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Trumpet sound simulation is carried out with a two-dimensional lip 
vibration model, where the lips execute both swinging and stretching mo-
tions. This model allows lips to operate on both the lower and higher 
frequency sides of the air-column resonance frequencies. Oscillations gen-
erated by the total sound production system are on both the lower and 
higher frequency sides in the first through third resonance modes, while in 
the fourth and higher modes they are realized only on the lower side. From 
each resonance mode, an oscillation having the least frequency deviation 
against a change in lip eigenfrequency and also having sufficient amplitude 
is selected as the optimum oscillation of the resonance mode. It is found 
that these oscillations in the lower modes have positive phase differences 
between lip vibration and mouthpiece pressure, whereas those in the higher 
modes have negative ones. This result closely matches the transition of 
lip vibration states from the one modeled by the outward-striking valve 
at the second mode (i.e., the lowest mode among those used musically) to 
that modeled by the laterally-striking valve at the higher modes, which is 
observed in the simultaneous measurement of mouthpiece pressure and lip 
vibration. 

PACS numbers: 43.75.Fg 
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INTRODUCTION 

According to Helmholtz[1l, reeds of woodwind instruments such as clarinets, oboes and 

bassoons are classified as having a valve that strikes inwards (Fig. 1 (a)) and tend to close 
in increments of blowing pressure, whereas lip-reeds of brass instruments like trumpets, 
trombones and French horns are classified as having a valve that strikes outwards (Fig. 1 
(b)) and open further in the same condition. This classification has been widely accepted, 
and there is no doubt that woodwind reeds should be classified as striking inwards. 

There are, however, arguments against the classification of the lip-reeds. Unlike the 
mechanical cane reeds of woodwind instruments that have definite constraints on their 
directions of motion, biological lips deform quite unrestrictively when they are used as a 
lip-reed generator put to the mouthpiece. Moreover, a player's embouchure drastically 
varies the constraints on lips for the frequency, sound level and spectrum of sound. 
Furthermore, stroboscopic measurements by Martin[2l, Leno[3l, and Copley and Strong[4l 

of the brass instrument player's lips reveal that their two-dimensio叫 motionis both 
parallel and perpendicular to the direction of flow. Therefore, careful consideration of 
lip vibration is needed, and other possibilities of modeling should be examined. 

Elliott and Bowsher[5l raise the possibility that the lips are, in part, driven laterally 
- perpendicular to the direction of flow - by the time-varying Bernoulli pressure at the 
lip opening by analogy to vocal-fold vibration, although their main concern is to investi-
gate the outward-striking lip-reed model. Saneyoshi et al. [5] investigated a "transverse" 
mode1[7l (Fig. 1 (c)) in which the Bernoulli pressure drives a retracting valve (repre-
senting the upper lip) at a right angle to the direction of且ow;their model successfully 
explains the mechanism of mode selection in a euphonium. Fletcher presented a unified 
discussion of the general conditions under which oscillation of these three types of valve 

configurat10ns occurs. [8] 

Models of lip vibration in廿uencephase relations among the variables that describe the 
self-oscillation of the brass instrument: mouthpiece pressure p, air volume velocity flowing 
into the mouthpiece U, and the area of the lip opening Slip・In the "outward-striking" 

model, S1ip and p are out of phase in the low-frequency region, where frequency f is 
sufficiently smaller than the lip eigenfrequency flip• This is because the valve, representing 
the lip, is drawn into the instrument and thus opens as p decreases. On the other hand, 

in the transverse model, S1ip and p are in phase in this frequency region because the 
Bernoulli pressure generated by the flow at the lip opening tends to close the valve as p 
decreases. In the frequency region near hp, where the lips are actually driven, the phase 
shift due to the lip resonance occurs in both models. Therefore, the phase difference 
LS1ip -Lp becomes about 90°in the outward-striking model and -90°in the transverse 
model. 

Suppose that the linear theory[5][9J of self-oscillation is valid, U is proportional to Slip 

regardless of frequency, and thus they oscillate in phase. This immediately requires the 
phase of the input impedance Zin, which is defined by the ratio p/U, to be about -90° 

in the outward-striking model and 90°in the transverse model. Due to the resonance 

characteristics of the instrument, LZin varies rapidly from a positive value around 90°to a 
negative value around -90°as frequency f rises and sweeps each resonance frequency (i.e., 
frequency of each input impedance peak). It is, therefore, expected that the outward-
striking model operates on the higher frequency side of the input impedance peaks, and 
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the transverse model operates on the lower side. 

In actual sound production, where the amplitude of oscillation is not always small 
enough for the linear theory to be applied, it is necessary to consider the non-linearity of 
the system with a m叫10dsuch as time-domain simulation. Adachi and Sato [lo] carried 
out a time-domain simulation of the brass instrument with two different one-dimensional 
lip vibration models, the "swinging-door" model and the transverse model. The former 
model employs a valve operating as a swinging-door opening toward the downstream of 
the air且owand is essentially equivalent to the outward-striking model. Oscillation can be 

generated at the various resonance modes with both models. In their simulation systems, 
as the linear theory predicts, oscillation is always obtained on the higher frequency side 
with the swinging-door model and on the lower side with the transverse model. 

Recent developments in lip modeling have been concerned with the two-dimensional 
behavior of lip motion. Keefe proposed a lip model that allows a single mass to oscillate 
in both the parallel and perpendicular directions. [ll] He carried out a frequency domain 
analysis to show that oscillations can be sustained with both positive and negative phase 
differences between Slip and p. This was controlled by a parameter representing the angle 
of lip inclination, which should depend upon the mouthpiece geometry and the player's 
embouchure. 

Strong and Dudley[12l modeled lip motion in another way: they employed a swinging-
sliding door having one degree of rotational freedom and one degree of translational free-
dom. They carried out a time-domain simulation of oscillations in the second resonance 
mode. Their simulation presents realistic mouthpiece pressure waveforms and reasonable 
spectrum .variations according to the sound level. Although they did not show the phase 
relations, their obtained sounding frequencies imply that oscillations occur on both the 
higher and lower sides of the resonance frequency. 

Yoshikawa[13l succeeded in measuring the phase difference between lip vibration and 

mouthpiece pressure while various acoustic tubes, including the French horn and the 
trumpet, are blown. His results with these instruments are summarized as follows: (1) 
both instruments exhibit a positive phase difference in the second resonance mode (i.e., 
the lowest among those used musically); (2) in the higher modes (third and higher for the 
french horn, fourth for the trumpet), the phase difference is negative; and (3) oscillation 
in the third mode of the trumpet is possible with both positive and negative phase 
differences. These results indicate that lip vibration is better understood by the outward-
striking model in the lower resonance modes and by the transverse model in the higher 

modes. At the same time, however, they imply that it is impossible to explain the change 
in phase relation with either one-dimensional model. 

This paper presents a two-dimensional lip vibration model that can replicate the 

change in phase relation. This model is a combination of the two one-dimensional models, 

the swinging-door model and the transverse model. The modeled lip executes not only 
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the swinging motion as a hinged door but also the stretching and contracting motion 

along the lip length. No deformation along the lip thickness is assumed. As in the case 
of the swinging-door model, the swinging motion corresponds to the outward-striking 
motion. On the other hand, the stretching and contracting motion corresponds to the 
laterally-striking motion, because it is excited by the Bernoulli pressure at the lip opening 
in the same way as a retracting valve in the transverse model is driven. 

This two-dimensional model has the capability to operate on either frequency side of 
the input impedance peaks, depending on which of the swinging and stretching motions 
is dominant. If the swinging motion becomes dominant, the oscillation has a positive 
phase difference between Slip and p, and a frequency greater than one of the resonance 
frequencies. However, if the stretching motion becomes dominant, the oscillation with 
the negative phase difference, LS!ip -Lp < 0, is generated on the lower frequency side of 
the input impedance peaks. The main concern in this paper is to determine the actual 
behavior of the two-dimensional lip when it is incorporated into a total sound production 
system; making this determination with certainty requires the use of a time-domain 

simulation. 

Section I is devoted to modeling the two-dimensional lip and incorporating it into a 
total sound production system. In Section,II, the simulation method is first explained, 
and then the mode selection and oscillating quantities obtained in the simulation are 
examined. Section III discusses the mechanism of change between the lip vibration 

states in detail. Finally, the results of the simulation are summarized in Section IV. 

1. MODEL 

A. Two-Dimensional Lip Vibration Model 

For simplicity, the upper and lower lips are assumed to have symmetric motion about 
the axis of the airflow. The dynamics of only the upper lip are thus considered. The 

lip is approximated as a simple mechanical oscillator composed of one mass, stiffness 
and damping. Figure 2 depicts the schematic diagram of the two-dimensional lip model. 

The body of the lip is represented by a parallelogram ABCD. The upper side, AB, 
functions as a free joint connecting the lip with its base (hatched area). The BC and 
AD sides can vary their length l, while the AB and DC sides are assumed to be rigid 
and have a constant length d. Therefore, the lip simultaneously executes both swinging 
and stretching motions. Or equivalently, the tip of the lip, C, moves in directions both 
parallel (x-axis) and perpendic_,ular (y-axis) to the airflow. The position of C is assigned 

by a tw_2-dimensional vector~- Likewise, the position of B is assigned by a constant 
vector邸joint.We call l and d the lip length and thickness, respectively. In the vector 

notation, the lip length is represented by l =応ーシ。int・
Lip mass m is assumed to be localized at the center of the lip. This implies that the 

moment of inertia with respect to the rotation about the center of the lip is omitted. 

Two springs attached to the lip supply the restoring force: one is for swinging motion 
and the other_, is for stretching motion. vVhen the lip is at rest, C is at a position 

indicated by~equil. I~the tip displaces from the rest position, force 『~estore having the 
direction pointing to~equil and the magnitude proportional to I{-lquill is supplied. This 
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is another description of the lip having two springs with the same stiffness along the企

and y-directions. 

There are two different external forces driving the lip. One is the force F. △ P acting on 
the BC and AD sides, which is generated by the difference bet竺eenthe blowing pressure 
p。andthe mouthpiece pressure p. Another external force is FBernoulli acting on the DC 
side, which is generated by the Bernoulli pressure or the pressure at the lip opening Plip・ 

The equation of lip motion is given by 

1 d巧 1 ヽ冠 d~ ..., 
-m =-- -
2 d炉 2 Q dt 

+ Frestore + F. △ p + FBernoull1, (1) 

with stiffness factor k and quality factor Q. The first terms in the left and right hand 

sides of Eq. (1)'represent the inertia and the damping force, respectively. The factor of 

1/2 in these terms implies that the acceleration and velocity of the lip center are half 

as much as those of the tip t The forces, Frestore, .F. △ p and FBernoulli can be written as 
follows: 

『~estore

恥
『kernoulli

1 → → 
-- - . 
2 
k (f,, t,eqml), 

→ → 

- b (Po -p) (f,, ーら。int)..l,
→ 

- b d Plipey, 

(2) 

(3) 

(4) 

where b is lip width and焉isthe unit vector along the y-axis. A factor of 1/2 in Eq. (2) 
implies that the displacement of the lip center is half as much as that of the tip. The 

symbol J_ in Eq. (3) denotes the operation to derive the orthogonal vector from a vector 

of its operand: in the x-y coordinate system, J..L has the component (-Ay, A砂forany 
vector A=  (Ax, Ay)-Equation (3) implies that喜 hasa magnitude proportional to the 
lip length l and a direction orthogonal to the BC side. 

The origin of the x-y coordinate system is assumed to be at the center of the mouth-

piece rim. As is shown in Fig. 2, the base of the lip touches the rim, so that B is on the 

x = 0 plane of the mouthpiece entryway. The upper月ndlower lips meet on the y = 0 
plane. We denote the position of C by component as f = ((x, 畠） • Then, the lip opening 
area is given by 

Slip= max{2髯 O}, (5) 

where a factor of 2 comes from the symmetric motion of the upper and lower lips. 

The lip movement regulates airflow into the instrument through Slip・Additionally, 

the lip movement dire叫ygenerates flow, which is equivalent to the volume swept by the 
lips per unit time. This flow becomes 

Ulip = { b([ -~oio,) X¥i}. 己
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= b{ に—ら。intx)1-(◎一ら。inty)亨｝，

•999\ 

(6) 

where 召~is the unit vector parallel to the axis of swinging motion. 

During closure of the lips, that is when S1ip = 0, lip contact supplies another restor-
ing force along the y-axis, whose stiffness is assumed to be three times larger than k. 

Therefore, the supplementary restoring force -3k畠焉 actson the lip only when畠<0. 
Similarly, lip contact yields another viscous loss of the vibrating lips, which seems large 

due to the lip deformation upon collision. The quality factor Q is thus assumed to 

decrease to less than unity on the closure condition. 

By adjusting the embouchure, the brass・instrument player can select notes in the har-

monic series available without valve (piston) manipulation. The process of adjusting the 

embouchure corresponds to changing the lip eigenfrequency hp• Elliott and Bowsherl5l 
deduced the dependence of lip mass m on the lip eigenfrequency /Ep from their mea-

surements of average volume flows while various notes with different pitches were blown. 

Following their results, we assume that m is inversely proportio叫 tohp• Accordingly, 

the behavior of stiffness k becomes proportional to /iip because ]Ep =~/2Jr. Lip 
and other parameters for our simulations are shown in Table I. 

B. Total Sound Production System 

The sound production system comprises the lip dynamics, the airflow behavior near the 

lip opening and the resonance characteristics of the instrument. These form a closed loop 

in the feedback system and thus self-excitation can be established. The lip dynamics has 

already been modeled in the previous subsection. Equations of the airflow are derived 

from the恥 iddynamical consideration. In time-domain, the acoustic response from 

the instrument can be calculated by a feedback equation. The same flow and feedback 

equations as used in the simulations with one-dimensional lip models[10l are employed in 

this paper and reviewed here. 

Let us first review the flow equations. On the assumption of one-dimensional and 

incompressible flow, the mass conservation provides that the acoustical volume flow rate 

U盃isindependent of place and depends only on time t. The region near the lip opening 
is divided into two parts: the upstream contraction region (i.e., the mouth cavity and 

the lip opening region) and the downstream expansion region (i.e., a thin region in the 

mouthpiece cup adjacent to the lips). In the contraction region, laminar flow is assumed 

to be realized, while in the expansion region, flow is assumed to come off from the 

boundary layer and make a jet. Therefore, we apply the energy conservation law to the 

flow in the former region and the momentum conservation law to the one in the latter[14l. 
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where p is average air density and Scup is the area of the mouthpiece entryway. The sum 
of Eqs. (7) and (8) implies that acoustical volume且owrate Uac is a non-linear function 
of p and Slip・Total volume且owrate U is given by U = Uac + Ulip, where Ulip is the 
lip-generated flow defined by Eq. (6). 
The feedback equation[15l is given by the following integral equation: 

p(t) =盆U(t) + f 00 ds T (S) (Zc U (t -S) + p (i -S)) , 
゜

(9) 

where r(t) is the reflection function, a叫乙=pc/ Scup with speed of sound c is the 
characteristic wave impedance of an infinite cylindrical tube having the area Scup・The 
reflection function r(t) is associated with the input impedance of the instrument Zin(!) 
through f (f) denoting the Fourier transformation of r(t) as follows: 

f(f)= 
Zin(!) -Zc 

Zin(!)+ Zc. 
(10) 

In principle, the reflection function r(t) is causal. This is guaranteed by the nature of 

the input impedance Zin(!) representing causal acoustic responses from the instrument. 
However, there may be cases in which the numerical calculation from Zin (J) by way of 
Eq. (10) may affect the causality of r(t): the wake of non-zero r(t) fort> 0 penetrates 
into the t < 0 region. This is due to a恥 itecutoff frequency or sampling frequency 
associated with the numerical calculation. In this case, r(t) cannot be used in Eq. (9) 
as it stands. For the brass instrument, abrupt reflections from the mouthpiece generally 
cause this difficulty. To avoid this, we employ a causal reflection function臼(t),which 
was used in the previous simulation with one-dimensional lip models [ro]. In brief, re (t) 

is defined by two times the even component (with respect to the time reversal t⇔ -t) 

of the original r(t) for t 2: 0 and zero for t < 0. To verify this procedure, it has 
been confirmed that Eq. (9) with the causal reflection function rc(t) simulates a ratio of 

generated pressure p to input flow U, reproducing almost the same input impedance. 
The data of Zin(!) used in this paper are the same ones used in the previous simulation 
which were calculated from the dimensions of a real Bb trumpet with some assumptions 
on the acoustics. The magnitude and phase of Zin(!) are shown in Fig. 3. Table II 
lists the magnitudes (normalized by Zふfrequenciesof the impedance peaks and their 
frequency intervals. The impedance peaks, which are at nearly equal interrnls with the 
exception of the first peak, correspond to the resonance modes of the instrument. The 

envelope of these peaks is characteristic of the brass instrument. Note that the sign 

of the phase LZin (!) changes from positive to negative as frequency f rises and sweeps 
resonance frequencies. These characteristics of this Zin(!) are very similar to the input 
impedances obtained in experiments[15]-[1S]. Therefore, the general acoustical behavior of 

the real brass instrument is expected to be reproduced by the total simulation system. 
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11. SIMULATION 

The oscillation is described by the variables of lip position~(t), mouthpiece pressure p(t), 
lip opening pressure Plip(t), acoustic volume velocity Uac(t), lip-generated volume velocity 
Ulip(t) and lip opening area Slip(t). These variables satisfy the equations developed in 
the previous section. A time-domain simulation is carried out algorithmically as follows: 

1) Suppose the variablesもp,Plip, Uac, Ulip and Slip are all known at all times earlier 

than the present, solve the equation of the lip motion (1) and find the new [ at the 
time one step ahead. 

2) Calculate the new Slip and U1ip defined by Eqs. (5) and (6), respectively. 

3) With the new Slip, U1ip and past data of p and U = Uac+U!ip, solve the flow equation 
(i.e., sum of Eqs. (7) and (8)) and the feedback equation (9) simultaneously, and 

obtain the new p and Uac・ 

4) Solve Eq. (8) to obtain the new Plip・ 

5) Update time by one step, then return to 1). 

The parameters of lip geometry, ら。int,~equil, b and d, and the blowing pressure p。are
fixed during one attempt of the simulation. The initial values of p, p1こp,Uac and U1ip are 
all zeros. The lip position~ 認initiallyplaced at the rest position~equil·The forward 
Euler method to discretize the differential equations and the trapezoidal approximation 
for the integration are used with 8 kHz sampling frequency. 

Despite the simple method and the low sampling frequency, we did not encounter ap-
parent numerical instabilities. This partly assures the validity of the simulation method. 
For greater validity, some of the oscillations were additionally calculated with 48 kHz 
sampling frequency. They had almost the same waveforms as the ones calculated with 

the original 8 kHz sampling frequency. In particular, the phase relations among p(t), 

U(t) and S1ip(t), which will be investigated later, did not change with this oversampling. 
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A. Mode Selection 

By changing lip eigenfrequency JEP from 60 Hz through 700 Hz at intervals of 20 Hz 
(except 600,620 and 700 Hz, at which no stable self-excitation is generated), we obtained 
stable self-excited trumpet sounds for the first through sixth resonance modes. Blowing 
pressure p。forthe moderate (mi) sound level was set at 2.0, 2.5, 3.0, 3.5, 4.0, and 5.0 kPa 
for the first through sixth modes, respectively. These values were chosen so as to match 
the measurements of mouth pressures for various notes blown on brass instruments [r9J, 
although the great variety among the trials and players was reported. 

The y-component of the lip equilibrium position~equ!ly, which determines the average 
lip opening area, was adjusted so that the following criteria were satisfied: (1) the lips 
do not come into contact with each other or only have contact in a much shorter time 
than the oscillation period; and (2) the maximum amplitude of oscillation is obtained. 

With these criteria, ~equily can be practically determined as a function of JEP and p。and
therefore ceases to be an independent parameter. 

The other parameters of lip geometry, b, d, l。int,and~equilx, were all fixed at the 
values listed in Table I. Due to the simplified model, these parameters are not directly 
related to the actual dimensions of the player's lips. However, they were selected to be 
consistent with the dimensions of the lips put to a trumpet mouthpiece. 

Figure 4 plots the frequency of self-excited sound !sound against the lip eigenfrequency 
j扉withthe first through sixth resonance frequencies of the trumpet depicted with dash-
dot lines. The first through sixth resonance modes appear. Between adjacent resonance 
modes, frequency gaps that represent the mode transition are found. In each resonance 

mode, sounding frequency !sound does not take a constant value. Instead, there is a 

frequency range of !s_ound, where self-excitation is possible and where !sound gradually as-
cends with increases m f1ip・It is noteworthy that in the first, second and third modes the 
possible ranges of !sound span both the higher and lower sides of the resonance frequencies, 
whereas in the fourth, fifth and sixth modes, they are only on the lower sides. 

Within each resonance mode, especially in the third and fourth, the slope of the 

sounding frequency is less steep at the higher frequency range than at the lower frequency 
range. In other words, the sounding frequency is insensitive for any perturbation of flip at 
the higher frequency range. From the player's point of view, blowing a note at as high a 

frequency as possible is preferable, because the insensitivity brings the ease of maintaining 
a given playing frequency. As a result, the actual blowing in the lower modes such as the 
second and third would be executed on the higher frequency side of the impedance peaks. 
However, in the higher modes, it would still be executed on the lower side, because the 
possible frequency ranges are lower than the resonance frequencies. 

， 
-- - - - -
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B. Oscillating Quantities 

Apart from selecting resonance modes by adjusting the embouchure, the brass instrument 

player finely controls the embouchure to make a blown note have both stable frequency 

and sufficient amplitude. Such notes selected from the different modes sh叫 dalso be 

relatively in tune. To mimic the player's embouchure control in the simulation system, 

we change the lip eigenfrequency ]Ep at intervals of 10 Hz, instead of the 20 Hz used in 

the previous subsection, and find the optimum oscillation of each mode by the following 

procedure: first, search for the maximum flip that provides oscillation with the highest 

frequency; then, lower the /Iip 10Hz to obtain an oscillation with both stable frequency 

and sufficient amplitude. 

Waveforms and the lip trajectories of these oscillations in the second through sixth 
modes are depicted in Fig. 5 (a) through (e). A "loose-lipping" tone[20l (Fig. 5 (f)), which 

is an oscillation an octave below the normal oscillation in the third mode, is also compared 

with the normal oscillations in Fig. 5. It is found that the characteristic waveform with 

rich harmonics turns out to be a sinusoidal one from the lower to the higher modes, which 

is very similar to the change in the observed brass sound [5H21l. The sinusoidal waveforms 

of S1ip in all resonance modes whose amplitude decreases as the mode rises reproduce the 

result of Martin's observation of lip movement[2l. 

The counterclockwise trajectory of the lip displacementふwhoseamplitude is de-
creased as the mode rises, is again in accord with Martin's observation. There is also 

a tendency for the long axis of the oval trajectory to grad叫 lytilt from the direction 

parallel to the airflow in the second mode (a) toward a certain angle in the higher modes 

(b) through (e). This qualitatively corresponds to the change in lip vibration state from 

swinging motion dominant to stretching motion dominant. 

For a "loose-lipping" tone, it is found that the amplitude of the lip motion and volume 

flow rate U are much larger than those of the normal oscillations, although the pressure 

amplitude is almost the same. The tilted direction of the trajectory in (f) implies the 
stretching motion dominant lip vibration state. 

The trajectory for the "loose-lipping" tone can be compared with the two-dimensional 

motion of a trombone player's upper lip measured by Copley and Strong[4l, because the 

frequency of 166 Hz is close to that of their measured応 tones. The amplitude and 

flatness of the simulated trajectory are in broad agreement with those of the measured 

trajectory. However, the measured trajectory has the long axis roughly along the y-axis, 

while our simulated trajectory has the one roughly along the x-axis. This is probably 

because of the larger dimensions of the trombone mouthpiece cup, which allows the lips 
to get into the cup more deeply. 

The phase differences Lp -LU and LS lip -Lp in the oscillations shown in Fig. 5 are 
listed along with resonance frequencies of the instrument (frequencies of the impedance 

peak) ]peak, lip eigenfrequencies f1ip and sounding frequencies !sound in Table III. It is 

.

.
 ＼
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found that Lp -LU changes from negative values in the second and third modes to 
positive values in the fourth and higher modes. This corresponds to the change in the 
sides of the impedance peaks on which the oscillation occurs in different modes, which is 
manifest in comparing ]peak with !sound・The phase difference LSlip -Lp is positive in the 
first through fourth modes and negative in the fifth and sixth modes. This change proves 
that the lip motion changes from the swinging motion dominant state in the first through 
fourth modes to the stretching motion dominant state in the fifth and sixth modes. 
The condition derived by the linear theory of oscillation that these two phase differ-
ences Lp-LU and LS!ip -Lp have the same absolute values and have opposite signs is not 
always satisfied. Especially in the fourth mode, the signs of these phase differences are 
both positive and the stretching motion dominant state inferred from positive Lp -LU 
contradicts the swinging motion dominant state that is actually excited. 

111. DISCUSSION 

The results of the simulation with the two-dimensional lip vibration models are signifi-
cantly different from those with the one-dimensional models in the following points: 

1) The sounding frequency !sound is not far from the lip eigenfrequency ]Ep. 

2) A transition in lip vibration states is observed. The swinging motion dominant 
oscillation typical in the lower resonance modes gives way to the stretching motion 
dominant oscillation in the higher modes. 

Let us discuss the causes of these characteristics within the scope of the linear theory 
of oscillation, where the且owequations (7) and (8) are linearized and lip collision is 

omitted. For simplicity, we assume S1ip≪Scup and thus Plip = p, which implies no 
pressure recovery at the mouthpiece cup, holds. As U1ip≪Uac is approximately satisfied 
in the simulation, the effect of U1ip is excluded from this discussion. 
To make the discussion precise, we define 

G(f) = 
Slip(!) 

p(f)' 
(11) 

where Slip(!) and p(f) denote Fourier components of Slip and p, respectively. As G(f) 
represents a response of the lip motion to the driving pressure, we here call G(f) the lip 
mobility, although G(f) is only one component of the lip mobility having a tensor form. 
It is only this component G(f) that plays a crucial role in considering the oscillation 
conditions of the total sound production system. Generally, the magnitude of G(f) 

has a peak near the lip eigenfrequency hp, whereas the frequency dependence of phase 
LG(f) = LS1ip(f) -Lp(f) is specific to the lip vibration model. 

---—----—, ,-
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The regeneration theoryl5H9l, regardless of what lip dynamics is assumed, requires 

oscillation to have sounding frequency f satisfying the following magnitude and phase 
conditions: 

fii-1cU)I JZin(J)I ミ 1,
p 

LG(J) + LZin(J) = 0. 

(12) 

(13) 

The magnitude condition indicates that oscillation is more likely to be generated with 

larger blowing pressure and stronger resonances of the instrument and the lip. We have 

already investigated the phase condition in the Introduction and Section II-B, although 

G(J) was not de且nedthere. 
Before calculating the lip mobility G(J) for the two-dimensional lip vibration model, 
let us廿rstobtain the time-averaged or D.C. component of the lip displacement {D.C. = 
信~.c.,f, 戸）• The equation of lip motion (1), or, in this case, the balance equation of 
forces acting on the lip becomes 
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because the time-averaged mouthpiece pressure pD.c. is zero. Eq. (14) can be solved as 
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We express the time-varying or A.C. component of the lip displacement with (A.c. = 
（吟.c.,ご）• The equation of lip motion (1) gives a linear equation for (A.C. in the 
frequency domain as follows: 
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where the quadratic term~A.c. p is omitted, because the amplitude of lip motion is y 

SU缶cientlysmaller than the lip length. The function A(D) in Eq. (16) is defined by 

A(切＝
1 

1ーか＋噂． (17) 
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ロ
From the solution of Eq. (16), the lip mobility G(f) is calculated as 

G(f) = 
2b~::-c. (J) 

p(J) 

(d-砂C.)-2b~jointy Po 
A (JI flip) 
k A(J/]Ep) 

(2b)2 

1 + (2bp。A(!{庫））'k

13 

(18) 

The calculation results of the magnitude and phase of G(f) for flip = 250 Hz and 
加=580 Hz are depicted in Fig. 6 (a) and (b), respectively. For comparison, those of lip 
mobility in the one-dimensional transverse model are also drawn with broken lines. Near 

the lip eigenfrequency flip, the phase of G(f) takes a value around -30°in (a) and one 
around -45°in (b). Because the phase of Zin changes suddenly from a value less than 90° 
to another larger than -90°near the resonance frequencies, frequency f satisfying the 
phase condition (13) is likely to exist near the lip eigenfrequency hp-For the transverse 
model (broken lines), LG(j) is around -90°near ]Ep in both (a) and (b). This implies 
that frequency f should be considerably off to the lower side of hp so that the phase 
becomes closer to zero and the phase condition is satisfied. Therefore, the characteristics 
of LG near the lip eigenfrequency in the two-dimensio叫 modelsuccessfully explain why 

the sounding frequency !sound is not far from the lip eigenfrequency f1ip・ 
Let us now compare (a) with (b) in Fig. 6. In these phase plots, we find the frequency 
region having a positive phase of G (j) (the LG-positive region), where the swinging 
motion is dominant. Note that in (a) the LG-positive region is very close to the lip 
eigenfrequency flip where the magnitude of G(j) takes the maximum. On the other 
hand, in (b) the LG-positive region is far from flip・Therefore, for the lower modes 
like the second shown in (a), there exists f that gives sufficiently large IG(f)I so as to 
satisfy the magnitude condition (12) both in the LG-positive and negative regions. In 
actual blowing, such f in the LG-positive region is chosen for the frequency stability 
of a played note. However, for the higher modes such as the fifth in (b), f satisfying 
the magnitude condition (12) is not found in the LG-positive region but only in the 
LG-negative region, where the stretching motion is dominant. This explains why the lip 

vibration state changes from swinging motion dominant in the lower modes to stretching 
motion dominant in the higher modes. 

The investigation of the oscillation conditions (12) and (13) shows the advantage of the 
two-dimensional lip vibration model over the one-dimensional models as the generator 
of the brass instrument. The magnitude condition (12) allows the system to oscillate 
only in the presence of large resonances of both the instrument and the lip. The input 

impedance Zin (j) has a maximum magnitude at one of the resonance frequencies and 

the lip mobility G(j) is maximized at the lip eigenfrequency. Therefore, the system 
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will obtain the optimal effect of these resonances when the oscillation frequency f is 
close to the lip eigenfrequency and to one of the air-column resonance frequencies. On 
the other hand, the phase condition (13) constrains the phases of Zin(!) and G(f) to 
cancel each other. At one of the air-column resonance frequencies, where the maximum 
resonance of the instrument is obtained, LZin (!) is approximately zero. To satisfy the 
phase condition, LG(!) sh叫 dalso be as close to zero as possible. In the two-dimensional 
model, this is compatible with the magnitude condition because LG(!) vanishes near the 
lip eigenfrequency that maximizes the magnitude of G(f). In the one-dimensional lip 
vibration models, however, this conflicts with the magnitude condition because LG(!) is 

around士90°nearthe lip eigenfrequency. 

To understand the mechanism of change in lip vibration states further, let us go 
back to the lip mobility G(f) calculated in Eq. (18). The first term in the numerator 
of the second factor in Eq. (18) corresponds to the effect of the stretching motion of 
the lip directly driven by the Bernoulli pressure along the y-direction. The second term 
in the same numerator represents the effect of the lip movement along the y-direction, 
which is caused by that along the x-direction (i.e., the swinging motion of (A.c.). Note 

that the second term is inversely proportional to the lip stiffness k, which controls the 
amplitude of the lip motion. This is related to the swinging motion of (A.C. being 

generated by torque that is the product of the force acting on the lip and the amplitude 
of the motion. In the lower resonance modes, these two terms are comparable and 
the second term surpasses the first one when the sounding frequency is near the lip 
eigenfrequency due to a large magnitude of A representing the lip resonance. As the 
mode rises, the amplitude of oscillation becomes smaller due to the lip stiffness k that is 

adjusted to increase proportionally to the lip eigenfrequency flip・This causes a decline 
in the swinging motion due to the decrease in the second term. In the higher modes, 

therefore, the first term is always dominant and only the stretching motion dominant 
state is realized. 

The parameters of lip shape certainly alter the character of the lip mobility G(f). In 
particular, the ratio of lip thickness to lip length, which is approximately eq叫 tod I~jointy' 
affects the frequency region having a positive phase of G (!). This indicates that this ratio 
can control the critical resonance mode at which the lip vibration state changes from 

swinging motion dominant to stretching motion dominant. Nevertheless, the mechanism 
that yields the transition between the lip vibration states would be retained, regardless 
of the selection of lip shape parameters, in the two-dimensional lip vibration model 

investigated in this paper. In actual blowing, the ratio d/~joint may be controlled by 
the embouchure. If this is the case, an increase in the ratio d/らj:int 灼 uldenhance the 

y 

transition; however, this effect was not investigated in this simulation. 

,
1し

9

,

 

1v. CONCLUSIONS 

By adopting the two-dimensional lip vibration model, where the lips execute both swing-
ing and stretching motions, the whole system successfully simulates self-excited trumpet 

sounds in the first through sixth resonance modes. In the first through third modes, oscil-

lations occur on both the lower and higher frequency sides of the resonance frequency of 
the instrument, while in the fourth and higher modes they are realized only on the lower 
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sides. In each resonance mode, the oscillation having the highest frequency and sufficient 
amplitude, which appears to be actually blown, is selected as the optimum oscillation of 
the mode. The phase differences between the lip vibration and the mouthpiece pressure 
of these oscillations in the first through fourth modes are positive and those in the fifth 
and sixth modes are negative. 
The phase relations obtained here can be compared with those of the one-dimensional 
lip models. In the lower modes the two-dimensional lip model operates in the same 
way as the one-dimensional swinging-door model, while in the higher modes this model 
operates in the same way as the one-dimensional transverse model. Accordingly, it can 
be concluded that the two-dimensional lip model closely replicates the transition of the 
lip vibration states observed in Yoshikawa's experiment. 
The change from the positive phase difference in the lower modes to the negative one 
in the higher modes results from the dynamics of the lip model itself. In the lower modes, 
the large amplitude of lip motion enhances the swinging motion, whereas in the higher 
modes the small amplitude suppresses the swinging motion and the stretching motion 
becomes dominant. The mechanism that yields the transition of the phase relation is 
not limited to this two-dimensional model. Rather, it will be incorporated into future 
models with many degrees of freedom, provided that the modeled lip is capable of both 
swinging outwards and stretching along the lip length. 
In actual lip vibration, there may be other possible causes for the transition, such as 
lip deformation in embouchure change. However, the lip dynamics of this two-dimensional 
lip vibration model provide one of the most plausible explanations for the transition of 
the lip vibration states. 
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FIGURE CAPTIONS 

1. Three different configurations of a pressure-controlled valve in an acoustic tube. In 

each configuration, p。ispressure in the upstream region of the valve, i.e., blowing 
pressure, and pis pressure in the downstream region of the valve, i.e., mouthpiece 
pressure. (a) inwardly striking valve, which tends to close in increments of blowing 
pressure p0. (b) outwardly striking valve, which opens further asp。increases. (c) 
retracting valve that strikes laterally to the direction of the flow. The Bernoulli 
pressure generated by the airflow tends to close this valve. (a) models reeds of the 
woodwind instruments. (b) and (c) provide brass instrument lip-reed models in the 
lower and higher modes, respectively. 

2. Two-dimensional lip vibration model. The upper and lower lips are assumed to 
have symmetric motion. The modeled lip represented by the parallelogram ABCD 
simultaneously executes both swinging motion with the free joint AB and stretching 
motion along the sides BC and AD. The two springs supply restoring force for 
swinging and stretching displacements. The swinging motion is mainly driven by 
the pressure difference between the player's mouth and the mouthpiece, Po -p, 

whereas the stretching motion is driven by the Bernoulli pressure Piip・ 

3. The magnitude and phase angle of input impedance Zin scaled by the characteristic 
wave impedance Zc, which is calculated from the shape of an actual Bb trumpet. 

4. Frequency (depicted with o) of self-excited sound against the lip eigenfrequency. 
The dash-dot lines represent the first through sixth resonance frequencies of the 
instrument. In the first through third modes, self-excitation occurs with sounding 
frequencies both higher and lower than the resonance frequencies, whereas in the 
fourth and higher modes, it only occurs with a sounding frequency lower than the 
resonance frequencies. 

5. Waveforms of mouthpiece pressure p, volume flow U and lip opening area Slip with 

the lip trajectories of the optimum oscillations of the second (a) through sixth (e) 
modes and the "loose-lipping" tone (f). In comparing the pressure waveforms in 

(a) through (e), it is found that the characteristic waveform with rich harmonics 
in the lower modes turns out to be a sinusoidal one in the higher modes. On the 
other hand, the waveforms of Slip are always nearly sinusoidal. In the second (a) 
and third (b) modes, volume flow U is leading mouthpiece pressure p, while in 
the fourth (c) through sixth (e) modes, U is lagging behind p. The trajectories 
with an oval shape indicate the rolling motion of the lip. As the mode rises, the 
amplitude becomes smaller. Also, the long axis of the trajectory grad叫 lytilts 
from the direction parallel to the且owin the second mode (a) toward a certain 

angle in the higher modes (b) through (e). This qualitatively corresponds to the 
change in lip vibration state from swinging motion dominant to stretching motion 

dominant. The trajectory of the "loose-lipping" tone shows a larger amplitude and 

a tilted direction, implying the stretching motion dominant lip vibration state. 

6. Calculation results of the magnitude and phase of the lip mobility G(f) for lip 

eigenfrequency flip = 250Hz (a) and 580Hz (b). The solid lines denote results 

r~ 
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for the two-dimensional lip vibration model, and the broken lines denote those for 

the one-dimensional transverse model. The peak of the magnitude indicates the 

resonance of lip vibration. A frequency region having a positive phase of G (f) is 
found in the two-dimensional model. In this region, the swinging motion of lip 

vibration is dominant, whereas in the LG-negative region the stretching motion 

becomes dominant. Note that the LG-positive region is very close to flip in (a), 

while it is far from flip in (b). This difference causes the transition of the lip 

vibration state. 
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， 
Table I: Parameters 

Symbol Parameter Name Value 

C Speed of sound 3.4 x 102 m/s 

p Average air density 1.2 kg/m3 

s cup Area of mouthpiece entryway 2.3 X 10-4 m2 

b Breadth of lip opening 7.0 X 10-3 ill 

d Thickness of lips 2.0 X 10-3 ill 

loint Lip joint position (0, 4.0) X 10-3 m 

恥uilx x-coord. of lip rest position 1.0 X 10-3 ill 

~equily y-coord. of lip rest position -0.1 rv 2.0 X 10-3 cm 

Q Lip quality factor 3.0 on the open-lip conditon 

0.5 on the closed-lip conditon 

flip Lip resonance frequency 60 ~ 700 Hz 

m Lip mass 1.5/ ((21r)2加） kg 

k Stiffness of lips l.5flip N/m 

Po Blowing pressure 2.0 ~ 5.0 kPa ， 



Trumpet simulation using 2-D lip model 21 

Table II: Magnitudes and frequencies of input impedance peaks and their intervals 

Mode IZin/Z叶 fpeak(Hz) △ f(Hz) 

I Pd 43.7 87 

II Bi, 3 35.2 232 145 

III F4 46.4 341 109 

IV Bi, 4 55.7 457 116 

V 恥 48.1 572 115 

VI Fs 51.6 686 114 

VII A~ 
5 44.5 800 114 

VIII BD 5 28.5 913 113 

-—――--干-
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Table III: Lip eigenfrequencies, sound frequencies, phase differences Lp -LU and ， 
LSlip -Lp of the optimum oscillation of each resonance mode and the "loose-lipping" 

tone. 

Oscillation Note ]peak (Hz) 畠 (Hz)!sound (Hz) Lp-LU (deg) LS1ipー乙p(deg) 

II BD 
3 232 250 236 -25.6 18.1 

III F4 341 370 342 -3.2 12.5 

IV Bb 4 457 490 453 27.7 5.4 

V Ds 572 580 563 41.9 -7.0 

VI 恥 686 680 673 38.5 -7.6 

"loose-lipping" (F砂 232 160 166 81.6 -41.5 
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