
TR -H -193 

Doubly constrained network for 
combinatorial optimization 

Shin ISHII Masa-aki SATO 

1996. 5. 21 

ATR人間情報通信研究所
〒619-02 京都府相楽郡精華町光台2-2 合 0774-95-1011 

ATR Human Information Processing Research Laboratories 

2-2, Hikaridai, Seika-cho, Soraku-gun, Kyoto 619-02 Japan 

Telephone: +81-774-95-1011 

Facsimile: +81-774-95-1008 

c'木菊ATR人間情報通信研究所



ー

Doubly constrained network for 
combinatorial optimization 

Shin Ishii Masa-aki Sato 

ATR Human Information Processing Research Laboratories 

2-2 Hikaridai, Seika-cho, Soraku-gun, Kyoto 619-02, Japan 

(TEL) +81-774-95-1069 (FAX) +81-774-95-1008 

(E-mail) ishii◎ hip.atr .co.jp 

Abstract 

In this paper, we propose a new approach for solving combinatorial optimization 
problems having two competing sets of constraints. In our approach, those constraints 
are treated as "hard," namely, they hold automatically. Experimental results for trav-
eling salesman problems show that our approach can obtain better solutions even for 
large-scale problems than binary or Potts spin approaches. 
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1 Introduction 

As parallel implementation of the continuation methods [21], analog neural approaches to 
combinatorial optimization problems have been widely studied. 

The analog Hopfield network, which is equivalent to mean field theory (MFT) approxi-
mation [11, 12, 3] of the Boltzmann machine, globally converges to a local minimum of its 
Lyapunov function. When the slope of the sigmoidal output function becomes very large, 
the Lyapunov function is nearly equal to the quadratic energy function. Then, the Hop-
field network can be used for solving combinatorial optimization problems, e.g., traveling 
salesman problems (TSPs), by designing a quadratic energy function whose local minima 
correspond to solutions of the problem [4]. The Hopfield network can be combined with a 
gradual slope increasing procedure of the sigmoidal output functio:n [4], which corresponds 
to a deterministic (MFT) annealing procedure [18, 1] in MFT. 

In the conventional neural approaches, each neural representation often mvolves redun-
dancy. For example, when Ising (binary) spin approaches, i.e., the Hopfield network and 
the binary MFT, are applied to an N-city TSP, the number of possible spin configurations 
for neural representation is 2竺whilethe number of possible TSP tours is N!/2. Thus, the 
domain space is likely to become much larger than that of the original combinatorial prob-
lem. In order to suppress the redundancy, in the Ising spin approaches, domain restrictions 
are designed as constraints, and the energy function includes penalty terms for constraint 
violations; these constraints are "soft" constraints. However, this soft constraint scheme 
produces a lot of infeasible solutions in general. This is one of the reasons why the Hopfield 
network is not a good algorithm when the problem scale becomes large [22, 7]. 

Some of the combinatorial optimization problems, such as TSPs, N-Queen problems, and 
so on, have two sets of constraints that restrict the redundant domain space. In TSPs, one 
set is for "a salesman visits one and only one city on one leg of a tour," and the other set 
is for "a city is visited once and only once in a complete tour." In such a problem, a Potts 
spin system [23] can be used, where one set of the constraints can be treated as "hard," 
namely, they hold automatically. A Potts spin is a generalization of an Ising spin so as to 
take more-than-two states. A combined algorithm of Potts spin MFT with a deterministic 
annealing procedure is Potts MFT annealing [13, 20], which is almost equivalent [17] to the 
elastic net [2]. By employing a Potts spin system, the domain space becomes smaller than 
that of the Ising spin approaches, and the obtained solutions by the Potts MFT annealing 
are consequently much improved so as to be comparable [14] to simulated annealing [8]. 

The above-mentioned two sets of constraints are consistent but competing with each 
other, and this makes the problem difficult to be solved by neural approaches. In the 
Potts spin approach, one set of the constraints is treated as "hard," while the other set 
maintains "soft" constraints. In this paper, we propose a new approach, where both of 
the two competing sets are treated as "hard." Therefore, the system searches for a local 
minimum of the energy function that does not include the constraint violation terms. This 
algorithm, which is called the doubly constrained network (DCN), makes the domain space 
smaller than the Potts spin approach. This paper also shows experimental results when 
our DCN is applied to relatively large-scale TSPs. Our approach is shown to be capable of 
obtaining better solutions than the Ising and Potts spin approaches. 

This paper is organized as follows. In Section 2, the DCN equations are derived based 
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on the Lagrange method, and a discrete-time dynamical system that can obtain the solution 
is proposed. In Section 3, we experimentally compare our approach with the Ising and 
Potts spin MFT annealing for relatively large-scale TSPs. As a consequent, our DCN can 
obtain better solutions than conventional algorithms. In Section 4, we study the convergence 
property of the proposing algorithm. In Section 5, we study the bifurcation property in DCN 
annealing, which is important in analyzing the quality of the solution. Section 6 sums up 
the paper. 

2 DCN algorithm 

Let us consider the following combinatorial optimization problem that is defined by N x M 
binary variables (spins) Sa,n E {011 }. 

... 
mm1m1ze 

subject to 

1 
E(S) =— L Wa,n;b,mSa, ふ，m+LJa,nS研 9

2 a,n,b,m a,n 
(1) 

tsa,n=rn (n=l, …, M) 
a=l 

t幻 =Sa (a= l, …，N), 
n=l 

(2) 

(3) 

where parameters W and J are determined for each problem. r n and Sa are constant integers 
such that O < rn~N, 0 < Sa~M. We assume that these constraints are consistent with 
each other, namely, there is a solution for S under the constraints. In order to deal with 
this discrete problem, we introduce analog variables and the corresponding barrier function 
preventing the state from going beyond the domain [10]. The new continuous problem is 

mm．1．m1． ze F(V), (4) 
N 

subject to LVa,n=rn (n=l, …，M) (5) 
a=l 
M 

I: Va,n = Sa (a= l, …，N), (6) 
n=l 

where F(V) is the free energy function [11] that can be given by 

F(V) = E(V) -TH(V) 
1 
一 L Wa,n;b,m兄，n½,m+LJa,n広 +TLVa,n log Va,n• (7) 
2 a,b,n,m a,n a,n 

The barrier function H(V) is also called entropy function [11], and Tis called temperature. 
The new problem (4), (5), (6) corresponds to the mean field theory (MFT) approximation 
[11] of the Gibbs distribution defined for the energy function (1) under the spin configuration 
constraints (2), (3) at the temperature T. 

A local minimum solution of the problem (4), (5), (6) is a stationary point of the Lagrange 
function [10] 
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L(V) = F(V)_ + L Pn(L Va,n -rn) + L Qa心 Va,n-S砂，
n a a n 

where Pn (n = 1, …, N) and Q a (a = l, …, M) are Lagrange multipliers. A stationary 
condition of the Lagrange function (8) is given by 

fJL 

AV a,n 

fJL 

砂 n

fJL 

fJQa 

互児，n;b,m½,m + la,n + T(log Va,n + l) +凡十 Qa= 0 

LVa,n-rn = 0 
a 

区V研 ― Sa=0 
n 

By defining auxiliary variables 

u",n =—H~ 凱，n;b,m½,m + J",n) , 

(9) is rewritten as 

V 
exp(Ua,n) 

a,n = μ  ふ'

whereμa= exp(Qa/T + l) and入n= exp(Pn/T). From (11) and (13), we get 

加＝一こ
1 exp(Ua, 砂

Ba n 心

From (13) and (14), we get 

V 
Sa exp(Ua,n)/入n

a,n ＝ 
~m(exp(Ua,m)/心）．

On the other hand, from (10) and (15), each入nmust satisfy the following equation 

心＝一こ
1 Sa exp(Ua,n) 

Tn a I:m(exp(Ua,m)/心）．

(8) 

、
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(12) 

(13) 

(14) 

(15) 

(16) 

From (15) and (16), it can be shown that the constraints (5) and (6) are automatically 

satisfied. If心 takesan identical value for every n, (12) and (15) become a variant of Potts 

MFT equations [13]. In our derivation, however, 心 varieswith (16). It should be noted 

that (15) and (16) have scale invariance, namely, a scaling transformation of入：心→ 応
does not affect the solution V. We call the nonlinear equations (12), (15), and (16), Doubly 
Constrained Network (DCN) equations [6]. 

Let us propose an algorithm to obtain a solution of the DCN equations. This algorithm 

is a synchronous discrete-time dynamical system, where t denotes the discrete-time. 



5
 

[BASIC ALGORITHM] 

1. For all a, n, calculate 

叫 (t)= -~(~W•,n;b,mい(t -1) + J.,n) (17) 

2. Set入゚ldto be入(t-1). 
Then, calculate 

入new l Sa exp(Ua,n(t)) 
n =―こTn a Lm(exp(Ua,m(t))/入樹）＇

(18) 

for all n, iteratively. If入converges,set入(t)so as to be the converged value, and 
rescale入(t)to be江 心(t)= 1. 

3. For all a, n, calculate 

Va,n(t) = 
Sa exp(Ua,n(t))/心(t)

I:m(exp(Ua,m(t)) /心(t))'

4. Add 1 to t and go to Step 1 until V converges. 

(19) 

In Step 2, 入 isrescaled in order to suppress any underflow of入. Because of the scale 
invariance of (18) and (19), the rescaling does not affect the solution of the algorithm. 

The convergence of the basic algorithm will be discussed in Section 4. If it converges, 
the obtained solution satisfies the DCN equations, i.e., (12), (15), and (16), and it is a local 
minimum of the free energy function (7) subject to the constraints, (5) and (6). 

We can combine a deterministic annealirig procedure, i.e., a gradual lowering of the 
temperature T, with the basic algorithm. First, the DCN equations are solved at high tern-
perature and a solution is obtained. Then after slightly lowering the temperature, the DCN 

equations are solved again starting from the higher temperature solution. By continuing this 
process, one can get a low temperature solution of the DCN equations. 

3 DCN for TSP 

Let us consider an application to an N-city TSP, where rn = Sa = 1 (n, a = 1, …，N). 
With (N x N)-dimensional variable Va,n E [O, 1], which represents the probability that the 
salesman visits city a at the n-th visit, a DCN energy function for a TSP is given by 

l N N A N 

E(V) =— L Da,b L Va,n(½,(n-l) 十 ½,(n+l)) +ー LVa,n(l -Va,n), (20) 
2 a,b=l n=l 2 a,n=l 

where Da,b is the distance between city a and city b, and A is a positive constant. Each suffix 
is modulo N. The first term on the right hand side of (20) corresponds to the total tour 
length to be minimized. The second term vanishes when the state variable V is close to a 
hypercube vertex at low temperature. However, this second term helps the basic algorithm 
converge, as will be seen in Section 4. In the experiments below, A=  0.6 is used. 
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Here, let us compare the DCN energy function (20) with the Ising spin TSP energy 
function [ 4] 

局(V)
1 
ー I:Da,bI:い(½,(n-1) +½,(n+l)) 
2 

(21) 
a,b れ

信い1-v.,n) +信(~い— 1)' 十戸(~い— 1)',
and the Potts spin TSP energy function [13] 

l A B 
Ep(V) =ーL Da,b L Va,n(½,(n-1) 叫，(n+l)) +ーI:V:□ 1-Va,n) +ー

a,b 2 2 a,n 2~(~ い— 1)
(22) 

In order to make the difference prominent, the energy functions, (21) and (22), are slightly 
different from those in the original papers [4, 13]. In the Ising spin energy function (21), 
constraints (5) and (6) are included as penalty terms. In the Potts spin energy function 
(22), a penalty term corresponding to the constraint (5) is removed since the constraint is 
designed to hold automatically by using a "soft-max" function (see (A4) in Appendix A) 
instead of the sigmoidal function used in the Ising spin approaches. However, in the DCN 
energy function (20), all of the soft constraint terms are removed. 

With the energy function (20), the free energy function (7) is given by 

l N N A N 

F= —L Da,b L Va,n(½,(n-1) +½,(n+l)) +ー L Va,n(l -Va,n) + T LVa,n log Va,n・(23) 
2 a b=l n=l 2 a,n=l a,n 

And the network parameters in (17) are given by 

Wa,n;b,m = D叫ふ，m-1+ On,m+1) -A心ふ，m

la,n = A/2, 
(24) 

(25) 

where如 isthe Kronecker's delta. 
In Table I, we compare our DCN annealing (DCA) with Ising spin MFT annealing (MFA) 

[1] and Potts spin MFT annealing (PMA) [13]. We prepared four testbeds for evaluation; 
they were 100 sets of 30-city problems, 100 sets of 50-city problems, 50 sets of 100-city 
problems, and 10 sets of 200-city problems. Each city allocation was randomly generated in 
a unit square. Brief algorithm descriptions and parameters for MFA and PMA are shown 
in Appendix A. In DCA, the annealing procedure was scheduled so that the temperature 
is lowered by <5T = 0.005 and the convergence at each temperature was determined by 
6入=10-5 and <5V = 10-5. In order to make the comparison fair, no additional heuristics, 
e.g., greedy heuristics, were employed in PMA, although they were used in the experiments 
done by Peterson [13, 14]. We can see that DCA was able to obtain a solution for every 
problem, while PMA and MFA sometimes failed in obtaining any solutions. For every 
testbed, DCA was able to obtain better result than the other two algorithms. The optimal 
tour length for an N-city problem can asymptotically be estimated as 0.765辺V[15], and the 
results of DCN are about 11 % larger than the estimation. Furthermore, the DCA results in 
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Table I are better than those [14] obtained by the PMA modified by the greedy heuristics 
and the simulated annealing. 

Table II shows the results obtained by the application of local heuristics, i.e., 2-opt 
heuristics [9], to the solutions obtained in the previous experiments. The 2-opt heuristics 
remove all crossing parts in a tour by exchanging the tour branches. The three numbers 
in each column of Table II are the average tour length improved by the 2-opt heuristics, 
the average rate of improvement in percent, and the average number of branch exchanges. 
In DCA, the improvement rate and the number of exchanges are smaller than those in the 
other two algorithms, which implies that the DCA solutions have better structures so that 
only a little local improvements can be done on them. 

Figure 1 shows a solution obtained by DCN annealing for a 200-city problem. We can 

see that the obtained solution is fairly good. 

Table I Algorithm comparison. The testbeds are 100 sets of 
30-city problems, 100 sets of 50-city problems, 50 sets of 100-city 
problems, and 10 sets of 200-city problems. Each city allocation was 
randomly generated in a unit square. The number in each column 
denote the average tour length for the valid tours. The number in 
the parenthesis is the number of valid obtained tours. 

l II - - I . I - . I 

'DCA 

PMA 

MFA 

II 30 I 50 I 
4.69 (100) 5.98 (100) 

4.70 (100) 6.01 (100) 

5.42 (99) 7.34 (98) 

100 1 200 I 

二
Table II Improvement by 2-opt heuristics. The three num-
bers in each column are the average tour length improved by the 
2-opt heuristics, the average rate of improvement in percent (%), 
and the average number of branch exchanges. 

II 30 50 100 200 

DCA 4.65 0.8 1.6 5.88 1.6 3.5 8.21 3.2 11.3 11.23 6.2 33.8 
PMA 4.64 1.3 1.9 5.88 2.1 3.8 8.16 15.4 32.3 11.38 36.1 163.3 
MFA 4.73 12.9 9.8 6.05 17.6 20.4 8.26 20.2 44.0 11.36 18.0 121.4 

4 Convergence 

Let us discuss the convergence of the basic DCN algorithm described in Section 2. The inner 
iteration loop described in Step 2 is a discrete-time dynamical system. This sub-system has 
a Lyapunov function 

G(入） = L rn log入n+ L Sa log L(exp(Ua,m)/心），
n a m 

(26) 
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whose stationary condition, BG/ 8心=0, is equivalent to (16). By defining auxiliary vari-

ables 

1 
汎＝一LS exp(Ua,n)/入~ld

a..--- /_ ITT Iヽ¥nl,./ヽ’
Tn a 

盆＝一Lrnl Sa exp(Ua,n)/区m(exp(Ua,m)/入侶）

Sa n LbSbexp(Ub,n)/Lm(exp(Ub,m)/入~d)'

we can prove this as follows: 

G(入new)_G(入゚ld) = 区Tnlog兄+LいogZa
n a 

log ITn(Ynfn + log ITa(Z砂Sa

< log (江rnYn)+ log (La SaZa) = O 
こ戸n La Sa 

ヽ`
＇’／ヽ

＇`／

7

8

 

2

2

 

（

（

 

•'1 

(29) 

Therefore, the sub-system globally converges to a solution of (16). 

However, the whole algorithm does not necessarily converge. Actually, when it is applied 

to TSPs with A = 0, the basic algorithm oscillates in a two-cycle periodicity, which implies 

that the largest absolute eigenvalue of its Jacobi matrix is negative. Therefore, if some 

positive values are added to diagonal elements of the Jacobi matrix, they play a role to 

suppress the oscillation. Hence, if the energy curvature matrix W has negative diago叫

elements, i.e., Wa,n;a,n = -A < 0, the system is likely to converges. Negative diagonal 

elements of the energy curvature matrix correspond to positive diagonal elements of the 

Jacobi matrix of the dynamical system. In addition, when A > 0, the converged value is 

close to a hypercube vertex at a relatively high temperature so that it can be regarded as 

a binary solution・of the combinatorial optimization problem. This feature can be seen as 

follows. The second right hand side term in the energy function (20), (A/2)~Va,n(l -Va,n), 

is a convex quadratic function whose minimum is located at Va,n = 1/2. Therefore, positive 

A enlarges the energy distance between the internal points of the domain hypercube and the 

hypercube vertices, and this makes the converged value close to a hypercube vertex. 

If we employ a differential equation system 

1 
心＝ーu.,.-r(こ肌，n;b,m½,m+ la,a) , (30) 

instead of the discrete-time equation (17), together with (15) and (16), we can show that 

the free energy function (7) is its Lyapunov function, which !]leans that the new dynamical 

system globally converges to a local minimum of (7). Here, Ua,n denotes the time-derivative 

of Ua,n・The convergence does not depend on the network parameters, i.e., W and J. This 
proof can be seen in Urahama [19] and is also given in Appendix B. In order to employ (30) 
in a computer implementation, let us consider that (17) in the basic algorithm is replaced 

by a Euler difference equation of (30): 

k 
叫 (t)=(l-k)叫（← 1)ーテ（とWa,n;b,m瓜 (t-1) + la,n) , {31) 

b,m 
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where k is a time-interval parameter and O < k≪l. When this new algorithm is applied to 
TSPs with A = 0, it does not work either, although the procedure theoretically converges for 
sufficiently small k. The state variable V does not become close to the hypercube vertices 
until the temperature gets very small. On the other hand, if the time-interval parameter k is 
not very small, the state variable at a very low temperature tends to oscillate in a two-cycle 
periodicity. Likewise in the basic algorithm, a positive A makes this procedure converge. 
Thus, in actual implementation, the convergence property with the differential equation (30) 
is not better than that of the basic algorithm. 

In TSPs, if it is possible to set A = 0, the energy function (20) is composed only by 
the tour distance term. Although a positive A value makes the energy function (20) slightly 
different from the term representing the total tour length for T > 0, it enables the algorithm 
to work well. According to our experiments for TSPs, obtained solutions were found to be 
better with the basic algorithm than with the procedure employing (30). Furthermore, the 
experimental results described in Section 3, where an optimal or semi-optimal solution is 
obtained for every problem with the basic algorithm, indicate that the algorithm actually 
converges in every case with a positive A value. In addition, the basic algorithm is much 
faster than the procedure employing (30). 

Figure 2 shows the average of DCN annealing solutions for various parameter A values, 
when applied to 10-, 20-, 30-, and 40-city problems. In every case, the "badness" of the 
solution for low A values is due to the fact that the basic algorithm is dominated by the 
two-cycle periodicity and it often fails to obtain a solution. Except for 10-city problems, 
A = 0.6 is found to be the best parameter value. We have experimentally confirmed that 
this parameter value A = 0.6 is the best value up to 200-city problems. 

5 Bifurcations 

In this section, let us study bifurca~ions of the DCN solutions. 

The curvature of the entropy function H is given by 炉H/fJVa,nO½,m = -c5abc5nm/Va,n・ 
Since l/Va,n~l, the curvature matrix▽▽H三 (8噴 Iav fJV) can be written as 

▽▽ H = -I+ (negative semi-definite matrix), (32) 

where I is the identity matrix. The curvature matrix of the free energy function (7) is given 
by 

▽▽ F=W-T▽▽ H. (33) 

Let~min denote the minimum eigenvalue of the energy curvature matrix W. When tern-
perature T is larger than -~min, the curvature matrix of the free energy function is positive 
definite, implying that the free energy function is convex and has a unique minimum. At the 
low temperature limit, however, the free energy function has in general a lot of local min-
ima that correspond to solutions of the problem. Therefore, at some critical temperature 
T孔こーもmin),a bifurcation of the minimum solution occurs. 

These bifurcation processes are dependent on the structurally stable symmetry of the 
problem, like in the Ising and Potts spin MFT cases [16, 5]. Without structurally stable 
symmetries in the problem, one can generically expect only saddle-node bifurcations to 
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occur [16]. However, the free energy function for a TSP (23) is invariant under the N-th 

order cyclic transformation: 

Va,n —• Va,n+m 

and the N-th order reverse transformation: 

Va,nー→ Va,m-n 

(m = 1, …, N-l), (34) 

•
」

(m = 0, 1, …N-1). (35) 

The cyclic and reverse transformation invariances correspond to the fact that the tour length 
does not depend on the starting city, and the fact that it does not change when the tour 
direction is reversed, respectively. When a solution is transformed to itself by the N-th 
order cyclic (or, reverse) transformation, the solution is said to have the N-th order cyclic 
(or, reverse) symmetry. In TSPs, the unique minimum at high temperature has the N-
th order cyclic and reverse symmetries [16]. Furthermore, since the condition区nVa,n = 
1 holds automatically for any a, the unique symmetric minimum is found to be Va,n = 
1/N (a, n = 1, …，N). Since the low temperature minima are likely to have neither of the 
above-mentioned two symmetries, during the course of an annealing procedure, bifurcations 
that break the symmetries occur. They are called cyclic symmetry breaking bifurcations and 
reverse symmetry breaking bifurcations [16]. 

Figure 3 is a typical example showing a bifurcation diagram of a 5-city TSP, where 
V1,i (i = 1, …, 5) for every minimum are plotted against temperature. When T > 0.35, there 
is a unique symmetric minimum. At T~0.35 and 0.32, a cyclic symmetry breaking bifur-
cation and a reverse symmetry breaking bifurcation can be observed, respectively. Several 
saddle-node bifurcations can also be observed at T~0.24, 0.22 and 0.17. 

These local bifurcation structures imply that the DCN annealing procedure may also 
have several adverse properties like in the Ising and Potts spin MFT annealing procedures 
[16, 5]. If an annealing solution disappear by a bifurcation at some temperature and there 
are more than two distinctive minima at this temperature, whatever minimum is obtained 
by the annealing procedure is not unique due to the instability at the disappearance point. 
This implies that the annealing solution may not unique, even if we employ a "deterministic" 
annealing procedure. When new minima are generated, their free energy levels are higher 
than that of the global minimum at that temperature. However, the free energy levels of 
some minimum solutions may cross one another as the temperature is lowered. Therefore, 
the deterministic annealing procedure does not always give the optimal solution. As a 
consequence, a solution obtained by a deterministic annealing procedure may nonunique 
and nonoptimal. 

However, these properties are much improved in our DCN approach. In DCN annealing, 
the disappearance of the annealing solution is theoretically possible but experimentally not 
so probable, while it is a typical phenomenon in the Ising spin MFT annealing approach. 
For comparison, Figure 4 shows the bifurcation diagram of the Ising spin MFT for the same 
5-city problem as used in Figure 3, where the disappearance of the annealing solution can 
be observed at T~0.61. If we remove soft constraint terms from the MFT energy function 
(21), the disappearance barely occurs, implying that the disappearance is due to the soft 
constraint terms. Since the DCN energy function (20) contains no soft constraint terms, the 
disappearance barely occurs, and the annealing solutions are likely to be unique. Thus, the 



11 

DCN annealing procedure is much improved in its nonuniqueness. This is a merit of the 
DCN approach. 

Since the unique high temperature solution is given by Va,n = l/ N, the first bifurcation 
temperature turns out to be lower than 弐mi~/N (See (33)). Therefore, it is sufficient that 
we set the starting temperature of the annealmg procedure at -~min/N. Due to the above-
mentioned symmetries of the TSPs, the eigenvalues of the energy curvature can be rigorously 
obtained by solving a reduced eigen equation whose order is N [16], instead of solving the 
original eigen equation whose order is N乞 Petersonand Soderberg [13] also proposed an 
approximation method for the first bifurcation temperature for their Potts MFT approach. 
In the experiment described in Section 3, however, we fixed the starting temperature for 
implementation convenience. 

6 Conclusion 

Our DCN approach treats two competing sets of constraints as hard, and the minimizing 
energy function does not include the constraint terms. Most important merit of DCN is 
that the domain space becomes smaller than that of the binary and Potts spin approaches. 
Another merit is that the energy function does not contain constraint terms. Further merit 
is that its bifurcation structure is improved so that an adverse property of the deterministic 
annealing is improved. Consequently, our DCN approach can obtain better solutions than 
those possible with the Ising and Potts spin approaches. Our basic algorithm is based on 
a synchronous discrete-time dynamical system, which is much faster than those based on 
differential equation systems. Although its convergence is not assured, the algorithm has 
been experimentally shown to work well with excitatory self-loops. 
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Figure 1 

A solution obtained by DCN annealing for a 200-city problem. 
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Figure 2 

Average distance of the DCN annealing solutions for various values 
of a parameter A, where it is applied to 10-, 20-, 30-, and 40-
city testbeds. Each testbed consists of 100 randomly generated 
city allocations. The solutions are averaged for successful results, 
whose number becomes small as A becomes small. For example, for 
20-city TSPs with A=  0.2, 48 tours among 100 trials are obtained. 
"o," "x ," "+," and "*" denote the results for 10-, 20-, 30-, and 
40-city problems, respectively. 
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A DCN bifurcation diagram over temperature T. At each tern-
perature 200 sets of random initial states are prepared, and each 
応 (i= 1, …, 5) after convergence is plotted. The criteria for con-
vergence were; 8入=10-5 and 8V = 10-5. 
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Figure 4 

An MFT bifurcation diagram over temperature T. At each tern-
perature 200 sets of random initial states are prepared, and each 
応 (i= 1, …，5) after convergence is plotted. The criterion for 
convergence was c5V = 10-5_ Parameters in (21) were set at 
A = 2B = 2C = 1.5. 
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Appendix A 

Ising spin MFT [1] is a discrete-time dynamical system, where a spin variable Va,n E [O, 1] is 
chosen in a random order and updated by the following equations asynchronously. 

會ー

Ua,n =— LWa,n;b,m闘，m -Ja,n, (Al) 
b,m 

1 
(A2) V a,n ＝ 1 + e-Ua,n/T' 

where Wand J are determined by expanding the energy function (21). In the experiments 
described in Section 3, parameters in (21) were set at A = 2B = 2C = 1.5, the annealing 
procedure was scheduled as oT = 0.005, and the convergence of the equations (Al), (A2) 
was determined by {JV = 10-5. Here, oV is the difference of the state variable V after all 
the units are updated once. 

Potts spin MFT [13] is a discrete-time dynamical system, where a spin variable Va, 
which is an N-dimensional vector in [O, 1]尺ischosen in a random order and updated by the 
following equations asynchronously. 

Ua,n(t) L Wa,n;b,m¼,~(t -1) + la,n 
b,m 

(A3) 

Va,n(t) = 
exp(-Ua,n(t)/T) 

区mexp(-Ua,m(t)/T)' 
(A4) 

where Wand J are determined by expanding the energy function (22). In the experiments 
described in Section 3, parameters in (22) were set at 2A = B = 1.0, the annealing pro-

cedure was scheduled as OT= 0.005, and the convergence of the equations (A3), (A4) was 
determined by oV = 10-5. 

•9L 

＊
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Appendix B 

Let us briefly show that the free energy function (7) is the Lyapunov function of the dynam-

ical system, (29), (15), and (16). From (15), 

log Va,n = Ua,n -~n. -77a 

Va,n/Va,n = Ua,n -~n ―加

(A5) 

(A6) 

holds, where'T/a = log区m(exp(Ua,m)/入m)-log Sa and品=log心.From (7), (29), and (A6), 

oF/oVa,n = -TTUa,n -T(品+'TJa-1) (A7) 

holds. Then, 

F = I:(8F/8Va,n瓜，n (A8) 
a,n 

— L(-rTUa,n -T(品+rJa -1))<,n
a,n 

- -TTL(畠）2 /Va,n -TL(元＋品） LVa,n -TI:(r加＋加） LVa,n +TI:Va,n 
a,n n a a n a,n 

holds. (A6) is used in this derivation. From (15) and (16), (10) and (11) are satisfied. 

Therefore, I:a Va,n =乙Va,n= 0. Thus, 

F:::; O (A9) 

holds. 
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