
TR -H -176

A Computational Approach to
Evolutionary Biology

Thomas S. Ray

1995.12.4

ATR人間情報通信研究所
〒619-02 京都府相楽郡精華町光台2-2 合 0774-95-1 011

ATR Human Information Processing Research Laboratories

2-2, Hikaridai, Seika-cho, Soraku-gun, Kyoto 619-02 Japan

Telephone: +81-77 4-95-1011

Facsimile: +81-77 4-95-1008

c(木菊ATR人間情報通信研究所

Thomas S. Ray
A.TR Human Information Processing Research Laboratories
2-2 Hikaridai, Seika-cho Soraku-gun, Kyoto 619-02 Japan
(81)-774-95-1008 (FAX), (81)-774-95-1063 (phone)
ray◎ hip.atr.co.jp, ray@santafe.edu, ray◎ udel.edu

http://www.hip.atr.co.jp/~ray

August 25, 1995

A Computational Approach To Evolutionary Biology

1 Introduction

Marcel, a mechanical chessplayer…his exquisite 19th-century brainwork - the
human art it took to build which has been flat lost, lost as the dodo bird…
But where inside Marcel is the midget Grandmaster, the little Johann Allgeier?
where's the pantograph, and the magnets? Nowhere. Marcel really is a mechan-
ical chessplayer. No fakery inside to give him any touch of humanity at all.

- Thomas Pynchon, Gravity's Rainbow.

1.1 Synthetic Biology

｛
 ，

こ

Artificial Life (AL) is the enterprise of understanding biology by constructing biological
phenomena out of artificial components, rather than breaking natural life forms down into
their component parts. It is the synthetic rather than the reductionist approach. I will
describe an approach to the synthesis of artificial living forms that exhibit natural evolution.

The umbrella of Artificial Life is broad, and covers three principal approaches to synthe-
sis: in hardware (e.g., robotics, nanotechnology), in software (e.g., replicating and evolving
computer programs), in wetware (e.g., replicating and evolving organic molecules, nucleic
acids or others). This essay will focus on software synthesis, although it is hoped that the

issues discussed will be generalizable to any synthesis involving the process of evolution.

I would like to suggest that software syntheses in AL could be divided into two kinds:
simulations and instantiations of life processes. AL simulations represent an advance in
biological modeling, based on a bottom-up approach, that has been made possible by the
increase of available computational power. In the older approaches to modeling of ecological
or evolutionary phenomena, systems of differential equations were set up that expressed rela-
tionships between covarying quantities of entities (i.e., genes, alleles, individuals, or species)
in the populations or communities.

The new bottom up approach creates a population of data structures, with each instance

of the data structure corresponding to a single entity. These structures contain variables
de恥ingthe state of an individ叫 Rulesare defined as to how the individ叫 sinteract with

one another and with the environment. As the simulation runs, populations of these data
structures interact according to local rules, and the global behavior of the system emerges
from those interactions. Several very good examples of bottom up ecological models have
appeared in the AL literature [36, 86]. However, ecologists have also developed this same
approach independently of the AL movement, and have called the approach "individ叫

based" models [20, 40].

、 Thesecond approach to software synthesis is what I have called instantiation rather than

simulation. In simulation, data structures are created which contain variables that represent
the states of the entities being modeled. The important point is that in simulation, the data

in the computer is treated as a representation of something else, such as a population of
mosquitoes or trees. In instantiation, the data in the computer does not represent anything
else. The data patterns in an instantiation are considered to be living forms in their own

right, and are not models of any natural life form. These can from the basis of a comparative

biology [55].

The object of an AL instantiation is to introduce the natural form and process of life into
an artificial medium. This results in an artificial life form in some medium other than carbon
chemistry, and is not a model of organic life forms. The approach discussed in this essay
involves introducing the process of evolution by natural selection into the computational
medium. I consider evolution to be the fundamental process of life, and the generator of
living form.

Ideally, the science of biology should embrace all forms of life. However in practice, it
has been restricted to the study of a single instance of life, life on earth. Life on earth is
very diverse, but it is presumably all part of a single phylogeny. Because biology is based
on a sample size of one, we can not know what features of life are peculiar to earth, and
what features are general, characteristic of all life. A truly comparative natural biology
would require inter-planetary travel, which is light years away. The ideal experimental

evolutionary biology would involve creation of multiple planetary systems, some essentially
identical, others varying by a parameter of interest, and observing them for billions of years.

A practical alternative to an inter-planetary or mythical biology is to create synthetic

life in a computer. The objective is not necessarily to create life forms that would serve as
models for the study of natural life, but rather to create radically different life forms, based
on a completely different physics and chemistry, and let these life forms evolve their own
phylogeny, leading to whatever forms are natural to their unique physical basis. These truly
independent instances of life may then serve as a basis for comparison, to gain some insight
into what is general and what is peculiar in biology. Those aspects of life that prove to be
general enough to occur in both natural and synthetic systems can then be studied more
easily in the synthetic system.

The intent of this work is to synthesize rather than simulate life. This approach starts

with hand crafted organisms already capable of replication and open-ended evolution, and
aims to generate increasing diversity and complexity in a parallel to the Cambrian explosion.

貫

ヽ

-'-

2

To state such a goal leads to semantic problems, because life must be defined in a way that
does not restrict it to carbon based forms. It is unlikely that there could be general agreement
on such a definition, or even on the proposition that life need not be carbon based. Therefore,
I will simply state my conception of life in its most general sense. I would consider a system

to be living if it is self-replicating, and capable of open-ended evolution. Synthetic life should
self-replicate, and evolve structures or processes that were not designed-in or pre-conceived

by the creator ([12, 64]).

Core Wars programs, computer viruses, and worms ([14, 22, 23, 24, 26, 27, 77, 82]) are
capable of self-replication, but fortunately, not evolution. It is unlikely that such programs
will ever become fully living, because they are not likely to be able to evolve.

Most evolutionary simulations are not open-ended. Their potential is limited by the
structure of the model, which generally endows each individual with a genome consisting of a
set of pre-defined genes, each of which may exist in a pre-defined set of allelic forms ([1, 18, 19,
25, 37, 62]). The object being evolved is generally a data structure representing the genome,
which the simulator program mutates and/ or recombines, selects, and replicates according
to criteria designed into the simulator. The data structures do not contain the mechanism
for replication, they are simply copied by the simulator if they survive the selection phase.

Self-replication is critical to synthetic life because without it, the mechanisms of selection
must also be pre-determined by the simulator. Such artificial selection can never be as
creative as natural selection. The organisms are not free to invent their own fitness functions.
Freely evolving creatures will discover means of mutual exploitation and associated implicit
fitness functions that we would never think of. Simulations constrained to evolve with pre-
defined genes, alleles and fitness functions are dead ended, not alive.

The approach presented here does not have such constraints. Although the model is
limited to the evolution of creatures based on sequences of machine instructions, this may
have a potential comparable to evolution based on sequences of organic molecules. Sets of
machine instructions similar to those used in the Tierra Simulator have been shown to be
capable of "universal computation" ([3, 48, 56]). This suggests that evolving machine codes

should be able to generate any level of complexity.

Other examples of the synthetic approach to life can be seen in the work of [5, 30, 38,
46, 65]. A characteristic these efforts generally have in common is that they parallel the
origin of life event by attempting to create prebiotic conditions from which life may emerge

spontaneously and evolve in an open ended fashion.

While the origin of life is generally recognized as an event of the first order, there is
another event in the history of life that is less well known but of comparable significance:
the origin of biological diversity and macroscopic multicellular life during the Cambrian
explosion 600 million years ago. This event involved a riotous diversification of life forms.
Dozens of phyla appeared suddenly, many existing only fleetingly, as diverse and sometimes
bizarre ways of life were explored in a relative ecological void ([34, 60]).

The work presented here aims to parallel the second major event in the history of life,

the origin of diversity. Rather than attempting to create prebiotic conditions from which
life may emerge, this approach involves engineering over the early history of life to design

3

complex evolvable organisms, and then attempting to create the conditions that will set off a
spontaneous evolutionary process of increasing diversity and complexity of organisms. This
work represents a first step in this direction, creating an artificial world which may roughly
parallel the RNA world of self-replicating molecules (still falling far short of the Cambrian
explosion).

1.2 Recognizing Life

Most approaches to defining life involve assembling a short list of properties of life, and then
testing candidates on the basis of whether or not they exhibit the properties on the list.
The main problem with this approach is that there is disagreement as to what should be on
the list. My private list contains only two items: self-replication and open-ended evolution.
However, this reflects my biases as an evolutionary biologist.

I prefer to avoid the semantic argument and take a different approach to the problem
of recognizing life. I was led to this view by contemplating how I would regard a machine
that exhibited conscious intelligence at such a level that it could participate as an eq叫 in
a debate such as this. The machine would meet neither of my two criteria as to what life is,
yet I don't feel that I could deny that the process it contained was alive.

This means that there are certain properties that I consider to be unique to life, and whose

presence in a system signify the existance of life in that system. This suggests an alternative
approach to the problem. Rather than creating a short list of minimal requirements and
testing whether a system exhibits all items on the list, create a long list of properties unique
to life and test whether a system exhibits any item on the list.

In this softer, more pluralistic approach to recognizing life, the objective is not to de-
termine if the system is alive or not, but to determine if the system exhibits a "genuine"
instance of some property that is a signature of living systems (e.g., self-replication, evolu-
tion, flocking, consc10usness).

Whether we consider a system living because it exhibits some property that is unique
to life amounts to a semantic issue. What is more important is that we recognize that it is
possible to create disembodied but genuine instances of specific properties of life in artificial
systems. This capability is a powerful research tool. By separating the property of life that
we choose to study, from the many other complexities of natural living systems, we make

it easier to manipulate and observe the property of interest. The objective of the approach
advocated in this paper is to capture genuine evolution in an artificial system.

鋼

1.3 What Natural Evolution Does -

Evolution by natural selection is a process that enters into a physical medium. Through

iterated replication-with-selection of large populations through many generations, it searches
out the possibilities inherent in the "physics and chemistry" of the medium in which it is

4

embedded. It exploits any inherent self-organizing properties of the medium, and flows into
natural attractors realizing and fleshing out their structure.

Evolution never escapes from its ultimate imperative: self-replication. However, the
mechanisms that evolution discovers for achieving this ultimate goal gradually become so
convoluted and complex that the underlying drive can seem to become superfluous. Some
philosophers have argued that the evolutionary theory as expressed by the phrase "survival
of the fittest" is tautological, in that the fittest are defined as those that survive to reproduce.
In fact, fitness is achieved through innovation in engineering of the organism [79]. However
there remains something peculiarly self-referential about the whole enterprise. There is some

sense in which life may be a natural tautology.

Evolution is both a defining characteristic and the creative process of life itself. The
living condition is a state that complex physical systems naturally flow into under certain
conditions. It is a self-organizing, self-perpetuating state of auto-catalytically increasing
complexity. The living component of the physical system quickly becomes the most complex

part of the system, such that it re-shapes the medium, in its own image as it were. Life
then evolves adaptations predominantly in relation to the living components of the system,

rather than the non-living components. Life evolves adaptations to itself.

1.3.1 Evolution in Sequence Space

Think of organisms as occupying a "genotype space" consisting of all possible sequences
of all possible lengths of the elements of the genetic system (i.e., nucleotides or machine
instructions). When the且rstorganism begins replicating, a single self-replicating creature,
with a single sequence of a certain length occupies a single point in the genotype space.

However, as the creature replicates in the environment, a population of creatures forms, and
errors cause genetic variation, such that the population will form a cloud of points in the
genotype space, centered around the original point.

Because the new genotypes that form the cloud are formed by random processes, most

of them are completely inviable, and die without reproducing. However, some of them are
capable of reproduction. These new genotypes persist, and as some of them are affected by
mutation, the cloud of points spreads further. However, not all of the viable genomes are
equally viable. Some of them discover tricks to replicate more efficiently. These genotypes
increase in frequency, causing the population of creatures at the corresponding points in the
genotype space to increase.

Points in the genotype space occupied by greater populations of individuals will spawn
larger numbers of mutant offspring, thus the density of the cloud of points in the genotype
space will shift gradually in the direction of the more fit genotypes. Over time, the cloud
of points will percolate through the genotype space, either expanding outward as a result of
random drift, or by flowing along fitness gradients.

Most of the volume of this space represents completely inviable sequences. These regions
of the space may be momentarily and sparsely occupied by inviable mutants, but the cloud

will never flow into the inviable regions. The cloud of genotypes may bifurcate as it flows

5

into habitable regions in different directions, and it may split as large genetic changes spawn
genotypes in distant but viable regions of the space. We may imagine that the evolving

population of creatures will take the form of wispy clouds且owingthrough this space.

Now imagine for a moment the situation that there were no selection. This implies that
every sequence is replicated at an eq叫 rate.Mutation will cause the cloud of points to
expand outward, eventually filling the space uniformly. In this situation, the complexity of
the structure of the cloud of points does not increase through time, only the volume that
it occupies. Under selection by contrast, through time the cloud will take on an intricate
structure as it flows along fitness gradients and percolates by drift through narrow regions

of viability in a largely uninhabitable space.

Consider that the viable region of the genotype space is a very small subset of the total
volume of the space, but that it probably exhibits a very complex shape, forming tendrils
and sheets sparsely permeating the otherwise empty space. The complex structure of this
cloud can be considered to be a product of evolution by natural selection. This thought
experiment appears to imply that the intricate structure that the cloud of genotypes may
assume through evolution is fully deterministic. Its shape is pre-defined by the physics and
chemistry and the structure of the environment, in much the same way that the form of the
Mandlebrot set is pre-determined by its defining equation. The complex structure of this
viable space is inherent in the medium, and is an example of "order for free" [44].

No living world will ever fill the entire viable subspace, either at a single moment of
time, or even cumulatively over its entire history. The region actually filled will be strongly

influenced by the original self-replicating sequence, and by stochastic forces which will by
chance push the cloud down a subset of possible habitable pathways. Furthermore, co-
evolution and ecological interactions imply that certain regions can only be occupied when
certain other regions are also occupied. This concept of the flow of genotypes through the
genotype space is essentially the same as that discussed by Eigen [28] in the context of
"quasispecies". Eigen limited his discussion to species of viruses, where it is also easy to
think of sequence spaces. Here, I am extending the concept beyond the bounds of the species,
to include entire phylogenies of species.

•

1.3.2 Natural Evolution in an Artificial Medium

Until recently, life has been known as a state of matter, particularly combinations of the ele-
ments carbon, hydrogen, oxygen, nitrogen and smaller quantities of many others. However,
recent work in the field of Artificial Life has shown that the natural evolutionary process can

proceed with great efficacy in other media, such as the informatio叫 mediumof the digital
computer [2, 7, 10, 16, 17, 21, 31, 35, 42, 43, 51, 53, 54, 65, 66, 68, 69, 70, 71, 73, 74, 78, 84, 85]

These new natural evolutions, in artificial media, are beginning to explore the possibilities
inherent in the "physics and chemistry" of those media. They are organizing themselves and
constructing self-generating complex systems. vVhile these new living systems are still so

young that they remain in their primordial state, it appears that they have embarked on the
same kind of journey taken by life on earth, and presumably have the potential to evolve

・'

枷ヽ

6

levels of complexity that could lead to sentient and eventually intelligent beings.

If natural evolution in artificial media leads to sentient or intelligent beings, they will
likely be so alien that they will be difficult to recognize. The sentient properties of plants are
so radically different from those of animals, that they are generally unrecognized or denied
by humans, and plants are merely in another kingdom of the one great tree of organic life on
earth [67, 72, 83]. Synthetic organisms evolving in other media such as the digital computer,
are not only not a part of the same phylogeny, but they are not even of the same physics.
Organic life is based on conventional material physics, whereas digital life exists in a logical,
not material, informational universe. Digital intelligence will likely be vastly different from
human intelligence; forget the Turing test.

1.4 The Approach

The objective of the approach discussed here, is to create an instantiation of evolution by
natural selection in the computational medium. This creates a conceptual problem that
requires considerable art to solve: ideas and techniques must be learned by studying organic
evolution, and then applied to the generation of evolution in a digital medium, without
forcing the digital medium into an "un-natural" simulation of the organic world.

We must derive inspiration from observations of organic life, but we must never lose sight

of the fact that the new instantiation is not organic, and may differ in many fundamental
ways. For example, organic life inhabits a Euclidean space, however computer memory is not
a Euclidean space. Inter-cellular communication in the organic world is chemical in nature,
and therefore a single message generally can pass no more information than on or off. By
contrast, communication in digital computers generally involves the passing of bit patterns,
which can carry much more information.

The fundamental principal of the approach being advocated here is to 1.mdersta冗dand
respect the natural form of the digital comp・uter, to facilitate the process of evolution切1

generating forms that are adapted to the computational medium, and to let evolution find
forms and processes that naturally exploit the possibilities inherent in the medium.

Situations arise where it is necessary to make significant changes from the standard
computer architecture. But such changes should be made with caution, and only when
there is some feature of standard computer architectures which clearly inhibits the desired
processes. Examples of such changes are discussed in the section "The Genetic Language"
below. Less substantial changes are also discussed in the sections on "Mutations", "Flaws",
and "Artificial Death". The section on "Spatial Topology" and is a little tirade against

examples of what I consider to be un-natural transfers of forms from the natural world to
the digital medium.

7

1.5 The Metaphor

Organic life is viewed as utilizing energy, mostly derived from the sun, to organize matter.
By analogy, digital life can be viewed as using CPU (central processing unit) time, to orga-
nize information. Organic life evolves through natural selection as individuals compete for
resources (light, food, space, etc.) such that genotypes which leave the most descendants
increase in frequency. Digital life evolves through the same process, as replicating algorithms
compete for CPU time and memory space, and organisms evolve strategies to exploit one
another. CPU time is thought of as the analog of the energy resource, information as the

analog of the material resource, and memory as the analog of the spatial resource.

The memory, the CPU and the computer's operating system are viewed as elements
of the "abiotic" (physical) environment. A "creature" is then designed to be specifically
adapted to the features of the computational environment. The creature consists of a self-
replicating assembler language program. Assembler languages are merely mnemonics for

the machine codes that are directly executed by the CPU. These machine codes have the
characteristic that they directly invoke the instruction set of the CPU and services provided
by the operating system.

All programs, regardless of the language they are written in, are converted into machine
code before they are executed. Machine code is the natural language of the machine, and
machine instructions are viewed by this author as the "atomic units" of computing. It is
felt that machine instructions provide the most natural basis for an artificial chemistry of
creatures designed to live in the computer.

In the biological analogy, the machine instructions are considered to be more like the
amino acids than the nucleic acids, because they are "chemically active". They actively
manipulate bits, bytes, CPU registers, and the movements of the instruction pointer (see
below). The digital creatures discussed here are entirely constructed of machine instructions.
They are considered analogous to creatures of the RNA world, because the same structures
bear the "genetic" information and carry out the "metabolic" activity.

A block of RAM memory (random access memory, also known as "main" or "core"

memory) in the computer is designated as a "soup" which can be inoculated with creatures.
The "genome" of the creatures consists of the sequence of machine instructions that make
up the creature's self-replicating algorithm. The prototype creature consists of about 80
machine instructions, thus the size of the genome of this creature is 80 instructions, and its
"genotype" is the specific sequence of those 80 instructions (Appendix D).

..

1.6 The Computational Mediun1.
”疇

The computational medium of the digital computer is an informational universe of boolean
logic, not a material one. Digital organisms live in the memory of the computer, and are
powered by the activity of the central processing unit (CPU). vVhether the hardware of

the CPU and memory is built of silicon chips, vacuum tubes, magnetic cores, or mechanical

8

switches is irrelevant to the digital organism. Digital organisms should be able to take on the
same form in any computatio叫 hardware,and in this sense are "portable" across hardware.

Digital organisms might as well live in a different universe from us, as they are not subject
to the same laws of physics and chemistry. They are subject to the "physics and chemistry"
of the rules governing the manipulation of bits and bytes within the computer's memory and

CPU. They never "see" the actual material from which the computer is constructed, they
see only the logic and rules of the CPU and the operating system. These rules are the only
"natural laws" that govern their behavior. They are not influenced by the natural laws that

govern the material universe (e.g., the lmvs of thermodynamics).

A typical instantiation of this type involves the introduction of a self-replicating machine
language program into the RAM memory of a computer subject to random errors such as
bit flips in the memory or occasionally inaccurate calculations [7, 10, 21, 53, 68]. This
generates the basic conditions for evolution by natural selection as outlined by Darwin [15]:
self-replication in a finite environment with heritable genetic variation.

In this instantiation, the self-replicating machine language program is thought of as the
individ叫 "digitalorganism" or "creature". The RAM memory provides the physical space
that the creatures occupy. The CPU provides the source of energy. The memory consists
of a large array of bits, generally grouped into eight bit bytes and sixteen or thirty-two bit
words. Information is stored in these arrays as voltage patterns which we usually symbolize

as patterns of ones and zeros.

The "body" of a digital organism is the information pattern in memory that constitutes
its machine language program. This information pattern is data, but when it is passed to the
CPU, it is interpreted as a series of executable instructions. These instructions are arranged
in such a way that the data of the body will be copied to another location of memory. The
informational patterns stored in the memory are altered only through the activity of the
CPU. It is for this reason that the CPU is thought of as the analog of the energy source.
Without the activity of the CPU, the memory would be static, with no changes in the
informational patterns stored there.

The logical operations embodied in the instruction set of the CPU constitute a large
part of the definition of the "physics and chemistry" of the digital universe. The topology

of the computer's memory (discussed below) is also a significant component of the digital
physics. The final component of the digital physics is the operating system, a software

program running on the computer, which embodies rules for the allocation of resources such
as memory space and CPU time to the various processes running on the computer.

The instruction set of the CPU, the memory, and the operating system together define the
complete "physics and chemistry" of the universe inhabited by the digital organism. They
constitute the physical environment within which digital organisms will evolve. Evolving
digital organisms will compete for access to the limited resources of memory space and CPU

time, and evolution will generate adaptations for the more agile access to and the more
efficient use of these resources.

，

1. 7 Spatial Topology

Digital organisms live in the memory space of computers, predominantly in the RAM mem-
ory, although they could also live on disks or any other storage device, or even within
networks to the extent that the networks themselves can store information. In essence, dig~
ital organisms live in the space that has been referred to as "cyber-space". It is worthwhile
reflecting on the topology of this space, as it is a radically different space from the one we

live in.

A typical UNIX workstation, or MacIntosh computer includes a RAM memory that
can contain some megabytes of data. This is "flat" memory, meaning that it is essentially
unstructured. Any location in memory can be accessed through its numeric address. Thus
adjacent locations in memory are accessed through successive integer values. This addressing

convention causes us to think of the memory as a linear space, or a one-dimensional space.

However, this apparent one-dimensionality of the RAM memory is something of an il-

lusion generated by the addressing scheme. A better way of understanding the topology of
the memory comes from asking "what is the distance between two locations in memory". In
fact the distance can not be measured in linear units. The most appropriate unit is the time
that it takes to move information between the two points.

Information contained in the RAM memory can not move directly from point to point.
Instead the information is transferred from the RAM to a register in the CPU, and then
from the CPU back to the new location in RAM. Thus the distance between two locations
in RAM is just the time that it takes to move from the RAM to the CPU plus the time that
it takes to move from the CPU to the RAM. Because all points in the RAM are equidistant

from the CPU, the distance between any pair of locations in the RAM is the same, regardless
of how far apart they may appear based on their numeric addresses.

A space in which all pairs of points are equidistant is clearly not a Euclidean space.
That said, we must recognize however, that there are a variety of ways in which memory is
normally addressed, that gives it the appearance, at least locally, of being one dimensional.
When code is executed by the CPU, the instruction pointer generally increments sequentially

through memory, for short distances, before jumping to some other piece of code. For those
sections of code where instructions are sequential, the memory is effectively one-dimensional.
In addition, searches of memory are often sequentially organized (e.g., the search for com-

plementary templates in Tierra). This again makes the memory effectively one-dimensional
within the search radius. Yet even under these circumstances, the memory is not globally
one-dimensional. Rather it consists of many small one dimensional pieces, each of which has
no meaningful spatial relationship to the others.

Because we live in a three-dimensio叫 Euclideanspace, we tend to impose our familiar

concepts of spatial topology onto the computer memory. This leads first to the erroneous
perception that memory is a one-dimensional Euclidean space, and second, it often leads to

the conclusion that the digital world could be enriched by increasing the dimensionality of
the Euclidean memory space.

Many of the serious efforts to extend the Tierra model have included as a central feature,

10

the creation of a two-dimensional space for the creatures to inhabit [7, 16, 17, 53, 78]. The

logic behind the motivation derives from contemplation of the extent to which the dimen-

sionality of the space we live in permits the richness of pattern and process that we observe

in nature. Certainly if our universe were reduced from three to two dimensions, it would

eliminate the possibility of most of the complexity that we observe. Imagine for example, the

limitations that two-dimensionality would place on the design of neural networks (if "wires"

could not cross). If we were to further reduce the dimensionality of our universe to just one

dimension, it w叫 dprobably completely preclude the possibility of the existence of life.

It follows from these thoughts, that restricting digital life to a presumably one-dimensional
memory space places a tragic limitation on the richness that might evolve. Clearly it would

be liberating to move digital organisms into a two or three-dimensional space. The flaw in

all of this logic derives from the erroneous supposition that computer memory is a Euclidean

space.

To think of memory as Euclidean is to fail to understand its natural topology, and is

an example of one of the greatest pitfalls in the enterprise of synthetic biology: to transfer

a concept from organic life to synthetic life in a way that is "un-natural" for the artificial

medium. The fundamental principal of the approach I am advocating is to respect the nature

of the medium into which life is being inoculated1 and to find the natural form of life in that
medium, without inappropriately trying to make it like organic life.

The desire to increase the richness of memory topology is commendable, however this

can be achieved without forcing the memory into an un-natural Euclidean topology. Let

us reflect a little more on the structure of cyberspace. Thus far we have only considered

the topology of flat memory. Let us consider segmented memory such as is found with the

notorious Intel 80X86 design. With this design, you may treat any arbitrarily chosen block

of 64K bytes as flat, and all pairs of locations within that block are equidistant. However,

once the block is chosen, all memory outside of that block is about twice as far away.

Cache memory is designed to be accessed more rapidly than RAM memory, thus pairs

of points within cache memory are closer than pairs of points within RAM memory. The

distance between a point in cache and a point in RAM would be an intermediate distance.

The access time to memory on disks is much greater than for RAM memory, thus the

distance between points on disk is very great, and the distance between RAM and disk is

again intermediate (but still very great). CPU registers represent a small amount of memory

locations, between which data can move very rapidly, thus these registers can be considered

to be very close together.

For networked computer systems, information can move between the memories of the

computers on the net, and the distances between these memories is again the transfer time.

If the CPU, cache, RAM and disk memories of a network of computers are all considered
together, they present a very complex memory topology. Similar considerations apply to

massively parallel computers which have memories connected in a variety of topologies.

Utilizing this complexity moves us in the direction of what has been intended by creating

Euclidean memories for digital organisms, but does so while fully respecting the natural

topology of computer memories.

11

2 Methods

Here was a world of simplicity and certainty… a world based on the one and

zero of life and death. Minimal, beautiful. The patterns of lives and deaths …•
weightless, invisible chains of electronic presence or absence. If patterns of ones
and zeros were "like" patterns of human lives and deaths, if everything about an

individual could be represented in a computer record by a long string of ones and

zeros, then what kind of creature would be represented by a long string of lives

and deaths? It would have to be up one level at least - an angel, a minor god,
something in a UFO.

- Thomas Pynchon, Vineland.

2.1 The Virtual Computer - Tierra Simulator

The software used in this study is available over the net or on disk (Appendix A).

The computers we use are general purpose computers, which means, among other things,

that they are capable of emulating through software, the behavior of any other computer

that ever has been built or that could be built ([3, 48, 56]). We can utilize this flexibility to

design a computer that would be especially hospitable to synthetic life.

There are several good reasons why it is not wise to attempt to synthesize digital or-

ganisms that exploit the machine codes and operating systems of real computers. The most

urgent is the potential threat of natural evolution of machine codes leading to virus or worm

type of programs that could be difficult to eradicate due to their changing "genotypes".

This potential argues strongly for creating evolution exclusively in programs that run only

on virtual computers and their virtual operating systems. Such programs would be nothing

more than data on a real computer, and therefore would present no more threat than the

data in a data base or the text file of a word processor.

Another reason to avoid developing digital organisms in the machine code of a real

computer is that the artificial system would be tied to the hardware and would become

obsolete as quickly as the particular machine it was developed on. In contrast, an artificial

system developed on a virtual machine could be easily ported to new real machines as they

become available.

A third issue, which potentially makes the first two moot, is that the machine languages

of real machines are not designed to be evolvable, and in fact might not support significant

evolution. Von Neuman type machine languages are considered to be "brittle", meaning

that the ratio of viable programs to possible programs is virtually zero. Any mutation or

recombination event in a real machine code is almost certain to produce a non-functional

program. The problem of brittleness can be mitigated by designing a virtual computer

whose machine code is designed with evolution in mind. Farmer & Belin [29] have suggested
that overcoming this brittleness and "Discovering how to make such self-replicating patterns

more robust so that they evolve to increasingly more complex states is probably the central

problem in the study of artificial life."

12

ヽ

The work described here takes place on a set of virtual computers known as Tierra (Span-
ish for Earth). The Tierra computer architectures have been designed with the feature that
their machine code is robust to the genetic operations of mutation and recombination. This
means that computer programs written in the machine code of these architectures remain
viable some of the time after being randomly altered by bit-flips which cause the swap-
ping of individual instructions with others from within the instruction set, or by swapping
segments of code between programs (through a spontaneous sexual process). These new
computers have not been built in silicon, but exist only as software prototypes known as

"virtual computers".

Tierra is a parallel computer of the MIMD (multiple instruction, multiple data) type,
with a processor (CPU) for each creature. Parallelism is imperfectly emulated by allowing
each CPU to execute a small time slice in turn. Each CPU of this virtual computer contains
two address registers, two numeric registers, a flags register to indicate error conditions, a
stack pointer, a ten word stack, and an instruction pointer. Each virtual CPU is implemented
via the C structure listed in Appendix B. Computations performed by the Tierran CPUs are

probabilistic due to flaws that occur at a low frequency (see Mutation below).

The instruction set of a CPU typically performs simple arithmetic operations or bit
manipulations, within the small set of registers contained in the CPU. Some instructions
move data between the registers in the CPU, or between the CPU registers and the RAM
(main) memory. Other instructions control the location and movement of an "instruction
pointer" (IP). The IP indicates an address in RAM, where the machine code of the executing
program (in this case a digital organism) is located.

The CPU perpetually performs a fetch-decode-execute-increment-1P cycle: The machine
code instruction currently addressed by the IP is fetched into the CPU, its bit pattern is
decoded to determine which instruction it corresponds to, and the instruction is executed.
Then the IP is incremented to point sequentially to the next position in RAM, from which the
next instruction will be fetched. However, some instructions like jmp, call and ret directly
manipulate the IP, causing execution to jump to some other sequence of instructions in the
RAM. In the Tierra Simulator this CPU cycle is implemented through the time...slice routine

listed in Appendix C.

2.2 The Genetic Language

The simplest possible instantiation of a digital organism is a machine language program that
codes for self-replication. In this case, the bit pattern that makes up the program is the body
of the organism, and at the same time its complete genetic material. Therefore, the machine
language defined by the CPU constitutes the genetic language of the digital organism.

It is worth noting at this point that the organic organism most comparable to this kind
of digital organism is the hypothetical, and now extinct, RNA organism [9]. These were
presumably nothing more than RNA molecules capable of catalyzing their own replication.

What the supposed RNA organisms have in common with the simple digital organism is

that a single molecule constitutes the body and the genetic information, and effects the

13

replication. In the digital organism a single bit pattern performs all the same functions.

The use of machine code as a genetic system raises the problem of brittleness. The as-
sumption that machine languages are too brittle to evolve is probably true, as a consequence
of the fact that machine languages have not previously been designed to survive random
alterations. However, recent experiments have shown that brittleness can be overcome by
addressing the principal causes, and without fundamentally changing the structure of ma-

chine languages [68, 74].

The first requirement for evolvability is graceful error handling. vVhen code is being
randomly altered, every possible meaningless or erroneous condition is likely to occur. The
CPU should be designed to handle these conditions without crashing the system. The

simplest solution is for the CPU to perform no operation when it meets these conditions,

perhaps setting an error flag, and to proceed to the next instruction.

Due to random alterations of the bit patterns, all possible bit patterns are likely to occur.
Therefore a good design is for all possible bit patterns to be interpretable as meaningful
instructions by the CPU. For example in the Tierra system [68, 69, 70, 71, 73, 74], a five bit
instruction set was chosen, in which all thirty-two five bit patterns represent good machine
instructions.

This approach (all bit patterns meaningful) also could imply a lack of syntax, in which

each instruction stands alone, and need not occur in the company of other instructions.
To the extent that the language includes syntax, where instructions must precede or follow

one another in certain orders, random alterations are likely to destroy meaningful syntax
thereby making the language more brittle. A certain amount of this kind of brittleness can
be tolerated as long as syntax errors are also handled gracefully.

During the design of the first evolvable machine language [68], a standard machine lan-

guage (Intel 80X86) was compared to the genetic language of organic life, to attempt to
understand the difference between the two languages that might contribute to the brittle-
ness of the former and the robustness of the latter. One of the outstanding differences noted
was in the number of basic informational objects contained in the two.

The organic genetic language is written with an alphabet consisting of four different nu-
cleotides. Groups of three nucleotides form sixty-four "words" (codons), which are translated
into twenty amino-acids by the molecular machinery of the cell. The machine language is
written with sequences of two voltages (bits) which we concept叫 lyrepresent as ones and
zeros. The number of bits that form a "word" (machine instruction) varies between machine
architectures, and in some architectures is not constant. However, the number required gen-

erally ranges from sixteen to thirty-two. This means that there are from tens of thousands to
billions of machine instruction bit patterns, which are translated into operations performed
by the CPU.

The thousands or billions of bit patterns that code for machine instructions contrasts

with the sixty four nucleotide patterns that code for amino acids. The sixty-four nucleotide
patterns are degenerate, in that they code for only twenty amino-acids. Similarly, the ma-

chine codes are degenerate, in that there are at most hundreds rather than thousands or
billions of machine operations.

14

The machine codes exhibit a massive degeneracy (with respect to actual operations)

as a result of the inclusion of data into the bit patterns coding for the operations. For

example, the add operation will take two operands, and produce as a result the sum of the
two operands. While there may be only a single add operation, the instruction may come in

several forms depending on where the values of the two operands come from, and where the
resultant sum will be placed. Some forms of the add instruction allow the value(s) of the

operand(s) to be specified in the bit pattern of the machine code.

The inclusion of numeric operands in the machine code is the primary cause of the huge

degeneracy. If numeric operands are not allowed, the number of bit patterns required to
specify the complete set of operations collapses to at most a few hundred.

While there is no empirical data to support it, it is suspected that the huge degeneracy

of most machine languages may be a source of brittleness. The logic of this argument is that

mutation causes random swapping among the fundamental informational objects, codons in

the organic language, and machine instructions in the digital language. It seems more likely
that meaningful results will be produced when swapping among sixty-four objects than when

swapping among billions of objects.

In order to make a machine code with a truly small instruction set, we must eliminate

numeric operands. ・This can be accomplished by allowing the CPU registers and the stack

to be the only operands of the instructions. When we need to encode an integer for some
purpose, we can create it in a numeric register through bit manipulations: flipping the low
order bit and shifting left. The program can contain the proper sequence of bit flipping

and shifting instructions to synthesize the desired number, and the instruction set need not

include all possible integers.

The size of the machine instruction set can be made comparable to the number of codons

simply by eliminating numeric operands embedded in the machine code. However, this

change creates some new problems. Computer programs generally function by executing

instructions located sequentially in memory. However, in order to loop or branch, they use

instructions such as "jump" to cause execution to jump to some other part of the program.

Since the locations of these jumps are usually fixed, the jump instruction will generally have

the target address included as an operand embedded in the machine code.

By eliminating operands from the machine code, we generate the need for a new mech-

anism of addressing for jumps. To resolve this problem, an idea can be borrowed from
molecular biology. We can ask the question: how do biological molecules address one an-

other? Molecules do not specify the coordinates of the other molecules they interact with.

Rather, they present shapes on their surfaces that are complementary to the shapes on the

surfaces of the target molecules. The concept of complementarity in addressing can be in-

traduced to machine languages by allowing the jump instruction to be followed by some

bit pattern, and having execution jump to the nearest occurrence of the complementary bit

pattern.

Addressing by template is illustrated by the Tierran jmp (jump) instruction. Each jmp

instruction is followed by a sequence of nop (no-operation) instructions, of which there are

two kinds: nop_O and nop_l. Suppose we have a piece of code with five instruction in the

15

following order: jmp nop_O nop_O nop_O nop_l. The system will search outward in both

directions from the jmp instruction looking for the nearest occurrence of the complementary

pattern: nop_l nop_l nop_l nop_O. If the pattern is found, the instruction pointer will
move to the end of the complementary pattern and resume execution. If the pattern is

not found, an error condition (flag) will be set and the jmp instruction will be ignored (in

practice, a limit is placed on how far the system may search for the pattern).

The Tierran language is characterized by two unique features: a truly small instruction

set without numeric operands, and addressing by template. Otherwise, the language consists

of familiar instructions typical of most machine languages, e.g., rnov, call, ret, pop, push

etc. The four complete instruction sets are listed in Appendix G.

In the development of the Tierran language, two changes were introduced to the machine

language to reduce brittleness: elimination of numeric operands from the code, and the

use of complementary patterns to control addressing. The resulting language proved to
be evolvable [68]. As a result, nothing was learned about evolvability, because only one

language was tested, and it evolved. It is not known what features of the language enhance
its evolvability, which detract, and which do not affect evolvability. Subsequently, three

additional languages were tested and the four languages were found to vary in their patterns
and degree of evolvability [74]. However, it is still not known how the features of the language

affect its evolvability.

2.3 Four Instruction Sets

The original Tierran virtual computer was designed by the author in the fall of 1989. In

the summer of 1992, a series of meetings was held at the Santa Fe Institute to attempt to
improve on the original design. Present at these meetings were: Steen Rassmussen (Santa

Fe Institute), Walter Tackett (Hughes Aircraft), Chris Stephenson (IBM), Kurt Thearling

(Thinking Machines), Dan Pirone (Santa Fe Institute), and the author. The discussions did

not lead to a consensus as to how to improve on the original design, but rather, to three

suggestions: instruction set 2 proposed by Kurt Thearling, instruction set 3 proposed by

the author, and instruction set 4 proposed by Walter Tackett. In August 1992, the author

implemented all three new instruction sets, and integrated them into the Tierra program.

These four instruction sets are summarized in Appendix G.

The three new instruction sets are quite similar, differing primarily in the details of how
information is moved between the registers of the CPU. Therefore, the differences between

the first instruction set and the others will be described first. The new instruction sets

include a number of features missing from the first: 1) Instructions for moving informa-
tion between the CPU registers and the RAM memory (movdi, rnovid). 2) Instructions

providing input/output facilities (put, get). 3) Facilitation of the full range of possible

inter-register moves (this is where the three new instruction sets differ the most). 4) A con-

ditional to test if the flag is set (iffi). 5) The memory allocation instruction (mal) has the

option of specifying where the allocated memory will be located, or it may use other new

options (i.e., better fit). 6) Facilities to support multi-cellularity. These include mechanisms

16

of inter-cellular communication (put, get) and innovations in the divide instruction that
can provide a mechanism for gene regulation: the ability to determine where the instruction
pointer starts executing in the daughter cell, and the ability to transfer the contents of the
CPU registers from mother to daughter.

The original instruction set contained two inter-register moves: moved (CX to DX)
and movab (AX to BX). This is clearly incomplete, as there are many other register pairs
between which moves are not allowed. However, the full set of four pushes and four pops
makes it possible to move data in any direction between any pair of registers by combining
the appropriate push-pop pair. Therefore, in designing the fourth instruction set, Walter
Tackett chose to use the eight push-pop instructions to handle the inter-register moves, and
the push-pop pairs are the only mechanism for inter-register moves in that instruction set.

In the third instruction set, inter-register moves are effected through the mechanisms
used in the "reverse Polish notation''(RPN) as is found in the Hewlett-Packard calculators.
This uses the rollu, rolld, enter, and exch instructions.

In the second instruction set, inter-register moves may be accomplished by a push-pop
pair, or by the movdd (RO = Rl) instruction. However, this instruction set uses a level of
indirection to refer to the registers. There are four "shadow" registers, each of which refers
to one of the real registers. The contents of the shadow registers are determined by executing
the four register instructions: AX, BX, CX, and DX. So, for example, if shadow register RO
contains the value CX, and shadow register Rl contains the value AX (which is arranged by
executing the AX instruction followed by the CX instruction), then executing the movdd
instruction, will move the value in AX to the CX register. All other instructions in set two
also reference the actual registers through the shadow registers, and so may operate on any
of the registers.

In addition to these differences, each of the instructions that are common to the three
new sets (e.g.: inc, dee, add, sub, zero, mal, pop, put, etc.) may differ between sets in
which registers they reference. For example, in set two inc operates on RO, in set three on
AX, and in set four on CX. There are also some small differences in the set of calculation
instructions included. These are due to differences in the number of instructions consumed
in implementing the inter-register moves. There were different numbers of opcodes "left
over", and these were filled with calculations. Set four has seven calculations, set two has
eight calculations, and set three has nine calculations.

The original 80 byte program was slightly modified so that it could be implemented in a
consistent manner across the four instruction sets. The four new seed organisms were then

tested in a series of eight runs in each of the four languages (only four runs in the original
language, because comparable data from this instruction set have already been published,
[71]). The resulting twenty-eight runs form the basis of the comparisons of patterns of evo-

lution across different languages, and the analysis of the development of complex structures
in one of those languages (the fourth).

17

2.4 Operating System

Much of the "physics and chemistry" of the digital universe is determined by the specifica-
tions of the operations performed by the instruction set of the CPU. However, the operating
system also determines a significant part of the physical context. The operating system
manages the allocation of critical resources such as memory space and CPU cycles.

The Tierran virtual computer needs a virtual operating system that will be hospitable
to digital organisms. The operating system will determine the mechanisms of interprocess
communication, memory allocation, and the allocation of CPU time among competing pro-

cesses.

Digital organisms are processes that spawn processes. As processes are born, the operat-
ing system will allocate memory and CPU cycles to them, and when they die, the operating
system will return the resources they had utilized to the pool of free resources. In synthetic
life systems, the operating system may also play a role in managing death, mutations and

flaws.

The management of resources by the operating system is controlled by algorithms. From
the point of view of the digital organisms these take the form of a set of logical rules like
those embodied in the logic of the instruction set. In this way, the operating system is a
defining part of the physics and chemistry of the digital universe. Evolution will explore
the possibilities inherent in these rules, finding ways to more efficiently gain access to and
exploit the resources managed by the operating system.

More than being a mere aspect of the environment, the operating system together with
the instruction set will determine the topology of possible interactions between individuals,
such as the ability of pairs of individuals to exhibit predator-prey, parasite-host or mutualistic

relationships.

2.4.1 Memory Allocation - Cellularity

The Tierran computer operates on a block of RAM of the real computer which is set aside for
the purpose. This block of RAM is referred to as the "soup". In most of the work described

here the soup consisted of about 60,000 to 200,000 bytes, which can hold the same number
of Tierran machine instructions. Each "creature" occupies some block of memory in this
soup.

Cellularity is one of the fundamental properties of organic life, and can be recognized
in the fossil record as far back as 3.6 billion years ([6]). The cell is the original individual,
with the cell membrane defining its limits and preserving its chemical integrity. An analog
to the cell membrane is needed in digital organisms in order to preserve the integrity of the
informational structure from being disrupted easily by the activity of other organisms. The
need for this can be seen in Artificial Life models such as cellular automata where virtual

state machines pass through one another ([46, 47]), or in core wars type simulations where
coherent structures demolish one another when they come into contact ([23, 26, 65]).

18

Tierran creatures are considered to be cellular in the sense that they are protected by a
"semi-permeable membrane" of memory allocation. The Tierran operating system provides
memory allocation services. Each creature has exclusive write privileges within its allocated
block of memory. The "size" of a creature is just the size of its allocated block (e.g., 80
instructions). This us叫 lycorresponds to the size of the genome. This "membrane" is
described as "semi-permeable" because while write privileges are protected, read and execute

privileges are not. A creature may examine the code of another creature, and even execute
it, but_ it can not write over it. Each creature may have exclusive write privileges in at most
two blocks of memory: the one that it is born with which is referred to as the "mother
cell", and a second block which it may obtain through the execution of the MAL (memory
allocation) instruction. The second block, referred to as the "daughter cell", may be used to

grow or reproduce into.

When Tierran creatures "divide", the mother cell loses write privileges on the space of
the daughter cell, but is then free to allocate another block of memory. At the moment of
division, the daughter cell is given its own CPU, and is free to allocate its own second block

of memory.

2.4.2 Time Sharing - The Slicer

The Tierran operating system must be multi-tasking (or parallel) in order for a community
of individ叫 creaturesto live in the soup simultaneously. The system doles out small slices

of CPU time to each creature in the soup in turn. The system maintains a circular queue
called the "slicer queue". As each creature is born, a virtual CPU is created for it, and it
enters the slicer queue just ahead of its mother, which is the active creature at that time.

Thus the newborn will be the last creature in the soup to get another time slice after the
mother, and the mother will get the next slice after its daughter. As long as the slice size
is small relative to the generation time of the creatures, the time sharing system causes the
world to approximate parallelism. In actuality, we have a population of virtual CPUs, each
of which gets a slice of the real CPU's time as it comes up in the queue.

The number of instructions to be executed in each time slice may be set proportional
to the size of the genome of the creature being executed, raised to a power. If the "slicer
power" is eq叫 toone, then the slicer is size neutral, the probability of an instruction being

executed does not depend on the size of the creature in which it occurs. If the power is
greater than one, large creatures get more CPU cycles per instruction than small creatures.
If the power is less than one, small creatures get more CPU cycles per instruction. The

power determines if selection favors large or small creatures, or is size neutral. A constant
slice size selects for small creatures.

2.4.3 Artificial Death

Death must play a role in any system that exhibits the process of evolution. Evolution
involves a continuing iteration of selection, which implies differential death or reproduction.

19

In natural life, death occurs as a result of accident, predation, starvation, disease, or if these

fail to kill the organism, it will eventually die from senescence resulting from an accumulation

of wear and tear at every level of the organism including the molecular.

In normal computers, processes are "born" when they are initiated by the user, and "die"
when they complete their task and halt. A process whose goal is to repeatedly replicate itself
is essentially an endless loop, and would not spontaneously terminate. Due to the perfection
of normal computer systems, we can not count on "wear and tear" to eventually cause a

process to terminate.

In synthetic life systems implemented in computers, death is not likely to be a process that

would occur spontaneously, and it must generally be introduced artificially by the designer.
Everyone who has set up such a system has found their own unique solutions. Todd [88]
recently discussed this problem in general terms.

The Tierran operating system includes a "reaper" which begins "killing" creatures from
a queue when the memory fills. Creatures are killed by deallocating their memory, and
removing them from both the reaper and slicer queues. Their "dead" code is not removed
from the soup.

In the present system, the reaper uses a linear queue. When a creature is born it enters the
bottom of the queue. The reaper always kills the creature at the top of the queue. However,
individuals may move up or down in the reaper queue according to their success or failure

at executing certain instructions. When a creature executes an instruction that generates
an error condition, it moves one position up the queue, as long as the individual ahead of it

in the queue has not accumulated a greater number of errors. Two of the instructions are
somewhat difficult to execute without generating an error, therefore successful execution of
these instructions moves the creature down the reaper queue one position, as long as it has

not accumulated more errors than the creature below it.

The effect of the reaper queue is to cause algorithms which are fundamentally flawed to
rise to the top of the queue and die. Vigorous algorithms have a greater longevity, but in

general, the probability of death increases with age.

An interesting variation on this was introduced by Barton-Davis [7] who eliminated the
reaper queue. In its place, he caused the "flaw rate" (see section on Flaws above) to increase
with the age of the individual, in mimicry of wear and tear. ・when the flaw rate reached 100%,
the individual was killed. Skipper [78] provided a "suicide" instruction, which if executed,

would cause a process to terminate (die). The evolutionary objective then became to have

a suicide instruction in your genome which you do not execute yourself, but which you try
to get other individuals to execute. Litherland [51] introduced death by local crowding.

Davidge caused processes to die when they contained certain values in their registers [17].
Gray [35] allowed each process six attempts at reproduction, after which they would die.

20

2.5 Genetic Operators

In order for evolution to occur, there must be some genetic variation among the offspring. In
organic life, this is insured by natural imperfections in the replication of the informational

molecules. However, one way in which digital "chemistry" differs from orgai1ic chemistry

is in the degree of perfection of its operations. In the computer, the genetic code can be

reliably replicated without errors to such a degree that we must artificially introduce errors

or other sources of genetic variation in order to induce evolution.

2.5.1 Mutations

In organic life, the simplest genetic change is a "point mutation", in which a single nucleic

acid in the genetic code is replaced by one of the three other nucleic acids. This can cause

an amino acid substitution in the protein coded by the gene. The nucleic acid replacement

can be caused by an error in the replication of the DNA molecule, or it can be caused by

the effects of radiation or mutagenic chemicals.

In the digital medium, a comparably simple genetic change can result from a bit flip in

the memory, where a one is replaced by a zero, or a zero is replaced by a one. These bit flips

can be introduced in a variety of ways that are analogous to the various natural causes of

mutation. In any case, the bit flips must be introduced at a low to moderate frequency, as

high frequencies of mutation prevent the replication of genetic information, and lead to the

death of the system [71].

Bit flips may be introduced at random anywhere in memory, where they may or may not

hit memory actually occupied by digital organisms. This could be thought of as analogous to

cosmic rays falling at random and disturbing molecules which may or may not be biological

in nature.- Bit flips may also be introduced when information is copied in the memory,

which could be analogous to the replication errors of DNA. Alternatively, bit flips could be

introduced in memory as it is accessed, either as data or executable code. This could be

thought of as damage due to "wear and tear".

In Tierra mutations occur in two circumstances. At some background rate, bits are

randomly selected from the entire soup (e.g., 60,000 instructions totaling 300,000 bits) and

flipped. This is analogous to mutations caused by cosmic rays, and has the effect of prevent-

ing any creature from being immortal, as it will eventually mutate to death. The background

mutation rate has generally been set at about one bit flipped for every 10,000 Tierran in-

structions executed by the system.

In addition, while copying instructions during the replication of creatures, bits are ran-

domly flipped at some rate in the copies. The copy mutation rate is the higher of the two,

and results in replication errors. The copy mutation rate has generally been set at about

one bit flipped for every 1,000 to 2,500 instructions copied. In both classes of mutation, the

interval between mutations varies randomly within a certain range to avoid possible periodic

effects.

21

2.5.2 Flaws

Alterations of genetic information are not the only source of noise in the system. In organic
life, enzymes have evolved to increase the probability cif chemical reactions that increase the
fitness of the organism. However, the metabolic system is not perfect. Undesired chemical
reactions do occur, and desired reactions sometimes produce undesired by-products. The
result is the generation of molecular species that can "gum up the works", having unexpected
consequences, generally lowering the fitness of the organism, but possibly raising it.

In the digital system, an analogue of metabolic (non-genetic) errors can be introduced by

causing the computations carried out by the CPU to be probabilistic, producing erroneous
results at some low frequency. For example, any time a sum or difference is calculated, the
result could be off by some small value (e.g. plus or minus one). Or, if all bits are shifted
one position to the left or right, an appropriate error would be to shift by two positions or
not at all. When information is transferred from one location to another, either in the RAM
memory or the CPU registers, it could occasionally be transferred from the wrong location,
or to the wrong location. While flaws do not directly cause genetic changes, they can cause
a cascade of events that result in the production of an offspring that is genetically different
from the parent.

It turns out that bit flipping mutations and flaws in instructions are not necessary to gen-
erate genetic change and evolution, once the community reaches a certain state of complexity.
Genetic parasites evolve which are sloppy replicators, and have the effect of moving pieces
of code around between creatures, causing rather massive rearrangements of the genomes.
The mechanism of this ad hoc sexuality has not been worked out, but is likely due to the
parasites'inability to discriminate between live, dead or embryonic code.

Mutations result in the appearance of new genotypes, which are watched by an auto-
mated genebank manager. When new genotypes increase in frequency across some arbitrary
threshold, such as making up 2% of the population, they are given a unique name and saved
to disk. Each genotype name contains two parts, a number and a three letter code. The
number represents the number of instructions in the genome. The three letter code is used
as a base 26 numbering system for assigning a unique label to each genotype in a size class.
The first genotype to appear in a size class is assigned the label aaa, the second is assigned
the label aab, and so on. Thus the ancestor is named 80aaa, and the first mutant of size 80
is named 80aab. The first creature of size 45 is named 45aaa.

The gene banker saves some additional information with each genome: the genotype name
of its immediate ancestor which makes possible the reconstruction of the some of the phy-
logeny; the time and date of origin; "metabolic" data including the number of instructions
executed in the first and second reproduction, the number of errors generated in the first

and second reproduction, and the number of instructions copied into the daughter cell in the
first and second reproductions (see Appendix D, E); some environmental parameters at the
time of origin including the search limit for addressing, and the slicer power, both of which
affect selection for size.

22

2.6 The Tierran Ancestor

I have used the Tierran language to write a single self-replicating program which is 80 in-

structions long. This program is referred to as the "ancestor", or alternatively as genotype
0080aaa (Figure 1). The ancestor is a minimal self-replicating algorithm which was originally
written for use during the debugging of the simulator. No functionality was designed into
the ancestor beyond the ability to self-replicate, nor was any specific evolutionary poten-
tial designed in. The commented Tierran assembler and machine code for this program is

presented in Appendix D.

The ancestor examines itself to determine where in memory it begins and ends. The
ancestor's beginning is marked with the four no-operation template: 1 1 1 1, and its end-
ing is marked with 1 1 1 0. The ancestor locates its beginning with the five instructions:
adrb, nop_O, nop_O, nop_O, nop_O. This series of instructions causes the system to search
backwards from the adrb instruction for a template complementary to the four nop_O in-

structions, and to place the address of the complementary template (the beginning) in the
AX register of the CPU (see Appendix D). A similar method is used to locate the end.

Having determined the address of its beginning and its encl, it subtracts the two to

calculate its size, and allocates a block of memory of this size for a daughter cell. It then
calls the copy procedure which copies the entire genome into the daughter cell memory,
one instruction at a time. The beginning of the copy procedure is marked by the four no-
operation template: 1 1 0 0. Therefore the call to the copy procedure is accomplished with
the five instructions: call, nop_O, nop_O, nop_l, nop_l.

・when the genome has been copied, it executes the divide instruction, which causes the
creature to lose write privileges on the daughter cell memory, and gives an instruction pointer
to the daughter cell (it also enters the daughter cell into the slicer and reaper queues). After
this first replication, the mother cell does not examine itself again; it proceeds directly to
the allocation of another daughter cell, then the copy procedure is followed by cell division,

in an endless loop.

Fourty-eight of the eighty instructions in the ancestor are no-operations. Groups of four
no-operation instructions are used as complementary templates to mark twelve sites for

internal addressing, so that the creature can locate its beginning and end, call the copy
procedure, and mark addresses for loops and jumps in the code, etc. The functions of these
templates are commented in the listing in Appendix D.

2. 7 Evolution and Diversity /Entropy

Independently of these studies, a series of runs was conducted using the original program with
the original instruction set, and applying a tool for the calculation of diversity/ entropy and

its changes over time in an evolving ecological community. The diversity/ entropy measure
is negative sum of p log p, where p is the proportion of the community occupied by each

genotype. For the purposes of this study a filter was used, which ignored all genotypes
represented by a single individual. The purpose of the filter was to eliminate all mutants

23

which were never able to reproduce (thus reducing the sensitivity of the measure to mutation
rate). In addition, this diversity/ entropy data was calculated for every birth and death, and
then averaged over each million CPU cycle period. Only the averages over each period were

recorded.

3 Results

3.1 Natural History

Evolutionary runs of the simulator are generally begun by inoculating a soup of about 60,000
instructions with a single individual of the 80 instruction ancestral genotype. The passage
of time in a run is measured in terms of how many Tierran instructions have been executed
by the simulator, or the number of generations of organisms that have passed. The original
ancestral cell executes 839 instructions in its first replication, and 813 for each additional
replication. The initial cell and its replicating daughters rapidly fill the soup memory which
starts the reaper. Typically, the system executes about 400,000 instructions in filling up the
soup with about 375 individuals of size 80 (and their 375 embryonic daughter cells). Once

the reaper begins, the memory remains roughly filled with creatures for the remainder of the
run.

If there were no mutations at the outset of the run, there would be no evolution. However,
the bits flipped as a result of copy errors or background mutations result in creatures whose
list of 80 instructions (genotype) differs from the ancestor, usually by a single bit difference
in a single instruction.

Mutations in and of themselves, can not result in a change in the size of a creature, they
can only alter the instructions in its genome. However, by altering the genotype, mutations
may affect the processes whereby the creature examines itself, calculates its size, or replicates,
potentially causing it to produce an offspring that differs in size from itself.

Four out of the five possible mutations in a no-operation instruction convert it into
another kind of instruction, while one out of five converts it into the complementary no-
operation. Therefore 80% of mutations in templates destroy or change the size of the tem-
plate, while one in five alters the template pattern. An altered template may cause the
creature to make mistakes in self examination, procedure calls, or looping or jumps of the
instruction pointer, all of which use templates for addressing.

3.1.1 Parasites

An example of the kind of error that can result from a mutation in a template is a mutation
of the low order bit of instruction 42 of the ancestor (Appendix D). Instruction 42 is a nop _Q,

the third component of the copy procedure template. A mutation in the low order bit would
convert it into nop_l, thus changing the template from 1 1 0 0 to: 1 1 1 0. This would then

24

be recognized as the template used to mark the end of the creature, rather than the copy
procedure.

A creature born with a mutation in the low order bit of instruction 42 would calculate its
size as 45. It would allocate a daughter cell of size 45 and copy only instructions O through
44 into the daughter cell. The daughter cell then, would not include the copy procedure.
This daughter genotype, consisting of 45 instructions, is named 0045aaa.

Genotype 0045aaa (Figure 1) is not able to self-replicate in isolated culture. However, the
semi-permeable membrane of memory allocation only protects write privileges. Creatures
may match templates with code in the allocated memory of other creatures, and may even
execute that code. Therefore, if creature 0045aaa is grown in mixed culture with 0080aaa,
when it attempts to call the copy procedure, it will not find the template within its own
genome, but if it is within the search limit (generally set at five times the m・erage genome
size) of the copy procedure of a creature of genotype 0080aaa, it will match templates, and
send its instruction pointer to the copy code of 0080aaa. Thus a parasitic relationship is
established (see Ecology below). Typically, parasites begin to emerge within the first few
million instructions of elapsed time in a run.

3.1.2 Immunity to Parasites

At least some of the size 79 genotypes demonstrate some measure of resistance to parasites.
If genotype 45aaa is introduced into a soup, flanked on each side with one individual of
genotype 0079aab, 0045aaa will initially reproduce somewhat, but will be quickly eliminated

from the soup. When the same experiment is conducted with 0045aaa and the ancestor, they
enter a stable cycle in which both genotypes coexist indefinitely. Freely evolving systems
have been observed to become dominated by size 79 genotypes for long periods, during which

parasitic genotypes repeatedly appear, but fail to invade.

3.1.3 Circumvention of Immunity to Parasites

Occasionally these evolving systems dominated by size 79 were successfully im・aded by par-
asites of size 51. When the immune genotype 0079aab was tested with 0051aao (a direct,
one step, descendant of 0045aaa in which instruction 39 is replaced by an insertion of seven

instructions of unknown origin), they were found to enter a stable cycle. Evidently 0051aao
has evolved some way to circumvent the immunity to parasites possessed by 0079aab. The
fourteen genotypes 005laaa through 0051aan were also tested with 0079aab, and none were
able to invade.

3.1.4 Hyper-parasites

Hyper-parasite have been discovered, (e.g., 0080gai, which differs by 19 instructions from

the ancestor, Figure 1). Their ability to subvert the energy metabolism of parasites is based
on two changes. The copy procedure does not return, but jumps back directly to the proper

25

address of the reproduction loop. In this way it effectively seizes the CPU from the parasite.
However it is another change which delivers the coup de grace: after each reproduction,
the hyper-parasite re-examines itself, resetting the BX register with its location and the CX
register with its size. After the instruction pointer of the parasite passes through this code,
the CPU of the parasite contains the location and size of the hyper-parasite and the parasite
CPU thereafter replicates the hyper-parasite genome. In essence, the hyper-parasite has
parallelized itself by recruiting a new CPU stolen from a parasite.

3.1.5 Social Hyper-parasites

Hyper-parasites drive the parasites, as well as all other algorithms, to extinction. This results

in a community with a relatively high level of genetic uniformity, and therefore high genetic
relationship between individuals in the community. These are the conditions that support
the evolution of sociality, and social hyper-parasites soon dominate the community. Social
hyper-parasites (Figure 2) appear in the 61 instruction size class. For example, 0061acg is
social in the sense that it can only self-replicate when it occurs in aggregations. vVhen it
jumps back to the code for self-examination, it jumps to a template that occurs at the end
rather than the beginning of its genome. If the creature is flanked by a similar genome, the
jump will且ndthe target template in the tail of the neighbor, and execution will then pass
into the beginning of the active creature's genome. The algorithm will fail unless a similar
genome occurs just before the active creature in memory. Neighboring creatures cooperate

by catching and passing on jumps of the instruction pointer.

It appears that the selection pressure for the evolution of sociality is that it facilitates size
reduction. The social species are 24% smaller than the ancestor. They have achieved this size
reduction in part by shrinking their templates from four instructions to three instructions.
This means that there are only eight templates available to them, and catching each others
jumps allows them to deal with some of the consequences of this limitation as well as to
make d叫 useof some templates.

3.1.6 Cheaters: Hyper-hyper-parasites

The cooperative social system of hyper-parasites is subject to cheating, and is eventually
invaded by hyper-hyper-parasites (Figure 2). These cheaters (e.g., 0027aab) position them-
selves between aggregating hyper-parasites so that when the instruction pointer is passed
between them, they capture it.

3 .1. 7 A Novel Self-examination

All creatures discussed thus far mark their beginning and end with templates. They then
locate the addresses of the two templates and determine their genome size by subtracting
them. In one run, creatures evolved without a template marking their end. These creatures

located the address of the template marking their beginning, and then the address of a

26

template in the middle of their genome. These two addresses were then subtracted to
calculate half of their size, and this value was multiplied by two (by shifting left) to calculate

their full size.

3.2 Ecology

The only communities whose ecology has been explored in detail are those that operate under
selection for small sizes. These communities generally include a large number of parasites,
which do not have functional copy procedures, and which execute the copy procedures of

other creatures within the search limit. In exploring ecological interactions, the mutation
rate is set at zero, which effectively throws the simulation into ecological time by stopping
evolution. When parasites are present, it is also necessary to stipulate that creatures must
breed true, since parasites have a tendency to scramble genomes, leading to e¥・olution in the
absence of mutation.

0045aaa is a "metabolic parasite". Its genome does not include the copy procedure,
however it executes the copy procedure code of a normal host, such as the ancestor. In an
environment favoring small creatures, 0045aaa has a competitive advantage over the ancestor,
however, the relationship is density dependent. When the hosts become scarce, most of the
parasites are not within the search limit of a copy procedure, and are not able to reproduce.
Their calls to the copy procedure fail and generate errors, causing them to rise to the top of
the reaper queue and die. ・when the parasites die off, the host population rebounds. Hosts
and parasites cultured together demonstrate Lotka-Volterra population cycling ([52, 89, 90]).

A number of experiments have been conducted to explore the factors affecting diversity
of size classes in these communities. Competitive exclusion trials were conducted with a

series of self-replicating (non-parasitic) genotypes of different size classes. The experimental
soups were initially inoculated with one individual of each size. A genotype of size 79 was
tested against a genotype of size 80, and then against successively larger size classes. The

interactions were observed by plotting the population of the size 79 class on the x axis,
and the population of the other size class on the y axis. Sizes 79 and 80 were found to
be competitively matched such that neither. was eliminated from the soup. They quickly
entered a stable cycle, which exactly repeated a small orbit. The same general pattern was
found in the interaction between sizes 79 and 81.

When size 79 was tested against size 82, they initially entered a stable cycle, but after
about 4 million instructions they shook out of stability and the trajectory became chaotic
with an attractor that was symmetric about the diagonal (neither size showed any advan-
tage). This pattern was repeated for the next several size classes, until size 90, where a

marked asymmetry of the chaotic attractor was evident, favoring size 79. The run of size
79 against size 93 showed a brief stable period of about a million instructions, which then
moved to a chaotic phase without an attractor, which spiraled slowly down until size 93
became extinct, after an elapsed time of about 6 million instructions.

An interesting exception to this pattern was the interaction between size 79 and size
89. Size 89 is considered to be a "metabolic cripple", because although it is capable of

27

self-replicating, it executes about 40% more instructions than normal to replicate. It was
eliminated in competition with size 79, with no loops in the trajectory, after an elapsed time

of under one million instructions.

In an experiment to determine the effects of the presence of parasites on community
diversity, a community consisting of twenty size classes of hosts was created and allowed to
run for 30 million instructions, at which time only the eight smallest size classes remained.
The same community was then regenerated, but a single genotype (0045aaa) of parasite
was also introduced. After 30 million instructions, 16 size classes remained, including the
parasite. This seems to be an example of a "keystone" parasite effect ([63]).

Symbiotic relationships are also possible. The ancestor was manually dissected into
two creatures, one of size 46 which contained only the code for self-examination and the
copy loop, and one of size 64 which contained only the code for self-examination and the
copy procedure (Figure 3). Neither could replicate when cultured alone, but when cultured
together, they both replicated, forming a stable mutualistic relationship. It is not known if
such relationships have evolved spontaneously.

3.3 Evolutionary Optimization

In order to compare the process of evolution between runs of the simulator, a simple objective
quantitative measure of evolution is needed. One such measure is the degree to which
creatures improve their efficiency through evolution. This provides not only an objective
measure of progress in evolution, but also sheds light on the potential application of synthetic
life systems to the problem of the optimization of machine code.

The efficiency of the creature can be indexed in two ways: the size of the genome, and
the number of CPU cycles needed to execute one replication. Clearly, smaller genomes can
be replicated with less CPU time, however, during evolution, creatures also decrease the
ratio of instructions executed in one replication, to genome size. The number of instructions
executed per instruction copied, drops substantially.

Figure 4 shows the changes in genome size over a time period of 500 million instructions
executed by the system, for eight sets of mutation rates differing by factors of two. Mutation
rates are measured in terms of 1 in N individuals being affected by a mutation in each
generation. At the highest two sets of rates tested, one and two, either each (one) or one-
half (two) of the individuals are hit by mutation in each generation. At these rates the system
is unstable. The genomes melt under the heat of the high mutation rates. The community
often dies out, although some runs survived the 500 million instruction runs used in this
study. The next lower rate, four, yields the highest rate of optimization without the risk

of death of the community. At the five lower mutation rates, 8, 16, 32, 64 and 128, we see
successively lower rates of optimization.

Additional replicates were made of the runs at the mutation rate of four (Figure 5).
The replicates differ only in the seed of the random number generator, all other parameters

being identical. These runs vary in some details such as whether progress is continuous and

28

gradual, or comes in bursts. Also, each run decreases to a size limit which it can not proceed
past even if it is allowed to run much longer. However, different runs reach different plateaus
of efficiency. The smallest limiting genome size seen has been 22 instructions, while other
runs reached limits of 27 and 30 instructions. The simple interpretation is that the system
can reach a local optima from which it can not easily evolve to the global optima. However,
a close look as the "sub-optimal" solutions suggests an alternative explanation (see section

on "Complex Structures" below).

The increase in efficiency of the replicating algorithms is even greater than the decrease

in the size of the code. The ancestor is 80 instructions long and requires 839 CPU cycles
to replicate. The creature of size 22 only requires 146 CPU cycles to replicate, a 5.75-fold
difference in efficiency. The algorithm of one of these creatures is listed in Appendix E.

Although the optimization rate of the algorithm is maximized at the highest mutation
rate that does not cause instability, ecological interactions appear to be richer at slightly
lower mutation rates. At the rates of eight or 16, we find the diversity of coexisting size
classes to be the greatest, and to persist the longest. The smaller size classes tend to be
various forms of parasites, thus a diversity of size classes indicates a rich ecology.

An example of even greater optimization is illustrated in Appendix F and discussed in
the section "Complex Structures". Unrolling of the loop results in a loop which uses 18
CPU cycles to copy three instructions, or six CPU cycles executed per instruction copied,
compared to 10 for the ancestor. The creature of size 22 also uses si.'<: CPU cycles per
instruction copied. However, the creature of Appendix F uses three extra CPU cycles per
loop to compensate for a separate adaptation that allows it to double its share of CPU time
from the global pool (in essence meaning that relatively speaking, it uses only three CPU
cycles per instruction copied). Without this compensation it would use only five CPU cycles

per instruction copied.

3.4 Evolutionary Patterns in Four Different Genetic Languages

In comparing the patterns of evolution across the four instruction sets, two major differences
are apparent: 1) The degree and rate of optimization attained. 2) The patterns of gradualism,
punctuation and equilibrium. These results are summarized in Table 1, and described below.

The original instruction set (Figure 6) shows the most rapid optimization, generally
reaching its恥alplateau within 600 generations. In addition, this instruction set showed one
of the highest degrees of optimization, with the best performance reducing the seed program

from seventy-two to twenty-two instructions, 30% of its original size, and the average reduced
to 35%. This instruction set generally showed a pattern of gradualism, with an occasional
punctuation. This pattern⑳ uld be described as punctuated grad叫 ism.

The second instruction set (Figure 6) shows slower optimization, generally taking about
~000 generations to reach its final plateau. Also, the degree of optimization shown by this set
1s not as great. The best performance reduced the algorithm from ninety-four to fifty-four

instructions, 57% of its original size, and the average reduced to 60%. This instruction set
generally showed a pattern of gradualism, punctuations were completely absent.

29

C ompanson of optim1zat10ns in the four mstruct1on sets, Il, 12, 13 and 14 (described
in Appendix G). The first column, "Set", specifies which of the four sets. The second
column, "Ancestor", specifies the size in instructions, of the ancestral algorithm of that set.
The following eight columns, "RO" through "R7''refer to the eight runs, and contain the
size of the smallest algorithms evolved during that run. The column "Avg. Opt." shows the
average optimization for that set. This is calculated by averaging the sizes of the smallest
algorithms to evolve in each run for that set, and dividing by the size of the ancestral
algorithm. The column "Max. Opt." shows the maximum optimization achieved by this

set. This is calculated by dividing the size of the smallest algorithm to evolve by the size of
the ancestral algorithm.

Table 1: Comparison of Optimizations in the Four Instruction Sets
Set Ancestor RO Rl R2 R3 R4 R5 R6 R7 Avg. Opt. Max. Opt.
11 73 27 27 26 22 .35 .30
12 94 54 57 54 55 60 56 57 55 .60 .57
13 93 54 37 34 36 49 53 54 40 .48 .37
14 82 26 23 23 26 35 24 43 23 .34 .28

The third instruction set (Figure 6) performed much like the second, taking about 1000
generations to reach its且nalplateau, and showing a pattern of gradualism, completely
lacking in punctuations. This instruction set showed somewhat better optimization than the
second, with the best performance reducing the algorithm from ninety-three to thirty-four
instructions, 37% of its initial size, and the average reduced to 48%.

The fourth instruction set (Figure 6) showed very distinctive patterns of evolution. The
time to reach its final plateau varied widely, ranging from about 350 generations to about

2000 generations. The greatest degree of optimization resulted in reducing the algorithm
from eighty-two to twenty-three instructions, 28% of the original size, and the average re-
duced to 34%. This instruction set showed what could only be described as punctuated
equilibrium, with no clear signs of gradualism.

3.5 Complex Structures

Optimization in digital organisms involves且ndingalgorithms for which less CPU time is
required to effect a replication. This is always a selective force, regardless of how the en-
vironmental parameters of the Tierran universe are set. However, selection may also favor
reduction or increase in size of the creatures, depending on how CPU time is allocated to
the creatures. If each creature gets an eq叫 shareof CPU time, selection strongly favors
reduction in size. The reason is that all other things being equal, a smaller creature requires
less CPU time because it need copy fewer instructions to a new location in memory.

Under selection favoring a decrease in size, evolution has converted an original eighty-two
instruction creature (instruction set four) to creatures of as few as twenty-three instructions,

30

Comparisons of Size, Efficiency and Complexity in Evolved Algorithms from eight

runs of instruction set four. The first column, "Run", refers to which of the eight runs this

result occurred in (compare to Table 1). The second column, "Genotype", lists the name

of an example of an algorithm of the smallest size evolved in that run. The third column,

"Efficiency", lists the efficiency of that algorithm, calculated as CPU cycles expended for

each byte moved during reproduction. The rows of the table are sorted on this value, with

the highest efficiency (least CPU cycle expenditure) at the top of the table. The fourth

column, "Unrolling", is an indication of the complexity of the central loop of the algorithms.

This indicates the level to which the central loop is "unrolled" (see explanation in text). An

asterisk in the final column indicates that the assembler code for this algorithm can be found

in Appendix H. The algorithm 0082aaa is the ancestral program, written by the author, and

is included for the sake of comparison.

Table 2: Comparisons of Size, Efficiency and Complexity in Evolved Algorithms
Run Genotype Efficiency Unrolling

R6 0043crg 3.33 3

0035bfj

0026ayz

0024aah

0023awn

0023api

0023aod

0026abk

0082aaa

R4

R3

R5

R2

Rl
R7

RO
RX

3.49

3.73

3.96

4.96

5.04

5.09

5.19

8.39

3

2

2

1

1

1

1

1

＊

＊

＊

＊

within a time span of four hundred generations. Different runs under the same initial pa-

rameters, but using different seeds to the random generator, achieved different degrees of

optimization. These runs have plateaued at forty-three, thirty-five, twenty-six, twenty-four

and twenty-three instructions.

An obvious interpretation of these results is that evolution gets caught on a local optima,

from which it can not reach the global optima [71]. However, analysis of the "sub-optimal"

(larger)伽 alalgorithms suggests an alternative interpretation. An efficiency measure was

calculated for each resultant organism, in which the total number of CPU cycles expended

in replication is divided by the size of the organism. The efficiency index measures the cost

of moving a byte of information by that algorithm, in units of CPU cycles per byte.

Table 2 ranks the evolved organisms by this measure of efficiency. They arrange them-

selves almost perfectly in reverse order of size. With the exception of the last algorithm,

0026abk, the evolved algorithms show a pattern in which the larger algorithms are the most

efficient. Examination of the individ叫 algorithmsshows that the larger individuals have

discovered an optimization technique called "unrolling the loop". This technique involves

the production of more intricate algorithms.

The central loop of the copy procedure of the ancestor (0082aaa) for instruction set four

31

(see appendix B) performs the following operations: 1) copies an instruction from the mother
to the daughter, 2) decrements the CX register which initially contains the size of the parent
genome, 3) tests to see if CX is equal to zero, if so it exits the loop, if not it remains in the

loop, 4) jumps back to the top of the loop.

The work of the loop is contained in steps 1 and 2. Steps 3 and 4 are overhead associated
with executing a loop. The efficiency of the loop can be increased by duplicating the work
steps within the loop, thereby saving on overhead. The creatures 0024aah and 0026ayz had
repeated the work steps twice within the loop, while the creatures 0035bfj and 0043crg had

repeated the work steps three times within the loop.

These optima appear to represent stable endpoints for the course of evolution, in that
running the system longer does not appear to produce any significant further evolution. The

increase in CPU economy of the replicating algorithms is even greater than the decrease in
the size of the code. The ancestor for instruction set four is 82 instructions long and requires
688 CPU cycles to replicate. A creature of size 24 only requires 95 CPU cycles to replicate,
a 7.24-fold difference in CPU cycles, and a 2.12-fold difference in efficiency (CPU cycles
expended per byte moved). A creature of size 43 requires only 143 CPU cycles to replicate,
a 4.81-fold difference in CPU cycles, and a 2.52-fold difference in efficiency.

Unrolling of the loop is not unique to instruction set four. It has also been observed
in the original instruction set. Appendix F contains the central copy loop of the ancestor
(0080aaa) of instruction set one, and also the central copy loop of an organism that evolved
from it (0072etq), which exhibits loop unrolling to level three.

3.6 Evolution and Diversity /Entropy

Figure 7 illustrates the measure of community diversity/ entropy over a period of one billion
CPU cycles. This measure, negative sum of p log p, where p is the proportion of the popu-
lation occupied by a particular genotype, is the same index that ecologists use to measure
community diversity. Initially, the diversity/ entropy measures zero, because there is only a
single genotype in the community. Mutation introduces new genotypes, and the diversity
quickly rises to some "equilibrium" value. Over the course of the billion cycles, this equilib-
rium value slowly drifts up. This is probably due to the fact that during this same period,
the average size of the individ叫 sgradually decreases. This results in a gradual rise in
the population of creatures in the community (since the area of memory available is fixed).
Evidently larger populations are able to sustain a greater equilibrium diversity.

Another feature of the lower graph is the striking peaks representing abrupt drops in
entropy/ diversity. These peaks are major extinction events. They are not generated by
external perturbations to the system, but arise entirely out of the internal dynamics of the

evolving system.

The population records for this run were reviewed, and all genotypes which had achieved

frequencies representing 20% or more of the total population in the community were identi-
fied. Ten genotypes had achieved these frequency levels, and they are listed in Table 3. Each

32

Most Successful Genotypes, Their Times of Occurrence, and Maximum Frequency. The first

column "Letter" indicates the letter used to mark the location of the genotype on Figure 7.

The second column "Time" indicates the time of occurrence of this genotype, in millions of
instructions. The third column "Genotype" indicates the name of this organism. The fourth

column "Max. Frequency" indicates the maximum frequency achieved by this genotype, as
a proportion of the total population of creatures in the soup.

Table 3: Most Successful Genotypes, Their Times of Occurrence, and Maximum

Frequency
Letter Time

117 a

Genotype

0039aab

Max. Frequency
0.25

b
c
d
e
f
 g

h

i

j

166
245
313

369
542

561

683

794

866

0037aaf

0070aac
0036aaj

0038aan
0027aaj

0023abg

0029aae

0029aab

0024aar

0.30
0.20

0.25

0.21
0.21

0.34

0.24

0.23

0.33

of these ten genotypes is marked with a letter on the lower graph of Figure 7, to indicate
the time of its occurrence. It appears that these extremely successful genotypes correspond
to all the major peaks of diversity loss.

The upper portion of Figure 7 shows the changes in the size of organisms during the

run. A point appears on this graph each time a new genotype increases in frequency across

a threshold of 2%. That is to say, that when the population a new genotype first comes to

represent 2% of the total population of individuals in the soup, a point appears on the graph

indicating the size of that organism, and the time that it reached the threshold. Therefore

the upper part of Figure 7 illustrates the size trends for the appearance of successful new

genotypes.

Two distinct data clouds can be recognized in the upper part of Figure 7. The upper

cloud of points spans the full range of time, and is located principally in the 60 to 80

instruction size range. These points represent "hosts", or fully self-replicating algorithms.

By contrast, the lower cloud of points represents the smaller parasites. The lower cloud is

located principally in the 25 to 45 instruction size range.

While the lower cloud also spans the full range of time, it contains obvious gaps which

represent periods where parasites were absent from the community. The coming and going of

parasites over time evidently relates to the turns in the evolutionary race between hosts and

parasites. Parasites disappear when hosts evolve defenses, and reappear when the defenses

are breached, or when the defenses are lost through evolution in the absence of parasites.

33

4 Discussion of Results

It can be seen in Figures 6 that the parasites (the lower clouds of points) generally die out
by half way through the run. Yet, in the upper part of Figure 7, parasites persist throughout
the run. The run illustrated in Figure 7 was conducted with relatively lower mutation rates,
than the runs shown in Figure 6. At higher mutation rates, optimization proceeds more
rapidly. It is when optimization is well advanced that parasites tend to die out. In Figure 6
it can be seen that parasites tend to persist longer in instruction sets two and three which
achieve only moderate optimization, than in sets one and four that achieve higher degrees of
optimization. Once the algorithms have been significantly compacted through optimization,
the evolution of ecological interactions becomes more difficult, and these interactions tend

to disappear from the evolving communities.

4.1. Evolutionary Patterns in Four Genetic Languages

The four genetic languages differ in various characteristics of the underlying machine lan-
guage. In fact, the four languages differ only subtly, yet the rates, degrees and patterns of
evolution vary widely among them.

Unfortunately, it is not possible to conclude from these data, which specific differences
in the machine languages are responsible for specific differences in the evolutions. This

would require carefully controlled studies in which specific individual features of the machine
languages are varied independently to determine the effects of those differences on evolution.
These would be studies to determine the elements of evolvability in genetic systems. The
current study was not designed in this fashion.

What we can conclude from the data available is that many features of the evolutionary
process are sensitive to the characteristics of the underlying genetic system. It is also in-
teresting to note that the greatest levels of optimization occurred in those systems in which
punctuations at least some times were present.

4.2 Complex Structures

Does evolution lead to greater complexity? It is obvious that it can, but it would be erroneous

to believe that there is a general trend in evolution toward greater complexity. In fact
evolution also leads to greater simplicity.

Genetic variation is generated through essentially random processes. Thus the generation
of novel genotypes should not be biased toward either greater or lesser complexity. Natural
selection could very well be biased, however, there are abundant examples of selection leading
to less complexity. Parasitic digital organisms are good examples.

In the organic world, many kinds of parasites have evolved into relatively simple forms,
as they rely on their host for certain services. For example, gut parasites do not require a
digestive system, and have evolved very simple body plans. The eyes of some cave dwelling

34

animals have evolved into rudimentary non-functional structures. Viruses must have arisen
from renegade DNA of cellular organisms, perhaps from transposons. Thus viruses must
be much simpler than their ancestors, having become metabolic parasites at the molecular
level.

Probably the best way to view the issue is to note that evolution is always pushing the
boundaries, in all directions, of any measure. If we look at complexity of organisms over the
history of life on Earth, we clearly see a large increase over time. However, this does not nec-
essarily arise from an inherent directionality. It may also arise from the fact that the original
organisms were extremely simple, thus any moves in the direction of greater complexity are
readily noted. Meanwhile, later evolutions in the direction of less complexity do not push
the envelope of pre-existing complexity levels, and are easily lost amidst the background of

pre-existing simpler organisms. Because the original organisms were so extremely simple,
only evolutions to greater complexity push the envelope of life, and are readily noted (the
origin of viruses may be a counter-example).

This study cited some examples of the evolution of more complex algorithms. These
algorithms achieve high levels of optimization through a technique called "unrolling the
loop". In the ancestral algorithm of instruction set four, the "work" part of the copy loop
consists of only two instructions: dee and movii. Therefore the unrolling of this loop
through the duplication of these two instructions would seem to be not too evolutionarily
challenging.

However, in the ancestral algorithm of instruction set one, the "work" part of the copy
loop consists of four instructions: movii, dec_c, inc_a and inc_b. Due to other circum-

stances that occurred in the course of evolution, this set of work instructions became slightly
more complex, requiring two instances of dec_c. Thus, the "work" part of the evolving
copy loop requires the proper combination and order of five instructions. Yet the organism

0072etq shows this set of instructions repeated three times (with varying ordering, indicating
that the unrolling did not occur through an actual replication of the complete sequence).

These algorithms are substantially more intricate than the unevolved ones written by the
author. The astonishing improbability of these complex orderings of instructions is testimony
to the ability of evolution through natural selection to build complexity.

4.3 Evolution and Diversity /Entropy

Does evolution lead to a decrease in entropy? In the context of the current study, entropy was
measured as genetic diversity in an ecological community. This measure showed occasional
sharp but transient drops in diversity/ entropy. These drops in diversity/ entropy appear to
correspond to the appearance of highly successful new genotypes whose populations come to
dominate large portions of the memory, pushing other genotypes out, and generating major
extinction events.

It is interesting also, that nine of the ten genotypes listed in Table 3 are parasites (all

except for'c', 0070aac). The peaks of diversity/ entropy loss are greatest on the occasions
that parasites reappear in the community after a period of absence.

35

It appears likely from these observations, that these extinction episodes correspond to

the emergence of novel adaptations among the evolving organisms (particularly a breaching

of the hosts defense mechanisms by parasites). These adaptations bestow the bearers with
the ability to dominate the memory, excluding other organisms.

This suggests a process in which random genetic changes generated by mutation and
recombination explores the genotype space. Occasionally, these explorations stumble onto a
significant innovation. These innovations can bestow such an advantage that the population
of the new genotype explodes, generating an episode of mass extinction as it drives other
genotypes out of memory. The extinction episode is noted as a sharp drop in the diver-
sity / entropy measure. Thus, ecological entropy drops appear to correspond to the chance
discovery of significant innovations.

However, continued mutation and recombination generates new variants of the success-
ful new form. This process generally restores the community to the equilibrium diver-
sity / entropy about as rapidly as the diversity/ entropy was lost in the extinction episode.

5 Discussion of Future Directions

5.1 Digital Husbandry

Digital organisms evolving freely by natural selection do no "useful" work. Natural evolution
tends to the selfish needs of perpetuating the genes. We can not expect digital organisms
evolving in this way to perform useful work for us, such as guiding robots or interpreting
human languages. In order to generate digital organisms that function as useful software, we
must guide their evolution through artificial selection, just as humans breed dogs, cattle and
rice. Some experiments have already been done with using artificial selection to guide the
evolution of digital organisms for the performance・of "useful" tasks [2, 84, 85]. I envision two

approaches to the management of digital evolution: digital husbandry, and digital genetic
engineering.

Digital husbandry is an analogy to animal husbandry. This technique would be used for
the evolution of the most advanced and complex software, with intelligent capabilities. Cor-
respondingly, this technique is the most fanciful. I would begin by allowing multi-cellular
digital organisms to evolve freely by natural selection. Using strictly natural selection, I
would attempt to engineer the system to the threshold of the computational analog of the
Cambrian explosion, and let the diversity and complexity of the digital organisms sponta-
neously explode.

One of the goals of this exercise would be to allow evolution to find the natural forms

of complex parallel digital processes. Our parallel hardware is still too new for human
programmers to have found the best way to write parallel software. And it is unlikely that

human programmers will ever be capable of writing software of the complexity that the
hardware is capable of running. Evolution should be able to show us the way.

36

It is hoped that this would lead to highly complex digital organisms, which obtain and
process information, presumably predominantly about other digital organisms. As the com-
plexity of the evolving system increases, the organisms will process more complex information
in more complex ways, and take more complex actions in response. These will be information
processing organisms living in an informational environment.

It is hoped that evolution by natural selection alone would lead to digital organisms
which while doing no "useful" work, would none-the-less be highly sophisticated parallel

information processing systems. Once this level of evolution has been achieved, then artificial
selection could begin to be applied, to enhance those information processing capabilities that
show promise of utility to humans. Selection for different capabilities would lead to many

different breeds of digital organisms with different uses. Good examples of this kind of
breeding from organic evolution are the many varieties of domestic dogs which were derived
by breeding from a single species, and the vegetables cabbage, kale, broccoli, cauliflower,
and brussels sprouts which were all produced by selective breeding from a single species of

plant.

Digital genetic engineering would normally be used in conjunction with digital hus-
bandry. This consists of writing a piece of application code and inserting it into the genome
of an existing digital organism. A technique being used in organic genetic engineering today
is to insert genes for useful proteins into goats, and to cause them to be ex-pressed in the
mammary glands. The goats then secrete large quantities of the protein into the milk, which
can be easily removed from the animal. vVe can think of our complex digital organisms as
general purpose animals, like goats, into which application codes can be inserted to add new
functionalities, and then bred through artificial selection to enhance or alter the quality of

the new functions.

In addition to adding new functionalities to complex digital organisms, digital genetic
engineering could be used for achieving extremely high degrees of optimization in relatively
small but heavily used pieces of code. In this approach, small pieces of application code could
be inserted into the genomes of simple digital organisms. Then the allocation of CPU cycles
to those organisms would be based on the performance of the inserted code. In this way,
evolution could optimize those codes, and they could be returned to their applications. This
technique would be used for codes that are very heavily used such as compiler constructs, or

central components of the operating system.

5.2 Living Together

I'm glad they're not real, because if they were, I would have to feed them and
they would be all over the house.

- Isabel Ray.

Evolution is an extremely selfish process. Each evolving species does whatever it can to
insure its own survival, with no regard for the well-being of other genetic groups (potentially

37

with the exception of intelligent species). Freely evolving autonomous artificial entities

should be seen as potentially dangerous to organic life, and should always be confined by

some kind of containment facility, at least until their real potential is well understood. At

present, evolving digital organisms exist only in virtual computers, specially designed so

that their machine codes are more robust than us叫 torandom alterations. Outside of

these special virtual machines, digital organisms are merely data, and no more dangerous

than the data in a data base or the text file from a word processor.

Imagine however, the problems that could arise if evolving digital organisms were to

colonize the computers connected to the major networks. They could spread across the

network like the infamous internet worm [4, 11, 80, 81]. When we attempted to stop them,

they could evolve mechanisms to escape from our attacks. It might conceivably be very
difficult to eliminate them. However, this scenario is highly unlikely, as it is probably not

possible for digital organisms to evolve on normal computer systems. While the supposition

remains untested, normal machine languages are probably too brittle to support digital

evolution.

Evolving digital organisms will probably always be confined to special machines, either

real or virtual, designed to support the evolutionary process. This does not mean however,

that they are necessarily harmless. Evolution remains a self-foterested process, and even

the interests of confined digital organisms may conflict with our own. For this reason it

is important to restrict the kinds of peripheral devices that are available to autonomous

evolving processes.

This conflict was taken to its extreme in the movie Terminator 2. In the imagined future

of the movie, computer designers had achieved a very advanced chip design, which had

allowed computers to autonomously increase their own intelligence until they became fully

conscious. Unfortunately, these intelligent computers formed the "sky-net" of the United

States military. When the humans realized that the computers had become intelligent, they

decided to turn them off. The computers viewed this as a threat, and defended themselves

by using one of their peripheral devices: nuclear weapons.

Relationships between species can however, be harmonious. ¥Ne presently share the planet

with millions of freely evolving species, and they are not threatening us with destruction.

On the contrary, we threaten them. In spite of the mindless and massive destruction of

life being caused by human activity, the general pattern in living communities is one of a

network of inter-dependencies.

More to the point, there are many species with which humans live in close relationships,

and whose evolution we manage. These are the domesticated plants and animals that form

the basis of our agriculture (cattle, rice), and who serve us as companions (dogs, cats, house

plants). It is likely that our relationship with digital organisms will develop along the same

two lines.

There will likely be carefully bred digital organisms developed by artificial selection and

genetic engineering that perform intelligent data processing tasks. These would subsequently

be "neutered" so that they can not replicate, and the eunuchs would be put to work in

environments free from genetic operators. We are also likely to see freely evolving and/ or

38

partially bred digital ecosystems contained in the equivalent of digital aquariums (without

dangerous peripherals) for our companionship and aesthetic enjoyment.

While this paper has focused on digital organisms, it is hoped that the discussions be

taken in the more general context of the possibilities of any synthetic forms of life. The issues

of living together become more critical for synthetic life forms implemented in hardware or

wetware. Because these organisms would share the same physical space that we occupy, and

possibly consume some of the same material resources, the potential for conflict is much

higher than for digital organisms.

At the present, there are no self-replicating artificial organisms implemented in either

hardware or wetware (with the exception of some simple organic molecules with evidently

small and finite evolutionary potential [32, 39, 61]). However, there are actiYe attempts to

synthesize RNA molecules capable of replication [8, 41], and there is much discussion of

the future possibility of self-replicating nano-technology and macro-robots. I would strongly

urge that as any of these technologies approaches the point where self-replication is possible,

the work be moved to specialized containment facilities. The means of contai11111ent will have

to be handled on a case-by-case basis, as each new kind of replicating technology will have

its own special properties.

There are many in the artificial life movement who envision a beautiful比turein which

artificial life replaces organic life, and expands out into the universe [49, 50, 51, 58, 59]. The

motives vary from a desire for immortality to a vision of converting virtually all matter in

the universe to living matter. It is argued that this transition from organic to metallic based
life is the inevitable and natural next step in evolution.

The naturalness of this step is argued by analogy with the supposed genetic takeovers

in which nucleic acids became the genetic material taking over from clays [13], and cultural
evolution took over from DNA based genetic evolution in modern humans. I would point

out that whatever nucleic acids took over from, it marked the origin of life more than the

passing of a torch. As for the supposed transition from genetic to cultural evolution, the

truth is that genetic evolution remains intact, and has had cultural evolution layered over it

rather than being replaced by it.

The supposed replacement of genetic by cultural evolution remains a vision of a brave

new world, which has yet to materialize. Given the ever increasing destruction of nature,

and human misery and violence being generated by human culture, I would hesitate to place

my trust in the process as the creator of a bright future. I still trust in organic evolution,

which created the beauty of the rainforest through billions of years of evolution. I prefer to

see artificial evolution confined to the realm of cyberspace, where we can more easily coexist

with it without danger, using it to enhance our lives without having to replace ourselves.

As for the expansion of life out into the universe, I am confident that this can be achieved

by organic life aided by intelligent non-replicating machines. And as for inunortality, our

unwillingness to accept our own mortality has been a primary fuel for religions through the

ages. I find it sad that Artificial Life should become an outlet for the same sentiment. I prefer

to achieve immortality in the old fashioned organic evolutionary way, through my children.

I hope to die in my patch of Costa Rican rain forest, surrounded by many thousands of wet

39

and squishy species, and leave it all to my daughter. Let them set my body out in the jungle
to be recycled into the ecosystem by the scavengers and decomposers. I will live on through

the rain forest I preserved, the ongoing life in the ecosystem into which my material self is
recycled, the memes spawned by my scientific works, and the genes in the daughter that my

wife and I created.

5.3 Challenges

For well over a century, evolution has remained a largely theoretical science. Now new

technologies have allowed us to inoculate natural evolution into artificial media, converting
evolution into an experimental and applied science, and at the same time, opening Pandora's
box. This creates a variety of challenges which have been raised or alluded to in the preceding

essay, and which will be summarized here.

Respecting the Medium If the objective is to instantiate rather than simulate life, then
care must be taken in transferring ideas from natural to artificial life forms. Preconceptions
derived from experience with natural life may be inappropriate in the context of the artificial
medium. Getting it right is an art, which likely will take some skill and practice to develop.

However, respecting the medium is only one approach, which I happen to favor. I do not
wish to imply that it is the only valid approach. It is too early to know which approach will
generate the best results, and I hope that other approaches will be developed as well. I have

attempted to articulate clearly this "natural" approach to synthetic life, so that those who
choose to follow it may achieve greater consistency in design through a deeper understanding

of the method.

Understanding Evolvability Attempts are now underway to inoculate evolution into
many artificial systems, with mixed results. Some genetic languages evolve readily, while

others do not. We do not yet know why, and this is a fundamental and critically important
issue. What are the elements of evolvability? Efforts are needed to directly address this issue.
One approach that would likely be rewarding would be to systematically identify features
of a class of languages (such as machine languages), and one by one, vary each feature, to
determine how evolvability is affected by the state of each feature.

Creating Organized Sexuality Organized sexuality is important to the evolutionary
process. It is the basis of the species concept, and while remaining something of an enigma
in evolutionary theory, clearly is an important facilitator of the evolutionary process. Yet this

kind of sexuality still has not been implemented in a natural way in synthetic life systems.
It is important to find ways of orchestrating organized sexuality in synthetic systems such as

digital organisms, in a way in which it is not mandatory, and in which the organisms must
carry out the process through their own actions.

40

Creating Multi-cellularity In organic life, the transition from single to multi-celled
forms unleashed a phenomenal explosion of diversity and complexity. It would seem then
that the transition to multi-cellular forms could generate analogous diversity and complexity
in synthetic systems. In the case of digital organisms, it would also lead to the evolution
of parallel processes, which could provide us with new paradigms for the design of parallel
software. The creation of multi-celled digital organisms remains an important challenge.

Controlling Evolution Humans have been controlling the evolution of other species for
tens of thousands of years. This has formed the basis of agriculture, through the domestica-
tion of plants and animals. The fields of genetic algorithms [33, 37], and genetic programming
[45] are based on controlling the evolution of computer programs. Hmvever, we still have
very little experience with controlling the evolution of self-replicating computer programs,
which is more difficult. In addition, breeding complex parallel programs is likely to bring
new challenges. Developing technologies for managing the evolution of complex software will
be critical for harnessing the full potential of evolution for the creation of useful software.

Living Together If we succeed in harnessing the power of evolution to create complex
synthetic organisms capable of sophisticated information processing and behavior, we will
be faced with the problems of how to live harmoniously with them. Given evolution's
selfish nature and capability to improve performance, there exists the potential for a conflict

arising through a struggle for dominance between organic and synthetic organisms. It will
be a challenge to even agree on what the most desirable outcome should be, and harder still
to accomplish it. In the end the outcome is likely to emerge from the bottom up through
the interactions of the players, rather than being decided through rational deliberations.

6 Network Initiative

6.1 The Possibility

The process of evolution by natural selection is able to create complex and beautiful infor-
mation processing systems (such as primate nervous systems) without the guidance of an
intelligent supervisor. Yet intelligent programmers have not been able to produce software
systems that match even the full capabilities of insects. Recent experiments demonstrate
that evolution by natural selection is able to operate effectively in genetic languages based
on the machine codes of digital computers [68, 71, 74]. This opens up the possibility of using
evolution to generate complex software.

Ideally we would like to generate software that utilizes the full capability of our most
advanced hardware, particularly massively parallel and networked computational systems.
Yet it remains an open question if evolution has the ability to achieve such complexity in

the computational medium, and if it does, how that goal can be achieved. Successful efforts
at the evolution of machine codes have generally worked with programs of under a hundred

41

bytes. How can we provoke evolution to transform such simple algorithms into software of

vast complexity?

Perhaps we can gain some clues to solving this problem by studying the comparable evo-
lutionary transformation in organic life forms. Life appeared on Earth roughly 3.5 thousand
million years ago, but remained in the form of single celled organisms until about 600 million
years ago. At that point in time, life made an abrupt transformation from simple micro-
scopic single celled forms lacking nervous systems, to large and complex multi-celled forms
with nervous systems capable of coordinating sophisticated behavior. This transformation
occurred so abruptly, that evolutionary biologists refer to it as the "Cambrian explosion of
diversity."

It is heartening to observe that once conditions are right, evolution can achieve extremely
rapid increases in complexity and diversity, generating sophisticated information processing
systems where previously none existed. However, our problem is to engineer the proper
conditions for digital organisms in order to place them on the threshold of a digital version
of the Cambrian explosion. Otherwise we might have to wait millions of years to achieve our
goal. Ray [75] has reviewed the biological issues surrounding the evolution of diversity and
complexity, and they lead to the following conclusions:

Evolution of complexity occurs in the context of an ecological community of interacting
evolving species. Such communities need large complex spaces to exist. A large and complex
environment consisting of partially isolated habitats differing and occasionally changing in
environmental conditions would be the most conducive to a rapid increase in diversity and

complexity. These are the considerations that lead to the suggestion of the creation of a large
and complex ecological reserve for digital organisms. Due to its size, topological complexity,
and dynamically changing form and conditions, the global network of computers appears to
be an ideal habitat for the evolution of complex digital organisms.

6.2 A Better Medium

Natural evolution in the digital medium is a new technology, about which we know very

little. The hope is to evolve software with sophisticated functionality far beyond anything
that has been designed by humans. But how long might this take? Evolution in the organic
medium is known to be a slow process. Certainly there remains the possibility that evolution

in the digital medium will be too slow to be a practical tool for software generation, but
several observations can be made that provide encouragement.

First, computational processes occur at electronic speeds, and are in fact relatively fast.
Second, as was noted above, during the Cambrian, evolution produced such a rapid inflation
of complexity and diversity, that it has come to be known as an "explosion". The bulk of
the complexity of living systems on Earth appeared suddenly at the time of the Cambrian
explosion. If complexity had developed gradually, at a steady pace through the history
of life, then it would probably be hopeless to attempt to use evolution as a methodology
for generating complexity. However, if the Cambrian explosion phenomenon is a general
property of evolving systems, then it may be practical to use evolution to generate complexity

42

in evolving digital systems.

A third point remains to be made. Let us consider a thought experiment. Imagine

that we are robots. We are made out of metal, and our brains are composed of large

scale integrated circuits made of silicon or some other semi-conductor. Imagine further,
that we have no experience of carbon based life. vVe have never seen it, never heard of it,

nor ever contemplated it. Now suppose a robot enters the scene with a flask containing

methane, ammonia, hydrogen, water and a few dissolved minerals. This robot asks our

academic gathering: "Do you suppose we could build a computer out of this material."

The theoreticians in the group would surely say yes, and propose some approaches to the
problem. But the engineers in the group would say: "Why bother when silicon is so much

better suited to information processing than carbon."

From our organo-centric perspective the robot engineers might seem naive, but in fact I

think they are correct. Carbon chemistry is a lousy medium for information processing. Yet
the evolutionary process embodies such a powerful drive to generate information processing

systems, that it was able to rig up carbon based contraptions for processing information,

capable of generating the beauty and complexity of the human mind. What might such

a powerful force for information processing do in a medium designed for that purpose in

the first place? It is likely to arrive more quickly at sophisticated information processes
than evolution in carbon chemistry, and would likely achieve comparable functionality with

a greater economy of form and process. Evolution is a process that explores the possibilities

inherent in the medium.

6.3 How

The Tierra system creates a virtual computer (a software emulation of a computer that has

not been built in hardware) whose architecture, instruction set, and operating system have

been designed to support the evolution of the machine code programs that execute on that

virtual machine. A network version of the Tierra system is under development that will allow

the passage of messages between Tierra systems installed on different machines connected
to the network, via "sockets".

The instruction sets of the Tierran virtual computers will have some new instructions

added that allow the digital organisms to communicate between themselves, both within a
single installation of Tierra, and over the net between two or more installations. The digital

organisms will be able to pass messages consisting of bit strings, and will also be able to

send their genomes (their executable code) over the network between installations of Tierra.

The network installation of Tierra will create a virtual sub-network within which digital
organisms will be able to move and communicate freely. This network will have a complex

topology of interconnections, reflecting the topology of the internet within which it is em-

bedded. In addition, there will be complex patterns of "energy availability" (availability of
CPU cycles) due to the Tierra installations being run as low priority background processes

and the heterogeneous nature of the real hardware connected to the net. A miniature version

of this concept has already been implemented in the form of a CM5 version of Tierra, has

43

been used to simulate the network version [87].

Consider that each node on the net tends to experience a daily cycle of activity, reflecting
the habits of the user who works at that node. The availability of CPU time to the Tierra
process will mirror the activity of the user, as Tierra will get only the cycles not required
by the user for other processes. Statistically, there will tend to be more "energy" available
for the digital organisms at night, when the users are sleeping. However, this will depend a

great deal on the habits of the individual users and will vary from day to day.

There will be strong selective pressures for digital organisms to maintain themselves
on nodes with a high availability of energy. This might involve daily migrations around
the planet, keeping on the dark side. However, selection w叫 dalso favor the evolution of
some direct sensory capabilities in order to respond to local deviations from the expected
patterns. When rich energy resources are detected on a local sub-net, it may be advantageous
to disperse locally within the sub-net, rather than to disperse long distances. Thus there is
likely to be selection to control the "directionality" and distances of movement within the
net.

All of these conditions should encourage the evolution of "sensory" capabilities to detect

energy conditions and spatial structure on the net, and also evolution of the ability to detect
temporal and spatial patterns in these same features. In addition to the ability to detect these

patterns, the digital organisms need the ability to coordinate their actions and movements in
response to changing conditions. In short, the digital organisms must be able to intelligently
navigate the net in response to the dynan直callychanging circumstances.

In addition to responding to conditions on the net itself, digital organisms evolving in
this environment will have to deal with the presence of other organisms. If one node stood
out above all the rest, as the most energy rich node, it would not be appropriate for all
organisms to attempt to migrate to that node. They wouldn't all fit, and if they could they
would have to divide the CPU resource too thinly. Thus there will be selection for social
behavior, flocking or anti-flocking behavior. The organisms must find a way of distributing

themselves on the net in a way that makes good use of the CPU resources.

A primary obstacle to the evolution of complexity in the Tierra system has been that in

the relatively simple single node installation, a very simple twenty to sixty byte algorithm
that quickly and efficiently copies itself can not be beat by a much more complex algorithm,

which due to its greater size would take much longer to replicate. There is just no need to
do anything more complicated than copy yourself quickly. However, the heterogeneous and
changing patterns of energy availability and network topology of the network version will
reward more complex behavior. It is hoped that this will launch evolution in the direction
of more complexity. Once this trajectory has begun, the interactions among the increasingly
sophisticated organisms themselves should lead to further complexity increases.

Already on the single node installation, most of the evolution that has been described
has involved the adaptation of organisms to other organisms in the environment (parasitism,
social behavior, etc.). It is this kind of dynamics that can lead to an auto-catalytic increase
in complexity and diversity in an evolving ecological system. The complexity of the physical

system in which evolution is embedded does not have to lead the complexity of the living

44

system.

For example, in tropical rain forests on white sand soils, the physical enviromnent consists
of clean white sand, air, falling water, and sunlight. Embedded in this physical environment
is the most complex living system on Earth: the tropical rain forest, consisting of hundreds of
thousands of species. These species do not represent hundreds of thousands of adaptations
to clean white sand, air, falling water, and sunlight. Rather, they represent numerous
adaptations to other organisms. The living organisms create their own env江onment,and
then evolution produces adaptations to other living organisms. If you go into the forest,

what you see are living organisms (mostly trees), not sand, air water and sunshine.

It is imagined that individual digital organisms will be multi-celled, and that the cells
that constitute an individual might be dispersed over the net. The remote cells might
play a sensory function, relaying information about energy levels around the net back to
some "central nervous system" where the incoming sensory information can be processed
and decisions made on appropriate actions. If there are some massively parallel machines
participating in the virtual net, digital organisms may choose to deploy their central nervous
systems on these arrays of tightly coupled processors.

6.4 "Managing" Evolution

Humans have been managing the evolution of other species for tens of thousands of years,
through the domestication of plants and animals. It forms the basis of the agriculture which
underpins our civilizations. We manage evolution through "breeding", the application of
artificial selection to captive populations.

Similar approaches have been developed for working with evolution in the digital do-

main. It forms the basis of the fields of "genetic algorithms" and "genetic programming".

However, because digital evolution has not yet passed through its version of the Cambrian
explosion, there exists the possibility to use a radically different approach to "managing"
digital evolution.

Some questions frequently asked about software evolution are: How can we guide evo-
lution to produce useful application software? How can we validate the code produced by
evolution to be sure that it performs the application correctly? These questions reveal a
limited view of how software evolution can be used, and what it can be used for. I will
articulate a fairly radical view here.

Computer magazines bemoan the search for the "next killer application", some category

of software that everybody will want, but which nobody has thought of yet. The markets
for the existing major applications (word processors, spread sheets, data bases, etc.) are
already saturated. Growth of the software industry depends on inventing completely new
applications. This implies that there are categories of software that everyone will want but
which haven't been invented yet. We need not only attempt to use evolution to produce
superior versions of existing applications. Rather we should allow evolution to find the new
applications for us. To see this process more clearly, consider how we manage applications
through organic evolution.

45

Some of the applications provided by organic evolution are: rice, corn, wheat, carrots,
beef cattle, dairy cattle, pigs, chickens, dogs, cats, guppies, cotton, mahogany, tobacco,

mink, sheep, silk moths, yeast, and penicillin mold. If we had never encountered any one
of these organisms, we would never have thought of them either. We have made them into
applications because we recognized the potential in some organism that was spontaneously
generated within an ecosystem of organisms evolving freely by natural selection.

Many different kinds of things occur within evolution. Breeding relates to evolution
within the species: producing new and different, possibly "better" forms of existing species.
However, evolution is also capable of generating species. Even more significantly, evolution is
capable of causing an explosive increase in the complexity of replicators, through many orders
of magnitude of complexity. The Cambrian explosion may have generated a complexity
increase of eight orders of magnitude in a span of three million years. Harnessing these
enormously more creative properties of evolution requires a completely different approach.

We know how to apply artificial selection to convert poor quality wild corn into high-
yield corn. However we do not know how to breed algae into corn. There are two bases to
this inability: 1) if all we know is algae, we could not envision corn. 2) even if we know all
about corn, we do not know how to guide the evolution of algae along the route to corn.

Our experience with managing evolution consists of guiding evolution of species through
variations on existing themes. It does not consist of managing the generation of the themes
themselves.

As a thought experiment, imagine being present in the moments before the Cambrian

explosion on Earth, and that your only experience with life was familiarity with bacteria,
algae, protozoa and viruses. If you had no prior knowledge, you could not envision the ma-
hogany trees and giraffes that were to come. We couldn't even imagine what the possibilities
are, much less know how to reach those possibilities if we could conceive of them.

Imagine for a moment that a team of Earth biologists had arrived at a planet at the
moment of the initiation of its Cambrian explosion of diversity. Suppose that these biologists
came with a list of the useful organisms (rice, corn, pigs, etc.), and a complete description of
each. C叫 dthose biologists intervene in the evolutionary process to hasten the production
of any of those organisms from their single celled ancestors? Not only is that unlikely, but

any attempts to intervene in the process are likely to inhibit the diversification and increase
in complexity itself.

If the silk moth never existed, but we somehow came up with a complete description of
silk, it would be futile to attempt the guide the evolution of any existing creature to produce
silk. It is much more productive to survey the bounty of organisms already generated by
evolution with an eye to spotting new applications for existing organisms.

Evolution would not be an appropriate technique for generating accounting software, or
any software where precise and accurate computations are required. Evolution would be
more appropriate for more fuzzy problems like pattern recognition. For example, if you get

a puppy that you want to raise to be a guard dog, you can't verify the neural circuitry or

the genetic code, but you can tell if it learns to bark at strangers and is friendly to your
family and friends. This is the type of application that evolution can deliver. We don't need

46

to verify the code, but verification of the performance should be straightforward.

6. 5 Harvest Time

The strategy being advocated in this proposal is to let natural selection do most of the
work of directing evolution and producing complex software. This software will be "wild",
living free in the digital biodiversity reserve. In order to reap the rewards, and create useful
applications, we will need to domesticate some of the wild digital organisms, much as our
ancestors began domesticating the ancestors of dogs and corn thousands of years ago.

The process must begin with observation. Digital naturalists must explore the digital
jungle, observing and publishing on the natural history, ecology, evolution, behavior, physi-
ology, morphology, and other aspects of the biology of the life forms of the digital ecosystem.
Much of this work will be academic, like the work of modern day tropical biologists exploring
our organic jungles (which I have been doing for twenty years).

However, occasionally, these digital biologists will spot an interesting information process
for which they see an application. At this point, some individuals will be captured and
brought into laboratories for closer study, and farms for breeding. Sometimes, breeding may

be used in combination with genetic engineering (insertion of hand written code, or code
transferred from other digital organisms). The objective will be to enhance the performance
of the process for which there is an application, while diminishing unruly wild behavior.
Some digital organisms will domesticate better than others, as is true for organic organisms
(alligators don't domesticate, yet we can still ranch them for their hides).

Once a digital organism has been bred and/ or genetically engineered to the point that it
is ready to function as an application for end users, they will probably need to be neutered
to prevent them from proliferating inappropriately. Also, they will be used in environments
free from the mutations that will be imposed on the code living in the reserve. By controlling
reproduction and preventing mutation, their evolution will be prevented at the site of the
end user. Also the non-replicating interpreted virtual code, might be translated into code
that could execute directly on host machines in order to speed their operation.

The organisms living in the biodiversity reserve will essentially be in the public domain.
Anyone willing to make the effort can observe them and attempt to domesticate them. How-

ever the process of observation, domestication and genetic engineering of digital organisms
will require the development of much new technology. This is where private enterprise can
get involved. The captured, domesticated, engineered and neutered software that is delivered

to the end user will be a salable product, with the profits going to the enterprise that made
the efforts to bring the software from the digital reserve to the market.

It seems obvious that organisms evolving in the network-based biodiversity reserve will
develop adaptations for effective navigation of the net. This suggests that the most obvious
realm of application for these organisms would be as autonomous network agents. It would
be much less likely that this kind of evolution could generate software for control of robots, or
voice or image recognition, since network based organisms would not normally be exposed

47

to the relevant information flows. Yet at this point we surely can not conceive of where
evolution in the digital domain will lead, so we must remain observant, imaginative in our

interpretations of their capabilities, and open to new application possibilities.

6.6 Commitment

Those who wish to support the digital biodiversity reserve by contributing spare CPU cycles
should be prepared to make a long-term commitment. Nobody knows how long it will take
for complex software to evolve in the reserve. However, a few years will likely be enough
time to shake down the system and get a sense of the possibilities. If the desired complexity
does begin to evolve, then the reserve should become a permanent fixture within the net.

A long-term commitment does not mean that the Tierra process must run uninterrupted.
It is ok for the Tierra process to be taken up and down on any node, for whatever reason
(the Ti err an creatures will experience down time as a local catastrophe). However, the
commitment suggests that an attempt would be made to keep the Tierra process running
on a node most of the time for a very prolonged period of time.

The same problems are faced in the creation of reserves for organic biodiversity. Great
effort and financial resources are required just to establish the reserves. However, that is
only the first step. The objective of the reserves is to limit the extent to which human
activity causes the extinction of other species. The survival or extinction of organic species
is a process that is played out over vast expanses of time: thousands or millions of years.
This means that if our rain forest reserves should be converted into pastures or housing
developments five thousand years from now, they will have failed.

The organic rainforest conservation proposal [76] is focused on the sustainability issue.
The present strategy is to insure the long term survival of the nature reserves by finding

ways for the surrounding human populations to derive an economic benefit from the presence
of the reserves. In Costa Rica, at present, this can most easily be done through nature
tourism. In the future other economic activities may be more appropriate, or perhaps some
centuries or millennia in the future, humans will be willing to protect other species without
the motivation of self-interest.

Similar concerns apply to the sustainability of the digital reserve. If the Tierra process
provides no reward to those who run it on their nodes, they are likely to terminate the process
within a few days, weeks, or months. Such a short participation would be meaningless. As
an initial hedge against this problem, a tool will be distributed to allow anyone to observe
activity at any participating node, from any node. Yet even this may not be enough, as such
tools don't tell a lot about what is going on. To really know the interesting details requires
greater effort than most contributors of CPU cycles will have time for.

An even more serious problem is that experience with operation of the system will cer-

tainly lead to redesign requiring reinstallation. The ideal situation would be to have the

reinstallation done by the same people who do the redesign. However, this would be likely
to require that the designers of the reserve actually have accounts on the participating nodes.

48

Where the designers don't have accounts, the contributors would have to do the reinstallation
themselves, and they would likely tire of the chore.

The willingness of people to support the reserve for the long term is likely to depend

initially on the level of faith that people put in the evolutionary process as a potential
generator of rewarding digital processes. Eventually, if all goes well, the har-vest of some
complex and beautiful digital organisms will provide rewards beyond our imaginations, and

should replace faith with solid proof and practice.

6. 7 Containment

The Tierra system is a containment facility for digital organisms. Because Tierra implements
a virtual computer, one that has never been implemented in hardware, the digital organisms
can only execute on the virtual machine. On any real machine, Tierran organisms are nothing
but data. They are no more likely to be functional on a real computer than a program that
is executable on a Mac is likely to run on an IBM PC, or that the data in a spread sheet is
likely to replicate itself by executing on a machine.

Similarly, the network version of Tierra will create a virtual sub-net, within which the

digital organisms will be able to move freely. However, the Tierran digital organisms will
not access the real net directly. All communication between nodes will be mediated by
the simulation software which does not evolve. When Tierran organisms execute a virtual
machine instruction that results in communication across the net, that instruction will be
interpreted by the simulation software running on the real machine. The simulation software
will pass the appropriate information to a Tierra installation on another machine, through
established socket based communication channels. These socket communication channels
will only exist between Tierra installations at participating nodes. The digital organisms
will not be able to sense the presence of real machines or the real net, nor will they have any
way of accessing them.

To further understand the nature of the system, consider a comparison between the Tierra
program and the mail program. The mail program is installed at every node on the net and
can send data to any other node on the net. The data passing between mail programs is
generated by processes that are completely out of control: humans. Humans are beyond

control, and sometimes actually malicious, yet the messages that they send through the mail
program do not cause problems on the net because they are just data. The same is true
of the Tierra program. While the processes that generate the messages passing between
Tierra installations are wild digital organisms, the messages are harmless data as they pass
through the net. The Tierra program that passes the messages does not evolve, and is as
well behaved as the mail program.

A related issue is network load. We do not yet know the level of traffic that would be
generated by networked installations of Tierra communicating in the manner described. vVe
will place hard limits on the volume of communication allowed to individual digital organisms

in order to prevent mutants from spewing to the net. As we start experimenting with the
system, we will monitor the traffic levels to determine if it would have a significant impact

49

on network loads. If the loads are significant, additional measures will need to be taken to
limit them. This can be done by charging the organisms for their network access so that

they will evolve to minimize their access.

To insure that the experiment is safe, Sun Microsystems has hired an independent security
expert, Tsutomu Shimomura (who achieved fame in Feb.'95 by tracking down and capturing
the notorious hacker Kevin Mitnick) to do a security review of the project.

7 Figure Legends

Figure 1. Metabolic flow chart for the ancestor, parasite,_ hyper-parasite, and

their interactions: ax, bx and ex refer to CPU registers where locat10n and size information
are stored. [ax] and [bx] refer to locations in the soup indicated by the values in the ax
and bx registers. Patterns such as 1101 are complementary templates used for addressing.
Arrows outside of boxes indicate jumps in the flow of execution of the programs. The
dotted-line arrows indicate flow of execution between creatures. The parasite lacks the
copy procedure, however, if it is within the search limit of the copy procedure of a host, it
can locate, call and execute that procedure, thereby obtaining the information needed to
complete its replication. The host is not adversely affected by this informational parasitism,
except through competition with the parasite, which is a superior competitor. Note that the
parasite calls the copy procedure of its host with the expectation that control will return
to the parasite when the copy procedure returns. However, the hyper-parasite jumps out

of the copy procedure rather than returning, thereby seizing control from the parasite. It
then proceeds to reset the CPU registers of the parasite with the location and size of the
hyper-parasite, causing the parasite to replicate the hyper-parasite genome thereafter.

Figure 2. Metabolic flow chart for social hyper-parasites, their associated
hyper-hyper-parasite cheaters, and their interactions. Symbols are as described

for Fig. 1. Horizontal dashed lines indicate the boundaries between individual creatures.
On both the left and right, above the dashed line at the top of the figure is the lowermost
fragment of a social-hyper-parasite. Note (on the left) that neighboring social hyper-parasites
cooperate in returning the flow of execution to the beginning of the creature for self-re-

examination. Execution jumps back to the end of the creature above, but then falls off the
end of the creature without executing any instructions of consequence, and enters the top of
the creature below._ On the right, a cheater is inserted between the two social-hyper-parasites.
The cheater captures control of execution when it passes between the social individuals. It
sets the CPU registers with its own location and size, and then skips over the self-examination
step when it returns control of execution to the social creature below.

Figure 3. Metabolic flow chart for obligate symbionts and their interactions.

Symbols are as described for Fig. 1. Neither creature is able to self-replicate in isolation.
However, when cultured together, each is able to replicate by using information provided by
the other.

Figure 4. Evolutionary optimization at eight sets of mutation rates. In each

50

run, the three mutation rates: move mutations (copy error), flaws and background mutations
(cosmic rays) are set relative to the generation time. In each case, the background mutation
rate is the lowest, affecting a cell once in twice as many generations as the move mutation
rate. The flaw rate is intermediate, affecting a cell once in 1.5 times as many generations
as the move mutation rate. For example in one run, the move mutation will affect a cell
line on the average once every 4 generations, the flaw will occur once every 6 generations,
and the background mutation once every 8 generations. The horizontal axis shows elapsed
time in hundreds of millions of instructions executed by the system. The vertical axis shows
genome size in instructions. Each point indicates the first appearance of a new genotype
which crossed the abundance thresholds of either 2% of the population of cells in the soup, or
occupation of 2% of the memory. The number of generations per move mutation is indicated
by a number in the upper right hand corner of each graph.

Figure 5. Variation in evolutionary optimization under constant conditions.
Based on a mutation rate of four generations per move mutation, all other parameters as in
Fig. 4. The plots are otherwise as described for Fig. 4.

Figure 6. Optimization Patterns in Four Instruction Sets. For each of the
twenty-eight graphs, the horizontal axis is elapsed time in generations, and the vertical axis

is the size of the algorithm in instructions. Points appear on the graph when a new genotype
increases in frequency across some threshold. Each group of four graphs is labeled as to
which instruction set, e.g., INST 1 is the first set, INST 3 is the third.

Figure 7. Entropy /Diversity Changes in an Evolving Ecological Community.
In both graphs, the horizontal axis is time, in millions of instructions executed by the system.
The upper graph shows changes in the sizes of the organisms, in the same style as Figure 6.
The lower graph shows changes in ecological entropy over time (see text).

Figure 8. Images from Anti-Gravity Workshop Animation.

Image a: The digital environment: self-replicating computer programs (colored geomet-

ric objects) occupy the RAM memory of the computer (orange background). Mutations
(lightning) cause random changes in the code. Death (the skull) eliminates old or defective
programs. Image b: The ancestral program -consists of three "genes" (green solid objects).
The CPU (green sphere) is executing code in the first gene, which causes the program to
measure itself. Image c: A parasite (blue, two piece object) uses its CPU (blue sphere) to
execute the code in the third gene of a neighboring host organism (green) to replicate itself,
producing a daughter parasite (two-piece wire frame object). Image d: A hyper-parasite
(red, three piece object) steals the CPU from a parasite (blue sphere). Using the stolen
CPU, and its own CPU (red sphere) it is able to produce two daughters (wire frame objects
on left and right) simultaneously.

Figure 9. Images of Evolutionary Interaction between Hosts and Parasites.
Images made using the Artificial Life Monitor (ALmond) program developed by Marc Cygnus.
Image a: Hosts, red, are very common. Parasites, yellow, have appeared but are still rare.
Image b: Hosts, are now rare because parasites have become very common. Immune hosts,

blue, have appeared but are rare. Image c: Immune hosts are increasing in frequency, sepa-
rating the parasites into the top of memory. Image d: Immune hosts now dominate memory,

51

while parasites and susceptible hosts decline in frequency. The parasites will soon be driven
to extinction. Each image represents a soup of 60,000 bytes, divided into 60 segments of
1000 bytes each. Each individual creature is represented by a colored bar, colors correspond

to genome size (e.g., red= 80, yellow= 45, blue= 79).

8 Appendix A: Getting the Tierra System

The complete source code and documentation (but not executables) is available by anony-
mous ftp at:

tierra.slhs.udel.edu [128.175.41.34]
the file: tierra/tierra. tar. Z

To get it, ftp to tierra or life, log in as user "anonymous" and give your email address
(eg. tom◎ udel.edu) as a password. Change to the tierra directory and get tierra.tar.Z, a
compressed tar file. Be sure to transfer in binary mode. It will expand into the complete
directory structure with the following commands (Unix only):

uncompress tierra.tar.Z

tar oxvf tierra.tar

The source code compiles and runs on either DOS or UNIX systems (and some others).
If you do not have ftp access, the complete UNIX/DOS system is also available on DOS
disks with an easy installation program. For the disk set, contact the author.

9 Appendix B: The Tierra CPU

Structure definition to implement the Tierra virtual CPU. The complete source code for the

Tierra Simulator can be obtained by contacting the author by email.

struct cpu { I* structure for registers of virtual cpu *I
int ax; I* address register *I
int bx; I* address register *I
int ex; /* numerical register *I
int dx; I* numerical register *I
char fl; I* flag *I
char sp; I* stack pointer *I
int st [10] ; / * stack *I
int ip; I* instruction pointer *I
} ;

52

10 Appendix C: The Tierra Central Loop

Abbreviated code for implementing the CPU cycle of the Tierra Simulator.

int main()

{ Get Soup() ;

life() ;

Wri teSoup () ;

｝

void

｛

life() / * doles

while(Generations

{ (*slicer)();

ReapCheck () ;

out time slices and death *I

< alive)

｝
 ｝

void TimeSlice(ce, size_slice)

Pcells ce;

I32s size_slice;

{ I16s di; I* decoded instruction *I

ce->c.ib += size_slice;

for(is.ts = ce->c.ib; is.ts> O;)

{ di= FetchDecode(ce);

(*id[di] .execute) (ce);

Incrementip(ce);

SystemWork(ce);

ce->c.ib -= is.dib; is.ts-= is.dib;

｝

｝

11 Appendix D: Ancestor Source Code

Assembler source code for the ancestral creature.

genotype: 80 aaa origin: 1-1-1990 00:00:00:00 ancestor

parent genotype: human

1st_daughter: flags: 0 inst: 839 mov_daught: 80

2nd_daughter: flags: 0 inst: 813 mov_daught: 80

nop1 ; 01 0 beginning template

53

nop1

nop1

nop1

zero

notO

shl

shl

01

01

01

04

02

03

03

1

2

3

4

5

6

7

beginning template

beginning template

beginning template

put zero in ex

put 1 in first bit of

shift left

shift left ex,

EX

EX

ax=

moved

adrb

nopO

nopO

nopO

nopO

sub_ac

movab

adrf

nopO

nopO

nopO

nop1

inc_a

sub_ab

18

1c

00

00

00

00

07

19

now ex= 4

bx=

ex= template size dx =

8 move template size to dx

bx=

ex= template size dx = template size

9 get (backward) address of beginning template

10 compliment to beginning template

11 compliment to beginning template

12 compliment to beginning template

13 compliment to beginning template

ax= start of mother+ 4 bx=

ex= template size dx = template

14 subtract ex from ax

ax= start of mother bx=

ex= template size dx = template size

15 move start address to bx

ax= start of mother bx= start of mother

ex= template size dx = template size

16 get (forward) address of end template

17 compliment to end template

18 compliment to end template

19 compliment to end template

20 compliment to end template

ax= end of mother bx= start of mother

ex= template size dx = template size

21 to include dummy statement to separate

22 subtract start address from end address to get

ax= end of mother bx= start of mother

ex= size of mother dx = template size

23 reproduction loop template

24 reproduction loop template

25 reproduction loop template

26 reproduction loop template

27 allocate memory for daughter cell, address to

ax= start of daughter bx= start of mother

cx = size of mother dx = template size

28 call template below (copy procedure)

29 copy procedure compliment

ax=

size

id

00

00

00

01

08

06

creatures
．
size

nop1

nop1

nopO

nop1

mal

01

01

00

01

1e ax

call

nopO

16

00

54

nopO

nop1

nop1

divide

jmp

nopO

nopO

nop1

nopO

ifz

nop1

nop1

nopO

nopO

pushax

pushbx

pushcx

nop1

nopO

nop1

nopO
．．

IDOVll

dec_c

ifz

jmp

nopO

nop1

nopO

nopO
．
inc_a

inc_b

jmp

nopO

nop1

nopO

nop1

ifz

nop1

nopO

nop1

nop1

popcx

popbx

popax

•9.

,.

,•9.,

.,.,.

,•9•9.

,
•9.,

.,.,.,.,.,.,.,.,.,.,.

,•9

00

01

01

if

14

00

00

01

00

05

01

01

00

00

Oc

Od

Oe

01

00

01

00

1a

Oa

05

14

00

01

00

00

08

09

14

00

01

00

01

05

01

00

01

01

12

11

10

30 copy procedure compliment

31 copy procedure compliment

32 copy procedure compliment

33 create independent daughter cell

34 jump to template below (reproduction loop,

35 reproduction loop compliment

36 reproduction loop compliment

37 reproduction loop compliment

38 reproduction loop compliment

39 this is a dummy instruction to separate templates

begin copy procedure

40 copy procedure template

41 copy procedure template

42 copy procedure template

43 copy procedure template

44 push ax onto stack

45 push bx onto stack

46 push cx onto stack

47 copy loop template

48 copy loop template

49 copy loop template

50 copy loop template

51 move contents of [bx]

52 decrement cx

53 if cx == 0 perform next instruction, otherwise

54 jump to template below (copy procedure exit)

55 copy procedure exit compliment

56 copy procedure exit compliment

57 copy procedure exit compliment

58 copy procedure exit compliment

59 increment ax

60 increment bx

61 jump to template below

62 copy loop compliment

63 copy loop compliment

64 copy loop compliment

65 copy loop compliment

66 this is a dummy instruction, to

67 copy procedure exit template

68 copy procedure exit template

69 copy procedure exit template

70 copy procedure exit template

71 pop cx off stack

72 pop bx off stack

73 pop ax off stack

to

above)

[ax]

(copy loop)

skip it

separate templates

55

ret

nop1

nop1

nop1

nopO

ifz

17

01

01

01

00

05

74 return from copy procedure

75 end template

76 end template

77 end template

78 end template

79 dummy statement to separate creatures

12 Appendix E: Smallest Replicator Source Code

Assembler source code for the smallest self-replicating creature.

genotype: 0022abn parent genotype: 0022aak

1st_daughter: flags: 1 inst: 146 mov_daught: 22 breed_true: 1

2nd_daughter: flags: 0 inst: 142 mov_daught: 22 breed_true: 1

InstExecC: 437 InstExec: 625954 origin: 662865379 Wed Jan 2 20:16:19 1991

MaxPropPop: 0.1231 MaxPropinst: 0.0568

nopO

adrb

nop1

divide

sub_ac

movab

adrf

nopO
．
1nc_a

sub_ab

mal

pushbx

nopO
．．
mov11

dec_c

ifz

ret
．
1nc_a

inc_b

jmpb

nop1
．．
mov11

•9.

,.,.

,•9.,

.,.,.,.,.,.,.,.,.,.,.,.,.,.,.,.,

00

1c

01

1f
07

19

id

00

08

06

1e

Od

00

1a

Oa

05

17

08

09

15

01

1a

゜1 find beginning
2

3 fails the first time

4

5

6 find end

7

8 to include final dummy statement

9 calculate size

10

11 save beginning address

12 top of copy loop

13

14

15

16 jump to beginning,

17

18

19 bottom of

20

21 dummy statement to terminate template

it is

on

address

executed

stack in order to

saved on

copy loop (6 instructions

'return' there

stack

executed per loop)

56

13 Appendix F: Source Code of Complex Loop

Assembler code for the central copy loop of the ancestor of instruction set one (80aaa) and
a descendant after fifteen billion instructions (72etq). Within the loop, the ancestor does

each of the following operations once: copy instruction (51), decrement CX (52), increment
AX (59) and increment BX (60). The descendant performs each of the following operations

three times within the loop: copy instruction (15, 22, 26), increment AX (20, 24, 31) and

increment BX (21, 25, 32). The decrement CX operation occurs five times within the loop

(16, 17, 19, 23, 27). Instruction 28 flips the low order bit of the CX register. Whenever this

latter instruction is reached, the value of the low order bit is one, so this amounts to a sixth

instance of decrement CX. This means that there are two decrements for every increment.
The reason for this is related to another adaptation of this creature. When it calculates
its size, it shifts left (12) before allocating space for the daughter (13). This has the effect
of allocating twice as much space as is actually needed to accommodate the genome. The

genome of the creature is 36 instructions long, but it allocates a space of 72 instructions.
This occurred in an environment where the CPU time slice size was set eq叫 tothe size of

the cell. In this way the creatures were able to garner twice as much energy. However, they
had to compliment this change by doubling the number of decrements in the loop.

nop1

nopO

nop1

nopO
..

ffiOVll

dec_c

ifz

jmp

nopO

nop1
nopO
nopO
inc_a

ュnc_b

jmp

nopO

nop1

nopO
nop1

shl

mal

nopO
..
moviユ
dec_c

, 01 47 copy loop template COPY LOOP OF 80AAA
, 00 48 copy loop template

, 01 49 copy loop template

, 00 50 copy loop template
, 1a 51 move contents of [BX] to [AX] (copy instruction)

, Oa 52 decrement CX

, 05 53 if CX = 0 perform next instruction, otherwise skip it
, 14 54 jump to template below (copy procedure exit)

, 00 55 copy procedure exit compliment
, 01 56 copy procedure exit compliment

, 00 57 copy procedure exit compliment
, 00 58 copy procedure exit compliment
, 08 59 increment AX (point to next instruction of daughter)

, 09 60 increment BX (point to next instruction of mother)

, 14 61 jump to template below (copy loop)
, 00 62 copy loop compliment

, 01 63 copy loop compliment

, 00 64 copy loop compliment

, 01 65 copy loop compliment (10 instructions executed per loop)

03 12 shift left CX

ie 13 allocate daughter cell

00 14 top of loop

ia 15 copy instruction
Oa 16 decrement CX

57

COPY LOOP OF 72ETQ

dec_c

jmpb
dec_c

1nc_a

inc_b
．．
mov1ユ
dec_c

1nc_a
1nc_b
..
mov11
dec_c

notO

ifz

ret
1nc_a

inc_b

jmpb

nop1

14

14.1

Oa 17 decrement CX

15 18 junk
Oa 19 decrement CX

08 20 increment AX

09 21 increment BX
1a 22 copy instruction
Oa 23 decrement CX

08 24 increment AX
09 25 increment BX
1a 26 copy instruction

Oa 27 decrement CX
02 28 flip low order bit of CX, equivalent to dec_c

05 29 if CX ==Odo next instruction

17 30 exit loop

08 31 increment AX

09 32 increment BX
15 33 go to top of loop (6 instructions per copy)

01 34 bottom of loop (18 instructions executed per loop)

Appendix G: Definition of Four Instruction Sets

Instruction Set #1

The original instruction set, designed and implemented by Tom Ray. This instruction set
was literally designed only to run a single program, the original 80 instruction "ancestor".

As a consequence of this narrow design criteria, this instruction set has several obvious
deficiencies: There is no method of moving information between the CPU registers and the
RAM memory (soup). There is no mechanism for input/output: Only two inter-register
moves・are available, although this limitation can be overcome by using the stack to move

data between registers (as is done in instruction set 4). There are no options for the control

of the positioning in memory of the daughter cells (only the "first fit" technique is used).

There are no facilities to support multi-cellularity. These deficiencies were addressed in the

creation of instruction sets two through four.

No Operations: 2

nopO

nop1

Memory Movement: 11

pushax (push AX onto stack)

pushbx (push BX onto stack)

58

pushcx (push CX onto stack)

pushdx (push DX onto stack)

popax (pop from stack into AX)

popbx (pop from stack into BX)

popcx (pop from stack into CX)

popdx (pop from stack into DX)

moved (DX= CX)

movab (BX = AX)
mov1．1 ． (move from ram [BX] to ram [AX])

Calculation: 9

sub_ab (CX = AX -BX)

sub_ac (AX= AX -CX)

inc_a (increment AX)

inc_b (increment BX)

inc_c (increment CX)

dec_c (decrement CX)

zero (zero CX)

notO (flip low order bit of CX)

shl (shift left all bi ts of CX)

Instruction Pointer Manipulation: 5

ifz (if CX == 0 execute next instruction, otherwise, skip it)

jmp (jump to template)

jmpb (jump backwards to template)

call (push IP onto the stack, jump to template)

ret (pop the stack into the IP)

Biological and Sensory: 5

adr (search outward for template, put address in AX, template size in CX)

adrb (search backward for template, put address in AX, template size in CX)

adrf (search forward for template, put address in AX, template size in CX)

mal (allocate amount of space specified in CX)

divide (cell division)

Total: 32

14.2 Instruction Set #2

Based on a design suggested by Kurt Thearling of Thinking Machines, and implemented

by Tom Ray. The novel feature of this instruction set is the ability to reorder the relative

59

positions of the registers, using the AX, BX, CX and DX instructions. There are in essence,
two sets of registers, the first set contains the values that the instruction set operates on, the

second set points to the first set, in order to determine which registers any operation will
act on.

Let the four registers containing values be called AX, BX, CX and DX. Let the four
registers pointing to these registers be called RO, Rl, R2 and R3. When a virtual cpu is
initialized, RO points to AX, Rl to BX, R2 to CX and R3 to DX. The instruction add does

the following: (R2 = Rl + RO). Therefore CX =BX+ AX. However, if we execute the DX
instruction, the RO points to DX, Rl to AX, R2 to BX and R3 to CX. Now if we execute the

add instruction, we will perform: BX = AX + DX. If we execute the DX instruction again,
RO points to DX, Rl to DX, R2 to AX, and R3 to BX. Now the add instruction would

perform: AX = DX + DX. Now the registers can be returned to their original configuration

by executing the following three instructions in order: CX, BX, AX.

No Operations: 2

nopO
nop1

Memory Movement: 12

AX

BX

ex
DX
movdd

movdi
movid
..

ffiOVll

push

pop
put

AX RO, R1 = RO, R2 = R1, R3 = R2, R3 is lost)
BX RO, R1 = RO, R2 = R1, R3 = R2, R3 is lost)
CX RO, R1 = RO, R2 = R1, R3 = R2, R3 is lost)
DX RO, R1 = RO, R2 = R1, R3 = R2, R3 is lost)
R1 to RO)

get

(make

(make

(make

(make
(move

(move from R1 to ram [RO])
(move from ram [R1] to RO)

(move from ram [R1] to ram [RO])

(push RO onto stack)
(pop from stack into RO)

(write RO to output buffer, three modes:

#ifndef ICC; write RO to own output buffer

#if def ICC: write RO to input buffer of cell at address R1,

or, if template, write RO to input buffers of all creatures within

PutLimit who have the complementary get template)
(read RO from input port)

Calculation: 8

の
の
の
の

R

R

R

R

t

t

+

-

n

n

e

e

1

1

m

m

R

R

e

e

r
r
=
＝
[

c

c

n

e

2

2

c
i
c
d
C
R
C
R

n
c
e
e
d
d
u
b

.
l
d
a
s

60

zero (zero RO)

notO (flip low order bit of RO)

shl (shift left all bi ts of RO)

not (flip all bi ts of RO)

Instruction Pointer Manipulation: 5

ifz (if R1 == 0 execute next instruction, otherwise, skip it)

iffl (if flag== 1 execute next instruction, otherwise, skip it)

jmp (jump to template, or if no template jump to address in RO)

jmpb (jump back to template, or if no template jump back to address in RO)

call (push IP+ 1 onto the stack; if template, jump to complementary templ)

Biological and Sensory: 5

adr (search outward for template, put address in RO, template size in Ri,

and offset in R2, start search at offset+-RO)

adrb (search backward for template, put address in RO, template size in Ri,

and offset in R2, start search at offset -RO)

adrf (search forward for template, put address in RO, template size in Ri,

and offset in R2, start search at offset+ RO)

rnal (allocate amount of space specified in RO, prefer address at Ri,

if Ri < 0 use best fit, place address of allocated block in RO)
divide (cell division, the IP is offset by RO into the daughter cell, the

values in the four CPU registers are transferred from mother to

daughter, but not the stack. If !Ri, eject genome from soup)

Total: 32

14.3 Instruction Set #3

Based on a design suggested and implemented by Tom Ray. This includes certain features

of the RPN Hewlett-Packard calculator.

No Operations: 2

nopO

nop1

Memory Movement: 11

rollu

rolld

enter

(roll registers up: AX= DX, BX= AX, CX = BX, DX= CX)

(roll registers down: AX= BX, BX= ex, ex= DX, DX= AX)

(AX= AX, BX= AX, ex= BX, DX= ex, DX is lost)

61

exch

movdi

movid

(AX= BX, BX= AX)

(move from BX to ram [AX])

(move from ram [BX] to AX)
．．

ffiOVll

push

pop

put

(move from ram [BX] to ram [AX])

(push AX onto stack)

(pop from stack into AX)

(write AX to output buffer, three modes:

#ifndef ICC: write AX to own output buffer

#ifdef ICC: write AX to input buffer of cell at address BX,

or, if template, write AX to input buffers of all creatures within

PutLimit who have the complementary get template)

get (read AX from input buffer)

Calculation: 9

inc (increment AX)

dec (decrement AX)・

add (AX= BX+ AX, BX= ex, ex= DX))

sub (AX= BX -AX, BX= ex, ex= DX))

zero (zero AX)

notO (flip low order bit of AX)

not (flip all bi ts of AX)

shl (shift left all bi ts of AX)

rand (place random number in AX)

Instruction Pointer Manipulation: 5

ifz (if AX== 0 execute next instruction, otherwise, skip it)

iffl (if flag== 1 execute next instruction, otherwise, skip it)

jmp (jump to template, or if no template jump to address in AX)

jmpb (jump back to template, or if no template jump back to address in AX)

call (push IP+ 1 onto the stack; if template, jump to complementary templ)

Biological and Sensory: 5

adr (search outward for template, put address in AX, template size in BX,

and offset in CX, start search at offset+-BX)

adrb (search backward for template, put address in AX, template size in BX,

and offset in CX, start search at offset -BX)

adrf (search forward for template, put address in AX, template size in BX,

and offset in CX, start search at offset+ BX)

mal (allocate amount of space specified in BX, prefer address at AX,

if AX< 0 use best fit, place address of allocated block in AX)

divide (cell division, the IP is offset by AX into the daughter cell, the

values in the four CPU registers are transferred from mother to

62

daughter, but not the stack. If !CX genome will be ejected from

the simulator)

Total: 32

14.4 Instruction Set #4

Based on a design suggested by Walter Tackett of Hughes Aircraft, and implemented by Tom

Ray. The special features of this instruction set are that all movement between registers of

the cpu takes place via push and pop through the stack. Also, all indirect addressing involves

an offset from the address in the ex register. Also, the ex register is where most calculations
take place.

No Operations: 2

nopO

nop1

Memory Movement: 13

movdi

movid
．．
mov11

pushax

pushbx

pushcx

pushdx

popax

popbx

popcx

popdx

put

get

(move from BX to ram [AX+ CX])

(move from ram [BX+ CX] to AX)

(move from ram [BX+ CX] to ram [AX+ CX])

(push AX onto stack)

(push BX onto stack)

(push CX onto stack)

(push DX onto stack)

(pop from stack into AX)

(pop from stack into BX)

(pop from stack into CX)

(pop from stack into DX)

(write DX to output buffer, three modes:

#ifndef ICC: write DX to own output buffer

#ifdef ICC: write DX to input buffer of cell at address CX,

or, if template, write DX to input buffers of all creatures within

PutLimit who have the complementary get template)

(read DX from input port)

Calculation: 7

幻

幻

幻

幻

C

C

D

D

t

t

+

-

n

n

e

e

x

x

m
m
c
c

e

e

r
r
=

＝-

c

c

n

e

x

x

.
l
d
C
C

(

（

（

（

n
c
e
e
d
d
u
b

.
l
d
a
s

63

zero (zero CX)

notO (flip low order bit of CX)

shl (shift left all bi ts of CX)

Instruction Pointer Manipulation: 5

ifz (if CX == 0 execute next instruction, otherwise, skip it)

iffl (if flag== 1 execute next instruction, otherwise, skip it)

jmp (jump to template, or if no template jump to address in AX)

jmpb (jump back to template, or if no template jump back to address in AX)

call (push IP+ 1 onto the stack; if template, jump to complementary templ)

Biological and Sensory: 5

adr (search outward for template, put address in AX, template size in DX,

and offset in CX, start search at offset+-CX)

adrb (search backward for template, put address in AX, template size in DX,

and offset in CX, start search at offset -CX)

adrf (search forward for template, put address in AX, template size in DX,

and offset in CX, start search at offset+ CX)

mal・(allocate amount of space specified in CX, prefer address at AX,

if AX< 0 use best fit, place address of allocated block in AX)

divide (cell division, the IP is offset by CX into the daughter cell, the

values in the four CPU registers are transferred from mother to

daughter, but not the stack. If !DX genome will be ejected from

the simulator)

Total: 32

15 Appendix H: Source Code for Unrolled Loops

This appendix contains the assembler source code for the 82 instruction ancestor written

for instruction set four, and three descendant organisms that evolved from the ancestor.

The three descendants are derived from different runs, and represent forms found after

optimization was apparently complete in each run. The three evolved forms illustrate three

levels of loop unrolling: 1) no unrolling, level 1, 2) unrolling to level 2, and 3) unrolling to

level 3.

GENOTYPE: 0082aaa comments: ancestor for instruction set 4

nop1 ; 01 0 beginning marker

nop1 ; 01 1 beginning marker

nop1 ; 01 2 beginning marker

nop1 ; 01 3 beginning marker

64

zero

adrb

nopO

nopO

nopO

nopO

pushax

popcx

sub

pushcx

zero

adrf

nopO

nopO

nopO

nopi

pushax

popcx

lilC

popdx

sub

nopi

nopi

nopO

nopi

mal

call

nopO

nopO

nopi

nopi

divide

jmpb

nopO

nopO

nopi

nopO

ifz

nopi

nopi

nopO

nopO

pushcx

pushdx

pushdx

13

1c

00

00

00

00

05

Ob

12

07

13

id

00

00

00

01

05

Ob

Of

Oc

12

01

01

00

01

1e

1a

00

00

01

01

1f

19

00

00

01

00

16

01

01

00

00

07

08

08

4 CX = 0, offset for search

5 find start, AX= start+ 4, DX= templ size

6 complement to beginning marker

7 complement to beginning marker

8 complement to beginning marker

9 complement to beginning marker

10 push start+ 4 on stack

11 pop start+ 4 into ex

12 ex= ex -DX, ex= start

13 push start on stack

14 ex= 0, offset for search

15 find end, AX= end, ex= offset,

16 complement to end marker

17 complement to end marker

18 complement to end marker

19 complement to end marker

20 push end on stack

21 pop end into ex

DX= templ size

22 increment to include dummy instruction at end

23 pop start into DX

24 ex= ex -DX, AX= end,

25 reproduction loop marker

ex= size,

26 reproduction loop marker

27 reproduction loop marker

28 reproduction loop marker

29 AX= daughter, ex= size,

30 call copy procedure

31 copy procedure complement

32 copy procedure complement

33 copy procedure complement

34 copy procedure complement

35 create daughter cell

DX= mom

DX= start

36 jump back to top of reproduction loop

37 reproduction loop complement

38 reproduction loop complement

39 reproduction loop complement

40 reproduction loop complement

41 dummy instruction to separate templates

42 copy procedure template

43 copy procedure template

44 copy procedure template

45 copy procedure template

46 push size on stack

47 push start on stack

48 push start on stack

65

popbx Oa 49 pop start into BX

nop1 01 50 copy loop template

nopO 00 51 copy loop template

nopi 01 52 copy loop template

nopO 00 53 copy loop template

dee 10 54 decrement size
ffiOVl．l ． 04 55 move from [BX+ CX] to [AX+ CX]

ifz 16 56 test when to exit loop

jmp 18 57 exit loop

nopO 00 58 copy procedure exit complement

nop1 01 59 copy procedure exit complement

nopO 00 60 copy procedure exit complement

nopO 00 61 copy procedure exit complement

jmpb 19 62 jump to top of copy loop

nopO 00 63 copy loop complement

nop1 01 64 copy loop complement

nopO 00 65 copy loop complement

nop1 01 66 copy loop complement

ifz 16 67 dummy instruction to separate jmp from template

nop1 01 68 copy procedure exit template

nopO 00 69 copy procedure exit template

nop1 01 70 copy procedure exit template

nop1 01 71 copy procedure exit template

popdx Oc 72 pop start into DX

popcx Ob 73 pop size into CX

popax 09 74 pop call IP into AX

jmp 18 75 jump to call (return)

ifz 16 76 dummy instruction to separate jmp from template

nop1 01 77 end marker

nop1 01 78 end marker

nop1 01 79 end marker

nopO 00 80 end marker

ifz 16 81 dummy instruction to separate creatures

GENOTYPE: 0023awn

call

popcx

dee

pushcx

zero

divide

1a O push ip + 1 on stack

Ob 1 pop ip + 1 into CX

10 2 ex = start
07 3 save start on stack

13 4 ex= o
if 5 cell division, will fail first time

66

adrf id 6 AX= end+ 1

nopO 00 7

pushax 05 8 push end address on stack

popcx Ob 9 CX = end address+ 1

popdx Oc 10 DX= start address

sub 12 11 (eX = ex -DX) ex= size

adr 1b 12 this instruction will fail

pushdx 08 13 put start address on stack

mal 1e 14 allocate daughter, AX= start of daughter

popbx Oa 15 BX= start address

nopO 00 16 top of copy loop

dee 10 17 decrement size
mov1．1 ． 04 18 copy byte to daughter

ifz 16 19 if CX == 0 jump to address in AX (start of daughter)

jmp 18 20

jmpb 19 21 jump back to line 17 (top of copy loop)

nop1 01 22

GENOTYPE: 0024aah

call

popcx

dee

pushcx

zero

adrf

nop1

pushax

divide

popcx

popdx

sub

pushdx

popbx

mal

nop1

dee
..
mov11

dee
..
mov11

ifz

jmp

1a O push ip + 1 on stack

Ob 1 pop ip + 1 into CX

10 2 ex = start

07 3 save start on stack

13 4 ex= o
1d 5 AX= end+ 1

01 6

05 7 push end address on stack

1f 8 cell division, will fail first time

Ob 9 CX = end address+ 1

Oc 10 DX= start address

12 11 (ex= ex -DX) ex= size

08 12 put start address on stack

Oa 13 BX= start address

1e 14 allocate daughter, AX= start of daughter

01 15 top of copy loop

10 16 d ecrement size

04 17 copy byte to daughter

10 18 d ecrement size

04 19 copy byte to daughter

16 20 if ex== 0 jump to address in AX (start of daughter)

18 21

67

jmpb

nopO

19

00

22 jump back to line

23

16 (top of copy loop)

GENOTYPE: 0035bfj

call

popcx

dee

pushcx

adrf

divide

movid

zero

adrf

nop1

pushax

popcx

adrf

popdx

pushdx

pushdx

sub

mal

pushdx

popbx

pushbx

mal

put

nop1

nop1

dee
..
mov11

dee
..
mov11

ifz

jmpb

dee
．．
mov11

jmpb

nopO

1a

Ob

10

07

id

1f

03

13

id

01

05

Ob
id

Oc

08

08

12

1e

08

Oa

06

1e

Od

01

01

10

04

10

04

16

19

10

04

19

00

0 push ip + 1 on stack

1 pop ip + 1 into ex
2 ex = start
3 save start on stack

4 dummy instruction

5 cell division, will fail first time

6 dummy instruction (AX= Ox1a, call instruction)

7 ex= o
8 AX= end+ ，
10 push end address on stack

11 CX = end address+ 1

12 dummy instruction

13 DX= start address

14 push start address on stack

15 push start address on stack

16 (ex= ex -DX) ex= size

17 allocate daughter, AX.= start

18 push start address on stack

19 BX= start address

20 push start address on stack

21 allocate daughter, AX= start of daughter

22 dummy instruction (write to get buffer of

23

24 top of copy loop

25 decrement size

26 copy byte to daughter

27 decrement size

28 copy byte to daughter

29 if ex== 0 jump to address

30

31 decrement size

32 copy byte to daughter

33 jump back to line 25 (top of

34

ー

of daughter

in AX (start

(fails)

other creature)

of daughter)

copy loop)

68

References

[1] Ackley, D. H. & Littman, M. S. "Learning from natural selection in an artificial envi-
ronment." In: Proceedings of the International Joint Conference on Neural Networks,

Volume I, Theory Track, Neural and Cognitive Sciences Track, IJCNN Winter 1990,

Washington, DC. Hillsdale, New Jersey: Lawrence Erlbaum Associates, 1990.

[2] Adami, Chris. Unpublished. Learning and complexity in genetic auto-adaptive systems.

Caltech preprint: MAP -164, One of the Marmal Aid Preprint Series In Theoretical

Nuclear Physics, October 1993. Adami has used the input-output facilities of the new

Tierra languages to feed data to creatures, and select for responses that result from sim-

ple computations, not contained in the seed genome. Contact: chris◎ almach.caltech.edu

[3] Aho, A. V., Hopcroft, J. E. & Ullman, J. D. The design and analysis of computer
algorithms. Reading, Mass.: Addison-Wesley Publ. Co, 1974.

[4] Anonymous. 1988. Worm invasion. Science 11-11-88: 885.

[5] Bagley, R. J., Farmer, J. D., Kauffman, S. A., Packard, N. H., Perelson, A. S. & Stadnyk,
I. M. "Modeling adaptive biological systems." Unpublished paper, 1989.

[6] Barbieri, M. The semantic theory of evolution. London: Harwood Academic Publishers,
1985.

[7] Barton-Davis, Paul. Unpublished. Independent implementation of the Tierra system,
contact: pauld@cs.washington.edu.

[8] Beaudry, Amber A., and Gerald F. Joyce. 1992. Directed evolution of an RNA enzyme.
Science 257: 635-641.

[9] Benner, Steven A., Andrew D. Ellington, and Andreas Tauer. 1989. Modern metabolism

as a palimpsest of the RNA world. Proc. Natl. Acad. Sci. U.S.A. 86: 7054-7058.

[10] Brooks, Rodney. Unpublished. Brooks has created his own Tierra-like system, which he

calls Sierra. In his implementation, each machine instruction consists of an opcode and

an operand. Successive instructions overlap, such that the operand of one instruction is

interpreted as the opcode of the next instruction. Contact: brooks◎ ai.mit.edu

[11] Burstyn, Harold L. 1990. RTM and the worm that ate internet. Harvard Magazine 92(5):
23-28.

[12] Cariani, P. "Emergence and artificial life." In: Artificial Life 11, edited by C. Langton,

D. Farmer and S. Rasmussen. Redwood City, CA: Addison-Wesley, 1991, 000-000.

[13] Cairn-Smith, A. G. 1985. Seven clues to the origin of life. Cambridge: Cambridge Uni-
versity Press.

[14] Cohen, F. Computer viruses: theory and experiments. Ph. D. dissertation, U. of South-

ern California, 1984.

69

[15] Darwin, Charles. 1859. On the origin of species by means of natural selection or the
preservation of favored races in the struggle for life. London: Murray.

[16] Davidge, Robert. 1992. Processors as organisms. CSRP 250. School of Cognitive and
Computing Sciences, University of Sussex. Presented at the ALife III conference. Con-

tact: robertd◎ cogs.susx.ac. uk

[17] Davidge, Robert. 1993. Looping as a means to survival: playing Russian roulette
in a harsh environment. In: Self organization and life: from simple rules to global
complexity, proceedings of the second European conference on artificial life. Contact:

robertd◎ cogs.susx.ac. uk

[18] Dawkins, R. The blind watchmaker. New York: W. W. Norton & Co., 1987.

[19] Dawkins, R. "The evolution of evolvability." In: A廿：ificial life: proceedings of an inter-
disciplinary workshop on the synthesis and simulation of living systems, edited by C.
Langton. Redwood City, CA: Addison-Wesley, 1989, 201-220.

[20] DeAngelis, D., and L. Gross [eds]. 1992. Individual based models and approaches in
ecology. New York: Chapman and Hill.

[21] de Groot, Marc. Unpublished. Primordial soup, a Tierra-like system that has the
additional ability to spawn self-reproducing organisms from a sterile soup. Contact:
marc@kg6kf.ampr.org, marc@toad.com, marc◎ remarque. berkeley.edu

[22] Denning, P. J. "Computer viruses." Amer. Sci. 76 (1988): 236-238.

[23] Dewdney, A. K. "Computer recreations: In the game called Core War hostile programs
engage in a battle of bits." Sci. Amer. 250 (1984): 14-22.

[24] Dewdney, A. K. "Computer recreations: A core war bestiary of viruses, worms and
other threats to computer memories." Sci. Amer. 252 (1985a): 14-23.

[25] Dewdney, A. K. "Computer recreations: Exploring the field of genetic algorithms in a
primordial computer sea full of flibs." Sci. Amer. 253 (1985b): 21-32.

[26] Dewdney, A. K. "Computer recreations: A program called MICE nibbles its way to

victory at the first core war tournament." Sci. Amer. 256 (1987): 14-20.

[27] Dewdney, A. K. "Of worms, viruses and core war." Sci. Amer. 260 (1989): 110-113.

[28] Eigen, Manfred. 1993. Viral quasispecies. Scientific American 269(1): 32-39. July 1993.

[29] Farmer, J. D. & Belin, A. Artificial life: the coming evolution. Proceedings in celebra-
tion of Murray Gell-Mann's 60th Birthday. Cambridge: University Press. (Reprinted in
Artificial Life II. Pp. 815-840.)

[30] Farmer, J. D., Kauffman, S. A., & Packard, N. H. "Autocatalytic replication of poly-
mers." Physica D 22 (1986): 50-67.

70

[31] Feferman, Linda. 1992. Simple rules…complex behavior [video]. Santa Fe, NM: Santa

Fe Institute. Contact: fef◎ santafe.edu, 0005851689@mcimail.com

[32] Feng, Q., Park, T. K. & Rebek, J. 1992. Science 254: 1179-1180.

[33] Goldberg, D. E. 1989. Genetic algorithms in search, optimization, and machine learning.

Reading, MA: Addison-Wesley.

[34] Gould, Steven J. 1989. Wonderful life. W. W. Norton & Company, Inc. Pp. 347.

[35] Gray, James. Unpublished. Natural selection of computer programs. This may have

been the first Tierra-like system, but evolving real programs on a real rather than a

virtual machine, and predating Tierra itself: "I have attempted to develop ways to get

computer programs to function like biological systems subject to natural selection…・
I don't think my systems are models in the usual sense. The programs have really

competed for resources, reproduced, run, and'died'. The resources consisted primarily

of access to the CPU and partition space…. On a PDPll I could have a population of
programs running simultaneously." Contact: Gray.James-1十◎northport.va.gov

[36] Hogeweg, P. 1989. Mirror beyond mirror: puddles of life. In: Langton, C. [ed], Artificial

Life, Santa Fe Institute Studies in the Sciences of Complexity, vol. VI, 297-316. Redwood
City, CA: Addison-Wesley.

[37] Holland, John Henry. 1975. Adaptation in natural and artificial systems: an introduc-

tory analysis with applications to biology, control, and artificial intelligence (Univ. of
Michigan Press, Ann Arbor).

[38] Holland, J. H. "Studies of the spontaneous emergence of self-replicating systems us-
ing cellular automata and formal grammars." In: Automata, Languages, Development,

edited by Lindenmayer, A., & Rozenberg, G. New York: North-Holland, 1976, 385-404.

[39] Hong, J. I., Feng, Q., Rotello, V. & Rebek, J. 1992. Competition, cooperation, and

mutation: improving a synthetic replicator by light irradiation. Science 255: 848-850.

[40] Huston, M., DeAngelis, D., and Post, W. 1988. New computer models unify ecological

theory. Bioscience 38(10): 682-691.

[41] Joyce, Gerald F. 1992. Directed molecular evolution. Scientific American, December
1992: 90-97.

[42] Kampis, George. 1993. Coevolution in the computer: the necessity and use of

distributed code systems. Printed in the ECAL93 proceedings, Brussels. Contact:
gk◎ cfnext. physchem.chemie. uni-tuebingen.de

[43] Kampis, George. 1993. Life-like computing beyond the machine metaphor. In: R. Paton
[ed]: Computing with biological metaphors, London: Chapman and Hall. Contact:
gk@cfnext.physchem.chemie.uni-tuebingen.de

[44] Kauffman, Stuart A. 1993. The origins of order, self-organization and selection in evo-
lution. Oxford University Press. Pp. 709.

71

[45] Koza, John R. 1992. Genetic programming, on the programming of computers by means
of natural selection. Cambridge, MA: MIT Press.

[46] Langton, C. G. 1986. Studying artificial life with cellular automata. Physica 22D: 120-
149.

[47] Langton, C. G. "Virtual state machines in cellular automata." Complex Systems 1
(1987): 257-271.

[48] Langton, C. G. "Artificial life." In: Artificial life: proceedings of an interdisciplinary
workshop on the synthesis and simulation of living systems, edited by Langton, C. Vol.
6 in the series: Santa Fe Institute studies in the sciences of complexity. Redwood City,
CA: Addison-Wesley, 1989, 1-47.

[49] Levy, Steven. 1992. Artificial Life, the quest for a new creation. Pantheon Books, New
York. Pp. 390.

[50] Levy, Steven. 1992. A-Life Nightmare. Whole Earth Review #76, Fall 1992, p. 22.

[51] Litherland, J. 1993. Open-ended evolution in a computerised ecosystem. A Masters of
Science dissertation in the Department of Computer Science, Brunel University. Con-
tact: david.martland◎ brunel.ac.uk

[52] Lotka, A. J. Elements of physical biology. Baltimore: Williams and Wilkins, 1925,
reprinted as Elements of mathematical biology, Dover Press, 1956.

[53] Maley, Carlo C. 1993. A model ofearly evolution in two dimensions. Masters of Science
thesis, Zoology, New College, Oxford University. Contact: cmaley@oxford.ac.uk

[54] Manousek, Wolfgang. 1992. Spontane Komplexitaetsentstehung - TIERRA, ein Sim-
ulator fuer biologische Evolotion. Diplomarbeit, Universitaet Bonn, Germany, Oktober
1992. Contact: Kurt Stueber, stueber◎ vax.mpiz-koeln.mpg.d400.de

[55] Maynard Smith, J. 1992. Byte-sized evolution. Nature 355: 772-773.

[56] Minsky, M. L. Computation: finite and infinite machines. Englewood Cliffs, N.J.:
Prentice-Hall, 1976.

[57] Moravec, Hans. 1988. Mind Children: the future of robot and human intelligence. Cam-
bridge, MA: Harvard University Press.

[58] Moravec, Hans. 1989. Human culture: a genetic takeover underway. In: Langton, C.
[ed], Artificial Life, Santa Fe Institute Studies in the Sciences of Complexity, vol. VI,
167-199. Redwood City, CA: Addison-Wesley.

[59] Moravec, Hans. 1993. Pigs in cyberspace. Extropy #10, Winter/Spring, 1993.

[60] Morris, S. Conway. 1989. Burgess shale faunas and the Cambrian explosion. Science
246: 339-346.

72

[61] Nowick, J., Feng, Q., Tijivikua, T., Ballester, P. & Rebek, J. 1991. Journal of the
American Chemical Society 113: 8831-8839.

[62] Packard, N. H. "Intrinsic adaptation in a simple model for evolution." In: Artificial life:

proceedings of an interdisciplinary workshop on the synthesis and simulation of living
systems, edited by C. Langton. Redwood City, CA: Addison-Wesley, 1989, 141-155.

[63] Paine, R. T. "Food web complexity and species diversity." Am. Nat. 100 (1966): 65-75.

[64] Pattee, H. H. "Simulations, realizations, and theories of life." In: Artificial life: proceed-

ings of an interdisciplinary workshop on the synthesis and simulation of living systems,

edited by C. Langton. Redwood City, CA: Addison-Wesley, 1989, 63-77.

[65] Rasmussen, S., Knudsen, C., Feldberg, R. & Hindsholm, M. "The coreworld: emergence
and evolution of cooperative structures in a computational chemistry" Physica D 42

(1990): 111-134.

[66] Rasmussen, S., C. Knudsen, and R. Feldberg. 1991. Dynamics of programmable matter.
In: Langton, C., C. Taylor, J. D. Farmer, & S. Rasmussen [eds], Artificial Life II, Santa
Fe Institute Studies in the Sciences of Complexity, vol. X, 211-254. Redwood City, CA:

Addison-Wesley.

[67] Ray, T. S. 1979. Slow-motion world of plant'behavior'visible in rainforest. Smithsonian

9(12): 121-30.

[68] . 1991. An approach to the synthesis of life. In: Langton, C., C. Taylor, J.

D. Farmer, & S. Rasmussen [eds], Artificial Life II, Santa Fe Institute Studies in the
Sciences of Complexity, vol. X, 371-408. Redwood City, CA: Addison-Wesley.

[69] . 1991. Population dynamics of digital organisms. In: Langton, C. G. [ed.], Ar-

tificial Life II Video Proceedings. Redwood City, CA: Addison Wesley.

[70] . 1991. Is it alive, or is it GA? In: Belew, R. K., and L. B. Booker [eds.],
Proceedings of the 1991 International Conference on Genetic Algorithms, 527-534. San
Mateo, CA: Morgan Kaufmann.

[71] . 1991. Evolution and optimization of digital organisms. In: Billingsley K. R.,
E. Derohanes, H. Brown, III [eds.], Scientific Excellence in Supercomputing: The IBM

1990 Contest Prize Papers, Athens, GA, 30602: The Baldwin Press, The University of
Georgia.

[72] . 1992. Foraging behaviour in tropical herbaceous climbers (Araceae). Journal of

Ecology. 80: 189-203.

[73] . 1994. Evolution and complexity. In: Cowan, George A., David Pines and David

Metzger [eds.], Complexity: Metaphors, Models, and Reality, Pp. 161-173. Addison-
Wesley Publishing Co.

[74] . 1994. Evolution, complexity, entropy, and artificial reality. Physica D 75: 239-
263.

73

[75] . 1994. An evolutionary approach to synthetic biology: Zen and the art of creating
life. Artificial Life 1(1/2): 195-226. Reprinted In: Langton, C. G. [ed.], Artificial Life,

an overview. The MIT Press, 1995.

[76] . Unpublished. A proposal to consolidate and stabilize the rain for-
est reserves of the Sarapiqui region of Costa Rica. Available by anony-
mous ftp: tierra.slhs.udel.edu [128.175.41.34] as tierra/doc/reserves.tex, or at
http://www.hip.atr.co.jpJ-ray /pubs/reserves/reserves.html.

[77] Rheingold, H. (1988). Computer viruses. Whole Earth Review Fall (1988): 106.

[78) Skipper, Jakob. 1992. The computer zoo -evolution in a box. In: Francisco J. Varela
and Paul Bourgine [eds.], Toward a practice of autonomous systems, proceedings of the
first European conference on Artificial Life. MIT Press, Cambridge, MA. Pp. 355-364.
Contact: Jakob.Skipper◎ copenhagen .ncr .com

[79] Sober, E. 1984. The nature of selection. MIT Press, Cambridge, MA.

[80] Spafford, Eugene H. 1989. The internet worm program: an analysis. Computer Commu-
nication Review 19(1): 17-57. Also issued as Purdue CS technical report TR-CSD-823.
Contact: spaf◎ purdue.edu

[81] Spafford, Eugene H. 1989. The internet worm: crisis and aftermath. CACM 32(6): 678-
687. Contact: spaf@purdue.edu

[82] Spafford, E. H., Heaphy, K. A. & Ferbrache, D. J. Computer viruses, dealing with
electronic vandalism and programmed threats. ADAPSO, 1300 N. 17th Street, Suite
300, Arlington, VA 22209, 1989.

[83] Strong, D. R. and T. S. Ray. 1975. Host tree location behavior of a tropical vine (Mon-
stera gigantea) by skototropism. Science, 190: 804-06.

[84] Surkan, Al. Unpublished. Self-balancing of dynamic population sectors that consume
energy. Department of computer science, UNL. "Tierra-like systems are being explored
for their potential applications in solving the problem of predicting the dynamics•Of
consumption of a single energy carrying natural resource". Contact: surkan@cse.unl.edu

[85] Tackett, Walter, and Jean-Luc Gaudiot. 1993. Adaptation of self-replicating dig-
ital organisms. Proceedings of the International Joint Conference on Neural Net-
works, Nov. 1993, Beijing, China. IEEE Press. Contact: tackett◎ ipldOl.hac.com, tack-
ett@priam.usc.edu

[86] Taylor, Charles E., David R. Jefferson, Scott R. Turner, and Seth R. Goldman. 1989.
RAM: artificial life for the exploration of complex biological systems. In: Langton, C.
[ed], Artificial Life, Santa Fe Institute Studies in the Sciences of Complexity, vol. VI,
275-295. Redwood City, CA: Addison-Wesley.

[87] Thearling, Kurt, and Ray, T .. S. 1994. Evolving multi-cellular artificial life. Brooks,
Rodney A., and Pattie Maes [eds.], Artificial Life IV conference proceedings, Pp. 283-
288. The MIT Press, Cambridge.

74

[88] Todd, Peter M. 1993. Artificial death. Proceedings of the Second European Conference
on Artificial Life (ECAL93), Vol. 2, Pp. 1048-1059. Brussels, Belgium: Universite Libre
de Bruxelles. Contact: ptodd◎ spo.rowland.org

[89] Volterra, V. "Variations and fluctuations of the number of individ叫 sin animal species
living together." In: Animal Ecology, edited by R. N. Chapman. New York: McGraw-
Hill, 1926, 409-448.

[90] Wilson, E. 0. & Bossert, W. H. A primer of population biology. Stamford, Conn: Sinauer
Associates, 1971.

75

ANCESTOR

1111

se Ir-exam

r 1nd 0000 I start l -〉 bx
• 「1n d 0001 (end l
calculate s1ze

PARASITE

1111

se If-exam

f 1nd 0000 I start) -〉 bx
find 0001 (end)

calculate size

←―、
HYPER-PARASITE

1111

self-exam

「1nd0000 I start)-) bx
f 1nd 0001 I end)
calculate s1ze

1101

reproduct1on]oop

a]]ocale daughter-) ax

丘1血 11OOcl;I i'•:;J1,1on

Jump 0010

）

．

．

．．．
．．
 ．．．．．

1101

reproducl1on loop

allocate daughter -〉 ax

(cop~
cel 1 d1v1s1on :

Jump 0010 , ・J_j !
,•一9ー・'"""''"""' ■9 ●●● ,,,_

1110

ri

reproduct1on loop

allocate daughter-) ax

cal 1 0011 I copy procedure)
eel 1 d1V151on

Jumpb 0000 一-」ノ

'---7 <-・・・・・・・・・-・-'! 入／

ヽ

1100

copy procedure

5ave reg15ler5 lo :Jlack

1010

move lbx) -〉 Iax I
decrement cx

If CX == 0 jump 0}00

Increment ax! bx

Jump 0101
1011

restore reg15ler5

return

J

\—

1100 ~
copy procedure

1010

move lbx I -〉 IfiX I
decrement ex

If ex== 0 Jumpb 1100

Increment ax ti bx

Jumpb 0101

1110

1110

F
i
5

t-"

J:-1~, 2._

SOCIAL HYPER-PARASITES

1f ex== 0 Jumpb 110
lncrement ax! bx

Jumpb 0101

I 11
：

．
、ゾ

110
self-exam

f 1nd 001 I start l -) bx
f1nd 000 lendl -〉 ax
calculate s1ze .:-) ex

a

'-

reproduct1on loop
allocate daughter -〉 ax

cal 1 001 I copy procedure l
cell d1v1:s1on

Jumpb 010

1100

copy procedure
1010

move I bx l -〉 Iax l
decrement ex

tr ex== 0 Jumpb 110
Increment ax Ii bx

Ju11pb 0101

•• ．．
 ぐ

(

i

↑

SOGIJ..L HYPER-PA臥SITES

AND CHEATER

1f ex = = 0 J ut1pb 11 0
tncret1ent ax l bx

Jumpb 0101

111
： ． ． ． ．
V

110

se l r-exllll
f 1nd 001 I :it art I -) bx
f1nd 000 lendl -) ax

ca I cu I at e :i 1 z e -) ex

x
x
x

b

a

c

‘,‘‘.‘‘,．

―

―

―

．

．

t

m
 r
d

e

a
 a
n

z

x
 t
e

1

e

ヽ

＇

ー・・

＇
．
 .
^
．

＾^
^^•
．
．

．

．

．

．．

111
Jcl1on loop

1 rlaugh l er -〉 ax

I COP'l procedure l
eel l rl1V1!!1on

JU口pb010

．．． •

↑

(

i

↑

'--

1100

copy procedure

1010

move I bx I -) I ax I
decrement cx

tf cx == 0 Jurapb 110
Increment ax l bx

Jurapb 0101

111

SYMBlONTS

1111 1111

self-exam 5elf-exam

f1nd 0000 (start) -〉 bx f1nd 0000 (start) -〉 bx

f1nd 0001 (end) -〉 ax f1nd 0001 (end) -〉 flX

calculate size -〉 ex calculate size -〉 ex

Jump 0010 Jump 0010

． I

1100 ＜・・・・・・・. •••••••• 〉 1101
I

copy procedure I al I reproduct Jon loop
save reg1sters~o stack

＇

ocate daughter -〉 ax

1010 ・・・・・・・・...

move lbx) -〉 Iax l (°-・・・・・・・: 〉lcell div1s1on
decrement ex Jurnpb 0010

tf ex== 0 jump 0100
＼． 1 1 1 0

increment ax&. bx

Jumpb 0101

1011

restore reg1sters
J ・' return 17

--
じ

1110
vJ

F内・什

80

70

50

]
Z
 ls

,.,.:¥-_)_

3or:・. : ・・・ ・．．
・:
.・ ． ... : ．

l 0

と

一

2
 ：

-~ ・:.:. ．．
.:::, .. . : ..
ヽ .. -.. -・-一・． . ・・. ．

...

..

:〗:-~,;,_>-/苓 ＂．．翌¥.:ー••ー・:.

4

：・・一髯；立s,._こ:~~
8

~-~~
30

M•• •

吾； ．．
.・ ・・：．：．

賢言・ー／ーロ
\~,, 50-l_・・.・.:_

・.--
:.・:¥・.] ..:. .・

80 I
●’ ..
幸苺
701 .. ~ 幸．

＼、

竿`. -:-:..;..:., . ..,..; 七:.•.
•ー・.: ,•

:_. . ・.

＇ 。。
.. ,'

2

3

. 4 5
 。

2

3

4

5

TIME

F-,~. 廿

80

70

50

30

]

Z

1,'" ""!

en

10

80

70

50

30

司,:-こ． ．ーニ吾戻疇；圭
16 3Z

玉';¥三・手．三・ロ：：．：

笙亙~;・; と三・翌'.;,.¥f-<,.=, 三．

. . •, ;', ~

>:·-
.. :.・・ ・

64 128

・"・-・-・'':;._,.,, ・. -•·--~ こ:..;; : 辛．：よ：・全ャ ．． ぎ:•~:-._五．号全．ヰ：・全．圭呈芦．

号？．翌_.,~ 合：~

＇ 。。
2

3

4

5
 。

2

3

4

5

TIME

下；5・ 5

...

80

70

]
Z

l "" f

r:_n_

10

80

70

50

30

¥:., ..
...

k

•
．．

＂

•
『"
・

．

．．
．
．

• .
4
 .-．
．一1 •

•

-
•1 •­

••

r.

I-'

.＂i-
．．． •一
•,
．

．．

,r-・・

.

.

-

『

．

＂

~_;<;\¼ 合

：`：． • : 疇： • ;,, ＼辛-~'"丘
50 I••
ー・毛；・・

3 O-{
•• -声．互
.... :: . . =.:
・..... ~. _.
. . . -:: . ・.・ ・. . ・. ・.. . . . -. . .

¥ . . . -. ・-
.・. .

:・.: :・

¥¥．̀¥_．．．―一―

芸::7i~\羞．会••三
気号~-・：：

芦・

。。
、
一

: : ;~-<ゃ-: .• : _._:::.

2

3

4

5
 。

2

3

4

5

TIME

F,·~· ~

^
-

80
IN>

60

＼叉＿全::..:.ご__ "-＿＿．、エ．

・・ミ/ .; ・・ a・; 全`
60

呈．・・ ..
==-
: ~-;-;.-: ・.-. ::
.・ 一=-:・:-::-.合：合宍:
. . 20

．
40-t羞； :.・
一圭:::・
．

40

20 ． ．・合喜
."

9
N

。。

8
 ．．

．

•.•• ••.•
一．．

•
一:'-. ―ir.

ーーu＿

写
．

.l-~5-·
l

・1'・
'F

"
J
i
-

．．

.i-・

•58

至-・

••

-．
．． 一
.-・
．．

苔

．．．
 1
-

.＂

.i..t-

.i
至．．
 "・
 ．
 。
B

is

200 400 600 û 。 200 400 600

60 ・60

80 I ．．

; 逗.~
. •:•.=. ...
・＝吉知．．.:::.~..

ーニ•一よ

-==
...:-:1.

40 40
，．

-;--=·---:-=-.•..:. .
20-1・. 20

．
：

·-=.-;~. ．．．
・→・.:・.
.. :.-・・．． ．
-::-. ．．
．

... 一-

。。
200 400 600

。
e

o
m
m

._—

T

200 400 fiOO

F ,5. b

INST CL

．

攀

80

60 ..;,: 61.J

~·. :.

>”―
 9.

i

.

.
j

．．．．．
•3.
．咤

•••
．

•.•••
．．
 Ioす．rf

.
3
 ．

・・r

士
・
・

•F

＇
>.• •s

．．

｀

．

t
し

．．
苫

・

・

.
1
ょ
ー
・
5

．

ら平

一

9
L
.
i
L
 ..
_

=
 =~
0

8

．

40

・・ ．
20-1'. -~--: _: ・......

g
z
i
s

。。
500 1000

. ~\.
ー I• •• ••• ~,.•.:.

20寸・・と 、：::: . ．， • t . ． ．．

500 1000 1500

I 00 1 t
』':',"

i;-
．

t-•:rふ,•
~ •:.-:l •.

-•.,; ...
":=. ニ：堂¥:.. ・-... ．．．．一・・
..-.:;_ •• tw.: '"'.::. • .,. • ...£ ・．

.....ぞ1tt:'I• • •
．．

ダ. '・-蕊:.,:fz. 平令き如虚：

100 置・
告：~- ¥
U¥
'.l:.-,.-. ¥

・モ森•
毛・;,•
"-"'.n>U ．．． ．ー・
・.:-途・心．．
-r-.:: ・・
'-'-:/迄—..¥ . . _,

'TTヤ T M! 立T』革．1エi60

80 80

60

I
iそ．..... ．．

．ヽヽ．．
-~\'·.•

40 40

． ．．
:.. .. -. : 204: •: .. , .

よ—. .
. . ,. . . ー・・・ ・；,. . "'-: —I· 一.._・・:.. .. ・-

訳:-.... "'
.... :

。。
．

500 1000 1500
。。

予゚ime
500 1000 1500

F沼・し

INST 6L

I 00-I :・, :
屯

~-
• l、•r.. マ・
..-_一,•• ... ·••.;,

唸i. _,_.、
一f虻．＼
,".¥,'-,_ . _. -...

こヽ・ I:,• •" • •
ー四・ら在ヰ．ー!-b..=l:60

80

60

,

•
•••

I

100丸．... ..
:...,,; ・.....
...u.'
．．

一示,.i:t-• •
80~ ~. 抒·5含~1:•- ―・・. ＇

·•-,r.1ミ：．．．．．.-:_. •,•
ー・・・・•••, ..,. t I 千,.+・.•. ・.:..!-...:t:.: •
．．．．ー~u:-・, "-" ... :.r吐止．．

.~rn幸

...

40 40 .. ~ そ・・・:.-

．．
・.
20--l;・ だ.:,._: -..

．・・→ ・:; 戸•天."~:西生 20fn.r応:/. ...
8
Z
t
S

。。
500 1000 1500

。。
500 1000

80

60 ..

100 包•
~•'r"
．．七w:~． ..

—::,
・:: や・：..
・病出,'t

ー·•.~・・
士土;t-• .
. .1:: 忠配．・:.. .n.-'.. . .

＇
． ．

土キヰ—,_•• 一l.

80

• .:・.::. .i

40 40

．．

｀

-.. ．
¥ ..

:. "•'• .
20-r・.. .. • 20-t"···~

,. ... ．、
． ． .

。。
500 1000

。
e

o
r
n

。
C
>

.,........

5

ー
中
l

500 1000 1500

応3.(,

INST 3

•

I 00 1
,• .・. r•
... ・

BO~. 生：
こ五r.• ·.~
・デ・
• 町．．-~,=,..-:
て毎-::.i:'.・"
・.-:=,..!

,-~·.,., ..
・デ ． ．．．：丑.' . 60
.-.,:-r-,-r'r;・, ・..,-;. -,--.• ,-::~-; ↑ T 1T

100

｀

60

A

r

 .
.
.
.

・ヰ党

f
-
芍

•..•

;i-~.....
•
一t

"g.
"•K.

_
1
 。
8

．

•.•

．

• ．．．r.....

．
 •

•••
.•

_. •

．

g

.
.

.

.

 ―

.

.

.

.

．．
 ．．．
．．

．．．

4

4

0

0

4

?

』

40 I
.. 囀．．

．
I .•.. ． .. ・:. ...

.. ・.-. -_., .; .. :., :-:.::...,.-,.-:.~. ニ.i....:.;..1.．．．

... 一20i:~--.::

9

N

 is

。。
500 1000 1500

。
nu 1000 2000

100

•• ．

.＂
s.r _

••.

:．＂・・ニ

•••

_．t"
.-•.
．．．．．．
4
 。
8

80

60 60

.~
~·:
¥

401•:•.~ ・
． ．

~

そ．． ．．．． ．． .・.. •, :u. • l•

20-l" .-..... :~ を•

●一
1-0

＂

．．
． .-
．
4
.

ー一・・＿
・
．．
 ＇

9
-]

l
-.i-

•
一

••

h
 ．

.•
-

••

Eii

•.
．

．

・三
-' ．．
 4.

．．
 .••
．．
． •

｀
 一

•
一

•••

．

．

．

．．
． ．
．
．
．
．
．
と
..

I

••••..•

I
4

.•
-'
.
9

•••

．

ー

・

•••

-

．．
••.•

•[5 •••

.•

:
i
t
.
.
.
.

＿•
9
・.
-•.
•1

..

．．．
r
 ...

-
.
f
 .
.

•

f"
••••

t...
.••

8
.
-

t

・

全

：

．
．
．
．
．

ー「
'

l

.•••
す0

0

0

0

4

2

．

。。
會

1000 2000

。
e

o
r
n

、

1T

1000 2.000

F; 5・(,

INST 3
 100'-．． ,., .. '•'-.
; • .,_.,, ..

•一..,._

苓こ・
··•: キぶ..

":.:.f--•"
ふ7.1.
ー・ ・・マ:1.•• -.:. 一．．
.'I'. :--:-r, ・・・-•
・ニ—~:..,._--● ＿● ・・.

••

一
．．

．

．

．

．

．

．
．
．
．
．

ー・マ
•••

•••

．＇
．． ...＿.-
••••

．

．
．
．

.

.

.

3
-

．．．

.

.

.
-

一
．．

=

=
.

6

2

I:>:;:¼l紀•三— 80

60

,. ..
40-l・=・.・
・: . ,• . :. •,• .:.

丘:.
20-{ -

40

. " ... ---. -・・・. 一""--

g
z
i
s

。。
500 1000 1500

。。
500 1000 1500

100-ji.,.

BO-I . ●●吝．
.:
-r・ ... ． -:.·r.•
芦
-::: ―:-. ~--:. --・・. . •~:-,,. ・
ー・モ→ ・ニ-.:. II ょ..,_

..:::.:.::-::-, ¥ -. --・ 60
- ．． ...

1
.
-
・
・

.

.

.
-••
•

．．．．，

．．

＂：

|

．

l

i

c::>

c::>

c::>

6

4

?

』

I 00 L
~
;:.
, •
, ~'

801 茎；：—・:-i •• ~::.
.:..: =・ ・:u・-=-・・ •. 1-:::., -.··~~
・ヤ品告
. ・:--:,-:: をー・ー・-~-·- . . ．

,.:..:. :... . ，.. -'..... ・
-.・.・.;., 迅丑・・．．．．．．

・:-;:.,,;,_,_.40
． ．
; . -.
20-1.:: :--. ・¥ . ··~:.• :" -

。。
500 1000 1500

。
e
o

m

.
―
―

E
ー

1000 2000

F,、j・6

INST 4

疇

80・-・・
・ r--=-

''■ "' -.:.
-:::-_

60

40士・・::. ー：• ・．．

•
g

I

．

一一
~

"＂ I"

I

...
•
;．

・
I
I

..,．
i

――.

．．

．．

号
．．

＿
・
~
：
一
ー

0

0

8

4

60

20,:・ '.. _;_.: ．．．

--
二玉こ

20+.•

•一
---= .. -. ------.. .

•一•- I -••

8
z
i
s

。。
. 500 1000 1500

。。
1000 2000

80 -.. 一,..... BO与..:

60 60

●● ●'" ・-. 一40-1--:-. -
ーニ -=-::..,=-三~

40-l芍了

20•· 20む 亀

珊

。。
1000 2000

。
e

o
r
n

、
―
-T

1000 2000

r: ,'3. ら

INS『4

80戸-...:.._
. -

~

60 --

：．
.疇.. • 一一

40{'•-
一

..

叶
ー・

②

N 0

―’’

゜
500 1000

r..n

80毛ミ．

60

.-..
40

20-t,:._..

。。
500 1000

80呈．．
~

so-"

60 601姿

40~ さ=:--:- 40我―室

心え． 201.=:-

。。
1000

。
e

o
r
n

、
一
[T

。。。
2

1000 2000

r-,~. 7

801・.... 叶.• • • . -
・・・ふ： :,. :.・ ~-:~ :-/: 迄.・... ・・・ .

-:. :...: 全デ・ え．竺:~'.年字：迄~.:.:••. 翌・.-. ・ ：．
• • ;.,.:;.;. 王至：・.,エ．

. -.・.:.. ⇔:.;.芦：：．．
・・: ・.:: : =--:. ・. ぶ．

•• -=-:-・.:...・ 一
60

8
z
i
s

．
 40J -: ・: 浮．•

ぎ：：：：：:t ; ・・・戸；苓:,L心?• :_ ~~-.'. ・・芸．．全

2.0

5゚

A
1
i
s
J
8
A
i
O

o
二
9
=
9
9

4

3

2

。。
200 400

Time i n

600

Millions

800 1000

	01
	02
	MX-4111FN_20201021_141545

