
TR -H -171 

Refining Hygienic Macros for 
Modules and Separate Compilation 

MatthiasB螂 e

1995.8.28 

(1995.11.8受付）

ATR人間情報通信研究所
〒619-02 京都府相楽郡精華町光台2-2 合 0774-95-1011 

ATR Human Information Processing Research Laboratories 

2-2, Hikaridai, Seika-cho, Soraku-gun, Kyoto 619-02 Japan 

Telephone: +81-774-95-1011 

Facsimile: +81-774-95-1008 

c(株）ATR人間情報通信研究所



Refining Hygienic I¥1acros for I¥1odules and Separate Con1pilation 

Matthias Blume 

Department of Computer Science, Princeton University 

35 Olden Street, Princeton, NJ 08544 

e-mail: bl umeccs . princet on. edu 

October 27, 1995 

Abstract 

Genuine differences in the treatment of identifiers in block-structured languages and those 

that provide qualified names for accessing components of modules or aggregate data structures 

invalidate some of the assumptions hygienic macro systems are based on. We will investigate 

how these assumptions have to be changed, and the consequences for the construction of hygienic 

macro expanders. 

Macro expansion algorithms rely on their ability to rename identifiers throughout the pro-

gram. This creates difficulties when some identifiers are used to connect individually compiled 

program units. Therefore, it is necessary to make separate compilation aware of macro expansion 

and vice versa. We will show how this can be done. 

Keywords: hygienic macros, modules, separate compilation, Scheme 

1 Introduction 

Macro systems are part of many programming languages. The ability to abbreviate common idioms 

and to extend the syntax of the base language enjoys tremendous popularity. Furthermore, over the 

last few years most of the technical problems with macro systems have been solved. Kohlbecker's 

solution for hygienic macro expansion, which has been improved several times [BR88, Han91, CR91], 

provides the mechanism for implementing referentially transparent syntactic extensions in block-

structured languages. Today most implementations of Scheme [IEE90] support hygienic macros 

in one or the other form, ranging from syntax-rules [Ce91] to more elaborate solutions like 

syntax-case [Dyb92]. 

The hygienic macro expander of Clinger and Rees [CR91] combines two different techniques: 

renaming and syntactic environments. Renaming alone would prevent inadvertent name clashes, 

but in order to make it work one must be able to distinguish between free and bound occurences 

of identifiers. This is difficult, because in order to determine the syntactic role (binding or applied 

occurence) of a name in the macro's output it can be necessary to expand other macro instances 

ー



that did not yet exist and therefore couldn't have been analyzed at macro definition time. As a 

result the algorithm renames too many variables, and syntactic environments are used to hide the 

effects of such renamings. 

Existing algorithms take advantage of the fact that identifiers in block-structured languages 

must always be interpreted with respect to a "current" syntactic environment. Therefore, they will 

cease to work properly when there are multiple environments, which happens when modules and 

qualified names are added to the language. Unfortunately, algorithms for macro expansion and 

interpretation of modules both use syntactic environments, and in different ways. With modules 

not every name is to be looked up in the "current" environment, because the x in m.x must be 

interpreted in the context of module m. But during macro expansion x could have been subjected 

to false renaming, so if macro expander and module system don't know about each other, then only 

the current environment but not the one associated with m will have the information necessary to 

hide "mistakes" of an over-eager renaming scheme. 

The following trick might seem to provide a way out of the dilemma: Real implementations 

of hygienic macros often use tagging in order to represent renamed identifiers, and tagging can 

be undone without consulting any environment. Of course, the whole problem of hygienic macro 

expansion is to remove just the right tags, and that's where environments play their part. However, 

if we were able to restrict definitions in modules to untagged names only, then we could simply 

strip all tags from x in m.x before looking it up. Unfortunately, despite the fact that some existing 

systems do just that, it is still not a valid technique. Renaming is necessary to prevent bound 

identifiers from clashing. Definitions, no matter where they occur, whether in modules or at top 

level, must be considered binding constructs. Simply prohibiting tagged names here might solve 

one problem-but it comes at the expense of creating a new one. 

It is generally undesirable for two language features to interact in ways such that they are not 

orthogonal and therefore cannot be used independently. Moreover, the combination of macros and 

modules is particularly useful for writing modules that can be parameterized by other modules. 

Consequently, the macro implementation should ensure hygiene throughout the entire language and 

not exclude the module system. 

In this paper we present a rigorous solution to this problem. A refined version of Clinger 

and Rees'algorithm implements fully hygienic lexically scoped macros in languages that provide 

block-structure but utilize a non-flat name space. 

Another problem, orthogonal to modules and qualified names, arises if we wish to provide means 

of separate compilation. In order to preserve hygiene the macro expander chooses fresh names 

for bound variables throughout the program. Furthermore, upon macro invocation it renames 

identifiers captured by that macro. This applies to both local and "external" bindings. Actual 

names chosen by the macro expander are arbitrary and will depend on its internal state. This is 

unfortunate, because we rely on externally bound names in order to perform program linking. 

The second part of the paper shows a way of implementing a naming scheme for a compilation 

unit's imports and exports that is independent of arbitrary choices of the macro expander. 

2
 



IE Ide 

Q E Qide 

TE Tf 

ME Mod 

EE Exp 

identifiers 

qualified identifiers 

macro transformers 

modules 

expressions 

Figure 1: Syntactic entities 

Exp一QI (E E*) I (lambda (I) E) 
I (let ((IE)) E) 
I (let-syntax ((IT)) E) 
I (let-module ((I M)) E) 

Figure 2: Syntax of expressions 

Modー（）
I (let ((IE)) M) 
I (let-syntax ((I T)) M) 
I (let-module ((I 111)) M) 

這EI de identifiers 

q QI de= Ide+ QI de x QI de 

qualified identifiers 

tags 

environments 

= Var + Spec + Mac + Mod + U 

= { unbound} error 

denotations 

v E Var = Qlde variables 

s E Spec = { lambda, let, let-syntax, let-module } 

keywords 

Mac = Rx Ide* x Env 

t e Tag 

e e Env 

de Den 

u 

r ER 

Mod = Env 

macros 

macro transform 

modules 

Figure 4: Domains 

Figure 3: Syntax of modules 

2 Macros and modules 

2.1 The language 

In this presentation we will consider a language that in addition to入-abstractionsoffers block-

structured definition of variables, macros, and modules. 

Qualified identifiers are treated as if they were le泣calunits. This is unnecessary but makes 

it somewhat easier to present the algorithm. However, macro transformers can assemble qualified 

identifiers from other (simple or qualified) identifiers. Informally we use the notation m.x to denote 

a name x qualified by module name m. 

For brevity we do not talk about a specific syntax for macro transformers, but only require that 

it must be possible to implement the macro compiler compile (figure 6). Our discussion app且es

equally well to both high-level macro languages based on pattern matching and low-level systems. 

In examples we use syntax-rules [Ce91). 

Macro calls of the form (Q ...) can be used wherever Exp or Mod is required-as long as they 

expand into another Exp-or Mod-form, respectively. 

2.2 The algorithm 

We follow ideas in Rees [Ree93] by using a domain Ide (figure 4) that consists of symbols and tagged 

names. Only symbols can appear in the original program text. Tagged names are introduced by 

3
 



the macro expander. Tagging is simply a way of uniformly renaming all identifiers inserted by the 

same instance of a macro. 

The environment constructors (figure 5) ident and bind are taken directly from Clinger and 

Rees'paper [CR91]. Their presentation avoids going into details of how identifiers are renamed. 

Consequently, they don't mention tags at all. Rees [Ree93] later described that idea separataly, 

and we make it explicit by introducing tag and fork. In addition, qualify and empty were added for 

the module system. 

Every macro expansion produces a new expression and the corresponding environment for ex-

pansion. This environment combines the macro's environment of definition with the current envi-

ronment. The former must be used for names introduced by the macro, while the latter takes care 

of all others. Since the same tag value is used in the fork node and in names inserted by the macro 

it is possible for lookup to properly distinguish between the two cases (figure 7). 

If a macro is defined inside a module and refers to something in that module by an unqual-

ified name, then upon expansion of the macro outside the module that name must be quali-

fied. In the following example the program in the left should expand into that on the right: 

(let-module 

((mod (let ((x 1)) 

(let-syntax 

((mac (syntax-rules () =⇒ 
（し） x)))) 

（））））） 

Cm.mac)) 

(let-module 

((mod (let ((x 1)) ()))) 

m.x) 

The transcription of (m. mac) is an unqualified, but tagged version of x. Tagging correctly relates 

it to the environment where mac was defined, which was in module mod. Our algorithm uses qualify 

constructors to annotate such environments with the name of the module they belong to. Every 

time lookup (figure 7) encounters an environment constructed with qualify it must coerce the deno-

tation obtained from the recursive invocation of lookup accordingly (figure 8). In our example it 

would prefix x with the module name m. 

Let's assume y is bound in module m, while at the same time x, which is of the form tag (t, y), 

is not bound there. By definition, x must have been renamed from y by some macro. Figure 11 

shows an example of how this situation can arise. Since that macro didn't also insert a binding for 

m.x into its expansion-because contrary to our assumption it would mean x is bound in m-we 

must conclude that m.x should really be interpreted as m .y. This argument easily extends to more 

than one renaming step. 

Fortunately, in the case of modules it is not difficult to undo such false renamings. But this must 

be done without help from the environment structure, because only the current environment has 

been augmented with fork nodes, which means unlike in the case of unqualified names we cannot 

depend on ordinary hygiene procedures. 

l~ 

4
 



compile E Tf x Env→ Rx Ide* 

tag € Tag x Ide→ Ide coerce E Den X Var→ Den 

empty, ident E Env lookup E Env x Ide→ Den 

bind E Env x Ide x Den→ Env try E Env x Ide→ Den 

fork E Tag X Env X Env→ Env qlookup E Env x Qlde→ Den 

qualify E Env X Var→ Env transcribeE E Exp x R x Ide* x Env→ Exp 

transcribeM € Mod x R x Ide* x Env -+ Mod 

Figure 5: Environment constructors 

Figure 6: Function signatures 

lookup (ident, i) = z 

lookup (empty, i) = unbound 
lookup(bind(e,i',d),i) = (i = i')→ d, lookup (e, i) 

lookup(fork(r,ed,eu),i) = (i = tag(t,i'))→ lookup (ed, i'), lookup (eu, i) 

lookup (qualify (e, v), i) = coerce (lookup (e, i), v) 

Figure 7: Equations for lookup 

coerce (v, が） ＝ (v', v) 

coerce (s, v) 
lookup (e, i) f: unbound 

[success] ＝ s 

coerce((r, i*, e), v) (r, i*, qualify(e, v)) 
try (e, i) = lookup (e, i) 

＝ 

coerce (e, v) ＝ qualify (e, v) lookup(e, tag(t,i)) = unbound 
coerce (unbound, v) ＝ unbound try(e,tag(t,i)) = try(e,i) 

[again] 

Figure 9: Rules for tr'y 

Figure 8: Equations for coerce 

qlookup(e,i) = lookup(e,i) 
qlookup(e,(q1,(q2,q3))) = qlookup(e,((q1,q2),q3)) 

qlookup (e, (q, i)) = try(qlookup (e, q), i) 

Figure 10: Equations for qlookup 

5
 



(let-syntax 

((mac (syntax-rules O ((_ m) m. x)))) 

(let-module 

((mod "(let ((x 1)) ()))) 

(mac mod))) 

Figure 11: Tagged qualified names 

When tag (t, y) is not bound in x's environment we make the guess that this is so because of 

false renaming and start another attempt—this time without the tag t. If it fails again we keep 

stripping tags from the identifier until we either find a binding or reach an untagged name (figure 9). 

Our discussion shows that upon success we have found the binding we are looking for, otherwise 

there simply isn't any, and m~x was not a legal construction. 

The system of rewrite rules in figure 12 specifies the conditions under which an environment 
E 

e justifies the "expands to" relation→ for expressions. If E expands to E'in e, then we write 
E 

e I-E -+ E'. Function compile implements the macro language. It returns the list of identifiers 

captured by the macro and a transformer program r, which then can be "executed" by either 

― transcribeE or transcribeM. For simplicity we have assumed that macros take exactly one argument, 

which can be any symbolic expression. 

Rule [modE] refers to another kind of "expands to" relation. The notation e卜 (M,em)→ 
M 

(M',e伝） not only tells us what a module M expands into, but at the same time also calculates the 
M 

module's environment. Figure 13 shows the set of rules for relation→ . Not surprisingly, it is very 
E 

similar to the one defining→ with the main difference being some extra effort spent constructing 

the module's environment. 

3 Separate compilation 

In our model a program is nothing more than a big unnamed module, which simply means it 

consists of a number of nested definitions. Therefore, we will use Mod as our syntax for programs. 

A program can be broken into an ordered sequence of smaller programs-compilation units. 

The objedive of compilation is to produce some form of directly executable code. Following 

Appel and MacQueen [AM94] we translate each compilation unit into a closed入-expression.All 

free variables of the original module appear as explicit arguments, and the return value is a data 

structure containing the values for the unit's variable definitions. Since the expression has no free 

variables it can then be compiled without need to reference any outside environment. 

It is the linker's responsibility to fetch correct values for the arguments of the expression from 

the "global" environment and to later augment it with new bindings. In order to be able to do so 

the linker must be providedvヽithinformation about imports and exports. 

r~ 

6
 



qlookup (e, q) = v 

E 
e卜q→ V 

e卜E。王闘
韮 {1,... ,k},k~O:e 卜 Ei 且 Ei

e卜(E。E1 ... Ek) 且 (E~E~... Eい
qlookup (e, k0) = lambda 
bind(e,x,x')卜E五E'
x'is a fresh identifier 

er Ck。(x)E)且(lambda(x') E') 

qlookup (e, k) = (r, (i, ...), 位）
t is a fresh tag 

transcribeE((k B),r,(tag(t,i), ... 〉,fork(t, ea, e)) = E 

fork(t, ea, e)卜E三四
e卜(kB)且団

qlookup (e, k。)= let 
e卜E1!!., E~ 

x'is a fresh identifier 
E 1 

bind(e,x,x')卜E2--,. E2 

e卜Ck。((x恥）恥）三 (let ((x'E~)) Eり

qlookup(e,k。)= let-syntax 
compile (T, e) = (r, i*) 

bind(e, x, (r, i*, e))卜EEE1

e卜Ck。((xT)) E) .E. E' 

qlookup(e,k。)= let-module 
M 

e卜(M,empty) --,. (M', em) 
x'is a fresh identifier 

bind(e,x, qualify(emぷ））卜 E互団

e卜(k。((xM)) E)王(let-module((x'M')) E') 

[varR] 

[app幻

［栓］

[mac司

[let司

[syn司

[mod吋

Figure 12: Rewrite rules for Exp 

7
 



e卜(0,em) !!, (0, em) 

qlookup (e, k) = (r, (i, ...), ed) 
t is a fresh tag 

transcribe M((k B), r, (tag (t, i), ...) ,fork (t, ed, e))) = M 

fork(t, ed, e) f--(M, em)巳(M',e伝）

e卜((kB), em) !!!. (M', e伝）

qlookup(e,k0) = let 
e疇三E'

x'is a fresh identifier 

bind (e, x, x')卜(M,bind(em,x,x'))竺(M',e伝）

e f--((ko ((x E)) M),em)~((let ((x'E')) M'),e伝）

qlookup (e, k0) = let-syntax 
compile(T,e) = (r,i*) 

bind(e, x, (r, i*, e))卜(M,bind(em, x, (r, i*, e)))且(M',eら）

e卜((k。((xT)) M),em)王(M',e伝）

qlookup(e,k0) = let-module 
e r (M1, empty) 竺 (M~,em,1)

x'is a fresh identifier 
q 

qualify(em,1,x') = em,l 

bind(e,x,eぶ，i)ト(M2,bind(em,x,e~,1)) 竺 (M;,e伝）

e卜(Cko ((x M1)) M2),em)竺((let-module ((x'M~)) Mり，e伝）

[nu]叫

[mac叫

[letM] 

[syn叫

[mod叫

Figure 13: Rewrite rules for Mod 

i
 

8
 



3.1 Augmenting the global environment 

Every compilation unit must be compiled with respect to a current global environment. The 

domain of global environments is different from Env, because it binds names to "global" denotation. 

Variable bindings, for example, are no longer represented by qualified names but directly associate 

identifiers with values. 

Nevertheless, the overall structure of the global environment is very similar to Env. Therefore, 

there is a relatively straightforward way of producing export information from a compilation unit: 

M 
1. Expand unit U in the current global environment: e9 f-(U, empty)→ (U', eu)• 

2. Traverse eu and assign numbers to bindings of variables. This has to be done recursively, so 

that variables in modules are numbered as well. 

3. Construct an expression that at runtime will evaluate into a vector v of the so-numbered 

values. Value i must be stored at v[i]. The expression itself is then to replace the innermost 

0 of the compilation unit. 

4. Convert eu to a△ -environment e合．△-environments encode incremental changes to the 

global environment. They only use persistent data and avoid cycles as well as sharing. △～ 

environments are suitable for storage on stable media such as files in the ambient file system. 

5. When U's code has successfully executed we can instantiate e~using the current global 

environment and the vector of export values obtained from running the code. 

The following problems must be addressed when creating e合fromeu: 

• Cycles and sharing in eu are eliminated by representing back-and cross edges using some 

marking technique. (In our case there can never be cycles, but introducing recursive defini-

tions would change tlus situation.) 

• Variable bindings are represented by numbers referring to slots of the export vector. 

• Newly introduced tags and labels must be encoded in such a way that the instantiation of 

唸 canlater be labeled and tagged equivalently. Within△ -environments we rely on small 

numbers instead of tags and labels using some isomorphic mapping from tags and labels to 

an initial segment of the natural numbers. 

• There are names in the environment structure that have been imported from the global 

environment while U was expanded. In order to be able to re-establish this situation when 

instantiating唸weuse recipes, which are the same kind of persistent identifiers that are also 

used as part of the import mechanism. This technique will be described in section 3.2. 

• All remaining names have been created by tagging other, existing identifiers. The tags cor-

respond to tags at fork nodes in eu, Therefore, they are also encoded by mapping them to 

small integers. 

，
 



The conversion can be implemented by a conventional recursive traversal of the data structure that 

implements eu, In our case it is directed and acyclic, but in general―with recursion-it can be an 

arbitrary directed graph. 

The inverse process of instantiating a△ -environment with respect to some vector of values and 

a current global environment is then straightforward. 

• Cycles and sharing are re-created according to the marking information in唸

• Variables are bound to values. Those values are fetched from the result vector using the slot 

numbers that are stored in the△ -environment. 

• For each integer in e合thatstands for some tag or label we create a fresh tag or label. 

• Recipes are instantiated in the current global environment. This operation is the same that 

is also used for the import mechanism (section 3.2). 

• All other names are created by tagging existing ones according to the integer-to-label map 

mentioned above. 

3.2 Imports 

Hygienic macros complicate the problem of specifying how an import value is to be located, because 

identifiers can be names generated by the macro system. Furthermore, since environments contain 

fork points it may happen that a name must be looked up in some macro's environment of definition 

and not in the current global one. To deal with this we need to be able to specify generated names 

without mentioning actual tags and to redirect the lookup operation to other environments. 

Let's assume we had a persistent (tag-free) naming scheme for identifiers. If a name is not to 

be looked up in the current global environment, then it must have been inserted by some global 

macro. In that case it is necessary to find the macro's environment of definition, which, of course, 

is nothing less than another instance of the import problem itself. 

Fortunately, there is always an end to this process, because otherwise there would have been 

infinitely many expansion steps in the original source program. Therefore, we can refer to any 

global environment using a sequence of macro names, which have to be looked up in order, starting 

in the global environment. This sequence is called a path, and the global environment itself is 

represented by the empty path. Imports can now be specified using a path for the environment 

and another persistent name for the identifer to be looked up. 

The only missing piece is a method for specifying identifers without mentioning act叫 tags.

There are three kinds of names: 

戸

，

”~• 

1. Plain symbols, which are not tagged at all. 

2. Names tagged while expanding U. 

3. Names that have been tagged before U was expanded. 

10 



Rec = Symbol + Mc + Untag recipes 

Mc = Imp x Integer 

Untag = Rec 
Path = Rec* 
Imp = Path x Rec 

name capture 

untag 

paths 

imports 

Figure 14: Recipes, paths, and imports 

extern E GEnv x Path→ Env 

gcoerce E GDen x Path x Rec --+ Den 

Figure 15: extern and gcoerce 

Plain names are easy to deal with, because they can represent themselves. The second kind of 

name can never occur in a global lookup operation. First of all, tags created while expanding U do 

not occur in the global environment, so every global lookup operation of such an identi:fier is bound 

to fail. Furthermore, a name tagged in such a way will always be interpreted in an environment 

that contains the corresponding fork nodes, and those cancel new tags before the lookup operation 

"reaches" the external environment. 

Thus, only the third kind of name is of interest to us. How can those names find their way 

into compilation unit U? Without non-hygienic macros there is only one possibility: They must 

have been inserted by a global macro. Luckily, we know exactly which names a macro can insert, 

because function compile computes this information from a transformer. Therefore, it is possible 

to "name" such an identifier by specifying the macro it was inserted by together with the position 

-number in the macro's list of captured names. Naming the macro is yet another instance of the 

import problem, which we have already discussed above. 

The module system raises .a few more minor issues. First of all, a global lookup can take place 

with respect to a module's environment. Also, the try function might eliminate tags from names 

before they are fed into the lookup procedure. Therefore, our persistent naming scheme must offer 

a way of expressing this. Finally, if we allowed low-level non-hygenic macros, then we would also 

need a way of specifying identifiers that were created non-hygienically. 

Together this results in mutually recursive definitions for imports, paths, and recipes. Recipes, 

which are used to name identifiers, can be one of the following: 

• a symbol 

• an import specifying some macro together with a position number adressing one of the names 

captured by that macro 

• a recipe plus an "untag" directive, which indicates that the last tag is to be removed 

Figure 14 shows the relevant domain equations. Recipes and imports are prescriptions for re-

enacting some of the same operations the macro expander would perform if we would let it expand 

the original source of U again. HoweYer, these operations are "distilled" to focus efforts on just 

those names that are important for external linkage. 

11 



3.3 Comp1hng one umt 

Global environments are similar, but not identical to ordinary environments. To capture this idea 

we will use a new domain GEnv. Obviously, the rules in figure 12 and 13 cannot be used directly 

with elements of GEnv. Therefore, we introduce extern as a constructor that takes elements of 

GEnv to element of Env. 

Besides the technical issue of dealing with two different domains this also has a practical ad-

vantage by providing a way of detecting free variables in the compilation unit. It is convenient 

to annotate extern nodes with the path that is the persistent name for the global environment 

in question. The coercion function gcoerce, which is analogous to coerce in the case of module 

environments, takes global denotations (GDen) to elements of Den(:figure 15). 

One important part of gcoerce's task is to detect free variables of the program. For each 

free variable it calculates the import specification, invents a new identifier, and remember the 

relationship between the two. The fresh name is returned from lookup in form of a Var denotation. 

In the end we can close over the fully expanded program by wrapping it in lambda abstractions. 

The list of imports tells the linker, which values have to be fetched from the global environment, 

so they can be passed to the executable code. 

How do we calculate recipes? The trick is to do this on the fly, during macro expansion itself. 

Elements of domain Ide are treated as an abstract datatype. Internally it consists of two parts: the 

actual name and the current recipe. Every time the macro expander constructs a new identifier it 

also remembers how this was done. To make that work we must adjust the definition of recipes, so 

we can express the fact that a name carries a newly generated tag. Such new tags will ultimately 

go away before the name becomes subject to global lookup, but in the meantime it is necessary 

to keep track of them. All operations that create names must also compute the corresponding 

recipe. Thus, we pay a constant penalty per such operation. Still, the asymptotic complexity of 

the algorithm stays the same. 

4 Prototype implementation 

VVe have implemented an experimental macro expander for a language similar to Scheme. The 

expander is based on techniques explained in this paper and was written in Standard ML [MTH90]. 

Experiments were conducted using SML/NJ [AM91]. 

-Our prototype language provides low-level macro transformers with an escape from hygiene, 

recursive definitions, and modules. Furthermore, it also supports Scheme's mutable variables. 

The implementation not only performs macro expansion, but also eliminates mutable variables by 

introducing explicit reference cells where necessary. 

The program can be considered the front end of a compiler. It translates source-language 

expressions into a macro-free intermediate representation similar to the ,¥-language that is used in 

various other compilers for Scheme or Standard ML. A simple interpreter executes the expanded 

code. In a realistic system it would be replaced by an optimizing back end. 

ゆー
'iJ

¥] 

曇

1
j
¥
”

12 



The algorithms are asymptotically as fast as their precursors, and experiments confirm that they 

perform well in practice. We expect to be able to combine our solution with existing compilers 

for Scheme and Scheme-like languages. So far we have not investigated the problem of integrating 

macros with parametric modules or strong type checking, both of which are useful features found 

in languages such as Standard ML. 

References 

[AM91] Andrew W. Appel and David B. Mac Queen. Standard ML of New Jersey. In Martin Wirs-

ing, editor, Third Int'l Symp. on Prag. Lang. Implementation and Logic Programming, 

pages 1-13, New York, August 1991. Springer-Verlag. 

[AM94] Andrew W. Appel and David B. MacQueen. Separate compilation for Standard ML. In 

Proc. SIGPLAN'94 Symp. on Prag. Language Design and Implementation, pages 13-23. 

ACM Press, June 1994. 

[BR88] Alan Bawden and Jonathan Rees. Syntactic Closures. In 1988 ACM Conference on Lisp 

and Functional Programming, pages 86-95, 1988. 

_ [Ce91] William Clinger and Jonathan Rees (editors). Revised4 Report on the Algorithmic Lan-

guage Scheme. LISP Pointers, IV(3):1-55, July-September 1991. 

[CR91] William Clinger and Jonathan Rees. Macros That Work. In Eighteenth Annual ACM 

Symposium on Principles of Programming Languages, pages 155-162, 1991. 

[Dyb92] R. Kent Dybvig. Writing Hygienic Macros in Scheme with Syntax-Case. Technical Report 

356, Indiana University Computer Science Department, June 1992. 

[Han91] Chris Hanson. A Syntactic Closures Macro Faci且ty.LISP Pointers, IV(4):9-16, Decem-

ber 1991. 

[IEE90] IEEE Standard 1178-1990: IEEE Standard for the Scheme Programming Language, 1990. 

[MTH90] Robin Milner, Mads Tofte, and Robert Harper. The Definition of Standard ML. MIT 

Press, Cambridge, MA, 1990. 

[Ree93] Jonathan Rees. The Scheme of Things: Implementing Lexically Scoped Macros. LISP 

Pointers, VI(l):33-37, January-J¥Iarch 1993. 

13 


	01
	02
	MX-4111FN_20201021_140808



