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Abstract

In this paper, we investigate bifurcation processes for the mean field theory (MFT)
annealing applied to traveling salesman problems (TSPs). Due to the symmetries of the
TSP free energy function, some special bifurcations occur: cyclic symmetry breaking
bifurcations and reverse symmetry breaking bifurcations. Saddle-node bifurcations also
occur. Which type of bifurcations occurs depends on the symmetry of the eigenvector
that corresponds to the zero eigenvalue mode of the free energy curvature matrix at
the bifurcation point. In the MFT annealing process, a sequence of bifurcations occurs
and the bifurcation structure affects the quality of the annealing solution. It is shown
that the annealing solution in this process is not unique in general, and it is not always
the optimal solution. Our approach can also be applied to the Potts spin model and
its bifurcation structure is almost the same as that of the MFT.

Acknowledgment
We thank Masaya Yamaguti of Ryukoku University for his valuable comments
on symmetries and bifurcations, and for introducing literatures on bifurcations
to us.



Bifurcations in MF'T' annealing 2

I Introduction

In his original paper, Hopfield [1] showed that a Lyapunov function can be defined for analog
Hopfield network and the network always converges to a local minimum of the Lyapunov
function. When the slope of the sigmoidal output function becomes very large, the Lyapunov
function is nearly equal to the energy function, which has a quadratic form of the state vari-
ables. By utilizing this feature, the Hopfield network can be used for solving combinatorial
optimization problems defined as minimizing of the quadratic energy function [2].

The physical meaning of the Hopfield network was further clarified by Peterson and
Anderson [3, 4]. They showed that the Hopfield network is equivalent to the mean field
theory (MFT) of the Boltzmann machine [5]. In this sense, the MFT can also be called a
“Deterministic Boltzmann Machine” [6]. The Lyapunov function of the Hopfield network
corresponds to the free energy function in the MFT. This implies that the Hopfield network
converges to a local minimum of the free energy function in the MFT.

Wilson and Pawley [7] reported that the Hopfield network is not a good algorithm for
solving combinatorial optimization problems when the problem scale becomes large. There-
fore, neural network approaches need some additional mechanisms for relatively large-scale
problems. One of them is MFT annealing [8, 9], i.e., the mean field version of simulated
annealing [10]. The free energy function has a unique minimum at high temperature. By
gradually lowering the temperature, one can get a relatively good local minimum at low
temperature.

During the course of the annealing process, a sequence of bifurcations for minimum solu-
tions occurs. The structure of the bifurcations affects the quality of the annealing solution.
In this paper, we theoretically study bifurcation structures in the MFT annealing. Traveling
salesman problems (TSPs) are mainly studied, as they are representative of combinatorial
optimization problems. Note that symmetries in a problem affect the structure of the bi-
furcations [11]. Without structurally stable symmetries in a problem, one can generically
expect only saddle-node bifurcations to occur. However, the free energy function for a TSP
has two types of symmetries, i.e., cyclic and reverse symmetries. Due to these symmetries,
special types of bifurcations occurs. They are called cyclic symmetry breaking bifurcations
and reverse symmetry breaking bifurcations. In TSPs, the unique minimum at high temper-
ature has such cyclic and reverse symmetries. In contrast, feasible minima at low tempera-
ture, which correspond to Hamilton paths, have no symmetries. Therefore, the symmetric
minimum at high temperature bifurcates into equivalent minima with no symmetries or is
annihilated at some temperature through the cyclic symmetry breaking bifurcations and the
reverse symmetry breaking bifurcations as shown in Fig. 1. It should be added that new
minima are mostly generated by saddle-node bifurcations as shown in Fig. 1.

If the annealing solution is annihilated at some temperature and there are more than
two distinctive minima at this temperature, whatever minimum is obtained by the anneal-
ing is not unique due to the instability at the annihilation point. This implies that the
annealing solution in the MFT annealing is not unique in general, although the procedure
is deterministic. This reminds us of the situation in chaotic dynamics [12].

When new minima are generated, their free energy levels are higher than that of the
global minimum at that temperature. However, the free energy levels of some minimum
solutions may cross one another as the temperature is lowered. Therefore, the MFT annealing
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procedure does not always give the optimal solution. As a consequence, the annealing
solution in the MFT annealing is, in general, a not-so-bad solution and is not unique.

Peterson and Soderberg [9] proposed the Potts spin model for TSPs and showed that the
performance of the Potts spin model with the annealing is comparable with the simulated
annealing and some other conventional algorithms even for large-scale problems [13]. The
bifurcation structure of the Potts spin model will be shown in this paper to be almost the
same as that of the MFT.

This paper is organized as follows. In Sec. II, the mean field theory is briefly explained.
In Sec. III, saddle-node bifurcations are studied.  In Sec. IV, symmetries in TSPs are
studied. In Sec. V, local bifurcations in a problem with cyclic and reverse symmetries are
described. A typical example of the bifurcation diagram in the MFT annealing is shown;
this example shows the non-optimality and non-uniqueness of the annealing solution. In
Sec. VI, the Potts spin model is studied.

II Mean field theory

Many N ’P-corﬁplete optimization problems can be described as a quadratic energy mini-
mization problem for binary variables S, (= 0or 1):

N N
ES) =2 Y WamSaSm+ Y JoSn. (2.1)
n,m=1

1 n=1

N

In this formulation, constraints are treated as soft constraints, namely, the energy func-
tion (2.1) includes cost terms for constraint violations. The values of parameters W,,, and
Jn are determined for each problem.

In order to obtain the global minimum of the energy function (2.1), simulated annealing
[10] can be used. However, in many cases, simulated annealing for the energy function (2.1)
is too time consuming. Another approach is to use the mean field theory (MFT).

The MFT [3, 6] is a mean field theory approximation for the Boltzmann machine [5],
which is statistical mechanics with the energy function (2.1). In the MFT, analog variables
Vi € [0, 1], which represent the probability that the binary variable S, takes the value 1, are
introduced. They are assumed to be independent variables. The MFT free energy F(V) is
given by

F(V)=E(V)+T H(V), (2.2a)
E(V)= % S WanVaVin + 2 JuVa, (2.2b)
H(V) =3 [ValogV, + (1 — Vi) log(1 — V,,) + log 2], (2.2¢)

where T' and (—H) correspond to the temperature and entropy, respectively. In the following,
H is called entropy function. The term log 2 in (2.2¢) is added to let H (V) satisfy H(V) > 0.
Then the free energy decreases as the temperature decreases. This MFT free energy function
is identical to the Lyapunov function of the analog Hopfield model [1]. Statistical equilibrium
corresponds to a minimum of the MFT free energy function F' (2.2), where the following
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stationary condition is satisfied:

oF N Va
5 = ZanV + Jn +T10g(1_vn>—0. (2.3)
Introducing new variables U, by U, = T log(V,,/(1 —V,)), the stationary condition (2.3) can
be rewritten as N
Up =~ WarVen — Ju, (2.4a)
m=1
1

The solution of this MFT equation [3] can be obtained by using the analog Hopfield model

[1}:

dU,(t) OF
= — = —Up - nm?Ym — Yny 2'
— B Unt) =Y W Vin(t) = J, (2.5a)
Va(t) = G(Ux(2)), (2.5b)
the asynchronous MFT equation [4]:
Ut +1) = = > Wan Vi (t) — Ja, (2.6a)
Vot +1) = GU, (¢t + 1)), (2.6Db)
or the gradient field dynamics of the free energy:
dVi(t) oF Vo (1)
= = -Tlog | —22 | = S W V() — Jo.. .
i 5V, °8 (1 V() 2 WamVn(t) (27)

At the high temperature limit (77 — o0), the free energy (2.2a) is dominated by the
entropy term (7 - H) and there is a unique minimum as will be proved in a later section.
At the low temperature limit (7"~ 0), on the other hand, the free energy function F' (2.2a)
is nearly equal to the energy function £ (2.2b). The minima of the energy function (2.2b)
in the hyper cube region (V,, € [0,1]) coincide with those of the energy function (2.1) for
binary variables, if we assume the condition

W =0  (n=1,..,N). (2.8)

Therefore, at the low temperature limit, the local minima of the free energy function (2.2)
correspond to those of the energy function (2.1). If the temperature is fixed at a low value,
whatever local minima are found by using (2.5), (2.6), or (2.7) are completely dependent on
the initial condition.

In order to get a good local minimum of the energy function F (2.1), the MFT annealing
[8] can be used. First, the MFT equation (2.3) is solved at high temperature and a unique
solution is obtained. Then after slightly lowering the temperature, the MFT equation (2.3)
is solved again starting from the higher temperature solution. By continuing this process,
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one can get a low temperature solution that corresponds to a local minimum of the energy
function (2.1).

There are a couple of questions to this procedure. Is the annealing solution unique? Does
the annealing solution correspond to the global minimum of the energy function (2.1)? In
the following, we will study these questions.

III Bifurcations in the MFT annealing

IIT-A  Free energy function

The entropy function H (2.2c) has special properties. The second derivative, i.e., the curva-
ture of H is given by

O*H Onm
= , (3.1)
VooV Vu(1=Vo)
where §,,,,, is Kronecker’s delta. Since
0<V,(1-V,)<1/4 for 0<V, <1, (3.2)
the curvature matrix (92H/0V V) can be written as
(0*H/0VOV) = 4 - 1 + ( positive semi-definite matrix), (3.3)

where 1 is the identity matrix. The curvature matrix of the free energy function is given by

O*F O*H

- = an T . .
EITACITA v, (34)

Let &in denote the minimum eigenvalue of the energy curvature matrix W. £,,.;,, is negative if
condition (2.8) is satisfied. When temperature T is greater than (—&m:,/4), the curvature of
the free energy function, (3.4), is positive definite. This implies that the free energy function
is convex and there is a unique minimum of the free energy. At the low temperature limit, the
free energy has a lot of local minima. Therefore, at some critical temperature T.(< —&min/4),
a bifurcation of the minimum solution, which corresponds to the phase transition in statistical
mechanics, occurs. ,

The gradient of H, i.e., 0H/0V, = log(V,/(1 — V,,)), diverges at the boundary (V,, =
0 or 1). From the convexity of H and the finiteness of the energy gradient, it can be shown
that the free energy decreases toward the interior direction with an infinite gradient at the
boundary if T > 0. This implies that minima of the free energy function (2.2) are interior
points and never occur at the boundary. Therefore, in any local analysis on minima of the
free energy function, one can neglect the boundary constraint 0 < V,, < 1.

The bifurcation of minimum solutions for the free energy function F' (2.2) is equivalent to
the bifurcation of the analog Hopfield model (2.5), whose Lyapunov function is given by the
MFT free energy function (2.2), and a non-linear dynamical system with a gradient vector
field (—=0F/8V) (2.7) [12]. However, stability of the stationary point in the asynchronous
MFT equation (2.6) is, in general, different from that of the free energy function (2.2).
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A minimum solution V* at the critical temperature 7, satisfies the stationary condition
(2.3). Near the bifurcation point (V,¥,T,), the free energy (2.2) can be expressed as a Taylor
series with respect to 6V, =V, — V' and e=T —T.:

FV,T)=FV*+6V,T.+¢) = F(V*Te) 4+ 3 28 ey Mam6VdVin
-}—31—! N a[1].0VE + % N al2],0VE+ .. (3.52)
e Tn 1 B[V 4+ 2e N B[2],6V2 + .

where
0*F Onm
= 9w, g dmmee 3.5b
Mo = Byravi, A v (3:5b)
P*F PH T,(2VF —1)
— 9 _ = n 3.5
AW = Gya =T <8V3> V=V (8:5¢)
O*F FH\ 2T (3(VH)?—-3VF+1)
- =T, = n n , 3.5d
bl = G =7 57) = i s (850
O*F oH %
- = = n -5
U = Fvar = av, =l <1 - v;) ! (3-5¢)
OF 0°H 1
— = = , 3.5f
L2l V2T — V2~ Vr(1-Vy) (3.59)
The stationary condition (2.3) becomes
0= Yooy MumdVin + 2a[1],6V2 + $a[2],6V2 + ...
+eb[1], + €b[2] 0V + ... . (3.6)

ITI-B Saddle-node bifurcation

The bifurcation structure depends on a symmetry of the problem. In this section, we consider
a case where there are no symmetries. A problem with symmetries will be considered in the
later sections. If there are no symmetries, one can generically expect that the curvature
matrix M of the free energy, (3.5b), will have a simple zero eigenvalue at the bifurcation
point. Let v = [uv,] be the eigenvector for the zero eigenvalue. In this case, there are
three types of bifurcations, namely, saddle-node type, transcritical type, and pitchfork type
bifurcations [12]. ‘

According to the bifurcation theory [12], the necessary conditions for these bifurcations
are as follows. If the conditions

il &*F 0H al
nglvn <8Vn8T) => Un <57n) = ;vﬂb[’l]n # 0, (3.7a)

and

N OF L [O°H ,
Z UnVUmVk (m) = Tc Z Uy, (aVB) = Z vna[l]n ;é 0 (37b)

n,m,k=1 n



Bifurcations in MF'T annealing 7

are satisfied, saddle-node bifurcations occur. If the conditions

(3.7a) = =0, (3.8)

B F , (0*H ,
—_— | = = 2 n 3 .
Suin (grgegr) = T4 () = Sokth 20, (s
and (3.7b) are satisﬁed, transcritical bifurcations occur. If the conditions

(3.7b) = =0, (3.9a)

i 9'F
2 (avnavmavn/avm,> T2 (aw) > vnal2 (3.9b)

n,m,n/ m/

and (3.8) are satisfied, pitchfork bifurcations occur. However, when no structural stable sym-
metries exist in the problem, conditions (3.8a) and (3.9a) are broken down by a slight change
of the energy parameters, such that transcritical and pitchfork bifurcations become saddle-
node bifurcations. Therefore, one can generically expect that only saddle-node bifurcations
occur if there are no structurally stable symmetries in a problem.

In order to understand how the bifurcation of the minimum solution occurs, it is helpful
to study the free energy function restricted in the center subspace [12] at the bifurcation
point, which is a line defined by

where z, and z, are determined by the requirement that this line segment should lie within
the hyper cube (V,, € [0,1]). Then, the above-shown bifurcation conditions can be rewrit-
ten in terms of this reduced free energy function in the center subspace. The saddle-node
conditions (3.7) can be rewritten as

PF ‘ dH
= 22 £0 (3.10a)
0x0T 20 dz =0
PF d*H ‘
Ox3 220 da3 N

which are equivalent to the saddle-node conditions for the reduced one-dimensional free
energy. The conditions for the transcritical and pitchfork bifurcations are also equivalent
to those of the reduced free energy. Therefore, which type of bifurcation occurs for the
original free energy can be determined by studying the bifurcation behavior of the reduced
free energy which is easily visualized. In the following, we will study how the reduced free
energy landscape changes as T varies.

The first, the second, and the fourth derivative of entropy function H with respect to «
are given by

dH X Vv,
o ] n .
T > vy log <I—Vn>’ (3.11a)

n=1
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% - ;;“1 <—————m1”f_ Vn)) >0, (3.11b)
d'H X vi(3(Va—1/2)+1/4)
P VR (AT

From (3.11b) and (3.11a), one can see that (dH/dx) is a monotonically increasing function
and diverges at the boundary (z = z; or z5). (3.11c) and (3.11b) show that (d*H/dz?) is
a convex function and diverges at the boundary, indicating that (d®H/dz®%) is negative in
z1 < = < z3 and positive in 23 < = < zp for some z3. This implies that (dH/dz) has a
negative curvature in z; < r < z3 and has a positive curvature in z3 < x < z5. Therefore,
the shape of (dH/dz) has a tan-like shape as shown in Fig. 2a.

The stationary condition (2.3) along this line is given by

> 0. | (3.11c)

dH 1 (dE\ 1
_C_Z.m_ — _? (8;) = ?Z:(m — CUO), (3.12&)
anvnvrr:, + Jn’l)n
T = —Z ZW " UZ , (312b)
n=— Z W ormUn V.- (3.12¢)

Since v is the eigenvector corresponding to the zero eigenvalue of M (3.5b) at the bifurcation
point (V;7, Tc),
2

N v .
— 5 (3.13)
n; Vi(l=V3)

N
n=-— Z anvnvm = Tc

n,m=1

holds. Since the stationary condition is satisfied at the bifurcation point,

dH

n
z=0 TC
also holds.

The stationary condition (3.12) can be solved graphically. Solutions of (3.12) are inter-
sections of the two graphs, y = dH/dz and y = n(x — z0)/T. If the saddle-node condition
(3.10) is satisfied, zq # 0 holds. The graphs, y = dH/dz and y = n{z — z0)/T in this case
are drawn in Fig. 2a. At the bifurcation point x = 0, the two graphs meet tangentially.
From Fig. 2a, one can get the graph of (9F/0r), Fig. 2b ~ 2d. Then, the graphs of F
(Fig. 2e) and (9%F/0x?) (Fig. 2f) follow. It can be seen that there is no stationary solution
* near the bifurcation point for T > T, and a stable and an unstable stationary point appear
for T < T,. This implies that a new minimum and an unstable saddle point are born at
T =T, besides the existing minima as the temperature decreases as shown in Fig. 2g. At the
birth of the new minimum, this minimum has a higher free energy than that of the global
minimum at the critical temperature T,.. The graph of (0?F/dxz?) in Fig. 2f shows that the
condition (8*F/9z3)| _, # 0, (3.10b), is satisfied.
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There is another case whose ﬁguré is drawn in Fig. 3. In this case, a minimum disappears
together with an unstable saddle point at T'= T, as the temperature decreases.
If the saddle-node condition (3.10) is satisfied, the stationary condition (3.6) can be

solved as a power series with respect to €!/2. The leading order term can be calculated as
Vo = z*u, (3.15a)
(%) = —ex (3.15b)

2wl _ 2(dH/d)l, 5150

Svda[ll, T, (dBH/dz®)]
This leading order of the stationary solution coincides with that of the reduced free energy.
Therefore, stabilities of the stationary solutions are determined by those for the reduced
one dimensional free energy drawn in Fig. 2 and Fig. 3. If k > 0, there is no solution for
e > 0(T > T.) and there is a pair of solutions for ¢ < 0 (7" < T,). This corresponds to
Fig. 2, where a new minimum is born as T decreases. If k < 0, there is no solution for
€ < 0 (T < T,) and there is a pair of solutions for € > 0 (T' > 7T,). This corresponds to Fig. 3,
where a minimum disappears as T' decreases. :

z=0

IV TSP and symmetries

IV-A Cyclic and Reverse Symmetries in TSP

The bifurcation structure is affected by the symmetry of the problem [11]. In the following,
we consider the traveling salesman problem (TSP) having a cyclic symmetry and a reverse
symmetry. An energy function for the TSP is given by

1 No No
E(V) = 5 Z Wa,n;b,mVa,n%,m + Z Ja,nVa,n +E0

a,b,n,m=1 a,n=1

il

No
1
5 Z Do Va,n (Vo (nt1) + Vo, (n—1))

a,b,n=1

+§ Z(Zﬂj Vo — 1)? + zn:(z Vi —1)% + 2> Van(l = Vam)|, (4.1)

where INj is the number of cities, V, , represents the probability that the salesman visits city
a at the n-th visit, and D,, denotes the distance between city a and city b. This energy
function is invariant under the cyclic permutation of the variable:

V— TNV (m=1,.,Ny—1), (4.22)
where 77l is the Ny-th order cyclic transformation operator defined by

(7-1;[1N0]V)a,n = Va,n+m (aa n= 17 ) NO)’ (42b)
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T,ﬂo}vo = TNl and Vant+ny = Van. The energy function is also invariant under the reverse
transformation:
V — RIVly (m=0,1,..Ny — 1), (4.3a)
where RIYo! is the Ny-th order reverse transformation operator defined by
(RN, o =V (a,n=1,...,Np) (4.3b)
and Rgi]No = RNl The transformations (4.2) and (4.3) form a group:
76[N°] = 1 (identity operator), (4.4a)
TANelNo] = THNE] (4.4b)
el lo) = R (4.4¢)
Rl TNl = R (4.4d)
RIWIRING — 7Ny 1y = 0,1, ..., Ny — 1). (4.4e)

The entropy and the free energy functions are also invariant under these transformations.
The cyclic permutation symmetry corresponds to the fact that the tour length does not
depend on the starting city. The reverse symmetry corresponds to the fact that the tour
length does not change when the tour direction is reversed.

There is a symmetric stationary solution V. of the free energy function for any 7"

’ ‘/t:n -~ ‘/1.1* (aan = 17 "'aNO)- (45)

"This can be proved as follows. The stationary condition for the symmetric solution can be
derived from the reduced free energy function for the symmetric solution, which is given by

No
Fy/Nog = > DuVaV+ é[NoZ(va —1/No? + (D Va— 1 +2) Va(1 - V,)]
a,b=1 a a a
+T Y [Valog Ve + (1 = Vo) log(1 — V). (4.6)

Since this reduced free energy function has at least one minimum point for any T, the
original free energy function also has a symmetric stationary solution for any 7. Since
the original free energy function has a unique minimum at the high temperature limit, the
unique minimum must be this symmetric solution (4.5). Below the critical temperature, this
symmetry breaks down to partially symmetric solutions or non-symmetric solutions.
If Ny is decomposed as a product of two integers Ny and N, i.e., Ny = N1 N, a partially
symmetric solution V having a symmetry:
kN = Vo (a=1,..Ngyn=1,...,Ni;k=1,..,N—1) (4.7)

a,n

may appear. We call this symmetry the N-th order cyclic symmetry. This solution may or
may not have the N-th order reverse symmetry:

VaimotkNi—n) = Van (a,n=1,..,No;k=0,1,..., N = 1) (4.8)
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for a specific mg (1 < mg < N;) called a reflection point index. If there is a minimum
solution with the N-th order cyclic and reverse symmetries, there must be N, equivalent
minimum solutions due to the invariance of the free energy function under the Ny-th order
cyclic and reverse transformations. They are related with each other by the NN;-th order
cyclic transformation:

Van — Vanim (a,n=1,..,No;m=1,...,N; —1). (4.9)

Each solution has a different reflection point index mg (1 < mg < IVy) for the reverse symme-
try (4.8). If they do not have the reverse symmetry, there must be 2/V; equivalent minimum
solutions. They are related with each other by the N;-th order cyclic transformation (4.9)
and the N;-th order reverse transformation:

Va,n —'_)‘/a,m-—n (a,nzl,...,No;m:0,...,N1 ——1) (410)

If one expands the free energy function around a minimum solution V* with the N-th
order cyclic symmetry, (4.7), with respect to 6V, , = Vo, — V5, the free energy function

F(V*+6V) is invariant under the N-th order cyclic transformation:
5V — TWNgv (m=1,..,N—1), (4.11a)

where the N-th order cyclic transformation operator 7,1V is defined by
(7:7[1N]V)a,n = (ﬂ%)l]v)a,n = Va,(ntmy) (a,n=1,...,No) (4.11b)

and TJLJI]N = TN If the solution V* has the N-th order reverse symmetry (4.8), the free
energy function F(V*+4 V) is also invariant under the N-th order reverse transformation:

§V — RINsv (m=0,1,..,N —1), (4.12a)
where the N-th order reverse transformation operator RIM is defined by
(RIIV ) = (R V)an = Vamotmms—n) (@, = 1,..., No) (4.12b)

and REﬂN = RNV,
In order to make symmetric properties clear, it is convenient to change the numbering of
the suffix (a,n). Let us define a vector variable V with the triple suffix (a,i,n) by

Vain = Vagitm-nny (@=1,.,Ngi=1,...,Nyn=1,..,N). (4.13)
From the definition, f/a,i,n satisfies the relations Va;iwa = f/a,i,n and f/a,iiNl,n = ~a,i,n:i:1-
Then, the N-th order cyclic and reverse transformations can be expressed as
(TN gin = Vasnm (4.14a)
-~ f/ —i— (m >0 > 1)
RNV )i = omomomont? N 4.14b
( " )a’ " Va,mo—i+N1,m—n+1 (Nl Z ? 2 mO) ( )

The suffix n corresponds to the N-th order cyclic symmetry, the suffix i corresponds to
the broken cyclic symmetry and the suffix a is irrelevant to the symmetry property. In the
following, we consider the bifurcation of a minimum solution with the N-th order cyclic
symmetry (4.7). It may or may not have the N-th order reverse symmetry (4.8). Also, we
use the renumbered variable f/a,i,n and omit ~.



Bifurcations in MFT annealing 12

IV-B Eigenmodes for the curvature matrix
As in the previous section, the curvature matrix M of the free energy function at the bifur-

cation point is given by

. 62F
o= [T V(v
Ma,l,n,b;j7m <8Va’i’na%,j;m> ( , )
5ab5ij5anc

ati,n(l - Va*:i,n)
(a,b=1,..,Np;i,j=1,...,Ni;n,m=1,..,N).

(4.15)

= W a,i,n;b,5,m

Because of the invariance under the N-th order cyclic transformation (4.14a), the curvature
matrix has the symmetry:

Ma,i,n;b,j,m = Ma,i,(n+k);b,j,(m+k) = Ma,i,N;b,j,(m—n) (4163)
(a,b=1,..,Ng;i,7 =1,...,N;;n,m,k=1,...,N),

which can be expressed in a matrix form as:

M7 = 7INM. (4.16b)

m

Then, eigenvectors of the curvature matrix M are also eigenvectors of the N-th order cyclic
transformation 7,V The eigenmodes of this matrix are characterized by the N-th roots of
1:

alk) = exp (2”“) o)V =1, a(k)=a(k) " —a(=k), keTy,  (417)

N

where I'y = {0, £1, ..., £(N/2 — 1), N/2} for even N, and I'y = {0, %1, ..., (N — 1) /2} for
odd N. The eigenvector of M associated with a(k) can be written as

Uain(k) = vai(k) - (k)" (e=1,.,Ny;i=1,..,N;;n=1,..,N), (4.18)
which is also an eigenvector of the N-th order cyclic transformation:
TIMu(k) = a(k)™u(k). (4.19)

The reduced (Np, N1)-dimensional eigen equation for v, ;(k) is written as

No M
S5 Quin(k)ve (k) = A(k)vas (k) (a=1,..,No;i=1,..,N1), (4.20a)

b=1j=1

N .
Qa,i;b,j(k) = Z Maﬂ',N;b’ijz(k)n (‘a,b = 1, ceny Ng; Z',j =1,.., Nl) (420b)

n=1

Since M is a real symmetric matrix, £2(k) becomes a Hermite matrix: QT(]C) = Q(k), where

7 denotes the Hermite conjugate, i.e., Qii;b,j = (% ;.. Therefore, the eigenvalue A(k) is real.
From (4.20b), (k) satisfies

Q(k) = Q(~k), (4.21)
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which implies that (k) = v(—k) and A(k) = A(—k). Then, eigenvectors of M, (v, ;(k)a(k)™)
and (7,;(k)(—k)"), have the same eigenvalue, so that an eigenvalue corresponding to com-
plex a(k) is doubly degenerate and an eigenvalue corresponding to real a(k)(= 1 or—1) is sim-~
ple. Let {v,:(r,k)|r =0,1,...,NoN1 —1;k € Ty} and {A(r, k)|r =0,1,..., NgN1 = 1;k € Iy}
be the complete set of the eigenvectors and the eigenvalues of (4.20), respectively. Let us
define the eigenmode coordinate 2, x by
NoN1—1
Vain= > > 2z (Vailr, k) - a(k)") (a=1,.,NoNj;n=1,..,N). (4.22)
kel'y r=0
In terms of the eigenmode coordinate z,j, the N-th order cyclic transformation (4.14a)
becomes
Zrp — T%N]zr,k = a(k)™zx (m=1,..,N—1). (4.23)

The eigenmode coordinate 2, forms the irreducible representation of the cyclic symmetry
group, whereas the original variable ¢V, ;, forms the reducible representation. Since 6V, ;
is real and ,;(r, k) = v,,(r, —k), the relation:

Zr,k = Zr,—k (424)

holds. :
If the minimum solution V* has the N-th order reverse symmetry (4.8), M satisfies the
relation

RIVIM = MR, (4.25)
Let us define a reverse transformation matrix R (k) in the reduced space (a, 1) by
R(E)aing = (0(k)*0mg—i; + (k)Omo—icny 5)0ab: (4.26)
Then, R(k) satisfies
RIBRE) =1 © RK) =R (k). (4.27)
From relation (4.25), it follows that
R(E)QUE) = Q(=k)R(E). (4.28)
This implies that )
R(k)v(r,k) = x(r,k)v(r,—k), (4.29)

where x(r, k) is a complex number and satisfies [x(r, k)|* = 1 due to (4.27). x(r, k) is called
the reverse symmetry index. By using R(k), the N-th order reverse transformation for the
eigenvector of M, ug; (7, k) = vq;:(r, k)a(k)", can be written as

(R, k))ain = alk)™ (R(E)V(r, k) (k)" (4.30)

From (4.29), it can be proved that
RWVlu(r, k) = x(r, K)a(k)™u(r, —k). (4.31)
Then, the N-th order reverse transformation (4.14b) for eigenmode coordinate z,; becomes
Zrp — szr’k = x(r, k)alk)" 2. (4.32)

It should be noted that Z, x = 2,5 and x(r, k) = £1 for areal a(k) since Q(k) = Q(=k), v(r, k) =

v(r, —k) = v(r, k) and R(k)? = 1 are satisfied for a real a(k).
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V Bifurcations in TSP

V-A Saddle-node bifurcation
(a) N =1 case

If the solution V* at the bifurcation point has no symmetry, which corresponds to N =1,
the saddle-node bifurcation occurs as explained in Sec. III. In this case, 2N, equivalent
minima appear or disappear simultaneously by the saddle-node bifurcation due to the Ny-th
order cyclic and reverse transformation invariance of the free energy function. :

For a solution V* with the N-th order cyclic symmetry, (4.7), the bifurcation structure
depends on which eigenmode becomes a zero eigenvalue mode at the bifurcation point as
described below.

(b) «(0) and no reverse symmetry case

First, let us assume that one of the eigenvectors with the N-th order cyclic symmetry, which
corresponds to «(0) (= 1), becomes a zero eigenvalue mode. Let (r,k) = (0,0) correspond
to this zero eigenvalue mode. Since «(0) is real, this eigenvalue is simple. It is also as-
sumed that the solution V* has no reverse symmetry. The zero eigenvalue coordinate zgg
does not change under the N-th order cyclic transformation (4.23). Then, the N-th order
cyclic transformation invariance of the free energy does not give any special relation for the
quantities, 82F /8T 0zy and 0°F/dz3,, which characterize the saddle-node condition (3.7).
In this case, the saddle-node condition is generically satisfied:

82F N No Ny b
- a,i, az O, 5
aTaZOO . 02_:1; 1V O 0) # ( 1&)
d3F No Ny
_T = NZZ allvaz 0 O) # 07 (5.1b)
dZOO z=0 a=1i=1

Where b[l]all - b[1]07i,n = log( 21/( azl)) and a’[l]a,ivl = a’[l]ayi:n = T(zva*zl -
1/(Vy (1 =V 1)) as in (3.5). Therefore, 2N, equivalent minima with the N-th order -

a,?,1

cyclic symmetry appear or disappear simultaneously by the saddle-node bifurcation.

(c) a(0), the reverse symmetry and x = 1 case

Let us consider the case that the minimum solution V* at the bifurcation point also has the
reverse symmetry. If the reverse symmetry index of the zero eigenvalue mode, x(0, 0), is +1,
the zero eigenvalue coordinate zop does not change under the reverse transformation (4.32)
since zg is real. Then, the reverse transformation invariance of the free energy does not give
any special relation for §2F /0T 9z and 8*F /923, and the saddle-node bifurcation occurs.
In this case, N; equivalent minima with the N-th order cyclic and reverse symmetries appear
or disappear simultaneously by the saddle-node bifurcation.
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V-B Pitchfork bifurcation

(a) «(0), the reverse symmetry and x = —1 case

If the reverse symmetry index of the zero eigenvalue mode, x(0,0), is —1, the zero eigenvalue
coordinate zqo is transformed to —zgy under the reverse transformation (4.32). Then, the
reverse transformation invariance of the free energy gives the relation

O*F O*F

= — =0 2
8T8200 =0 8T3200 =0 ’ (5 a)
OF OF
— =— =0. 5.2b
8280 =0 8280 =0 ( )

This invariance does not give any relation for 82 F/8T0z2, and 8*F/9z§,, and

83F N No N1 b )
= 2 a,t a.i 0, 0 0, .
g =V 2 LMWkt (0.0) 2 (5.32)
84F Ng M
| =N a[2ainv,(0,0) # 0 (5.3b)
8200 z=0 a=1i=1 ’

are satisfied generically. The conditions (5.2) and (5.3) are nothing but the pitchfork con-
ditions, (3.8) and (3.9). Therefore, the pitchfork bifurcation occurs. The relation (5.2) is
structurally stable, since the reverse transformation invariance guarantees the relation even
if the energy parameters are slightly changed.

The stationary condition (3.6) can be solved as a power series with respect to €!/2. There
is a solution with the N-th order cyclic and reverse symmetries for any 7"

1 No N
) as,i,n = —¢€ Z ——'—’Ua’i(’l‘, 0) Z Z b[l]b,j,lvb,j(r, 0) + 0(62). (54)
x(r,0)=1 A, 0) b=175=1

Let us define a constant A by

A Exro=1(a[L]v?(0, 0)v(r, 0))(b[1]v(r, 0))/A(r, 0) — (b[2]v*(0,0))
§(al2]v*(0,0)) = X, r0)=1(al1v?(0, 0)u(r, 0))2/(2A(r, 0))

(5.5)

where abbreviated notations (a[1]v2(0,0)v(r,0)) = 220, Z;V:ll a[1]a,3,1v2 ;(0,0)va,;(r, 0), ete.
are used. If Ae > 0, there is a pair of solutions:

SV n = £V Aev,:(0,0) + O(e). (5.6)
This pair of solutions does not exist if Ae < 0. The pair of solutions has the N-th order cyclic
symmetry but does not have the reverse symmetry. They are related with each other by
the reverse transformation: RIM§V+ = §V~. There are four types of bifurcation diagrams
(Fig. 4). There is no symmetry breaking of the N-th order cyclic symmetry, i.e., all the
solutions have the N-th order cyclic symmetry. On the other hand, the symmetry breaking
of the reverse symmetry occurs in this case. In Fig. 4a, a minimum with the reverse symmetry
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for T > T, becomes a saddle point for T < T, and a pair of minima without the reverse
symmetry appears for T < T,. In Fig. 4b, a pair of minima without the reverse symmetry
for T' > T, disappears at T' = T, and a saddle point with the reverse symmetry for 7" > T,
becomes a minimum with the reverse symmetry for 7' < T,. In Fig. 4c, a saddle point with
the reverse symmetry for 7' > T, becomes a minimum with the reverse symmetry for T' < 7.
There is also a pair of saddle points without the reverse symmetry for 7' < T... In Fig. 4d, a
minimum with the reverse symmetry for 7 > T, becomes a saddle point for 7' < T,. There
is also a pair of saddle points without the reverse symmetry for 7' > T..

(b) «(N/2) and no reverse symmetry case

If N is even, there is another real a(N/2) (= —1). Let us assume that one of the modes cor-
responding to «(/V/2) becomes a zero eigenvalue mode. This zero eigenvalue is simple. It is
also assumed that the solution V* has no reverse symmetry. Let (r, k) = (0, N/2) correspond
to this zero eigenvalue mode. The corresponding eigenvector is given by (v, (0, N/2)(=1)"),
which has the (N/2)-th order cyclic symmetry. The zero eigenvalue coordinate zq /e is
transformed to &2g /2 under the N-th order cyclic transformation. The N-th order cyclic
transformation invariance of the free energy gives the relation, :

0*°F O°F
. - =0 5.7a
c")TazO,N/g =0 8Tazo,N/2 2=0 ( )
3F 3
____83 == agF =0, (5.7b)
aZO,N/2 0 820,N/2 =0

as in (5.2). Therefore, the structurally stable pitchfork bifurcation occurs.
The stationary condition (3.6) can be solved as a power series with respect to €/? as in
(5.4). There is a solution with the N-th order cyclic symmetry for any 7"

NoN1—-1 1 Ny Ni
Viin=—€ 3 ——vai(r,0)(3_ > b[1]sj10,;(r, 0)) + O(€?). (5.8)
C S A0 b=1j=1

Let us define a constant A by

Sr2o* (af1]v*(0, N/2)u(r, 0)) (bl1]u(r, 0)) /A(r, 0) — (b[2]v*(0, N/2))

A= == , 5.9
H(aZJoh(0, N/2)) — 2 a[11vA(0, N/2)e(r, 0)2/(2A(r,0) 59

instead of (5.5). If Ae > 0, there is a pair of solutions:
6V = £V A v,,3(0, N/2)(=1)" + O(e). (5.10)

This pair of solutions does not exist if Ae < 0. According to consideration on the N-th order
cyclic transformation invariance, it can be proved that z,; = 0 for £ # 0, N/2. Then, the
pair of solutions 6V, % has the (IN/2)-th order cyclic symmetry:

a,i,n

—_ +
- 5Va,i,n

SVE

a,t,n+2m

(a=1,..,Np;i=1,..,Nyn=1,..N;m=1,.,N/2—-1) (5.11)
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The solutions of the pair are related to each other by the 2nd order cyclic transformation:
7][N](5V+ = §V~. There are four types of bifurcation diagrams (Fig. 4). In Fig. 4a, a
minimum with the N-th order cyclic symmetry for 77 > T, becomes a saddle point for
T < T, and a pair of minima with the (/N/2)-th order cyclic symmetry appears for T < T.
In Fig. 4b, a pair of minima with the (N/2)-th order cyclic symmetry for 7' > T, disappears
at T = T,, and a saddle point with the N-th order cyclic symmetry for 7" > T, becomes
a minimum with the N-th order cyclic symmetry for 7' < T,.. In Fig. 4c, a saddle point
with the /N-th order cyclic symmetry for 7' > 7. becomes a minimum with the N-th order
cyclic symmetry for 7' < T,. There is also a pair of saddle points with the (N/2)-th order
cyclic symmetry for 7' < T.. In Fig. 4d, a minimum with the N-th order cyclic symmetry
for T' > T, becomes a saddle point for 7" < T,.. There is also a pair of saddle points with the
(N/2)-th order cyclic symmetry for 7" > T..

(c) «a(N/2) and the reverse symmetry case

The presence of the reverse symmetry does not change the above bifurcation diagram. The
symmetry breaking of the reverse symmetry does not occur even if the reverse symmetry
index of the zero eigenvalue mode is —1. The pair of solutions §V* has the reverse symme-
try:
RN SVE=6VE  if x(0,N/2) = —1 (5.12a)
RIMIGVE=6VE i x(0,N/2) =1 (5.12b)
(m=0,1,..,N/2 = 1),

which is the (N/2)-th order reverse symmetry.

V-C Symmetry breaking of cyclic symmetry

Next, we consider the case in which one of the modes corresponding to a complex a(K) (K €
Uy, K # 0, N/2) becomes a zero eigenvalue mode. This eigenvalue is doubly degenerate. In
this subsection, we assume that there is no common divisor for K and N. In order to simplify
the discussion, let us first consider a specific case, i.e., Ny =1, N =5, K = 1 and the suffix a
is neglected since it is not relevant to the symmetry properties. The index r is also omitted.
In this case, the solution V* has the reverse symmetry and the reverse symmetry indices of
all the eigenmodes are +1. A more general case will be discussed later.

(a) N =5,a(l), the reverse symmetry and y = 1 case

The free energy function F(V* + 0V, T, + €) in terms of the eigen coordinate {zx|k =
0,£1,42} is given by

F(V* 48V, Ts +€)/5 =
1 1 .
—2-)\(0),28 + A(2)z229 + €b[1)20 + é—eb[2](zg +2(Z121 + Z229))

1
+§a[1](z3 +620(Z121 + Zozo) + 3(2229 + 2229 + 2122 + 7172)) (5.13)
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1
+£—ﬂa[2]{z§ + 12z§(21z1 + EQZQ) + 12z0(22z% -+ 222% -+ zlzg + 215%)
+6((§1Z1)2 + (22,22)2 + 4(21,21)(5222)) —+ 4(,2%,22 -+ 2%22 + zlzg + leg’)} + .

Because of the invariance under the N(= 5)-th order cyclic transformation (4.23) and the
N (= 5)-th order reverse transformation (4.32), only the invariant combinations under (4.23)
and (4.32) appear in (5.13).

The solution of the stationary condition, F/dz; = 0, can be calculated as a power series
with respect to ¢'/2. Note that in (5.13) the leading orders for zq are z2 and ez, those for z
are €(2121), 20(Z121), and (Z12)%, and those for z; are (Z32;) and (%2} + 2,2?). This implies
that the leading orders of the stationary solution are zg ~ €, (Z121) ~ ¢, and 2z ~ 22 . Then
the non-zero eigenvalue modes zy and z; are an order of e. On the other hand, the zero
eigenvalue mode z; is an order of ¢}/2. The non-zero eigenvalue modes zy and z can be

expanded as
[ee]

2 = Zz,(cs) (k=0,2), (5.14)

§=2

where z,(f) is an order of €¥/°. By assuming that z; is an order of ¢'/#, the stationary conditions

for zy and z; can be solved successively, and z; (k = 0,2) can be expressed in terms of z;:

s/2 1/2

= Ce+ CY(zz) + C’Ole(zlzl) + C5(am)? + Céf"l’(zi +2)+ ... (5.15a)
02 122 + 0(3 T+ 602 127+ 02 222 (Z1z) + .. (5.15Db)

where C)’s are coefficients of order ¢*/2 which can be determined by comparing the terms

of order €/2 in OF/0z, = 0. Because of the invariance under the 5-th order cyclic transfor-
mation and the 5-th order reverse transformation, each term on the right hand side of (5.15)
has the same transformation property as the left hand side. Substituting (5.15) into (5 13),
one can get the effective free energy for the zero eigenvalue mode z;:

F(z) = -;—dle(zlzl) + %dQ(ZlZl)Q + Bl—dg(zi + )+ (5.16a)
di/5 = 2b[2] — 2a[1]b[1]/A(0) (5.16b)
ds/5 = al2] — 2a*[1]/A(0) — a®[1]/A(2) (5.16¢)
ds/5 = 5a’[1]/(8)\%(2)) — 5a[1]a[2]/(12X(2)) + a[3]/24. (5.16d)

This corresponds to the effective free energy in the center manifold [12] defined by 0F/0z;, =
0 for £ = 0,2. The effective free energy function F(z;) is a function of the elementary
invariant combinations, (%1z;) and (23 + 2) [11], because of the invariance under the 5-th
order cyclic and reverse transformations. The leading order terms, €(Z121) and (z;21)? in
(5.16), are invariant under the continuous transformation:

72— €z (0<0<2m). (5.17)

Therefore, the leading order solution is continuously degenerate. However, the higher order
term, (25 + 2}), which is not invariant under the continuous transformation (5.17) but in-
variant under' (4.23), breaks this continuous degeneracy. Let us define a polar coordinate
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(v, ) by .
7 = e, v>0, 0< ¢ < 2m. (5.18)

Then, the free energy (5.16) can be written as
1, , 1, , 2 .
F(1,8) = 5dier” + 727" + 2ds7” cos 56 + ... (5.19)

The shape of the effective free energy (5.19) is shown in Fig. 5. The stationary conditions
are given by

oF

0= oy = (dye + doy?® + 2day* cos 5o + ...)y (5.20a)
oF

0= T ~2d37°sin5¢ + ... . (5.20b)

The equation (5.20) has a solution:
7=0 (5.21)

for any €, which has the 5-th order cyclic and reverse symmetries since it has only symmetric
component zg. If (edy/ds) < 0, there is another set of solutions:

v/ (—d1/ds)e + O(e) (5.22a)

’>/ =
¢ = jn/5 (7=0,1,...,9) . (5.22b)
The stability of these solutions is determined by the curvature matrix:
O*F/0v* = dye + 3dyy® + 8dsy> cos 5¢ + ... (5.23a)
9*F[0¢* = —10d37° cos 5¢ + ... (5.23b)
9*F/9v0¢ = —10dsy*sin5¢ + ... . (5.23¢c)

The curvature matrix of the symmetric solution, v = 0, becomes
O F[0v* = dye. (5.24)

The symmetric solution is stable for d1e > 0, and unstable for die < 0. The curvature matrix
for the set of solutions (5.22) becomes

8 F/07* = —2die + O(e/?) (5.25a)
2F/8¢* = —10ds(—(d1/d2)€)*? cos(jm) + O(e®) (5.25b)
P F/9vd¢ = 0. (5.25¢)

The stability with respect to ¢ depends on the sign of d3. The curvature (82F/8¢?) becomes
positive for j:even (odd) if d3 < 0 (> 0). The stability with respect to v is opposite to
that of the symmetric solution. The curvature (82F/8+?%) becomes positive for d;e < 0, and
negative for dye > 0. Let us denote j:even (odd) solutions by

28[J] = ye?I/o (5.26a)
20[J] = yel@mI/50m/5) (7 =01, .., 4), (5.26b)
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where v is given by (5.22a). Under the 5-th order cyclic and reverse transformations, they
are transformed as

T2 = o(1)"2[J]) = 2[J +m]  (mod 5) (5.27a)

2] = a(l)"f[J] = #[J +m]  (mod 5) (5.27D)
REZ[J) = a(1)"2[J] = 2[m — J]  (mod 5) (5.27c)
REZ[J] = a(1)"2°[J]) = 2%[m — J — 1]  (mod 5). (5.27d)

These solutions are related by the 5-th order cyclic transformations 7.°! and have no cyclic

symmetry. From (5.27), it is proved that they have the 1st order reverse symmetry:
REL,261J] = 2[J)  for m[J] =2J (mod 5), (5.28a)
RE 240 = 2] form/[J]=2J+1 (mod 5). (5.28b)

Therefore, the cyclic symmetry is broken by this bifurcation while the reverse symmetry is
preserved.

Four types of bifurcation diagrams are illustrated in Fig. 6. In Fig. 6a, a minimum with
the 5-th order cyclic symmetry for T' > T, becomes a saddle point with the 5-th order cyclic
symmetry for T' < T,. Five minima appear together with five saddle points for T' < T..
These new minima are not symmetric with respect to the cyclic symmetry. In Fig. 6b, five
minima without the cyclic symmetry for 7" > T, disappear together with five saddle points
without the cyclic symmetry at 7' = T,. A saddle point with the 5-th order cyclic symmetry
for T' > T, becomes a minimum with the 5-th order cyclic symmetry for ' < T,. In Fig. 6c,
a saddle point with the 5-th order cyclic symmetry for 7' > T, becomes a minimum with
the 5-th order cyclic symmetry for T < T,. There are ten saddle points without the cyclic
symmetry for T < T.. In Fig. 6d, a minimum with the 5-th order cyclic symmetry for
T > T, becomes a saddle point with the 5-th order cyclic symmetry for 7" < T,.. There are
ten saddle points without the cyclic symmetry for 7 > 7. All of the solutions have the
reverse symimetry.

(b) «(K) and no reverse symmetry case

Almost the same argument can be made for a general case with arbitrary Ny and N, where
Ny = Ny N. First, let us assume there is no reverse symmetry, i.e., the minimum at the
bifurcation point has no reverse symmetry. Let (r, k) = (0, K') be the zero eigenvalue mode.
The stationary solution can also be calculated as a power series with respect to €'/2. Con-
sideration on the order of € indicates that the zero eigenvalue mode zg g is an order of €l/?,
the symmetric modes 2, are an order of ¢, and all other modes are an order of € or higher.
(There is an exception, i.e., N = 3. In this case, the zero eigenvalue mode z¢ g is an order of
€, since (2§ i + %3 i) becomes a leading order term in the free energy.) The stationary condi-
tions, 8F/dz., = 0 for (r, k) # (0, K), can be solved in terms of € and zo g which is assumed
to be an order of €1/2, Due to the invariance under the N-th order cyclic transformation
(4.23), 2,5 can be expressed as

zp = C8 e+ Cy(Zo.xc20. 1) + O () (5.29a)
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g = C% ez ¢ + O(¥?) (r #0) (5.29b)
C'(l,c 120 + O(el+h/2)
Zrg = or (5.29¢)

Crini +O(e¥212),

where [; is the minimum integer that satisfies ;K = k (mod N), and /5 is the minimum
integer that satisfies —loK = k (mod N). The leading order term is given by zéfK (ZézK)
if Iy < Iy (I; > l3). Substituting (5.29) into the free energy function, one can obtain the
effective free energy for the zero eigenvalue mode zg g:

1 -
—(dszdx + dsZp i) + ... - (5.30)

1 1
F(ZO,K) = §d1€(ZO,KZO,K) + —dg(ZO’KZO’K)Q + ...+ N

4
Because of the invariance under the N-th order cyclic transformation (4.23), the effective
free energy function F(zo k) is a function of (Zo,xz0,x), 20 x and Zyg, if there is no reverse
symmetry. The stationary solution of 8F/dz¢ x = 0 can be obtained by using the same
argument as in the N = 5 case. There is a symmetric solution for any e:

zox = 0. | (5.31)
If (edy/ds) < 0, there is another set of solutions:

24 (] = el 2T/ Goal) (5.32a)
20 glJ] = (2T [N)+(E(m—¢o)/N) (J=0,1,..,N —1), (5.32b)

where v is given by (5.22a) and d3 = |ds|e®°. The stabilities of these solutions are the same
as in the N = 5 case. Under the N-th order cyclic transformation, they are transformed as

7:7£N] 2o%[J] = a(K)" 2% ] = oxlJ +mK] (mod N). (5.33)

They are transformed to each other by the N-th order cyclic transformations 7, and have
no cyclic symmetry. Then, there are four types of bifurcation diagrams as shown in Fig. 6
like in the case of N = 5. The only difference is that N = 5 is replaced by an arbitrary
N. For example, the bifurcation diagram in Fig. 6a corresponds to the situation in which
a minimum with the N-th order cyclic symmetry for T > T, becomes a saddle point with
the N-th order cyclic symmetry for T < T,. N minima without the cyclic symmetry appear
together with N saddle points without the cyclic symmetry for T < T.. These solutions
have no reverse symmetry.

(¢) «(K), the reverse symmetry case

Now, we consider the effect of the reverse symmetry. Let us assume that the minimum
solution at the bifurcation point has the reverse symmetry. In this case, the elementary
invariant combinations under the reverse transformation (4.32) are (Zo,xz0,x) and (z{'x +

x(0, K)NZx), since |x(0, K)|* = 1. The effective free energy function F(z ) is the same
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as in (5.30) except that (dsz)'x + dsZ} ) is replaced by ds(z)x + x(0, K)"2)x). There is a
symmetric solution (5.31) for any e. If (ed;/d2) < 0, there is another set of solutions

2 g [J] = eI IFEeE (5.34a)
2871{[]] — fye(i27rJ/N)+(i7r/N)+(i¢/2) (J=0,1,..,N - 1), (5.34b)

where v is given by (5.22a) and x(0, K) = e®. The stabilities of these solutions are the
same as in the N = 5 case. Their transformation properties under the N-th order cyclic
transformation are the same as in (5.33). The solutions (5.34) are transformed to each other
by the N-th order cyclic transformation 7% and have no cyclic symmetry. Under the N-th
order reverse transformation, they are transformed as

Rz U] = x(0, K)a(K)" % x[J] = 2 xlmK — J]  (mod N)  (5.35)

RIZS 4[] = x(0, K)o K)™ 2] [ J] = 2 [mK — J = 1] (mod N). (5.35b)
From (5.35), it is proved that they have the 1st order reverse symmetry:

Rzt klJ) = 2§ k[J] for m[JJK =2J (mod N) (5.362)
RO 28 [T = 25 4 [J] for m/[J]K =2J +1 (mod N). (5.36b)

Therefore, the reverse symmetry is not broken in this case. The bifurcation diagrams are
the same as those without reverse symmetry except that all the solutions have the reverse
symmetry.

V-D Partial symmetry breaking of cyclic symmetry

In Sec.V-C, it is assumed that there is no common divisor for K and N. In the following,
it is assumed that the greatest common measure of N and K is @ (> 1). Let us define
R=N/Q and P = K/Q. Then, NP = KR is satisfied and there is no common divisor for
P and R. Main differences from the argument in Sec. V-C are the following.

1. Under the N-th order cyclic transformation (4.23), z., is transformed like z., —
(k)™ 2k, while 2§ ;- (2} &) is transformed like 2§ — (k)™ 2} x (2h x — (k)™ 2 k).
The transformation factors are written as a(k)™ = e2"(™*)/N and o (K)™ = e2m(miK)/N
(a(K)~™ = e=27mK)/N) In order that 2} (2} x) is transformed like 2, the con-
dition k = (K (—IK) (mod N) should be satisfied. If k is a multiple of @, there is an
[ that satisfies this condition. If £ is not a multiple of @, this condition can not be

satisfied for any [. Therefore, (5.29c) is replaced by

cY 2y itk=1Q
=4 Ui, , _ 5.37
ik { 0 if k is not a multiple of Q. (5:37)

Since a(k)® =1 for k = 1Q, the above solution satisfies the symmetry:

e = (k)™ 2, (m=1,..,Q—1). (5.38)
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This corresponds to the -th order cyclic symmetry:
7;[ZQ]zr,k = Zrk (m=1,..,Q—1), (5.39)

where 7,19l = 7:%].

2. Since a(K)® = 1, elementary invariant combinations under the N-th order cyclic
transformation (4.23) are given by (% xz0,x), 2o and z§'x. Then, the effective free
energy function F'(zp i) can be written as

1 1 1 -
F(Z(),K) = —dlf(ZO,KZO,K) -+ —dQ(ZO,KZO7K)2 + ...+ —(d3z(1)%,K -+ d32(fK) “+ ... (540)
2 4 R

The set of solutions with the @-th order cyclic symmetry (5.39) is given by

26 x[J] = yel I/ R= (/R | (5.41a)
23 k[ J] = e/ RFGT=d0)/B) (] =0,1,..,R ~1), (5.45b)

where 7 is given by (5.22a) and d3 = |ds|e*?°. Under the N-th order cyclic transforma-
tion, the solutions are transformed as

7:,[ZN]ZS:§{[J] = a(K)"25%[J] = 25%[J + mP] (mod R). (5.46)

i

They are transformed to each other by 7,/M (m =1,..., R — 1), since P and R have
no common divisor. The bifurcation diagrams are the same as in Sec.V-C, except that
the IV solutions in Sec.V-C are replaced by the R solutions with the Q-th order cyclic
symmetry. :

3. The effect of the reverse symmetry is the same as in Sec.V-C, if the role of N and K
are replaced by R and P in (5.34) ~ (5.36), respectively. The reverse symmetry is not
broken. The bifurcation diagrams are the same as those without the reverse symmetry
except that all the solutions have the reverse symmetry.

V-E Summary

The previous arguments can be summarized as follows. The MFT free energy for a TSP
with Ny cities is invariant under the Ny-th order cyclic transformation (4.2) and the reverse
transformation (4.3). At high temperature (T' > —&nin/4), there is a unique minimum
of the free energy. This unique minimum has the Ng-th order cyclic symmetry and the
reverse symmetry. In the MFT annealing process, one will follow this minimum solution to
a sufficiently low temperature by gradual lowering of the temperature. As the temperature
decreases, bifurcations of minimum solutions occur.

If Ny is decomposed as Ny = N1 N, minima with the N-th order cyclic symmetry (4.7)
may appear. These minima may or may not have the reverse symmetry (4.8). If they have
the reverse symmetry, there must be /N, equivalent minima with the N-th order cyclic and
reverse symmetries, due to the Ny-th order cyclic and reverse transformation invariance.
These minima are related to each other by the Ni-th order cyclic transformation. If they do
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not have the reverse symmetry, there must be 2/V; equivalent minima with the N-th order
cyclic symmetry due to the Ng-th order cyclic and reverse transformation invariance.
There are three types of bifurcations.

1. Saddle-node bifurcation
2N; (N7) equivalent minima with the N-th order cyclic symmetry (and the N-th
order reverse symmetry) may appear or disappear simultaneously by the saddle-node
bifurcation. In TSPs, most typically 2Ny (;i.e., N1 = Ny, N = 1) non-symmetric
equivalent minima appear.

2. Reverse symmetry brealing bifurcation

The reverse symmetry may break by this bifurcation; it is one type of pitchfork bifur-
cation. The cyclic symmetry does not break by this bifurcation. There are four types
of bifurcation diagrams as shown in Fig. 4. If there are N; equivalent minima with
the N-th order cyclic and reverse symmetries, each minimum may bifurcate into a pair
of minima without the reverse symmetry but with the N-th order cyclic symmetry
(Fig. 4a). If there are 2N; equivalent minima without the reverse symmetry but with
the N-th order cyclic symmetry, IN; pairs of minima may collide at the N; bifurcation
points and new /N7 minima with the N-th order cyclic and reverse symmetries may
appear (Fig. 4b). Also, Ny equivalent minima with the N-th order cyclic and reverse
symmetries may appear (Fig. 4c) or disappear (Fig. 4d) simultaneously.

-3. Cyclic symmetry breaking bifurcation

The cyclic symmetry may break by this bifurcation. The reverse symmetry does not
break by this bifurcation. There are four types of bifurcation diagrams as shown in
Fig. 6. Let us assume N is further decomposed as N = R - Q. If there are 2/V;
(N1) equivalent minima with the N-th order cyclic symmetry (and the N-th order
reverse symmetry), each minimum may bifurcate into R equivalent minima with the
Q-th order cyclic symmetry (and the @-th order reverse symmetry) (Fig. 6a). If there
are 2N} (IV7) equivalent sets of R minima with the @-th order cyclic symmetry (and
the Q-th order reverse symmetry), 2Ny (NV7) sets of R minima collide at the 2Ny (Ny)
bifurcation points and new 2Ny (N7) minima with the N-th order cyclic symmetry (and
the N-th order reverse symmetry) may appear (Fig. 6b). Also, 2N; (N;) equivalent
minima with the N-th order cyclic symmetry (and the N-th order reverse symmetry)
may appear (Fig. 6¢) or disappear (Fig. 6d) simultaneously.

If the annealing solution bifurcates into N7 (or 2/V;) minima with the N-th order cyclic
symmetry, one can follow the annealing solution since these minima are equivalent to each
other. If the annealing solution is annihilated and there are more than two distinctive local
minima having lower free energy values than the annihilation point at that temperature, one
may not uniquely follow the annealing solution because of the instability at the annihilation
point. Whether the annealing solution is unique or not depends on the basin structure of the
local minima. Therefore, the MFT annealing procedure does not necessarily give a unique
minimum solution in general, even though the procedure is deterministic.

When new minima appear, these local minima have a higher free energy than that of
the global minima at that temperature. However, free energy levels of local minima may
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cross each other as the temperature decreases. Therefore, the MFT annealing procedure
does not guarantee the optimal solution. As a consequence, the annealing solution in the
MFT annealing is, in general, a not-so-bad solution and is not unique.

V-F Example

Let us show a typical example of a bifurcation diagram. Figure 7a is a bifurcation diagram
of a 5-city TSP, where V;; (i =1,...,5) for every minimum are plotted against temperature.
Figure 7b is the corresponding free energy diagram. In the experiment, the parameter A in
(4.1) is set to be 1.5.

At high temperature, i.e., T > 0.52, there is a unique minimum (a). This minimum
has the 5th order cyclic and reverse symmetries. At T7 =~ 0.52, a saddle-node bifurcation
occurs. Since all new minima have neither the cyclic symmetry nor the reverse symmetry,
10 non-symmetric minima (b) appear simultaneously. Since the new born minima (b) are
local minima, their free energy level must be higher than that of the symmetric minimum (a)
at the bifurcation temperature. However, the former becomes lower than the latter as the
temperature is lowered. This free energy crossing occurs at 7" =~ 0.518 as seen in Fig. 7b. At
T, = 0.50, another saddle-node bifurcation occurs, and 10 non-symmetric minima (c) appear.
At T3 ~ 0.48, a cyclic symmetry breaking bifurcation occurs. The minimum (a) with the
5th order cyclic and reverse symmetries bifurcates into five minima (d) without the cyclic
symmetry but with the 1st order reverse symmetry. Because of the reverse symmetry, there
are only three cascades observed in Fig. 7a. At Ty = 0.475, a reverse symmetry breaking
bifurcation occurs, and each of the five minima with the 1st order reverse symmetry (d)
collides with saddle-points and eventually becomes a saddle-point. After this bifurcation,
the original annealing solutions disappear. At this temperature, there exist two sets of
minima, (b) and (c), and the free energy levels of these minima are lower than that of
the disappearing minima as shown in Fig. 7b. In this case, due to the instability of the
disappearing bifurcation point, which minimum is found is ambiguous, even if the procedure
is deterministic. This example shows the non-uniqueness of the MFT annealing solution.

VI MFT annealing of Potts spin model

VI-A MFT for Potts spin model
A Potts spin model [9, 14] for a TSP is defined by an energy function:

1 N() NO
E(S) = 5 Z Wa,n;b,mSa,nSb,m + Z ']a,nSa,n (61)
a,bn,m=1 a,n=1
1 No A No Np B No No
= = Y DaSan(Sons1+ Sone1) + = 2 O San — 1)+ =D > SanSam
' 2 a,b,n:l 2 n=1 a=1 2 a=1 n;ﬁm

where Potts spin variables S, , (= 1 or 0) satisfy the constraints:

Ny
> Sen=1 (a=1,..., Np). (6.2)
n=1
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The MFT free energy for the Potts spin model (6.1) is given by

F(V) = B(V)+TH(V), (6.3a)
1 No No
E(V) = 5 Z Wa,n;b,mva,n‘/b,m‘}‘ Z Ja,nVa,n, (63b)
a,b,n,m=1 a,n=1
No
H(V) = Z Va,nlogva,m (6.30)
a,n=1

where the analog variables V,,, € [0,1] represent the probability that S, . takes a value 1
and satisfies the constraint:

No
S Ven=1 (a=1,..,Np). (6.4)
n=1

Both the free energy function (6.3) and the constraint (6.4) are invariant under the Ny-th
order cyclic transformation (4.2) and the Ny-th order reverse transformation (4.3). Therefore,
minima with the N-th order cyclic symmetry (4.7) may appear if Ng = NN;. They may or
may not have the N-th order reverse symmetry (4.8). If they have the reverse symmetry,
there must be NV} equivalent minima due to the Ng-th order cyclic transformation invariance
as in Sec. V . If they do not have the reverse symmetry, there must be 2/N; equivalent minima
due to the Ny-th order cyclic and reverse transformation invariance.
The gradient and the curvature of the entropy function (6.3c) are given by

oH
Von
O*H 1
ayr avr - — Yab 6nm :
VndVom 7

=logV, . +1, (6.5a)

(6.5b)

Since some values of V, , are zero at the boundary, the gradient of H, (6.5a), diverges at
the boundary. Since 1/V,, > 1, H(V) is a convex function. Then, the same argument as
in Sec. III-A can be made. Namely, a minimum of the free energy function (6.3) with the
constraint (6.4) occurs at the interior point and one can neglect the boundary constraint
0 < V., <1in the local analysis of the minima.

Let us define a new coordinate yo 4 by

1
Va,n = F Z ya,ka(k)n (CL,TL - 1’ "'7N0)a (66)
0 ke,

where a(k) is defined by (4.17) with N = Ny. Since V,, is real and a(k) = a(—k),
ga,k:ya,—k (Cl:]_,...,No;k EFNO) (67>

is satisfied. By using the relation:

No
S alk)"=0 for k+#0,k €Ty, (6.8)

n=1
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the constraint (6.4) can be explicitly solved as:

No .
ZVa,n:yajo =1 (a: 1,...,N0). (69)

n=1

Then, the problem is reduced to finding the minimum of the free energy function (6.3), in
which y, 0 is fixed to be 1, with respect to 9. for k£ 7 0. The free energy is still invariant
under the Ny-th order cyclic transformation:

Yoo — 7'jnN°]ya,k = a(k)™Yor (a,m=1,..,No;k#0,k € Ty,) (6.10)
and the Ny-th order reverse transformation:
Ya,k _)Rgzv(]]ya,k :a(k)mga,k (CL: 17)N07m:O77N0—1)k7é0ak € PNO)‘ (611)

Near the bifurcation point (V*, T,), which has the N-th order cyclic symmetry (4.7), one can
define eigenmode coordinate z,; as in Sec. IV-B by using the eigenvectors of the curvature
matrix (§2F/8VOV)(V*,T,). The transformation properties of the eigenmode coordinate
zrr under the N-th order cyclic and reverse transformations are the same as in (4.23) and
(4.32). The analysis for the bifurcation of the minimum solution can be done in the same
way as in Sec. V. The only difference is that the No-th order cyclic symmetry mode y,
is fixed by the constraint (6.9). Therefore, the minimum solution with the Ng-th order
cyclic symmetry can not appear or disappear by the saddle-node bifurcation. Other types
of bifurcations as described in Sec. V can also occur in this model.

VII Conclusion

In this paper, we investigated the MFT bifurcation processes for MF'T applied to traveling
salesman problems. Due to the cyclic and reverse symmetries of the TSP free energy function,
some special bifurcations occur: cyclic symmetry breaking bifurcations and reverse symmetry
breaking bifurcations. Saddle-node bifurcations also occur. Which type of bifurcations
occurs depends on the symmetry of the eigenvector that corresponds to the zero eigenvalue
mode of the free energy curvature matrix at the bifurcation point. In the MF'T annealing
process, a sequence of the above-mentioned bifurcations occurs and the bifurcation structure
affects the quality of the annealing solution. The annealing solution in the MFT annealing is
not unique in general, although the procedure is deterministic. Moreover, the MF'T annealing
procedure does not always give the optimal solution. As a consequence, the annealing
solution is, in general, a not-so-bad solution and is not unique. Our approach can also be
applied to the Potts spin model and its bifurcation structure is almost the same as that of
the MFT.
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Figure 2 Saddle-node bifurcation.
A new minimum appears at the bifurcation point.

A saddle-node bifurcation that generates a new local minimum. (a) T'wo graphs, y = dH/dz,
and y =n(x —x0)/T for T < T,, T =T,, and T > T, are shown. (b) The graph of (9F/dz)
for T > T,. There is only one minimum. (c) The graph of (8F/0z) for T = T,. A new
stationary point is generated. (d) The graph of (8F/8z) for T < T,. There are three
stationary points; two are minima and the other is a saddle-point. (e) The graphs of F for
T>T,T="T.,and T <T,. (f) The graphs of (8°F/8z%). At the bifurcation point, i.e.,
T =T, and = = 0, the free energy curvature is 0. (g) A new minimum and an unstable
saddle point are born at T' = T, beside the existing minima as the temperature decreases.
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Figure 3 Saddle-node bifurcation.
A minimum disappears at the bifurcation point.

A saddle-node bifurcation that annihilates a local minimum and a saddle point. (a) Two
graphs, y = dH/dz, and y = n(z — x0)/T for T < T,, T =T, and T > T, are shown. (b)
The graph of (3F/0x) for T > T,. There are three stationary points; two are minima and
the other is a saddle-point. (c) The graph of (8F/dz) for T = T.. The minima and the
saddle point collide with each other. (d) The graph of (9F/8z) for T < T.. There is only
one minimum. (e) A minimum and a saddle point collide with each other at T' = T beside
the existing minima and are annihilated as the temperature decreases.
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Figure 1
Schematic figure of the MFT bifurcation processes. The abscissa denotes the value of a
state variable, and the ordinate denotes the temperature. The unique symmetric minimum
at high temperature bifurcates into equivalent minima without cyclic symmetry through
a cyclic symmetry breaking bifurcation at " = T4, and is annihilated through a reverse
symmetry breaking bifurcation at 7" = T5. Besides them, new minima are generated by
saddle-node bifurcations T’ = T3 and T = T}.

- -
..........
4 -~

a b C d

Figure 4
A reverse symmetry breaking bifurcation. The abscissa denotes the value of a state variable,
and the ordinate denotes the temperature. The upper side of each figure denotes high
temperature. The solid line and dotted line denote a stable stationary point (minimum) and
an unstable stationary point (saddle point), respectively. The straight line and curved line
denote a stationary point with reverse symmetry and without reverse symmetry, respectively.
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Figure 5
The shape of the effective free energy, Eq. (5.19), on a 2-dimensional subspace composed
by two eigenvectors that correspond to the zero eigenvalue mode. Five minima without
cyclic symmetry, five saddle points without cyclic symmetry, and a saddle point with cyclic
symmetry can be observed. Stationary points without cyclic symmetry are located on the

circle whose diameter is 7.
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Figure 6

A cyclic symmetry breaking bifurcation. The abscissa denotes the value of a state variable,
and the ordinate denotes the temperature. The upper side of each figure denotes high
temperature. The solid line and dotted line denote a stable stationary point (minimum) and
an unstable stationary point (saddle point), respectively. The straight line and curved line
denote a stationary point with the N-th order cyclic symmetry, and a stationary point with
the @Q-th order cyclic symmetry, respectively, where N = R - Q. In this figure, N = 5 and
Q=1
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Figure 7(b)

(a) A typical example of a 5-city TSP bifurcation diagram, where V1 ; (i = 1, ...‘, 5) for every
minimum are plotted against temperature. (b) The corresponding free energy diagram.
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