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Abstract 

In this paper, first, we show some of the bifurcation properties of Potts mean field 
theory annealing applied to traveling salesman problems. Due to these bifurcation 
properties, this approach, in general, produces non-optimal and non-unique solutions. 
As an alternative approach, we propose a nonequilibrium version of the Potts spin 

neural network, called Chaotic Potts Spin (CPS). CPS has several parameters, and 

bifurcation over each parameter is investigated. Next, experimental results are shown 
comparing CPS with several related approaches. CPS is good at obtaining the optimal 
solutions for small-scale problems and semi-optimal solutions for relatively large-scale 
problems. We also describe a modified algorithm in which a heuristic method is em-
ployed. This modified algorithm can produce even better CPS solutions. 

ー
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1 Introduction 

There have been many studies on artificial neural network models applied to combinatorial 
optimization problems. Most famous is the an.alog Hopfield network (Hopfield & Tank, 
1985), which is equivalent to the mean field theory (Peterson & Anderson, 1988) of the 
Boltzmann machine (Ackley et al., 1985). In the mean field theory (MFT), when the system's 
temperature is low, the free energy function is nearly equal to the energy function to be 
minimized. The MFT can be combined with a gradual lowering of the temperature, and 
the combined algorithm is the MFT annealing algorithm (Bilbro et al., 1989). In all of 
these approaches, state variables are primarily defined to be unconstrained and independent 
of each other. Therefore, the constraints of a problem are implemented as soft constraints, 
namely, the energy function includes the corresponding penalty terms. The above-mentioned 
approaches are called Ising spin approaches, since each state variable represents binary states. 

In TSPs, graph bisection problems, N-Queen problems and so on, neural network rep-
resentations have a common structure, i.e., for some state variables, their summation must 
be a constant. Focusing on this property, a Potts spin system (Wu, 1982) was employed 
in the MFT annealing approach; this is the Potts MFT annealing approach (Peterson & 
Soderberg, 1989; Van den Bout & Miller, 1989). A Potts spin is a generalization of an Ising 
spin so as to take more-than-two states. By employing a Potts spin system, some of the soft 
constraints are treated as hard constraints, namely, they hold automatically. This makes the 
domain space, where solutions are searched for, smaller than in the Ising spin approaches. 
As a result, the obtained solutions are much improved. Peterson (1990) showed that the 
performance of Potts MFT annealing is comparable to simulated annealing (Kirkpatrick et 
al., 1983) and to some other conventional algorithms even for large-scale problems. 

In both Ising spin and Potts spin MFT annealing, during the course of the annealing 
process, a sequence of bifurcations for minimum solutions occurs. The structure of the bi-
furcations, which affects the quality of the annealing solution, is dependent on the problem's 
symmetries (Golubitsky et al., 1988). We (Sato & Ishii, 1995) have investigated MFT bifur-
cation processes when MFT annealing was applied to traveling salesman problems (TSPs). 
Without structurally stable symmetries in the problem, one can generically expect only 
saddle-node bifurcations to occur. However, the free energy function for a TSP has two 
types of symmetries, i.e., cyclic and reverse symmetries. Due to these symmetries, special 
types of bifurcations also occur. They are called cyclic symmetry breaking bifurcations and 
reverse symmetry breaking bifurcations. In TSPs, the unique minimum at high temperature 
has cyclic and reverse symmetries. In contrast, feasible minima at low temperature, which 
correspond to Hamilton: paths, have no symmetry. Therefore, the symmetric minimum at 
high temperature bifurcates into equivalent minima with no symmetry or is annihilated at 
some temperature through bifurcations. It should be noted that new minima are mostly 
generated by saddle-node bifurcations. . 

If an annealing solution is annihilated at some temperature and there are more than two 
distinctive minima at this temperature, whatever minimum is obtained by the MFT anneal-
ing is not unique due to the instability at the annihilation point. In fact, the annihilation 
is quite a typical phenomenon. This implies that the solution of the MFT annealing is not 
unique in general, even though the procedure is deterministic. 

When new minima are generated, their free energy levels are higher than that of the 
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global minimum at that temperature. However, the free energy levels of some minimum 
solutions may cross one another as the temperature is lowered. Therefore, the MFT annealing 
procedure does not always give the optimal solution. As a consequence, the annealing 
solution in the MFT annealing is, in general, a not-so-bad solution and is not unique. 

On the other hand, Nozawa (1992) showed that a chaotic version of the analog Hopfield 
network can find the optimal solutions of small-scale TSPs nearly 100% of the time. His 
model is based on a Euler difference equation of the Hopfield network with inhibitory self-
loops; this model is equivalent to the Chaotic Neural Network model proposed by Aihara et 
al. (1990). Euler difference equation systems with self-loops have been known to give chaotic 
solutions even when their original differential equation systems were giving stable solutions 
(Yamaguti & Matano, 1979). Although Nozawa's model is good at obtaining the optimal so-
lutions for small-scale problems, it does not give very good solutions for large-scale problems. 
We guess there are two reasons. One is due to its strong nonequilibrium dynamics. Nozawa 
employs heuristic methods to suppress some of the nonequilibrium dynamics. However, they 
are not sufficient to get the optimal solutions for large-scale problems. The other is due to 
the Ising spins it employs. Since the domain space becomes too large with unconstrained 
state variables when the problem scale is large, even the chaotic dynamics can not retrieve 
good solutions. 

In this paper, we propose an alternative approach, that is, a nonequilibrium version of the 
Potts spin neural network, which is called Chaotic Potts Spin (CPS). CPS is based on a Euler 
difference equation of the continuous-time Potts spin neural network model with inhibitory 
self-loops. This modification makes the Potts spin neural network into a nonequilibrium 
dynamical system. Since our CPS employs a Potts spin system, its domain space is smaller 
than in the Ising spin approaches. Moreover, since it is a nonequilibrium dynamical system, 
the above-mentioned adverse properties in the annealing algorithms can be overcome. 

This paper is organized as follows. In Section 2, we show the bifurcation structures of the 
Potts MFT annealing. In the Potts MFT annealing, although the above-mentioned adverse 
properties are much improved in comparison with Ising spin MFT annealing, they are not 
entirely overcome. In Section 3, we propose our alternative approach, namely, CPS. CPS has 
several parameters. In Section 4, we investigate bifurcation over each of those parameters. 
In Section 5, experimental results are shown comparing CPS with several related approaches. 
CPS is good at obtaining the optimal solutions for small-scale problems and semi-optimal 
solutions for relatively large-scale problems. In Section 6, we describe a modified algorithm 
in which a heuristic method is employed. This modified algorithm can produce even better 
solutions. 

2 Potts mean field theory annealing and TSP 

2.1 Potts mean field theory 

Some of the NP-complete optimization problems can be described as a quadratic energy 
minimization problem for (M x N)-dimensional Potts spin variables Sa,n(= 0 or 1): 

M N M N 1 
E(S) = 2 L L Wa,n;b,m幻 sb,m+ L L Ia,nSa,n, 

a,b=l n,m=l a=l n=l 
(2.1) 
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where Wa,n;b,m = wb,m;a,n and四:=1Sa,n= 1 (a= 1, …, NI) are assumed. Sa,n denotes the 
n-th component of the a-th Potts spin (Wu, 1982). The network consists of M N-state 
Potts spins. The values of the parameters W and I are determined for each problem. By 
introducing analog variable Va,n E [O, 1], which represents the probability that the binary 
variable Sa,n takes the value 1, the mean field theory (MFT) free energy function is given 

by: 

F(V) = E(V) -T・H(V) 

H(V) =一LVa,n log Va,n . 
a,n 

(2.2a) 

(2.2b) 

where H(V) is the entropy function, and Tis the temperature. The MFT solution of (2.2) 

is a minimum of the MFT free energy function, where the following stationary condition is 
satisfied: 

Ua,n =区 Wa,n;b,m½,m + Ia,n 
b,m 

Va,n =ら(Ua)= 
exp(-Ua,n/T) 

、、

Because of (2.3b), the constraints: 

tva,n = l 
n=l 

(2.3a) 

(2.3b) 

(a= 1, …, M) (2.4) 

are automatically satisfied. This equation is called Potts MFT equation (Peterson & Soderberg, 
1989). The solution of (2.3) can be obtained by using the continuous-time Potts spin model: 

dUa,n 

dt 
T―=  -Ua,n + I: Wa,n;b,m½,m + fa,n 

b,m 

exp(-Ua,n/T) 
Va,n =ら(Ua)='"'_____ r rr Jrnヽ’

(2.5a) 

(2.5b) 

where t denotes continuous-time. This differential equation system globally converges, and 
the MFT free energy function (2.2) becomes its Lyapunov function that always decreases 
over time. This proof is briefly described in Appendix A. 

The solution of the Potts MFT equation (2.3) can also be obtained by using the asyn-
chronous Potts MFT equation (Peterson & Soderberg, 1989): 

Ua,n(t) = L Wa,n;b,m½,m(t -1) + fa,n 
b,m 

Va,n(t) = Gn(Va(t)) 

½,m(t) =½,m(t -1) for b-/= a, 

where t denotes discrete-time. If we assume 

(2.6a) 

(2.6b) 

(2.6c) 

w a,n;a,m =0 for any a, n, m, (2.7) 



Chaotic Potts Spin 5
 

(2.6) converges to a local minimum of the free energy function (2.2) (Sato, 1994). Since the 
system implemented by Peterson and Soderberg (1989) does not satisfy the condition (2.7), 
their system does not always converge. 

At high temperature, the free energy (2.2) is dominated by the entropy term, and there 
is a unique minimum. At low temperature, the free energy function is nearly eq叫 tothe 
energy function E(V). Therefore, at low temperature, there are local minima of the free 
energy function (2.2) that correspond to those of the energy function (2.1). 

In order to get a good local minimum of the energy function (2.1), an annealing procedure 
can be used. First, the MFT equation (2.3) is solved for a high temperature value. Then, 
after a slight lowering of the temperature, the MFT equation is solved again starting from 
the higher temperature solution. By continuing this process, one can get a low temperature 
solution. This algorithm is called Potts MFT annealing (Peterson & Soderberg, 1989; Van 
den Bout & Miller III, 1989). During the course of the temperature lowering, bifurcations 
occur and new minima are generated. These bifurcations are dependent on the structural 
stable symmetries in the problem (Golubitsky et al., 1988). 

2.2 TSP and symmetries 

A Potts spin energy function for an N-city TSP is given as: 

l N N N N N 

E(V) =—こ加Va,n(Vb,n+l + V/i,n-1 
0: (3 

2 
） + L(LVa,n 1)2 + LL  Va,nVa,m, (2.8) 

a,b,n=l 2 n=l a=l 2 a=l n::pm 

where Va,n(a, n = l, …, N) represents the probability that the salesman visits city a at the 
n-th visit, and Da,b denotes the distance between city a and city b. The first and second 
r.h.s. terms in (2.8) denote the total tour length and the soft constraint that must hold for 
representing a Hamilton path, respectively. The third term becomes zero and does not affect 
the free energy when the temperature is low. However, it actually contributes to stabilizing 
the MFT solutions, because this term partly cancels the inhibitory self-loops. 

The energy function (2.8) and the corresponding free energy function are invariant under 
the N-th order cyclic transformation: V--+~ ょ~ly (m= 1, …, N -1), where (~ 四V)a,n= 
Va,n+m, and the N-th order reverse transformation: V 一冗炉V (m = 0, 1, …N -l) 
where ('R印V)a,n= Va,m-n• Due to these symmetries, a solution of an N-city TSP has 2N 
equivalent representations. 

There is a symmetric stationary solution Vs of the free energy function for any T: 
Vふ=l/N. Since TJ;'lvs and冗炉vscoincide with VS, vs is said to have the N-th 
order cyclic and reverse symmetries. Since the free energy function (2.2) has a unique min-
imum at high temperature, the unique minimum must be Vs. In contrast, feasible minima 
at low temperature, which correspond to Hamilton paths, have no symmetry. Therefore, 
the symmetric minimum Vs at high temperature bifurcates into equivalent minima with no 
symmetry or is annihilated at some temperature through bifurcations. 

2.3 Bifurcations of Potts MFT annealing 

If there is no structurally stable symmetry in the problem, one can generically expect that 
only saddle-node bifurcations will occur. However, a TSP has the above-mentioned cyclic 
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and reverse symmetries. Due to them, special types of bifurcations also occur. They are 
called cyclic symmetry breaking bifurcations and reverse symmetry breaking bifurcations. 
Which bifurcation type occurs depends on the symmetry of the eigenvector that corresponds 
to the zero eigenvalue mode of the free energy curvature matrix at the bifurcation point 
(Sato & Ishii, 1995). For example, when the bifurcation point has the N-th order cyclic 
symmetry and the eigenvector has no symmetry, a cyclic symmetry breaking bifurcation will 
occur. Figure 1 shows schematic figures of cyclic symmetry breaking bifurcations, where 
N = 5. Note that in Figure l(d), the high temperature minimum turns into a saddle-point 
and disappears (annihilation) at the critical temperature; this is a common observation in 
Ising spin MFT annealing. 

Let us show an example. Figure 2(c) shows a typical bifurcation diagram of a 5-city 
TSP whose optimal tour is shown in Figure 2(a). The values of Vぃ(i= 1, …, 5) for each 
minimum are plotted for each temperature. Figure 2(d) shows the corresponding free energy 
diagram. In Figure 2(c), we can observe a cyclic symmetry breaking bifurcation at T~0.32, 
and a reverse symmetry breaking bifurcation at T~0.29. At T~0.27, 0.21, and 0.19, we 
can also observe saddle-node bifurcations, where new minima are generated. 

The Potts MFT annealing procedure is a series of the local bifurcations and has the 
following properties. 

• non-optimality 
In Figure 2(d), the free energy level of the annealing solution and the newly generated 
minima that appear at T~0.27 cross each other. After the free energy crossing, the 
annealing solution level becomes higher than the new minima level, and turns into a 
local minimum. In this case, the Potts MFT annealing fails to obtain the optimal 
solution, instead producing a semi-optimal solution as shown in Figure 2(b). 

• non-uniqueness 
When the annealing solution disappears at some temperature, e.g., through a cyclic 
symmetry breaking bifurcation as shown in Figure 1 (d), and there are two or more dis-
tinctive minima at this temperature, the annealing may produce non-unique solutions. 

The above-mentioned properties are almost the same as in the Ising spin MFT annealing 
case. However, there are some differences. For instance, in Ising spin MFT annealing, since 
the disappearance of the annealing solution is quite a typical phenomenon, the annealing 
procedure results in non-unique solutions in general. Figure 2(e) shows the bifurcation 
diagram of the Ising spin MFT annealing for the same problem, where the annealing solution 
disappears at T~0.475. On the other hand, in Potts spin MFT annealing, the disappearance 
is less typical. 

In a relatively small-scale problem, in particular, the unique minimum at high tempera-
ture tends to bifurcate into 2N equivalent minima with no symmetry through one or more 
cyclic symmetry breaking bifurcations and a reverse symmetry breaking bifurcation. These 
minima represent a valid Hamilton path, although this may not signify the optimal tour. 
In such a case, the annealing procedure results in a unique solution. We guess that this 
quantitative difference is due to the soft constraint terms in the energy function. Actually, 
if we remove soft constraint terms from the Ising spin MFT energy function, the disappear-
ance seldom occurs, while most of the obtained solutions fail to be valid Hamilton paths. 



Chaotic Potts Spin 7
 

In the Potts MFT annealing, we can reduce the soft constraint terms; this prevents the 
annealing solution from being annihilated and hence reduces the non-uniqueness. This is 
regarded as one reason why Potts MFT annealing can obtain much better solutions than 
Ising spin MFT annealing. This improvement becomes more prominent, if we design an 
energy function without soft constraint terms (Ishii & Sato, 1995). 

Accordingly, it can be said that the Potts MFT annealing results are, in general, non-
optimal and non-unique, although the non-uniqueness is much improved in comparison with 
Ising spin MFT annealing. To overcome these adverse properties, we propose an alternative 
approach. 

3 Chaotic Potts Spin 

3.1 Model description 

If we apply a Euler method to the continuous-time Potts spin model (2.5), a difference 
equation is obtained: 

叫 (t)= kU0,n(t -1) + (1 -k) (と爪，n;b,mv,,m(t -1) + lo,n) 

Va,n(i) =ら(Va(t)),

(3.la) 

(3.lb) 

where k = l -8t/r, and 6t denotes the time interval. As shown in Section 2.1, the original 
differential equation system (2.5) always converges to a local minimum of the free energy 
function (2.2). However, if we choose W to be Wa,n;a,n > 0, (3.1) often exhibits chaotic 
solutions. We thus call the difference equation system (3.1) Chaotic Potts Spin (CPS). 

Let us apply CPS to the TSP energy function (2.8). CPS for a TSP is defined as: 

Ua,n(t) = kUa,n(t -1) + I: Dい(¼,(n+1)(← 1) +¼,(n-l)(t -1)) 
b 

+a'I: 応 (t-1) -(3'Va,n(t -1) 
b 

Va,n(t) = Gn(Ua(t)), 

(3.2a) 

(3.2b) 

where D贔=(1 -k)Da,b, a'= (1 -k)a, andげ=(1 -k)/3. Network parameters, Wand I, 
are determined as: 

Wa,n;b,m = D叫ふ，(m-1)+ 6n,(m+1)) +砧，m — /3ぬ，bふ，m
la,n = 0, 

where b is Kronecker's delta. To make the self-loops positive, a > /3. 

(3.3a) 

(3.3b) 

3.2 Algorithm 

There are several algorithms to implement the CPS equation (3.1). The following is a basic 
asynchronous algorithm, where state variables are updated in a fixed order. 

[ Basic algorithm] 
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1. Set U at a random initial state. 

2. For sweep= l, …, #sweep, do as follows: 

(a) For a= l, …N, do as follows: 

i. Update the internal states Ua,n (n = 1, ... N) corresponding to the a-th spin 
by (3.la). 

ii. Update the a-th spin variables Va,n (n = 1, …N) by (3.lb). 

(b) Binarize the state variables V and get S. If S corresponds to a valid Hamilton 
path, memorize it. 

3. Select the best tour among the memorized tours. 

During a single "sweep", all of the variables are updated once and only once. In Step 2(a), we 
choose to update spins in a fixed order, although the order itself is not very important. In the 
asynchronous Potts MFT equation (2.6), in contrast, the spin updating order is sometimes 
very important, because it determines which local minimum is searched for. In Step 2(b), 
we adopt the following binarizing scheme: 1 if Va,n is the maximum value among Va,* and 0 
otherwise. This is the most reasonable scheme because Va originally denotes a single Potts 
spin. 

There are some other algorithms. One is an asynchronous updating algorithm where 
updating spins are chosen in random order. Another is a synchronous updating algorithm. 
These three algorithms differ in terms of stability. Therefore, their optimal parameter values 
also differ. According to our experiments, the synchronous algorithm is not good, because 
it tends to become two-cycle periodic solutions, and both of the states do not correspond to 
any valid Hamilton paths. In what follows, therefore, we deal with two algorithms, namely, 
a fixed-order asynchronous algorithm and a random-order asynchronous algorithm. 

Figure 3(b) shows the process of a fixed-order CPS algorithm applied to the famous 
10-city problem (Hopfield & Tank, 1985) whose optimal tour is shown in Figure 3(a). The 
parameters are k = 0.7, a'= 0.8, /3'= 0.0 and T = 0.05. Each circle denotes the obtained 
tour at each sweep. Where no circle is plotted, no valid tour was obtained at that sweep. 
Figures 3 (c) and 3 (d) show the time-series of the variable Vi,1 and the energy function 
E(V) (2.8), respectively. Each variable moves chaotically, and the optimal and semi-optimal 
solutions are retrieved over time. We can observe a correspondence between Figures 3(b) 
and 3(d). For example, at sweep~450, the energy function E(V) is relatively high for a 
while as shown in Figure 3(d), and no solution is obtained at that period in Figure 3(b). 

4 Bifurcations of CPS 

Let us investigate the CPS bifurcation over each parameter. The temperature T, the in-
hibitory self-loops Wa,n;a,n and the time interval parameter k are bifurcation parameters 
that determine the stability of (3.1). In this entire section, the 5-city TSP shown in Figure 
2 is used. 
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4.1 Fixed-order algorithm 

In this part, we investigate the bifurcations when the fixed-order asynchronous updating 
algorithm is employed. The basic parameter values are: k = 0.7, o:'= 0.8, /3'= 0.0, and 
T = 0.05, which are experimentally good parameter values. The CPS bifurcation over each 
of these parameters is investigated. 

4.1.1 Bifurcation over temperature 

Figure 4(a) shows a bifurcation diagram over temperature T, where values of a single variable 
Vi,1 at sweep = 100001 ~ 100500 are plotted at each temperature. The other parameters 
are fixed at k = 0.7, a'= 0.8, and /3'= 0.0. At each temperature, the system's initial state 
was set near the fixed-point at high temperature, i.e., Va,n(O) = 1/N + small-rand. 

For T > 0.10416 ... , the system converges to a fixed-point attractor, and for T < 0.10416…, 
the system does not converge. When the system converges, the solution is a local minimum 
of the free energy function (2.2), and the bifurcation structures are the same as those in the 
Potts MFT annealing described in Section 2.3. For T > 0.12, there is a unique symmetric 
minimum and a cyclic symmetry breaking bifurcation occurs at T~0.12. The bifurcated 
minima have a first order reverse symmetry. 

Figure 4(b) shows a more detailed bifurcation diagram. At T = 0.10416…, a period-
doubling bifurcation occurs to break the first order reverse symmetry. Below the critical 
temperature, the system oscillates in two cycles. At T = 0.10335…, the two-cycle periodic 
attractor changes into a more complex attractor. Figure 5(al) shows the frequency spectra 
for sweep = 100001 ~ 110000 at T = 0.1020, where two independent frequencies are ob-
served. The first frequency is 5000, which represents a two-cycle periodicity, and the second 
frequency can be estimated at about 224. Figure 5(a2) shows the phase diagram at the 
temperature, where (Vi,1(s -1), Vi,1(s)) (s = 100001 ~ 110000) is plotted. s denotes the 
sweep. In this figure, two loops are observed. The dynamical system alternately visits the 
two loops, which corresponds to the first frequency, and it traverses each loop, which corre-
sponds to the second frequency. Since the loops are continuous, the second frequency should 
be an irrational number. At T = 0.1020, the attractor is thus found to be a quasi-periodic 
attractor. At T~0.1018, a period-doubling bifurcation occurs on the second frequency. 
Figure 5(bl) shows that the second frequency has turned in half at T = 0.1015. Figure 
5(b2) is the corresponding phase diagram. Figures 5(c), 5(d) and 5(e) are the frequency 
spectra diagrams and the phase diagrams at T = 0.1010, 0.1005, and 0.1000, respectively; 
they indicate that the period-doublings continue to occur on the second frequency into chaos. 
As Figures 5(fl) and 5(f2) show, at T = 0.0970, the system takes chaotic orbits. However, 
at T = 0.0940, the system again takes a periodic orbit, as Figures 5(gl) and 5(g2) show. 
This region is a periodic window, and the periodicity is 70 cycles in this case. On the orbit, 
after 14 sweeps, the system visits a state that is equivalent but transformed by a fifth order 
cyclic transformation to the starting state, i.e., V(s + 14) =亨V(s).Thus, the 70-cycle 
periodic orbit visits 14 distinct states. It does not visit the state transformed by the fifth 
order reverse transformation. Some of these 14 states represent valid Hamilton paths, while 
the others do not. When the temperature is lower than in the periodic window, the system 
again takes chaotic orbits as Figures 5(hl) and 5(h2) show. To implement the algorithm, we 
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use a temperature value belonging to this chaotic region, e.g., T = 0.05. 
As shown above, the system takes various types of attractors. Although which type of 

attractor it takes depends on the parameter values and also on the problem itself, three 
regions can be observed. In the first region, i.e., at high temperature, the system converges. 
In the second region, as the temperature decreases, the system's attractor becomes more 
complex toward chaos through the period-doubling route. In the third region, the system 
takes chaotic orbits, although there exist many periodic window subregions in it. In the 
example above, if we plot the bifurcation diagram in more detail, more periodic windows 
can be observed. 

4.1.2 Time-interval and self-loop 

Figure 6(a) shows a bifurcation diagram over the time interval parameter k, whereが＝

2.7(1-k), げ=0.0, and T = 0.05. The other experimental conditions are the same as in the 
previous experiment. In Figure 6(a), various types of attractors can be observed. For large 
k, i.e., k > 0.9, the algorithm is close to the continuous-time model (2.5), and the system 
converges. When k is small, the system is similar to the Potts MFT equation (2.6) with 
inhibitory self-loops, and it does not converge in most cases. vVhen k is smaller than in the 
converging region, the system takes quasi-periodic attractors. Figures 6(b) and 6(c) are the 
frequency spectra diagram and the phase diagram at k = 0.89, respectively. If k is smaller 
than in the quasi-periodic region, the system takes a 6-cycle periodic orbit. This periodic 
orbit visits six distinct states and these states are not transformed to each other by the fifth 
order cyclic transformation. When k is further decreased, the system takes chaotic orbits. 
Here, some other small regions can also be observed as Figure 6(a) shows. We set the time 
interval parameter value at 0.7, which is in the chaotic region. 

Figure 7(a) shows a bifurcation diagram over the parameter /31, where k = 0.7, ぶ=0.8, 
and T = 0.05. When /31 = 0.8, the system is equivalent to the Potts MFT equation (2.6) 
with no self-loops and it converges. Therefore, with a relatively large /3'value, the system 
converges. However, as /3'becomes small, the inhibitory self-loops become large, and the 
system no longer converges. In this case, the attractors change from a fixed-point to chaotic 
orbits very rapidly. Forげ>0.251, the system converges to a fixed-point. At炉=0.25098, 
the system takes a quasi-periodic attractor as shown by the phase diagram in Figure 7(b). At 
げ=0.25097, the quasi-periodicity changes to an 8-cycle periodicity as shown in Figure 7(c). 
This periodicity rapidly increases through period-doublings into chaos as /31 becomes small. 
Figures 7(d) and 7(e) show the phase diagrams at炉=0.25090 and 0.25088, respectively. 
We set the self-loop parameter /3'at 0.0, which is in the chaotic region. 

4.2 Random-order algorithm 

In this part, we investigate the bifurcations when the random-order asynchronous updating 
algorithm is employed. Since the algorithm is a probablistic dynamical system, it is very 
difficult to analyze its bifurcations. The basic parameter values are: k = 0.7, a'= 0.22, /3'= 
0.04, and T = 0.02, which are experimentally good parameter values. 
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4.2.1 Bifurcation over temperature 

Figure 8(a) shows a bifurcation diagram over temperature T, where the other parameters 
are fixed at k = 0.7, o:'= 0.22, and /3'= 0.04. At each temperature, 200 sets of initial 
states are prepared and each Vぃ(s)value for sweep = 5001 ~ 5100 is plotted. For T > 
0.04, the random-order algorithm converges. Since 200 initial states are prepared for each 
temperature, several solutions are observed in Figure 8(a). If we fix the initial state at 
every temperature, only one cascade is observed for T > 0.04. Figure 8(b) shows the 
simulation result of the maximum Lyapunov exponent (MLE) against temperature T. The 
MLE disturbance observed in 0.075 > T > 0.045 is due to the co-existence of two distinct 
minima as shown in Figure 8(a). As in the case of the fixed-order algorithm, in the parametric 
region where the system converges, the bifurcation structures are the same as in the Potts 
MFT annealing case. For T > 0.15, there is a unique symmetric minimum and we can 
observe a cyclic symmetry breaking bifurcation at T~0.15 and a saddle-node bifurcation 
at T~0.07. On the other hand, for T < 0.04, MLE is positive and the system becomes 

chaotic. 
Let us further discuss this stability change. Figure 9 shows the phase diagrams for 

various temperature values. At T = 0.036, the system no longer converges, but its unstable 
motion is almost localized and the orbit tends to remain in the vicinity of the initial state. 
As the temperature decreases, the unstable motion rapidly becomes large, and each state 
variable becomes able to switch its value from near O to near 1. This value switch occurs 
in an intermittent manner. Figure 10 shows the value distribution of a single variable Vi,1 
at T = 0.033. Note that in TSPs, each binary variable is assigned 1 with the probability of 
1/N and O with (1 -1/N) in order to properly represent valid Hamilton paths. Figure 10 
implies that the random-order algorithm's dynamics give a good value distribution on each 
variable. 

Figures 11 shows solutions obtained by the algorithm, where T = 0.025. Since the second 
best solution shown in Figure 2 (b) is the MFT annealing solution, it is the dominant solution 
in CPS. The above-mentioned intermittent switch changes each variable's value between O 

and 1, which enables the random-order algorithm to retrieve over possible solutions. Hence, 
the algorithm works well as a solver of combinatorial optimization problems. 

Our experiments show that the quality of the obtained solutions is significantly dependent 
on the temperature value. 

4.2.2 Time-interval and self-loop 

Figure 12(a) shows a bifurcation diagram over the time interval parameter k, where a'= 
0.72(1 -k), /3'= 0.14(1 -k), and T = 0.02. The other conditions are the same as in the 
previous experiment. Figure 12(b) is the corresponding MLE diagram. When k is close to 
1, which implies that the algorithm is nearly equal to the continuous-time model (2.5), the 
MLE is negative and the system converges. When k is not close to 0, however, the MLE is 
positive and the system no longer converges and becomes chaotic. Figures 12(c) and 12(d) 
show the phase diagrams with k = 0.78 and 0.73, respectively. 

Figure 13(a) shows a bifurcation diagram over the parameter {3', where k = 0.7, a'= 0.22, 
and T = 0.02. Figure 13(b) is the corresponding MLE diagram. As {3'becomes large, the 
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positive self-loops Wa,n;a,n = (a'-(3') / (1-k) become small, which implies that the algorithm 
is similar to the asynchronous MFT equation (2.6). Then, the MLE is negative and the 
system converges. Figures 13(c) and 13(d) show the phase diagrams with (3'= 0.08 and 
0.06, respectively. 

According to our experiment, the ability of the random-order algorithm is not significantly 
dependent on these two parameters, while it is sensitive to the temperature T. 

5 Experiments 

Let us show experimental results comparing CPS with several related approaches. In what 
follows, we employ the random-order algorithm, because our experiments show that the 
random-order algorithm can obtain slightly better solutions than the fixed-order algorithm. 

In Table 1, we compare CPS with Potts MFT annealing (PMA) (Peterson & Soderberg, 
1989), the Chaotic Neural Network (CNN) (Nozawa, 1992), and Ising spin MFT annealing 
(MFA) (Bilbro et al., 1989). Like with CPS, a result of CNN is the best tour it finds during 
the entire sweeps. We prepared five testbeds for evaluation: 10-city, 20-city, 30-city, 40-city, 
and 50-city TSPs. Each testbed had 100 sets of city allocations randomly generated in a 
unit square. Some normalizations were also done. A brief algorithm description and the 
employed parameter values are given in Appendix B. In each column of Table 1, the upper 
number and the lower number denote the number of valid tours obtained by each approach 
and the averaged tour length for all valid tours obtained, respectively. 

In the Potts spin approaches, i.e., CPS and PMA, the possible solutions will be on the 
N dimensional hypergrids whose number is N N. On the other hand, in the Ising spin 
approaches, i.e., CNN and MFA, the possible solutions will be on the N x N dimensional 
hypercube vertices whose number is 2氾 Therefore,the Potts spin approaches have a greater 
advantage with respect to the domain space to be searched. Note that MFA is a better 
algorithm than the analog Hopfield network (Hopfield & Tank, 1985) that is equivalent to 
MFT with no annealing mechanism. 

As already mentioned, PMA definitely fails to obtain the optimal solution when the free 
energy crossing occurs. Even in such a case, CPS, which is a nonequilibrium dynamical 
system, has the possibility of finding the optimal solution. Actually, for 10-city TSPs, CPS 
can obtain the optimal solution 98% of the time. This merit is also true for CNN compared 
with MFA. However, when the number of cities becomes large, even CPS cannot find the 
optimal solution, because the space to be searched becomes too large. In CPS, with its 
nonequilibrium property, even if most parts of a solution are good, some other parts can 
be somewhat random. Therefore, with a relatively large number of cities, CPS becomes 
inferior to PMA. Still, CPS can always obtain valid tours for every problem, whereas PMA 
sometimes fails to obtain valid tours. Accordingly, our CPS approach is good at obtaining 
the optimal solutions for small-scale problems and semi-optimal solutions for relatively large-
scale problems. 

The basic CPS algorithm does not employ any annealing procedure and the CPS results 
are sensitive to the temperature T, which is one of the bifurcation parameters. Although 
the best temperature value varies according to the city allocation, we fixed it in the above 
experiment for practical reasons. If we tune the temperature for each problem, CPS's ability 
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can be improved. This tuning is possible by checking the stability of solutions with an 
annealing-like procedure. 

Table 1 In each column, the upper number and the lower number 
denote the number of valid tours and the averaged tour length for all valid 
tours obtained, respectively. For example, in the 20-city PMA case, for 85 sets 
of city allocations out of 100 sets, valid Hamilton paths were obtained and 
their averaged tour length was 4.325. In this case, the failed results, i.e., 15 
sets, were not included in the averaged tour length. 

ii 10 I 20 I 30 I 40 I 50 I 
~ ・~~ 一

CPS 100 100 100 100 100 
3.459 4.318 5.252 5.967 6.940 

PMA 82 85 96 94 86 
3.467 4.325 5.167 5.602 6.185 

CNN 90 97 96 96 92 
3.578 4.635 5.778 6.755 7.603 

MFA 100 96 98 91 88 
3.591 4.695 5.861 6.640 7.313 

6 CPS with local heuristics 

In our CPS approach, a solution tends to have some good parts and some bad/random parts 
in it; this is due to its nonequilibrium dynamics. To improve the obtained solutions, a local 
optimization method can be used. We chose the 2opt algorithm (Lin & Kernighan, 1973) as 
a local optimization method. The 2opt algorithm removes all crossing parts in a tour. The 
basic 2opt algorithm is shown in Appendix C. 

[ Modified random-order algorithm] 

1. Set U at a random initial state. 

2. For sweep= l, …, #sweep, do as follows: 

(a) Randomly select a Potts spin index a (a= 1, …N) and do as follows: 

i. Update the internal states Ua,n (n = 1, …N) corresponding to the a-th spin 
by (3.la). 

ii. Update the a-th spin variables Va,n (n = 1, …, N) by (3.lb). 

(b) If every spin index is selected once and only once, go to Step 2 (c). Otherwise, go 
to Step 2(a). 

(c) Binarize the state variables V and get S. If S corresponds to a valid Hamilton 
path, go to Step 2(d). Otherwise, proceed to the next sweep. 

(d) Apply 2opt to S, and memorize the result. 

3. Select the best tour among the memorized tours. 
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Every time a solution is obtained by CPS, it is improved by the 2opt. The result of the 
modified CPS is the best solution among the improved solutions. Although it is known 
that the 2opt heuristic takes an exponential-order computational time in the worst cases, 
this modification does not affect the processing time. Since the initial state of each 2opt 
procedure is close to a good solution, it needs only a negligible processing time. 

Table 2 shows experimental results. For comparison, the fourth column gives Potts 
MFT annealing results improved by the 2opt. The averaged tour length in "PMA" and 
"PMA+2opt" involves only the valid tours they obtained. If the lengths of "CPS" and 
"CPS+2opt" are averaged over the same allocations, the results of the CPS approaches 
become slightly better. The fifth column gives the result of a single 2opt. 

Table 2 The averaged tour length. In the basic and modified CPS cases, 
the averaged tour length is for 100 sets, and in the PMA cases, it is averaged 
over sets that result in valid Hamilton paths (the numbers are in Table 1). 

'~QPS I CPS+2opt 11 PMA I PMA+2opt II 2opt I 

10 3.459 3.458 3.467 3.460 3.480 

20 4.318 4.228 4.325 4.244 4.333 

30 5.252 4.943 5.176 5.029 5.100 

40 5.967 5.440 5.602 5.530 5.652 

50 6.940 5.941 6.185 6.072 6.226 

The ability of the modified CPS is better than that of Potts MFT annealing, and the 
modified CPS can actually obtain the optimal solution for every 10-city TSP and almost 
every 20-city TSP. On the other hand, solutions of Potts MFT annealing cannot be similarly 
improved by the 2opt. 

7 Conclusion 

The MFT annealing approaches, namely, Ising spin MFT annealing and Potts spin MFT 
annealing, are very powerful approaches for combinatorial optimization problems. However, 
due to their bifurcation properties, they may fail to obtain the optimal solution even for a 
small-scale problem. 

As an alternative approach, we proposed a nonequilibrium dynamical system called 
Chaotic Potts Spin (CPS). Since our CPS employs a Potts spin system, its domain space is 
smaller than in the Ising spin approaches. Moreover, since it is a nonequilibrium dynamical 
system, the above-mentioned limitations in the annealing algorithms do not matter. 

CPS has several parameters, which determine the stability of the dynamics. We investi-
gated the CPS bifurcations for those parameters, and found period-doubling routes toward 
chaos. 

CPS can solve small-scale problems almost 100% of the time. For relatively large-scale 
problems, however, CPS is inferior to Potts MFT annealing, while it can obtain semi-optimal 
solutions for these problems. CPS becomes inferior because, with its nonequilibrium dynam-
ics, some random parts remain in almost every solution it obtains. To deal with this problem, 

｀ 
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we proposed a CPS combined with local optimization heuristics, namely, the 2opt algorithm. 
With this modification, CPS can obtain better solutions than Potts MFT annealing. 

CPS is a fast algorithm. Actually, in the experiments described in this paper, CPS 
was found to be faster than Potts MFT annealing, the Chaotic Neural Network and Ising 
spin MFT annealing. Moreover, after modifying the Potts neural network hardware (Ura-
hama and Ueno, 1993), it is possible to implement the CPS algorithm into a new hardware 
configuration. In fact, the implementation of an annealing algorithm is considered to be 
more difficult; our computer experiments have shown that the annealing procedure is quite 
sensitive to its precision, and this is a weak point of any hardware implementation. 
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Appendix A 

In this appendix section, we briefly prove the global convergence of the differential equation 

system (2.5). First, the let us define variables Q a as: 

Qa = T(l -log L exp(-Ua,m/T)). 
m 

From (2.5b) and (A.1), 

Qa = Ua,n + T(log Va,n + 1) 

holds. From (2.2), (2.5a), and (A.2), 

8F dU 
=T-ニ

BVa,n dt 
+Qa 

holds. Then, the time derivative of the free energy (2.2) is given by: 

dF 

dt ーこ（二）（誓）
- -TT冒（誓）二訃誓+Q昇誓

Here, the time derivative of (A.2) is used. From (2.4), Ln dVa,n/dt = 0. Therefore, 

dF 
三〇

dt 

(A.1) 

(A.2) 

(A.3) 

(A.4) 

(A.5) 

holds, which means that the dynamical system (2.5) globally converges to a local minimum 

of the free energy function (2.2). 

Appendix B 

In this appendix section, we briefly describe the algorithms and parameter values of CPS, 

Potts MFT annealing, the Chaotic Neural Network, and Ising spin MFT annealing. 

Table Al shows the parameter values for the random-order CPS algorithm, which are 

used in the experiments in Sections 5 and 6. 

Table Al Parameters for CPS 

I #city II a'I (}'I k I T I #sweep I 

10 0.24 0.05 0.7 0.013 1000 

20 0.27 0.010 

30 0.30 0.009 1500 

40 0.32 0.06 0.007 2000 

50 0.33 0.07 0.006 
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Table A2 show the parameter values for Potts MFT annealing. In Potts MFT annealing, 

each MFT solution is obtained by employing the asynchronous MFT equation (2.6) until V 

converges. The convergence is determined when c5V in a round becomes smaller than 10-3. 

In Table A2, Tinit and oT denote the starting temperature and the temperature lowering 
step of the annealing procedure. The annealing procedure is terminated when the state is 
regarded as representing a valid Hamilton path, or the temperature reaches a very low value. 

Table A2 Parameters for Potts MFT annealing 

I #city II a I (3 I Tinit I oT I oV I 
'10 II 1.0 I 0.8 I 0.40 I 0.001 I 10-3' 

20-30-40-50 

~ 
〇.5I声

声 I0.002 

The Chaotic Neural Network (CNN) model is a dynamical system defined as: 

瓜 (t+ 1) = kUa,n(t) -c;V.,.(t) + (1 -k)に爪，n;b,m瓜 (t)+ Ia,n {A.6a) 

V0,0(t + 1) = F(U.,n(t + 1)) = , . __ } "~"';:.) {A.6b) 

When applying CNN to TSPs, network parameters are determined as: 

Wa,n;b,m = A (ふ，b(l-On,m) +い(1-ふ，b))+ Da,b(似，(m+l)+ぬ，(m-1))

Ia,n =RX A. 

(A.7a) 

(A.7b) 

The detailed algorithm is similar to CPS. However, in CNN, there must be a technique. 

Since the chaotic motion of CNN is too strong, we must average each of the variable values 

for some period to extract a binary representation from CNN (Nozawa, 1992). We also 

adopted this technique in the experiment in Section 5, and the period was determined as 

20 sweeps. The parameter values were independent of the problem scale and determined as: 

k = 0.7, A=  1.0, R = 0.77, a= 0.35, and T = 0.007. #sweep's are the same as in CPS. 

Asynchronous Ising spin MFT annealing is a dynamical system solving the following 

equation asynchronously, i.e., unitwisely: 

賣
＼
ー

Ua,n (t + 1) = L vVa,n;b,m怜，m(i)+ Ia,n 
b,m 

Va,n(t + 1) = F(Ua,n(t + 1)), 

(A.Sa) 

(A.Sb) 

where 

Wa,n;b,m = A (ふ，b(l-6n,m) +い(1-6a,b)) + Da,b(c5n,(m+l) + 6n,(m-l)) 
fa,n = 2A. 

(A.9a) 

(A.9b) 
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The parameter values are shown in Table A3. Convergence of the MFT equation is checked 

by c5V. Tinit and c5T denote the starting temperature and the temperature lowering step of 

the annealing procedure. The annealing procedure is terminated when the state is regarded 

as representing a valid Hamilton path, or the temperature reaches a very low value. 

Table A3 Parameters for Ising spin MFT annealing 

I #city II A I Tinit I oT I oV I 

10 1.5 1.5 0.001 10-5 

20 1.6 

30 

40 

50 1.5 0.8 

Appendix C 

The following is the pseudo code of the most basic 2opt algorithm. The function "N extC-

ity" returns the next city of the input city on the present tour. The function "FlipCi-

ties(A,B,X,Y)" disconnects pass AB and pass XY on the present tour and reconnects pass 

AX and pass BY. In this reconnection, the sequence between B and X (or, between Y and 

A) is reversed in its order. D(A,B) is the distance between A and B. 

TwoOpt () { 
MakeRandomini tial Tour() ; 
start: 

｝ 

for all city A on the tour { 
B = NextCity(A); 

｝ 

for all city X excluding the city A { 
Y = NextCity(X); 
if(D(A,B)+D(X,Y)-D(A,X)-D(B,Y) > 0) { 

FlipCities(A,B,X,Y); 

｝ 

｝ 

goto start; 
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Figure 1 
Schematic figures of cyclic symmetry breaking bifurcations, where N = 5. The abscissa 
denotes the value of a state variable, and the ordinate denotes the temperature. The upper 
side of each figure denotes higher temperature. The solid line and dotted line denote a stable 
stationary point (minimum) and an unstable stationary point (saddle point), respectively. 
The straight line and curved line denote a stationary point with the 5th order cyclic symme-
try, and a stationary point without the cyclic symmetry, respectively. (a) A minimum with 
the 5th order cyclic symmetry bifurcates into a saddle-point with the 5th order cyclic sym-
metry, five minima without the cyclic symmetry, and five saddle-points without the cyclic 
symmetry. 
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Figure 2(a) Figure 2(b) 

Sample 5-city problem. (a) The optimal tour. (b) The second best tour. 
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(c) Bifurcation diagram over temperature. At each temperature 200 sets of random initial 
states are prepared, and Vぃ(i= 1, …，5) after 10000 steps are plotted. (d) The correspond-
ing free energy diagram. A free energy crossing is observed at T~0.21. To make the 
entropy term positive, this figure shows the diagram of (E (V) -T• H (V) + TN log N), in 
fact. 
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(e) Bifurcation diagram of the Ising spin MFT annealing. At each temperature 200 sets 
of random initial states are prepared, and V1,i (i = 1, …, 5) after 10000 steps are plotted. 
Algorithm is shown in the Appendix B. 
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Figure 3(a) 

(a) Sample 10-city problem, which is used by Hopfield and Tank (1985), and its optimal 

tour. 
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Figure 3(b) 

(b) CPS process. The ordinate denotes the solution obtained at each sweep. The indices 1, 
2, ... , 5, and 6 of the ordinate denote the optimal solution, the 2nd best, ... , the 5th best, and 
all the other valid tours, respectively. vVhere no circle is plotted, no valid tour is obtained 
at that sweep. 
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Figure 3(c) 

(c) Time-series of the CPS's single variable Vi,1・
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Figure 3(d) 

(d) Time-series of the energy function E(V). 
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Figure 4(a) 
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(b) More detailed bifurcation diagram over temperature. 
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Figure 5 

(al) ~ (hl): Frequency spectra diagrams for sweep= 100001 ~ 110000 at various tempera-
ture. (a2) ~ (h2): The corresponding phase diagrams. (Vぃ(s-1), Vぃ(s))(s = 100001 ~ 
110000) are plotted for each temperature. 
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(a) Bifurcation diagram of the fixed-order algorithm over the time-interval parameter k, 
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(a) Bifurcation diagram over temperature T, where the other parameters are fixed at k = 
0.7, a'= 0.22, andげ=0.04. At each temperature, 200 sets of initial states are prepared 
and each閏，1value for sweep= 5001 ~ 5100 is plotted. 
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(b) Corresponding maximum Lyapunov exponent diagram. For each temperature, exponents 
are averaged for 200 initial states. Each exponent is calculated for sweep= 5001 ~ 5100. 
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Phase diagrams for various temperature values. In all of the figures, (Vi,1 (s-1), Vi,1 (s)) (s = 
100001 ~ 110000) is plotted, where s denotes the sweep, and the initial states are set to be 
the same random value. (a) T = 0.036. (b) T = 0.035. (c) T = 0.033. (d) T = 0.025. 
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Value distribution of a single variable Vi,1 at T = 0.033. Distribution was obtained for. 

sweep = 100001 ~ 110000. 
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100001 ~ 110000 are plotted. The indices 1, 2, …, 10 of the ordinate denote the optimal 
solution, the 2nd best, …, the 10th best, respectively. When no point is plotted, no valid 
tour is obtained at that sweep. 
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(a) Bifurcation diagram over the time interval parameter k. For each k, 200 random initial 
states are prepared and each V1,1 value for sweep= 5001 ~ 5100 is plotted. 
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(b) Corresponding maximum Lyapunov exponent diagram. For each k, exponents are aver-
aged for 200 initial states. Each exponent is calculated in sweep = 5001 ~ 5100. 
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(a) Bifurcation diagram over the self-loop parameter /3'. For each /3', 200 random initial 
states are prepared and each Vi,1 value for sweep = 5001 ~ 5100 is plotted. 
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(b) Corresponding maximum Lyapunov exponent diagram. For each (3', exponents are av-
eraged for 200 initial states. Each exponent is calculated in sweep = 5001 ~ 5100. 
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Phase diagrams of a single variable V1,1. In both figures, (V1,1(s -1), Vi,1(s)) (s = 100001 ~ 
110000) is plotted, where s denotes the sweep, and the initial states are set to be the same 

random value. (c) k = 0.78. (d) k = 0.73. 
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Phase diagrams of a single variable Vi,1. In both figures, (Vi,1(s -1), Vjぃ(s))(s = 100001 ~ 
110000) is plotted, where s denotes the sweep, and the initial states are set to be the same 
random value. (c)げ=0.08. (d)砂=0.06. 
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