.'something <CLOOP_EXIT>'will allow a connection to the end of the

loop. Only arcs that have these special hooks will be connected to the

start/end of the loop. However, if <CLOOP_START> is not used at all

16

all arcs will be connected to the start of the loop, and similarly for

<CLOOP_EXIT>.

Example of a simple phoneme context grammar:

(<root>= pau <CLOOP-phon> pau)

(<CLOOP-phon> = <CLOOP_START> a <R-*>

<L-a> b <R-c>

<L-b> c <R-d>

<L-c> d <R-a>

<L-d> a <CLOOP_EXIT>)

bugs, problems to mcdchip. atr. co. jp

Of course, the representations and language definitions used here are subject to rapid

change; the above describes only the choices current at the time of this writing. Some is~ues

that may influence future changes include using a grammar definition language that is com-

patible with that used in other systems at ATR and elsewhere (e.g. HTK) and modifying

the pbmec program to read the grammar description file directly and generate the finite state

machine on the fly (as is done in HTK), rather than generating the latter in a separate step.

17

7 Beam Search

A typical approach to pruning time-synchronous DP search is, for each frame that is being

processed, to maintain a list of active states and remove states with scores below a certain

threshold. The main DP loop described above (5) is thus modified to be:

loop over frames Xt in utterance

loop over active phonetic states p in FSM

loop over pbmec sub-states s of ph~neme in p

calculate E(t,s) (x『)= e(xt, s) + minrER, Et-1,r(x『)

end

calculate new threshold

using new threshold, generate new list of active phonetic states

end

end

Beam search involves a number of additional steps, of course, that are not diplayed here.

For instance, within the loop over the sub-states in a phoneme, a is checked to test whether

the ,sub-state being considered is active or not. Furthermore, there must be a test whether

the predecessor considered is active or not. Also, DP scores must be propagated through

grammatical states that connect phonetic states together. This propagation occurs after one

loop over the active phonetic states. Backpointers are also propagated. We should also

mention that there are two vectors of DP scores, old and new; pointers to these vectors are

switched at the end of the loop over active phonetic states in order to update the old scores.

Figure 4 illustrates which states in the finite state machine are active over time when using

pruning of this sort. Figure 5 shows both the state identities and their accumulated DP scores

over time.

Maintaining a Constant Beam Size

The method proposed by Ney et al. [35] is to choose this threshold so as to preserve a

constant number of states (corresponding to a desired beam width) during the DP process.

This can be done by forming a cumulative histogram of state scores, i.e. that represents how

many states have a score greater than a given score -see figures 7 and 7. The cumulative

histogram can then be used to choose a threshold corresponding to a particular number of

states. The advantage of this method is that it is very inexpensive computationally to form

the above histogram and choose the threshold. Contrasted to methods where ranked lists or

heaps of active states are maintained, this method is very simple.

The accuracy of this pruning method depends on the number of bins used to form the

histogram; in practice, we have found that using a number that is 10 percent of the desired

beam width is sufficiently accurate for a broad range of beam widths. More bins could be

used at negligible computational cost.

18

Active FSM states over time
BS

＞
＞

．

>
>
0
0
0
1

u

n

.

-

u

r

-

r

o

@
p
a
@
o
d
＠
ー

m
四
＠
，

C
h
a
d
a
＠
ー

Sh
＠

.
_
r
ー

g
a
@
0
1
a
k
<
-
5
p
a
V

V

30

25

0

5

2

1

#
 B
P
3
l
S

10

5

ti削11111冊Ill

,111111111,111111111111111

11111111111111111

IIIIIIIIIIIIIHIII闘圃闘Iii

◎

Ill軋lklkllllllll

111111111111111111111111111111哨lllillilllllll

111~1胤l!lllllllllllll!IMIII軋11111,,

,111111111111111111111111111111間"

a
＠罷置l

a

―
,111111111111111111111111111,1111

<111111111り111~1柑111,11\(

,111111111111111111111111111:1111,1111,

11111,111,1111111i11111111111,11,1,1111111111111

<IIIIIHIIIIII冊りII鼎1冊Ill

11,111り1111肌1111,111

1111111111111

1111111

゜゚
20 40 60 80 100

Frame#
120 140 160 180 200

Figure 4: Active states over time when using a beam of 5 states for a finite state machine

representing 4 isolated words. "Active states" are states which remain after score-based pruning,

OR the successors of such states.

19

Active FSM state scores over time

500

400

~300

嘉

百200

100

゜4000 、--.LTV .I づプ” ----200

State# 0 0
Frame#

Figure 5: Active FSM state scores over time. The states in the finite state machine are lined up

on one axis, and the DP scores of states that have not been pruned is plotted over time. Task:

311 names task.

20

Bar graph of state scores
90

80

70

60

§50

巨。40

30

20

10

0~ 20 40 60 80 100 120 140
State#

Figure 6: Beam search for time-synchronous DP (One Pass DP): maintain a list of active states;

remove states with scores below a certain threshold.

Variable Beam Size

The histogram pruning method is effective given the goal of choosing a threshold that

maintains a constant number of active states. Our motivation for adopting this scheme is

simply to control the computational requirements of the search, which will be directly pro-

portional to the specified beam width. This goal, of course, is not an absolute. Choosing a

threshold is not necessarily tied to controlling the beam width accurately. It might be de-

sirable to prune heavily when the top scores are much better than the other scores (i.e. the

system is "confident" in its top scores and doesn't need to examine other DP paths), and

prune much less when the top scores are not much better than the other scores. In other

words, the aggressiveness of the pruning could be a function of the difficulty in recognizing

a particular utterance. Schemes that use the score of the last state in the DP network (such

as that used in HTK) are similar in spirit in that one is typically less confident in a DP path

at the beginning of the search than at the end, and thus the pruning can be increasingly

aggressive as one progresses through the utterance.

In order to illustrate the difference between these schemes, we compared the number of

active states over time for a search using histogram pruning with a search using the score of the

last state as the pruning threshold (Figure 8). One can see from this figure that histogram

pruning effectively sets an upper limit on the number of active states at any frame of the

search, while the number of active states varies widely for pruning based on the score of the

last state.

21

Distribution of state scores

140

120

100

sei-eis io J
e
q
w
n
N

80

60

40

20

I I I

＇

「］ I I

＇

゜
0
2

30 40 50 60
DTW Score

70 80 90

Figure 7: Ney's histogram pruning method: use score corresponding to the desired beam width

(number of states) as the threshold.

8

The A* algorithm for speech recognition

8.1 A* search

The premise of A* search [33] is that the problem at hand is some sort of graph search

Loosely defined, a graph is a set of nodes, some pairs of which are connected

by a (directed) arc, from one member of each pair to the other.

recognition, nodes will typically represent a phonetic symbol, and the arcs in the graph will

be determine-d by the lexical and grammatical constraints of the task. Furthermore, the cost

of a particular path through the graph will typically be related to a probability or distance of

a match between observed (input) speech and an acoustic model for the phonetic symbol of

problem.

In the context of speech

each node along the path.

A general procedure for finding a complete path through the graph is to maintain a stack

of partial paths (paths that originate with the start node, but have not yet reached the end

node), use path costs to order this stack somehow, and expand the path at the top of the

stack. Expansion of a path consists in creating new paths that now contain, in addition to the

parent path, all the successor nodes that can be reached from the nodes on the parent path.

22

Number of active states over time
3000

2500

0

0

0

0

0

0

0

5

0

2

1

1

sap3lS a

>
 !
P
B
J
O
」

a
q
w
n
N

500

Full beam

Pruning with last state score

Beam size = 100, histogram method

゜゚
20 40 60 ao mo 120 140 mo mo 200

Frame#

Figure 8: Number of active states over time for DP search using 1) (top) no pruning, 2) (middle)

last state score pruning 3) (bottom) histogram pruning. Histogram pruning is a simple way of

maintaining an approximately fixed number of actives states during the search. Task = 311

isolated words.

23

The new paths are then inserted into the ranked stack. When a path popped from the stack

contains the end node (or "goal" node), it is output as a complete path, and the procedure

terminates . If the stack is ranked in an arbitrary or inefficient manner, there is of course

no guarantee that the path found through this procedure is a minimum cost path through

the graph. If the stack is ordered by putting the longest paths at the top of the stack, the

procedure ressembles a depth-first strategy, and if the shortest paths are put at the top of the

stack, the procedure corresponds to a breadth-first strategy.

Algorithm A

More specifically, the TOTAL score estimate f'(p) of a complete path hypothesis p con-

strained to go through node n is defined as:

J'(p) = g(n) + h'(n), (5)

where g(n) is the actual score of an optimal path from the start node to node n (corresponding

to the partial path that has been explicitly generated), and h'(n) is the score estimate from

node n to the end node (corresponding to the remaining, not-yet-generated path between node

n and the end node). f'(p) is the evaluation function that will be used to rank hypotheses

during the search. The search procedure can then be outlined as follows:

• Initialize a stack of partial path hypotheses with the start node.

• LOOP:

1. If the result stack contains N complete paths, exit.

2. Take the top partial path off the hypothesis stack.

3. If it is a complete path, put it on the result stack.

4. If it is not a complete path, generate all its successor nodes, and put the resulting

paths (original path plus successor node) on the stack. Use f'(p) to rank the stack.

5. goto LOOP

This general procedure, using an evaluation function to rank the stack, is referred to in

(33] as algorithm A.

Algorithm A*

If the estimate h'(n) is a lower bound (i.e., a better score) of the true value h(n), the

first complete path (i.e., the first path to reach the end node) output to the result stack is

guaranteed to be the true best path through the graph; the second complete path output is

guaranteed to be the next best path through the graph, and so on. When h'(n) satisfies this

condition for ad両 ssibility,the search algorithm is called algorithm A*.

The reason A* outputs the best path first can be described informally by considering that

the total path score estimate, J'(p), is always lower in cost than the true path score f (p).

Since f'(p) is used to rank the stack, the top path on the stack always has a score that is at

24

least as good as that of the true best path. Since A* always chooses the top path on the stack

for expansion/output, if we suppose that the first path output by the A* search was NOT

optimal, i.e. that f'(p) was larger than f(p), we reach a contradiction [33].

It is shown in [33] that the closer the estimate h'(n) is to the true value, h(n), the smaller

the number of hypotheses that need to be checked. If the estimate is equal to the true value,

the search will find the best path(s) in the smallest possible number of partial path extensions.

(Note: in [33], the general graph search procedure actually generates a search graph, not

a stack of paths. The best path is found at the end of the search by tracing back through the

search graph. A search graph is a more compact representation than a list of paths, as the

overlapping parts of different partial paths are not duplicated in the graph, whereas they are

duplicated in the list. Many current applications of N-best string search in speech recognition

use a search graph to represent the N-best candidates [45] [12].)

8.2 A* for finding the exact N-best string candidates given an utterance

and a speech recognizer

A* search can be used in the context of speech recognition to generate the N-best string

candidates given an unknown utterance. Given a finite state machine representing the gram-

matical/lexical constraints for a speech recognition task, the recognition problem can be

formulated as a graph search problem. The scoring of paths through the graph will be related

to the local matches between input frames and the acoustic models used by the recognizer.

It is shown in (44] how Viterbi scoring can be used to generate partial path score estimates

that satisfy the A* admissibility constraint.

The "tree-trellis (forward-backward) algorithm" can be outlined as follows:

• 1. For a given utterance, perform a time synchronous DP forward pass through the

finite state machine, storing accumulated forward scores to each grammar node for

each frame.

2. Perform an A* search starting at the last state of the finite state machine. Ex-

tend and score paths backwards, adding the backward scores to the forward scores

generated in (1) to obtain a total string score.

The A* search component here is essentially as described above, except that here the

search is performed backwards, from the end node to the start node.

Size of the A* stack

If the same finite state machine is used for both forwards and backwards scoring, the total

path scores will be exact, i.e. the estimates will be equal to the true scores, and the search can

directly follow the best path backwards, with no need to investigate paths of unknown ultimate

merit. In this case, a stack of size N will be sufficient to generate the N-best hypotheses.

If the forward estimates are NOT exact, no restriction must be placed on the size of the

stack in order to generate the true N-best hypotheses. Conversely, if in the interest of reducing

25

computation time, a restriction on stack size is enforced, the N-best hypotheses found by the

A* search are not guaranteed to be the true N-best hypotheses.

In the following we describe this procedure in more detail.

Generating a new partial backward string hypothesis

A parent string hypothesis, taken from the top of the stack, is extended by generating all

possible backward word contents through the finite state machine (i.e., all possible successors

of the hypothesis), starting from the left-most side of the parent hypothesis.

For example, let us say the stack contained the following partial hyp?theses:

1. "jimukyoku desu"

2.''desu"

3. "kaigi desu"

4. "desu ka"

Each of these hypotheses has a single evaluation score (f'(p) below), as well as a vector of

backward DP scores over time. The backward scores represent the DP scores from the end of

each hypothesis string to its beginning (e.g., for the first hypothesis, the DP scores through

"desu" and then through "jimukyoku"), matched backward (i.e. starting at the top right of

the DP grid) over the entire length of the utterance.

Being on top of the stack, "jimukyoku desu" will be removed, and・all its successors gen-

erated. Assuming that "kaigi" is a possible successor, then it could be extended to "kaigi

jimukyoku desu."

Scoring a new partial backward string hypothesis

The new word content ("kaigi", in the example) is backward-DP matched against the entire

utterance, in an isolated word fashion, but using the parent hypothesis'vector of backward

scores over time to initialize the top row of the backward-DP match.

The backward DP match generates a new backward score vector in the bottom row of the

DP grid. This vector is added to the forward score vector at the edge of the new word content,

yielding a total score vector. The best score in this vector is used as the overall score of the

new hypothesis. This score will be used to insert the hypothesis into the stack in the right

position. Figure 8.2 describes how the forward and backwai・d scores are added to generate a

complete path score.

The total score of the new path, "kaigi jimukyoku desu", is used to reinsert the new path

back into the stack, which might now be:

1. "desu"

2. "kaigi jimukyoku desu"

3. "kaigi desu"

26

4. "desu ka"

The same procedure is performed for all the other successors of the parent hypothesis,

"jimukyoku desu." The expanded and scored successor paths are all re-inserted into the

stack, and the procedure is repeated.

More formally, the total score of a path extension p to grammatical node m is defined as:

f'(p) = m如 (g(m,t) + h'(m, t)) (6)

This definition follows that in equation (5), with the addition of the time index (corresponding

to the utterance frames). Here, g(m, t) corresponds to the explicitly, backward-generated

scores over time for the best partial path from the end node back to node m, and h! (m, t)

corresponds to the best forward scores (from start node to node m) over time, generated in

the time-synchronous forward DP search. While the string content of the backward-generated

g(m, t) is known (in the above example, this corresponds to "kaigi jimukyoku desu"), it is not

clear what the string content of h'(m, t) is. What matters is that h'(m, t) is a lower bound

on the cost of the optimal path between the start node and node m. Since DP was used in

the forward phase to generate h'(m, t), this admis迅ibilitycondition is satisfied.

Using f'(p) to rank the stack of hypotheses, the A* search proceeds from the encl node to

the start node, continually extending partial paths backwards by one lexical unit at a time.

The first complete path(s) output by the search will be the best path(s) through the finite

state machine, given the particular utterance and the set of model parameters.

Reducing the number of hypothesis expansions

As each expansion of a partial hypothesis corresponds to a backward DP matching (in the

above example, of the word "kaigi"), it is very desirable to reduce the number of expansions. It

is shown in [13] how the search can be made more efficient by performing a kind of look-ahead

(or look-back?), which explicitly considers the successors to a new partial path.

Instead of using the overall best forward scores to node m, as described above, one can

consider the best forward scores from all the possible successors (moving backwards through

the finite state machine) to node m, taken individually. In other words, a separate forward

score vector h'(m, t) is used for each possible successor. The merging of h'(m, t) and the back-

ward score vector g(m, t) is then performed for each of the successors, giving each successor

a score. The evaluation score of the new partial hypothesis is based on the best successor (as

before), but a ranked list of the other successors is attached to the new partial hypothesis,

which is re-inserted back into the stack. When, at a later stage of processing, that partial

hypothesis is removed from the top of the stack for expansion, the score of the next best

successor is used to give the same partial hypothesis a new evaluation score; this is in turn

re-inserted into the stack, along with the 1-best successor extension of the hypothesis.

This more detailed scoring of a new hypothesis allows the search to avoid expanding

successors which turn out not to be very good. Thus, the overall number of expansions is

reduced. We have not yet implemented this procedure.

27

1) Partial Backward Hypothesis:
e.g. "jimukyoku desu"

backward scores

2) Backward DTW

of "kaigi"

new bkwd scores
ィ― -~,'I'-,,. -々---fwd scores , 、，9 、- ---- ---

, , , ,、, ,--- -- ---
, ,, ,, ------ ----

ヽヽ ，＇ ，ヽ,---- 、-- ----,、, ,, ,, --- --
、＇，ヽ,,- ,, ----------

--

Nth

grammar
node

Mth
grammar
node

, , , ,、,,、-----~、-:----- .
,, ------ ゞ，、、クヽ __ FORWARD DTW Best forward paths.

、,--~ 咋名--
;{'1.-a"'- String contents could be different

t=O TIME
~

t=T

Figure 9: A* generation and scoring of a new partial string hypothesis in the context of speech

recognition

8.3 A* algorithm to speed up the search for the optimal path

So far we have stressed the ability of the A* algorithm .to produce the true N-best string

candidates efficiently (assuming that the forward scores are admissible, i.e. that no pruning

is used in the forward phase, and that the grammatical constraints of the forward phase are

either the same as or looser than those used in the backward phase.) However, the fact

that the search allows one to use in the forward phase a looser set of constraints suggests an

application of A* that goes beyond finding the N-best candidates: speeding up the overall

search by using a simplified grammar in the forward phase, followed by an A* search using

the full grammar in the backward phase. This application has been investigated by Huang

et al. [13] [14]. It is not clear, however, how much more efficient this procedure is. The

simpler the forward constraints, the faster the forward search, but the slower the backward

A* search. When the forward constraints are much weaker than the backward constraints

(the latter being the "final" set of constraints for the target task), the forward score estimates

are much smaller than the true forward scores. The A* admissibility condition is satisfied, but

the search now has to evaluate more candidates that at first seem promising but turn out to

have high costs. However, there may be a combination of forward and backward constraints

that balances the forward and backward search costs in a manner that yields a lower overall

search cost than a full search, or even than a beam search (up to certain beam sizes). In

addition, as mentioned above, the stack used during the A* search can be limited to a preset

maximum size. In general, this removes the guarantee of optimality, but may effectively speed

28

up the search, while preserving good recognition accuracy. We investigate these questions in

the next section.

29

9 Experiments

In the preceding, we described 1) a fixed-width beam pruning method for time-synchronous

dynamic programming in the forward phase, and 2) an A* based method that allows both

a) generation of N-best candidates and b) a possibly faster overall search by using a simple

grammar in the forward time-synchronous phase, followed by an A* search using the full

target grammar. We also mentioned that it might be desirable to prune the stack used during

A* search, in order to reduce computational time.

We aimed to compare the recognition accuracy and computational cost of 1) and 2b).

Specifically, given a finite state machine that represents the target task (e.g. isolated word

recognition for a given vocabulary), and a smaller finite state machine that represents a simpler

set of constraints (i.e., one that overgenerates the target strings), we compared:

Approach I: Forward -beam search through target FSM; Backward -A*

search through target FSM

Same target task finite state machine backwards and forwards, but various degrees of

pruning in the forward search (the histogram pruning method of Ney et al. [35]) (followed by

A* search in the backward phase to generate the N-best candidates).

Cost. The bulk of the computation occurs in the forward pass; the backwards A* search

merely finds the N-best string candidates, which for a small N, does not significantly affect

the overall search time. Using histogram beam pruning, the cost is directly proportional to

the length of the utterance and the beam width.

Accuracy. As beam pruning is used, the forward scores are not guaranteed to be the true

forward scores; there is no guarantee of A* admissibility in the N-best search. The accuracy

is linked to the beam width, but the precise relationship is unknown.

Approach II: Forward -full search through simplified FSM; Backward -

A* search through target FSM

No pruning but use of a simplified FSM (e.g. unconstrained phoneme grammar or un-

constrained syllable grammar) in the forward pass, followed by a backward A* search using

a finite state machine corresponding to the target task. Partial path hypotheses will be ex-

panded backwards one phoneme at a time; only phoneme successors that are allowed by the

target finite state machine will be considered.

Cost. The forward phase is now a very small component of the overall search time.

It is the backward phase that essentially determines the overall search cost. Each partial

path expansion involves a backward DP matching (alternatively, "phoneme verification") of

a (legal) successor phoneme. These ve;ifications are computationally expensive. The overall

cost of the backward search is difficult to estimate, as it depends on the relation between

the forward estimates (based on the simple forward grammars) and the true scores according

30

to the backward (target) grammatical constraints. Limiting the stack size offers a way of

controlling the search cost.

Accuracy. If the stack size is not limited, the forward scores are admissible, and the A* al-

gorithm used in the backward phase is optimal; i.e., it will find the best string candidate given

the utterance and the model parameters. (Of course, the best candidate is not necessarily the

correct one.) If the stack size is limited, the guarantee of optimality is lost.

9.1 Database

The database we used to investigate these two approached for speeding up the search

is a set of utterances recorded at ATR HIP Laboratories for the purpose of designing a

speaker independent telephone-based isolated word recognition system, that would recognize

the names of HIP researchers and forward telephone calls to them. We used 570 utterances

for training, 114 for testing, from about 40 speakers, recorded at 8 kHz over the telephone.

The utterances were transcribed using a set of 25 phonemes. Speech frames were represented

as 16 FFT Bark scale coefficients, calculated every 5 ms with a window size of 20 ms.

9.2 Finite state machine design

The new_fsmify program described above (in the ATR HIP environment, /usr /hearing/recog/bin/new _fs

was used to generate two left-right tree-structured finite state machines for vocabularies of 63

names and 311 names, respectively. These are the two target tasks. In addition, finite state

machines were generated for a much smaller set of constraints: 1) an unconstrained conne如ed

phoneme grammar, 2) an unconstrained syllable (mora) grammar (the latter is illustrated in

Figure 9.2). In order to speed up the backward A* search after a forward search with the

simple FSMs, right-left tree-structured FSMs for the target tasks were generated. These are

used to direct the A* search through only the lexically meaningful paths of the unconstrained

phoneme/syllable FSM.

9.3 Recognizer design

As no labels were available, a segmental k-means procedure (in the ATR HIP environment,

/usr/hearing/recog/bin/kmeans_seg) was used to automatically segment the utterances, and

output a set of sub-phonetic states with accompanying mean vectors for each phoneme. These

were used to initalize the PBMEC model (with the (diagonal) weighting matrix initialized at

the identity matrix). MCE/GPD training was performed using a full beam (i.e. no pruning)

for 10 epochs and different values of the loss function parameter Ql [32], for the 63 names

recognition task. On testing data, again with a full beam, the best set of reference vectors

produced a correct recognition rate of 95.6 percent.

31

Figure 10: FSM representing an unconstrained connected syllable grammar

9.4 Results

Approach I, performance vs. beam width

Figure 11 contrasts test data performance for the two name recognition tasks as a function

of beam size, expressed here as a fraction of the total number of states in the finite state

machine. The computational cost of the search is directly linked to the beam size, which,

through the histogram pruning method, is nearly constant throughout the search.

Approach II, performance vs. stack size

Ideally, Approach II would be fast enough that it would not require limiting the stack size.

Nonetheless, we investigated the impact on recognition accuracy of limiting the stack size.

Figures 12 and 13 show test data performance for the two name recognition tasks as a

function of stack size. The size of the vocabulary used (63 or 311) is the largest that the stack

will ever grow, corresponding to the total possible number of paths through the finite state

machine.

Approach II, number of phoneme verifications vs. stack size

The limit on stack size does not directly reflect the computational cost of the search.

Rather, it is the number of phoneme verifications during the backward phase that will deter-

mine computation time. Every time a partial path is extended backward by one phoneme, a

new phoneme-synchronous backward-DP procedure must be carried out over the whole length

(or a large segment) of the utterance. (We refer to this match as a "phoneme verification.")

Thus, the more extensions required by the A* algorithm, the slower the search. We first

show the average number of phoneme verifications per utterance required by the A* search

32

／

"Exact" search: forward FSM = backward FSM

100

95

90

8

5

8

0

7

5

7

0

6

5

erep 1sa1'1::iaiio::i 1ua::JJad

63wo「ds

311 words

60

55

50。
0.2 0.4 0.6 0.8 1
beam size(# active states) as fraction of total# states

1.2

Figure 11: Performance vs. beam size (as fraction of the maximum number of states) for 63

names task and 311 names task.

as a function of the limit on stack size, for both target tasks, in figures 14 and 15. Here the

unconstrained syllable grammar was used in the forward phase.

Approach II, performance vs. number of phoneme verifications.

Finally, we show plots of performance vs. the number of phoneme verifications, indirectly

controlled by limiting the size of the stack, in figures 16 and 17. Again, the unconstrained

syllable grammar was used in the forward phase.

33

A'search: free phoneme/syllable forward FSM, 63 word backward FSM

100

90

8

0

7

0

6

0

l
l
)
l
l
p
)
S
8
)
'
)
0
8
J
J
 0
 :J
)
U
8
:
>
J
a
d

50

phoneme fwd FSM

400
10 20 30 40 50

size of stack in bkwd pass
60 70

Figure 12: Performance vs. stack size for free phoneme/syllable forward search followed by full

lexical backward search, 63 names task

10 Discussion

Use of beam search in forward phase(Approach I)

First, a general comment about pruning in the forward, time-synchronous phase: Ney's

histogram pruning method works well and is easy to implement. In general, pruning time-

synchronously is probably more flexible that maintaining a beam in a phoneme synchronous

search, as pruning is effectively performed at a finer grain. As a consequence, the overhead of

pruning is higher for time-synchronous approaches than more phoneme or word synchronous

approaches.

More specifically, one sees from Figure 11 that even when the beam is just a small fraction

of the overall number of states in the targe~FSM, recognition accuracy is quite high. This is

particularly true for the larger task, where a beam of 20 percent of the total number of states

is sufficient to ensure a recognition accuracy that is as high as when performing a full search.

Use of simplified FSM in forward phase (Approach II)

In an isolated word recognition scheme, for a vocabularly of 300 words, approach II re-

quires an average of about 1200 phoneme verifications for each utterance, or nearly half of

the maximum, to achieve optimal search accuracy. For the smaller task, nearly 0.7 of the

maximum number of phoneme verifications is required. In both cases, a much larger fraction

of the maximum number of verifications is required than for beam search in order to obtain

similar recognition performance. In this sense, the beam search is much more efficient.

34

A* search: free phoneme/syllable forward FSM, 311 word backward FSM

90

80
syllable fwd FSM

0

0

0

0

7

6

5

4

l
l
)
l
l
p
)
S
8
)
'
p
a
J
J
O
:
J
)
U
8
:
J
J
a
d

30

phoneme fwd FSM

20。
50 100 150 200

size of stack in bkwd pass
250 300

Figure 13: Performance vs. stack size for free phoneme/syllable forward search followed by full

lexical backward search, 311 names task

On the other hand, the overhead of performing backward phoneme synchronous DP

matches is less than the overhead of performing time synchronous DP matches for phoneme

states in the context of beam pruning. Time synchronous beam search performs its pruning

at a more fine grained method than a phoneme synchronous search. It typically involves

frequent checks on whether a state is active, whether its predecessor is active, and so on. In

contrast, the pruning in phoneme synchronous search is at a higher level, which decides (here,

through use of the A* stack) whether or not to match a phoneme model over the entire length

of the utterance, or some large segment thereof. Once the decision has been made, the DP

match for that phoneme proceeds with no local decisions on whether to match a particular

grid point. Thus, there is less overhead. (Conceivably one could perform time-synchronous

beam search in the backward direction also.) In this light, the notions of beam size compared

to maximum number of states, or number of verifications compared to the maximum, cannot

be compared directly. We should also consider pure CPU time, and for instance, show plots

of CPU time versus performance.

Figures 14 and 15 suggest that the A* search spends a considerable amount of time inves-

tigating paths that turn out not to be very good. Clearly, this is linked to the discrepancy

between the forward score estimates, based on simplified FSMs, and the true path scores based

on the target FSMs. Here, the differences between free phoneme/syllable forward FSM and

backward lexical FSM are quite large. Providing a syllable grammar instead of a phoneme

grammar helps a little.

35

phone verifications vs stack size, 63 name task

400

0

0

0

0

0

0

5

0

5

0

5

0

3

3

2

2

1

1

（文
8
<
;

11
x
e
 E
)
 SUO!l8:l!J!」
e
>
e
E
a
u
o
4
d
 J
O
」

a
q
u』
n
N

500
10 20 30 40 50

Maximum stack size
60 70 80

Figure 14: Average number of phoneme verifications per utterance vs. maximum stack size, 63

names task (the maximum number of phoneme verifications for this task is 584.)

phone verifications vs stack size, 311 name task
1400

0

0

0

0

0

0

0

0

0

0

0

0

2

0

8

6

4

2

1

1

(
8
6
S
G
 =
X
l
l
 E
)
 SUO!lll:l!J!」
e
>
e
E
e
u
o
4
d
J
 0
」

e
q
w
n
N

゜゚
50 100 150 200

Maximum stack size
250 300

Figure 15: Average number of phoneme verifications per utterance vs. maximum stack size, 311

names task (the maximum number of phoneme verifications for this task is 2598.)

36

Perfo「mancevs # phone verifications, 63 name task
100

95

90

5

0

5

0

8

8

7

7

e1
丹
1sa1'IOaJ」
oo
1ua:>Jad

65

60

唸。 1 00 150 200 250 300 350
Number of phoneme ve「ifications(max= 584)

400

Figure 16: Performance vs. average number of phoneme verifications per utterance, 63 names

task

Performance vs # phone verifications, 311 name task
90

80

0

0

0

7

6

5

g

B
p
)
S
6
)
'
p
a
J」
0
0
)
U
6
:
J
J
6
d

40

300
200 400 600 800 1000 1200

Number of phoneme verifications (max= 2598)
1400

Figure 17: Performance vs. average number of phoneme verifications per utterance, 311 names

task

37

Improving the A* forward estimates, reducing the number of verifications

In order to reduce the number of A* path expansions, two methods come to mind. The

first is to score partial hypotheses in a more sophisticated manner, described above, which

uses a ranked list of scores for the new partial hypothesis, each score in the list corresponding

to a successor of the new hypothesis. This allows the stack ranking to be based on scores that

in effect look ahead one level of expansion without performing that expansion. This method

will clearly reduce the number expansions. However, it only affords one level of look ahead.

The sucessor-based scores are themselves limited by the accuracy of the forward estimates.

This brings us to the other way in which the number of path expansions may be reduced:

making the forward esimates more accurate. This could be done by the method described in

[13], where rather than a grammar of connected phonemes or syllables for_ the forward phase,

a grammar of connected sub-words is used. The sub-words are 1紅 gerchunks of the words in

the lexicon than are phonemes or syllables. The constraints of a sub-word grammar are thus

closer to the constraints of the target grammar. Therefore the forward scores will be closer

estimates of the true path scores according to the target grammar. This will make the A*

search more efficient. However, the forward phase will now be more costly.

We have not investigated either of these methods.

Dispensing with backward search?

Both approach I and approach II assume the use of A* search in a backward phase.

One could question this assumption; an all forward pass method (with simple backtracking

through pointers, and/or production of the "immortal paths" as needed) may be more suited

to pipelining a recognition system. The forward-only A* method proposed by Noda and

Sagayama [36] may offer a way to apply A* to a more easily pipelined system.

11 Conclusion

From the simple and somewhat rough comparison presented here, it seems that time-

synchronous beam search through the target finite state machine is a simpler, faster and

more robust method than the more involved combination of simple forward time synchronous

search followed by detailed, A* based, phoneme synchronous backward search. The former

method can apparently provide high recognition accuracy even with a beam that is just a

small fraction of the overall number of states in the target finite state machine. This is not

the case for the latter approach, at least for the tasks we examined. In this light, though

the pbmec program provides the option for using a different grammar in the backward search

than used in the forward search, our current focus in developing the HIP telephone-based

recognition system ,is on the simpler approach where the same finite state machine, that for

the target task, is used in both forward and backward phases, and histogram-based beam

pruning is used to speed up the forward search when necessary.

｀

38

The comparison presented here was quite useful to us in deciding what direction to adopt

regarding the search component of our recognizer. However, a more careful examination of

1) the properties of time synchronous beam search vs. phoneme synchronous beam search, 2)

the relation between forward and backward A* estimates, and 3) experimental evaluation on

additional tasks, is necessary before pronouncing the final word on the relative merits of the

two approaches investigated here.

The main purpose of this report was to describe the use of DP search in the context of

the ATR HIP pbmec recognizer. Our particular use of DP is quite standard and close to the

state of the art. What could be improved is the efficiency of our computer implementation of

the search components, which still has considerable overhead, for example in maintaining a

time-synchronous beam of active states, or managing the A* stack. Hopefully, we have made

the use of DP search in a speech recognizer more comprehensible to the researcher not versed

in the intricacies of this rapidly expanding domain.

References

[1) Amari, S. (1967). A Theory of Adaptive Pattern Classifiers. IEEE Transactions, EC-16,

No. 3, pp. 299-307.

[2) Austin, S., Schwartz, R. and Placeway, P. (1991). The Forward-Backward Search Alga-

rithm. Proceedings of the IEEE, ICASSP-91, pp. 697-700.

[3) Bates, M., Bobrow, R., Fung, P., Ingria, R., Kubala, F., Makhoul, J., Nguyen, L.,

Schwartz, R. and Stallard, D. (1993). The BBN/HARC Spoken Language Understanding

System. Proceedings of the IEEE, ICASSP-93. pp. II-111-114.

[4) Bottou, L. (1991). Une Approche theorique de l'Apprentissage Conne磁oniste;Applica-

tions a la reconnaissance de la Parole. PhD Thesis, Ch. 3, Universite de Paris Sud, Centre

D'Orsay. (In French).

[5) Chang, P.-C. and Juang, B.-H. (1991). Discriminative乃ainingof Dynamic Programming

Based Speech Recognizers. Proceedings of the IEEE ICASSP-91, pp. 549-552.

[6) Chang, P.-C. and Juang, B.-H. (1992). Discriminative Template Training for Dynamic

Programming Speech Recognition. Proceedings of the IEEE, ICASSP-92, pp. I:493-6.

[7) Chang, P.-C. and Juang, B.-H. (1993). Discriminative Training of Dynamic Programming

Based Speech Recognizers. IEEE Transactions on Speech and Audio Processing, Vol. 1,

No. 2, April 1993, pp. 135-143.

[8) Chen, J.-K., Soong, F. and Lee, 1.-S. (1994). Large Vocabulary Word Recognition Based

on乃ee乃ellisSearch. Proceedings of the IEEE, ICASSP-94, pp. II:137-140.

[9) Chou, W., Juang, B.-H. and Lee, C.-H. (1992). Segmental GPD Training of HMM Based

Speech Recognizer. Proceedings of the IEEE, ICASSP-92, pp. I:473-476.

[10) Fu, K.-S. (1968). Sequential Methods in Pattern Recognition and Machine Learning. Aca-

demic Press.

39

[11] Haffner, P., Franzini, M. and Waibel, A. (1991). Integrating Time Alignment and Neural

Networks for High Performance Continuous Speech Recognition. Proceedings of the IEEE,

ICASSP-91, pp. 105-108.

[12] Hetherington, I.L., Phillips, M.S., Glass J.R. and Zue, V.W. (1993). A* Word Network

Search for Continuous Speech Recognition. Proceedings of the 3rd European Conference

on Speech Communication and Technology, September 21-23, Berlin, Germany.

[13] Huang, E.-F., Wang, H.-C. and Soong, F. (1994). A Fast Algorithm for Large Vocabulary

Keyword Spotting Application. IEEE Transactions on Speech and Audio Processing, Vol.

2, No. 3, July 1994, pp. 449-452.

(14] Huang, E.-F., Soong, F. and Wang, H.-C. (1994). The Use of Tree-Trellis Search Large-

Vocabulary Mandarin Polysyllabic Word Speech Recognition. Computer Speech and Lan-

guage, volume 8. pp. 39-50.

[15] Iwamida, H., Katagiri, S., McDermott, E. (1991). Speaker-Independent Large Vocabulary

Word Recognition Using an LVQ/HMM Hybrid Algorithm. Proceedings of the IEEE,

ICASSP-91, pp. 553-556.

[16] Iwamida, H., Katagiri, S. and McDermott, E. (1991). Large Vocabulary Word Recognition

Using L VQ and HMM Phoneme Concatenated Training. Proceedings of the Acoustical

Society of Japan, Fall Meeting, pp. 99-100.

[17] Juang, B.-H. and Katagiri, S. (1992). Discriminative Training ASJ Special Issue, Vol.

13, No. 6, November 1992. pp. 333-339.

[18] Juang, B.-H. and Katagiri, S. (1992). Discriminative Learning for Minimum Error Clas-

sification. IEEE Transactions on Signal Processing, vol. 40, No. 12, December 1992, pp.

3043-3053.

[19] Katagiri, S., Lee, C.-H. and Juang, B.-H. (1990). A Generalized Probabilistic Descent

Method. Proceedings of the of Acoustical Society of Japan, Fall Meeting, pp. 141-142.

[20] Katagiri, S., Lee, C.-H. and Juang, B.-H. (1991). Discriminative Multilayer Feedforward

Networks. Proceedings of the 1991 IEEE Workshop on Neural Networks for Signal Pro-

cessing, August 1991, pp 11-20.

[21] Katagiri, S., Biem, A., and Juang, B.-H. (1993). Discriminative Feature Extraction. in

"Artificial Neural Networks for Speech and Vision," Chapter 18. Ed. R. Mammone, Chap-

man & Hall. pp. 278-293.

[22] Kohonen, T. (1990). The Self-Organizing Map. Proceedings of the of the IEEE, 78, No.

9. pp. 1464-1480.

[23] Kohonen, T., Barna, G. and Chrisley, R. (1988). Statistical Pattern Recognition with

Neural Networks: Benchmarking studies. Proceedings of the of IEEE, ICNN, vol. I, July

1988, pp. 61-68.

[24] Komori, T. and Katagiri, S. (1991). A New Discriminative Training Algorithm for Dy-

namic Time Warping-Based Speech Recognition. IEICE, Tech. Report SP91-10, June

1991. pp. 33-40.

d
J
'
疇

ー・

t

40

[25] Komori, T. and Katagiri, S. (1992). Application of GPD Method to Dynamic Time

Warping-based Speech Recognition. Proceedings of the IEEE, ICASSP-92. pp. I:497-500.

[26] McDermott, E. and Katagiri, S. (1989). Shift-Invariant, Multi-Category Phoneme Recog-

nition using Kohonen's LVQ2. Proceedings of the IEEE, ICASSP-8_9. pp. 81-84.

[27] McDermott, E. (1990). LVQ3 for Phoneme Recognition. Proceedings of the Acoustical

Society of Japan, Spring Meeting, pp. 151-152.

[28] McDermott, E. and Katagiri, S. (1991). Shift-Tolerant LVQ for Phoneme Recognition.

IEEE Transactions on Signal Processing, 39, No. 6, June 1991, pp. 1398-1411.

[29] McDermott, E. and Katagiri, S. (1991). Discriminative Training for Various Speech

Units. Technical Meeting of IEICE, SP 91-12, June 1991. pp. 47-54.

(30] McDermott, E. & Katagiri, S. (1992). Prototype-Based Discriminative乃ainingfor Var-

ious Speech Units. Proceedings of the IEEE, ICASSP-92. pp. I:417-420.

[31] McDermott, E. and Katagiri, S. (1994). Prototype Based Minimum Error Training for

Speech Recognition. Journal of Applied Intelligence, Kluwer Academic Publishers, volume

4, pp. 245-256.

[32] McDermott, E. and Katagiri, S. (1994). Prototype Based Discriminative Training for

Various Speech Units. Computer Speech and Language, volume 8, pp. 351-368.

[33] Nilsson, N. (1982). Principles of Artificial Intelligence. Tioga Publishing Company.

[34) Ney, H. (1984). The Use of a One-Stage Dynamic Programming Algorithm for Connected

Word Recognition. IEEE Transactions on Acoustics, Speech and Signal Processing, vol.

ASSP-32, pp. 263-271、、

[35] Steinbiss, V., Tran, B.-H. and Ney, H. (1994). Improvements in Beam Search. Proceedings

of the International Conference on Spoken Language Processing, S36-5.l, pp. 2143-2146.

[36] Noda, Y., and Sagayama, S. (1994). Fo加 ardHeuristic Functions Applied to Beam Search

in HMM-LR Speech Recognition. Proceedings of Acoustical Society of Japan (fall meet-

ing), pp. 139-140.

(37] Rainton, D. and Sagayama, S. (1992). Minimum Error Classification Training of HMMs

-Implementational Details and Experimental Results. IEICE, Technical Report SP91 XX.

[38] Rainton, D. and Sagayama, S. (1992). Appropriate Error Criterion Selection for Continu-

ous Speech HMM Minimum Error乃aining.Proceedings of the International Conference

on Spoken Language Processing.

[39] Sakoe, H. and Chiba, S. (1978). A Dynamic Programming Algorithm Optimization for

Spoken Word Recognition. IEEE Transactions on Acoustics, Speech and Signal Process-

ing, vol. ASSP-26, Feb. 1978, pp. 43-49.

[40) Sakoe, H. (1979). Two-level DP-matching -A Dynamic Programming-Based Pattern

Matching Algorithm for Connected Word Recognition. IEEE Transactions on Acoustics,

Speech and Signal Processing, vol. ASSP-27, pp. 588-595.

41

[41] Sawai, H. (1991). TDNN-LR Continuous Speech Recognition System Using Adaptive In-

cremental Training. Proceedings of the IEEE, ICASSP-91. pp. 53-56.

[42] Schwartz, R. and Austin, S. (1991). A Comparison of Several Approximate Algorithms for

Finding Multiple (N-BEST) Sentence Hypotheses. Proceedings of the IEEE, ICASSP-91,

pp. 701-704.

[43] Schwartz, R., Austin, S., Kubala, F., Makhoul, J., Nguyen, L., Placeway, P., Zavaliagkos,

G. (1992). New Uses for the N-Best Sentence Hypotheses within the BYBLOS Speech

Recognition System. Proceedings of the IEEE, ICASSP-92. pp. 53-56.

[44] Soong, F. and Huang, E.-F. (1991). A Tree-Trellis Based Fast Search for Finding the N

Best Sentence Hypotheses in Continuous Speech Recognition. Proceedings of the IEEE,

ICASSP-91, pp. 705-708.

[45] Strom, N. (1994). Optimising the Lexical Representation to Improve A* Lexical Search.

HKT Technical Report, STL-QPSR 2-3/1994.

[46] Su, K.-Y. and Lee, C.-H. (1991). Robustness and Discrimination Oriented Speech Recog-

nition Using Weighted HMM and Subspace Projection Approaches. Proceedings of the

IEEE, ICASSP-91. pp. 541-544.

[47] Waibel, A., Sawai, H. and Shikano, K. (1989). Consonant Recognition by Modular Con-

struction of Large Phonemic Time-Delay Neural Networks. Proceedings of the IEEE,

ICASSP-89. pp. 112-115.

[48] Zue, V., Glass, J., Goodine, D., Leung, H., Phillips, M., Polifroni, J. and Seneff, S.

(1991). Integration of Speech Recognition and Natural Language Processing in the MIT

Voyager System. Proceedings of the IEEE, ICASSP-91, pp. 713-716.

[49] Yamaguchi, K. (1992). Continuous Mixture HMM-LR using the A* Algorithm for Con-

tinuous Speech Recognition. Proceedings of the International Conference on Spoken Lan-

guage Processing, pp. 301-304.

42

	01
	02
	MX-4111FN_20201028_135017

