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Abstract 

In this paper, we investigate bifurcation processes for the mean field theory (MFT) 
annealing applied to traveling salesman problems (TSPs). Due to the symmetries of the 
TSP free energy function, some special bifurcations occur: cyclic symmetry breaking 
bifurcations and reverse symmetry breaking bifurcations. Saddle-node bifurcations also 
occur. Which type of bifurcations occurs depends on the symmetry of the eigenvector 
that corresponds to the zero eigenvalue mode of the free energy curvature matrix at 
the bifurcation point. In the MFT annealing process, a sequence of bifurcations occurs 
and the bifurcation structure affects the quality of the annealing solution. It is shown 
that the annealing solution in this process is not unique in general, and it is not always 
the optimal solution. Our approach can also be applied to the Potts spin model and 
its bifurcation structure is almost the same as that of the MFT. 
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I Introduction 

In his original paper, Hopfield [1] showed that a Lyapunov function can be defined for analog 
Hopfield network and the network always converges to a local minimum of the Lyapunov 
function. When the slope of the sigmoidal output function becomes very large, the Lyapunov 
function is nearly equal to the energy function, which has a quadratic form of the state vari-
ables. By utilizing this feature, the Hopfield network can be used for solving combinatorial 
optimization problems defined as minimizing of the quadratic energy function [2]. 

The physical meaning of the Hopfield network was further clarified by Peterson and 
Anderson [3, 4]. They showed that the Hopfield network is equivalent to the mean field 
theory (MFT) of the Boltzmann machine [5]. In this sense, the MFT can also be called a 
"Deterministic Boltzmann Machine" [6]. The Lyapunov function of the Hopfield network 
corresponds to the free energy function in the MFT. This implies that the Hopfield network 
converges to a local minimum of the free energy function in the MFT. 

Wilson and Pawley [7] reported that the Hopfield network is not a good algorithm for 
solving combinatorial optimization problems when the problem scale becomes large. There-
fore, neural network approaches need some additional mechanisms for relatively large-scale 
problems. One of them is MFT annealing [8, 9], i.e., the mean field version of simulated 
annealing [10]. The free energy function has a unique minimum at high temperature. By 
gradually lowering the temperature, one can get a relatively good local minimum at low 
temperature. 

During the course of the annealing process, a sequence of bifurcations for minimum solu-
tions occurs. The structure of the bifurcations affects the quality of the annealing solution. 
In this paper, we theoretically study bifurcation structures in the MFT annealing. Traveling 
salesman problems (TSPs) are mainly studied, as they are representative of combinatorial 
optimization problems. Note that symmetries in a problem affect the structure of the bi-
furcations [11]. Without structurally stable symmetries in a problem, one can generically 
expect only saddle-node bifurcations to occur. However, the free energy function for a TSP 
has two types of symmetries, i.e., cyclic and reverse symmetries. Due to these symmetries, 
special types of bifurcations occurs. They are called cyclic symmetry breaking bifurcations 
and reverse symmetry breaking bifurcations. In TSPs, the unique minimum at high temper-
ature has such cyclic and reverse symmetries. In contrast, feasible minima at low tempera-
ture, which correspond to Hamilton paths, have no symmetries. Therefore, the symmetric 
minimum at high temperature bifurcates into equivalent minima with no symmetries or is 
annihilated at some temperature through the cyclic symmetry breaking bifurcations and the 
reverse symmetry breaking bifurcations as shown in Fig. 1. It should be added that new 
minima are mostly generated by saddle-node bifurcations as shown in Fig. 1. 

If the annealing solution is annihilated at some temperature and there are more than 
two distinctive minima at this temperature, whatever minimum is obtained by the anneal-
ing is not unique due to the instability at the annihilation point. This implies that the 
annealing solution in the MFT annealing is not unique in general, although the procedure 
is deterministic. This reminds us of the situation in chaotic dynamics [12]. 

When new minima are generated, their free energy levels are higher than that of the 
global minimum at that temperature. However, the free energy levels of some minimum 
solutions may cross one another as the temperature is lowered. Therefore, the MFT annealing 
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procedure does not always give the optimal solution. As a consequence, the annealing 
solution in the MFT annealing is, in general, a not-so-bad solution and is not unique. 

Peterson and Soderberg [9] proposed the Potts spin model for TSPs and showed that the 
performance of the Potts spin model with the annealing is comparable with the simulated 
annealing and some other conventional algorithms even for large-scale problems [13]. The 
bifurcation structure of the Potts spin model will be shown in this paper to be almost the 
same as that of the MFT. 

This paper is organized as follows. In Sec. II, the mean field theory is briefly explained. 
In Sec. III, saddle-node bifurcations are studied. In Sec. IV, symmetries in TSPs are 
studied. In Sec. V, local bifurcations in a problem with cyclic and reverse symmetries are 
described. A typical example of the bifurcation diagram in the MFT annealing is shown; 
this example shows the non-optimality and non-uniqueness of the annealing solution. In 
Sec. VI, the Potts spin model is studied. 

II Mean field theory 

Many N匹 ompleteoptimization problems can be described as a quadratic energy mini-
mization problem for binary variables Sn(= 0 or 1): 

l N N 

E(S) =— L Wnm品品+I:Jふ．
2 n,m=l n=l 

(2.1) 

In this formulation, constraints are treated as soft constraints, namely, the energy func-
tion (2.1) includes cost terms for constraint violations. The values of parameters Wnm and 
In are determined for each problem. 

In order to obtain the global minimum of the energy function (2.1), simulated annealing 
[10] can be used. However, in many cases, simulated annealing for the energy function (2.1) 
is too time consuming. Another approach is to use the mean field theory (MFT). 

The MFT [3, 6] is a mean field theory approximation for the Boltzmann machine [5], 
which is statistical mechanics with the energy function (2.1). In the MFT, a叫 ogvariables 
Vn E [O, 1], which represent the probability that the binary variable Sn takes the value 1, are 
introduced. They are assumed to be independent variables. The MFT free energy F(V) is 
given by 

F(V) = E(V) + T・H(V), 
1 

E(V) =ーLWnmVnVm+ LJ占，
2 

H(V) =区[Vi叶ogv;□ (1 -v; 砂log(l-Vn) + log 2] , 

(2.2a) 

(2.2b) 

(2.2c) 

where T and (-H) correspond to the temperature and entropy, respectively. In the following, 
His called entropy function. The term log 2 in (2.2c) is added to let H(V) satisfy H(V) 2: 0. 
Then the free energy decreases as the temperature decreases. This MFT free energy function 
is identical to the Lyapunov function of the analog Hopfield model [l]. Statistical equilibrium 
corresponds to a minimum of the MFT free energy function F (2.2), where the following 
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stationary condition is satisfied: 

fJF N Vn 
＝ 

叩
~Wnm• Jn + T log ( )  = 0. 
m=l 

1-Vn 
(2.3) 

Introducing new variables Un by Un = T log(Vn/ (l -Vn)), the stationary condition (2.3) can 
be rewritten as 

N 

広＝一 LWnm此ー In, (2.4a) 
m=l 

1 
Vn = G([! 砂三 1 + e-Un/T・

(2.4b) 

The solution of this MFT equation [3] can be obtained by using the analog Hopfield model 
[l]: 

dUn(t) oF 

dt 
T = --= -Un(t)一I:Wnm Vm(t) -ln, 

8Vn 

乳(t)= G(Un(t)), 

the asynchronous MFT equation [4]: 

Un(t + 1) =— LWnmVm(t)- Jn, 

枕(t+ 1) = G(Un(t + 1)), 

or the gradient field dynamics of the free energy: 

Td~?) =一塁＝ーTlog し~鸞い）―LWnmVm(t)-Jn-

)
、
、
'`l,

a

b

 

5
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．
 

2

2

 

（

（

 

(2.6a) 

(2.6b) 

(2.7) 

At the high temperature limit (T→ oo), the free energy (2.2a) is dominated by the 
entropy term (T・H) and there is a unique minimum as will be proved in a later section. 
At the low temperature limit (T→ 0), on the other hand, the free energy function F (2.2a) 
is nearly equal to the energy function E (2.2b). The minima of the energy function (2.2b) 
in the hyper cube region (Vn E [O, 1]) coincide with those of the energy function (2.1) for 
binary variables, if we assume the condition 

Wnn =0 (n = 1, …, N). (2.8) 

Therefore, at the low temperature limit, the local minima of the free energy function (2.2) 
correspond to those of the energy function (2.1). If the temperature is fixed at a low value, 
whatever local minima are found by using (2.5), (2.6), or (2.7) are completely dependent on 
the initial condition. 

In order to get a good local minimum of the energy function E (2.1), the MFT annealing 
[8] can be used. First, the MFT equation (2.3) is solved at high temperature and a unique 
solution is obtained. Then after slightly lowering the temperature, the MFT equation (2.3) 
is solved again starting from the higher temperature solution. By continuing this process, 
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one can get a low temperature solution that corresponds to a local minimum of the energy 
function (2.1). 

There are a couple of questions to this procedure. Is the annealing solution unique? Does 
the annealing solution correspond to the global minimum of the energy function (2.1)? In 
the following, we will study these questions. 

III Bifurcations in the MFT annealing 

III-A Free energy function 

The entropy function H (2.2c) has special properties. The second derivative, i.e., the curva-
ture of H is given by 

防H

8Vn8Vm 

0nm 

Vn(l -Vn)' 
(3.1) 

where c5nm is Kronecker's delta. Since 

〇SVn(l -v; 叶S1/4 for OS Vn S 1, 

the curvature matrix (伊HIav fJV) can be written as 

（がH/fJVfJV)= 4・1 + (positive semi-definite matrix), 

(3.2) 

(3.3) 

where 1 is the identity matrix. The curvature matrix of the free energy function is given by 

沙F 82H 

8Vn8V 
= Wnm +T 

m 8¼ 泣vm・
(3.4) 

Let~min denote the minimum eigenvalue of the energy curvature matrix W. ~min is negative if 
condition (2.8) is satisfied. When temperature Tis greater than (-~min/ 4), the curvature of 
the free energy function, (3.4), is positive definite. This implies that the free energy function 
is convex and there is a unique minimum of the free energy. At the low temperature limit, the 
free energy has a lot of local minima. Therefore, at some critical temperature T, 孔こー~min/4),
a bifurcation of the minimum solution, which corresponds to the phase transition in statistical 
mechanics, occurs. 

The gradient of H, i.e., &H/叩=log(i!; サ(1-Vn)), diverges at the boundary (Vn = 
0 or 1). From the convexity of Hand the finiteness of the energy gradient, it can be shown 
that the free energy decreases toward the interior direction with an infinite gradient at the 
boundary if T > 0. This implies that minima of the free energy function (2.2) are interior 
points and never occur at the boundary. Therefore, in any local analysis on minima of the 
free energy function, one can neglect the boundary constraint O~Vn~l. 

The bifurcation of minimum solutions for the free energy function F (2.2) is equivalent to 
the bifurcation of the analog Hopfield model (2.5), whose Lyapunov function is given by the 
MFT free energy function (2.2), and a non-linear dynamical system with a gradient vector 
field (-&F/&V) (2.7) [12]. However, stability of the stationary point in the asynchronous 
MFT equation (2.6) is, in general, different from that of the free energy function (2.2). 
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A minimum solution v; at the critical temperature Tc satisfies the stationary condition 
(2.3). Near the bifurcation point (V;, T, ふthefree energy (2.2) can be expressed as a Taylor 
series with respect to oVn = Vn -v;'and E = T -T, ぶ

F(V, T) = F(V* + oV, Tc+ c) = F(V*, T, 砂+½匹岱m=lMnmov; 誡Vm

＋喜こ贔 a[l]誡巧＋出 ~1;!=1 a[2]砂四+... (3.5a) 

十E~1::=l b[l]誡Vn+½心 1;!=1b[2]誡巧＋．．．，

where 

Mnm 
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82F 
=Wnm+ 

6nm冗

叩叩 v;(1-v;)' 

竺（竺） = Tc(2V; -1) 
av: 訊=Tc 8V; (V;(l -V;))2' 

紅 がH 2Tc(3(V;)2 -3均+1) 
冗=Tc (可)= (V;(l心））3'  

叶 8H v; 
叫 T=可=log (1 -v;)' 

がF 82H l 
＝＝  

av;;ar av;; v;(1-v;)' 

(3.5b) 

(3.5c) 

(3.5d) 

(3.5e) 

(3.5f) 

The stationary condition (2.3) becomes 

0= 四~=lMnm叩＋知[1]れ図＋斎a[2]誡巧＋…
+c:b[l ]n + c:b[2]nc5Vn +… 

III-B Saddle-node bifurcation 

(3.6) 

The bifurcation structure depends on a symmetry of the problem. In this section, we consider 
a case where there are no symmetries. A problem with symmetries will be considered in the 
later sections. If there are no symmetries, one can generically expect that the curvature 
matrix M of the free energy, (3.5b), will have a simple zero eigenvalue at the bifurcation 
point. Let v = [vn] be the eigenvector for the zero eigenvalue. In this case, there are 
three types of bifurcations, namely, saddle-node type, transcritical type, and pitchfork type 
bifurcations [12]. 

According to the bifurcation theory [12], the necessary conditions for these bifurcations 
are as follows. If the conditions 

シn(iJ'F) (OH N 

n=l 
可 T = I:vn詞） = I: 疇 [l]n-/0, 

n=l 
(3.7a) 

and 

n,t/nV訊 k(8Vn:~ ⑳ vJ = T,L:V! (誓り =t碍a[l]ncf 0 (3.7b) 
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are satisfied, saddle-node bifurcations occur. If the conditions 

(3.7a) ==} = 0, (3.8a) 

N 岱F EJ2H こい (DVnDV,詞T)~Lv;(尻r)=L心[2]nf 0, (3.8b) 

and (3. 7b) are satisfied, transcritical bifurcations occur. If the conditions 

(3.7b) =⇒ =0, (3.9a) 

こ(av"av~;□ vJ =T, 区v!(! ニ） = L 碍a[2]n"f 0, 

and (3.8) are satisfied, pitchfork bifurcations occur. However, when no structural stable sym-
metries exist in the problem, conditions (3.8a) and (3.9a) are broken down by a slight change 
of the energy parameters, such that transcritical and pitchfork bifurcations become saddle-
node bifurcations. Therefore, one can generically expect that only saddle-node bifurcations 
occur if there are no structurally stable symmetries in a problem. 

In order to understand how the bifurcation of the minimum solution occurs, it is helpful 
to study the free energy function restricted in the center subspace [12] at the bifurcation 

point, which is a line defined by 

(3.9b) 

恥=X・Vn + v;, X1 :S X :S X2 

where x1 and x2 are determined by the requirement that this line segment should lie within 
the hyper cube (Vn E [O, 1]). Then, the above-shown bifurcation conditions can be rewrit-
ten in terms of this reduced free energy function in the center subspace. The saddle-node 
conditions (3.7) can be rewritten as 

82F dH 

8x8T dx 
=I-0 

x=O x=O 

(3.10a) 

0ザ沿H
釦 3

=Tc 
dx3 

ヂ0, (3.1Gb) 
x=O x=O 

which are equivalent to the saddle-node conditions for the reduced one-dimensional free 
energy. The conditions for the transcritical and pitchfork bifurcations are also equivalent 

to those of the reduced free energy. Therefore, which type of bifurcation occurs for the 
original free energy can be determined by studying the bifurcation behavior of the reduced 

free energy which is easily visualized. In the following, we will study how the reduced free 
energy landscape changes as T varies. 

The first, the second, and the fourth derivative of entropy function H with respect to x 

are given by 
dH N 

＝ 
dx 

LVnlog 
Vn 

n=l (1 -Vn)' 
(3.lla) 



Bifurcations in MFT annealing 8
 

鱈 N

戸＝〗 (Vn(/: Vn)) >〇，

がH N 碍(3(Vn-1/2)2 + 1/4) 
d丑 =L n=l (Vn(l -v;』)3

> o. 

(3.llb) 

(3.llc) 

From (3.llb) and (3.lla), one can see that (dH/dx) is a monotonically increasing function 
and diverges at the boundary (x = x1 or x砂.(3.llc) and (3.llb) show that (d2 H/d丑） is 
a convex function and diverges at the boundary, indicating that (d3 H / d炉） is negative in 
X1 < Xく叩 andpositive in巧<x < x2 for some x3. This implies that (dH / dx) has a 
negative curvature in x1 < x < x3 and has a positive curvature in四<x < x2. Therefore, 
the shape of (dH/dx) has a tan-like shape as shown in Fig. 2a. 

The stationary condition (2.3) along this line is given by 

dH l dE T/ 
石＝ーテ（五）＝テ(x-xo), 

I:Wnm叫信＋区 JnVn
Xo = -

区Wnm四Vm'

(3.12a) 

(3.12b) 

rJ =一I:WnmV砂 m.
n,m 

(3.12c) 

Since v is the eigenvector corresponding to the zero eigenvalue of M (3.5b) at the bifurcation 

point (v;'T, ふ
N L w N V 

2 

T/ = - nm Vn Vm = Tc L n > 0 
nm= n=l均(1-v;) 

holds. Since the stationary condition is satisfied at the bifurcation point, 

dH T/ 
- =--x。
dx x=O Tc 

(3.13) 

(3.14) 

also holds. 
The stationary condition (3.12) can be solved graphically. Solutions of (3.12) are inter-

sections of the two graphs, y = dH/dx and y = ry(x -x0)/T. If the saddle-node condition 
(3 .10) is satisfied, x。-1-0 holds. The graphs, y = dH/dx and y = ry(x -x0)/T in this case 
are drawn in Fig. 2a. At the bifurcation point x = 0, the two graphs meet tangentially. 
From Fig. 2a, one can get the graph of (8F/8x), Fig. 2b ~ 2d. Then, the graphs of F 
(Fig. 2e) and (82F/紀） (Fig. 2f) follow. It can be seen that there is no stationary solution 
near the bifurcation point for T > Tc and a stable and an unstable stationary point appear 
for T < Tc. This implies that a new minimum and an unstable saddle point are born at 
T = Tc besides the existing minima as the temperature decreases as shown in Fig. 2g. At the 
birth of the new minimum, this minimum has a higher free energy than that of the global 
minimum at the critical temperature Tc. The graph of (82F/8呼） in Fig. 2f shows that the 

condition (83 F /年）lx=O -1-0, (3.10b), is satisfied. 
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There is another case whose figure is drawn in Fig. 3. In this case, a minimum disappears 
together with an unstable saddle point at T = Tc as the temperature decreases. 

If the saddle-node condition (3.10) is satisfied, the stationary condition (3.6) can be 
solved as a power series with respect to c1/2. The leading order term can be calculated as 

oVn =がVn (3.15a) 

(x予＝一f_f'i, (3.15b) 

2I:vnb[l]n 2 (dH/dx)lx=O 
K, = = 冗碍a[l]n 中(』~IT/』ふ I . 

(3.15c) 

This leading order of the stationary solution coincides with that of the reduced free energy. 
Therefore, stabilities of the stationary solutions are determined by those for the reduced 
one dimensional free energy drawn in Fig. 2 and Fig. 3. If K, > 0, there is no solution for 
E > 0 (T > T, 砂andthere is a pair of solutions for E < 0 (T < Tc). This corresponds to 
Fig. 2, where a new minimum is born as T decreases. If K, く 0,there is no solution for 

€ く O(T < T, 砂andthere is a pair of solutions for E > 0 (T > Tc)-This corresponds to Fig. 3, 
where a minimum disappears as T decreases. 

IV TSP and symmetries 

IV-A Cyclic and Reverse Symmetries in TSP 

The bifurcation structure is affected by the symmetry of the problem [11]. In the following, 
we consider the traveling salesman problem (TSP) having a cyclic symmetry and a reverse 
symmetry. An energy function for the TSP is given by 

E(V) 

N。 N。
1 

＝ー L Wa,n;b,m兄，占，m+L la,nい +E。
2 
a,b,n,m=l a,n=l 

1 
N。

= 2 L Da叫 (Vi,(n+l)+ Vb,(れー1))
a,b,n=l 

号[~図兄，n - I)'+謬兄，nーザ +2苔い(1-v.,.i]' (4.1) 

where Ni。isthe number of cities, Va,n represents the probability that the salesman visits city 
a at the n-th visit, and Dゅ denotesthe distance between city a and city b. This energy 
function is invariant under the cyclic permutation of the variable: 

V ―→ Tょ~oly (m = 1, …, N。ー 1)) (4.2a) 

where~ 嘉:"1°1is the Ni。-thorder cyclic transformation operator defined by 

(~ ょ~o]yい= Va,n+m (a, n = l, …, No), (4.2b) 
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T塁。三 TJt'oland Va,n+N。三 Va,n.The energy function is also invariant under the reverse 
transformation: 

v —噂巴v (m = 0, 1, ... N;。ー 1))

where R四isthe N。-thorder reverse transformation operator defined by 

偉巴V)a,n= Va,m-n (a,n=l, …, N。)

and冗誓嘉。三冗認al.The transformations (4.2) and (4.3) form a group: 

冗[No]= 1 (identity operator), 

7[No]7[No] = 7[No] 
m n m+n, 

7[N。次[No] [No] 
m n ＝冗m+n, 

冗[No]7[No]=冗[No]
m n m-n, 

冗誓°喩四 =TJ翌 (n,m = 0, 1, …，N。ー 1).

(4.3a) 

(4.3b) 

(4.4a) 

(4.4b) 

(4.4c) 

(4.4d) 

(4.4e) 

The entropy and the free energy functions are also invariant under these transformations. 
The cyclic permutation symmetry corresponds to the fact that the tour length does not 
depend on the starting city. The reverse symmetry corresponds to the fact that the tour 
length does not change when the tour direction is reversed. 

There is a symmetric stationary solution Va* of the free energy function for any T: 

, V* = V* an ， a (a,n=l, …, N。)． (4.5) 

This can be proved as follows. The stationary condition for the symmetric solution can be 
derived from the reduced free energy function for the symmetric solution, which is given by 

Fs/Ni。=
No A 
こ加VaVb +-[N。L(Va-1/N祖+(L Va -1)2 + 2 LVa(l -Va)] 
ab=l 

2 a a a 

+T I:Wa log Va+ (1 -Va) log(l -Va)]. (4.6) 
a 

Since this reduced free energy function has at least one minimum point for any T, the 
original free energy function also has a symmetric stationary solution for any T. Since 
the original free energy function has a unique minimum at the high temperature limit, the 
unique minimum must be this symmetric solution (4.5). Below the critical temperature, this 
symmetry breaks down to partially symmetric solutions or non-symmetric solutions. 

If N;。isdecomposed as a product of two integers N1 and N, i.e., N;。=N1N, a partially 
symmetric solution V having a symmetry: 

V* = V* a,(n+kN1) a,n (a= 1, …, N。;n = 1, ... , N1; k = 1, …, N-1) (4.7) 

may appear. We call this symmetry the N-th order cyclic symmetry. This solution may or 
may not have the N-th order reverse symmetry: 

V* = V* a,(mo+kN1-n) a,n (a,n = 1, …, N。;k = 0, l, …, N-1) (4.8) 
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for a specific m。 (1~m。こ凡） called a reflection point index. If there is a minimum 
solution with the N-th order cyclic and reverse symmetries, there must be N1 equivalent 
minimum solutions due to the invariance of the free energy function under the N。-thorder 
cyclic and reverse transformations. They are related with each other by the N 1 -th order 

cyclic transformation: 

Va,n--+ Va,n+m (a, n = 1, …，N。;m=  1, …, N1 -1). (4.9) 

Each solution has a different reflection point index m。 (1~m。こ凡） for the reverse symme-
try (4.8). If they do not have the reverse symmetry, there must be 2N 1 equivalent minimum 
solutions. They are related with each other by the N1-th order cyclic transformation (4.9) 
and the N1 -th order reverse transformation: 

Va,nー-+Va,m-n (a, n = l, ... , Ni。;m=0, ... ,N1-l). (4.10) 

If one expands the free energy function around a minimum solution V* with the N-th 

order cyclic symmetry, (4.7), with respect to 6Va,n = Va,n -Va*n, the free energy function 
F(V* + 6V) is invariant under the N-th order cyclic transformation: 

5V→ TJNJ5y (m = 1, ... , N -1), (4.lla) 

where the N-th order cyclic transformation operator~ 炉 isdefined by 

(~ 炉V)a,n= (Tl岱V)a,n= Va,(n+mN1) (a, rl = l, …，N。) (4.llb) 

and T);1N三 T炉.If the solution V* has the N-th order reverse symmetry (4.8), the free 
energy function F(V* + 6V) is also invariant under the N-th order reverse transformation: 

<5Vー違罰v (m = 0, 1, ... , N -l), 

where the N-th order reverse transformation operator冗炉 isdefined by 

偉四V)a,n= (冗誓。叫mN1V)a,n = Va,(mo+mN1-n) (a, n = 1, …，N。)

and冗
[N] 
m+N三冗誓l.

(4.12a) 

(4.12b) 

In order to make symmetric properties clear, it is convenient to change the numbering of 

the suffix (a讚）. Let us define a vector variable V with the triple suffix (a, i, n) by 

鳳，n三 Va,(i+(n-l)N1) (a= 1, …, N。;i = 1, …, N1;n = 1, …，N). (4.13) 

From the definition, Va,i,n satisfies the relations Va,i,n+N = Va,i,n and Va,i士N1,n = Va,i,n士1・
Then, the N-th order cyclic and reverse transformations can be expressed as 

(TJt'lV)a,i,n =ぬ，n+m (4.14a) 

誓 V)a,i,n= {~a,m0-i,m-n+2 (m。>i 2 1) 
Va,mo-i+N1,m-n+l (N1 2 i 2 m。)

(4.14b) 

The suffix n corresponds to the N-th order cyclic symmetry, the suffix i corresponds to 
the broken cyclic symmetry and the suffix a is irrelevant to the symmetry property. In the 
following, we consider the bifurcation of a minimum solution with the N-th order cyclic 
symmetry (4.7). It may or may not have the N-th order reverse symmetry (4.8). Also, we 

use the renumbered variable <,i,n and omit ~. 
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IV-B Eigenmodes for the curvature matrix 

As in the previous section, the curvature matrix M of the free energy function at the bifur-

cation point is given by 

M・ a,i,n;b,j,m (8Va,i~::½,j,m) (V*'T, 砂

Wa,i,n;b,j,m + 
知妬:6nm匹

Vい(1-V: い）
(4.15) 

(a,b=l, ... ,Ni。;i,j = l, ... ,N1;n,m= 1, ... ,N). 

Because of the invariance under the N-th order cyclic transformation (4.14a), the curvature 

matrix has the symmetry: 

Ma,i,n;b,j,m = Ma,i,(叶 k);b,j,(m+k)= Ma,i,N;b,j,(m-n) (4.16a) 

(a,b=l, ... ,N。;i,j = 1, ... ,N1;n,m,k = l, ... ,N), 

which can be expressed in a matrix form as: 

MTJt'l =~ 炉M. (4.16b) 

Then, eigenvectors of the curvature matrix M are also eigenvectors of the N-th order cyclic 

transformation 7[N]_ The eigenmodes of this matrix are characterized by the N-th roots of m 

1: 

麟
a(k) = exp (N), a(k)N = 1, a(k) = a(kt1 =・a(-k), k Eい (4.17)

where rN = {O, 土1,…，土(N/2-1), N/2} for even N, and rN = {O, 土1,…，土(N-1)/2} for 
odd N. The eigenvector of M associated with a(k) can be written as 

如，i,n(k)三 Va,i(k)・a(kt (a= 1, ... , N,。;i = 1, …, N丘n= l, …, N), (4.18) 

which is also an eigenvector of the N-th order cyclic transformation: 

T四u(k)= a(k)mu(k). (4.19) 

The reduced (N,。,N1)-dimensional eigen equation for Va,i(k) is written as 

No N1 

I: I: Da,i;b,j(k)vぃ(k)=入(k)va,i(k) (a=l, ... ,Ni。;i = 1, …, Nり， (4.20a)
b=l j=l 

N 

na,i;b,j(k) = L Ma,i,N;b,j,nc:Y(kt (a, b = l, …, N。;i,j = 1, …, Nり. (4.20b) 
n=l 

Since Mis a real symmetric matrix, !l(k) becomes a Hermite matrix: n't (k) = n(k), where 

t t denotes the Hermite conjugate, i.e., Da,i;b,j三 Db,j;a,i・Therefore,the eigenvalue入(k)is real. 
From (4.20b), n(k) satisfies 

O(k) = n(-k), (4.21) 
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which implies that v(k) = v(-k) and入(k)=入(-k).Then, eigenvectors ofM, (va,i(k)cx(k)門
and (va,i(k)cx(-kt), have the same eigenvalue, so that an eigenvalue corresponding to com-
plex cx(k) is doubly degenerate and an eigenvalue corresponding to real cx(k)(= 1 or-1) is sim-

ple. Let {va,i(r, k)lr = 0, 1, …, N。凡ー1;k E r N} and {入(r,k)lr = 0, 1, …, N。凡ーl;k Er砂
be the complete set of the eigenvectors and the eigenvalues of (4.20), respectively. Let us 

de且nethe eigenmode coordinate Zr,k by 

N訊 1-l
叩，ぃ=I: I: 各，k・(va,i(r,k)・a(kげ）

如ゴN r=O 

In terms of the eigenmode coordinate Zr,k, the N-th order cyclic transformation (4.14a) 

becomes 
Zr,k —➔ T!N]各，k = a(k)m各，K

(a= 1, …, N。凡；n = l, …，N). (4.22) 

(m = 1, ... , N -1). (4.23) 

The eigenmode coordinate Zr,k forms the irreducible representation of the cyclic symmetry 

group, whereas the original variable bVa,i,n forms the reducible representation. Since bVa,i,n 

is real and加，i(r,k) = Va,i(r, -k), the relation: 

孟，k= Zr,-k (4.24) 

holds. 
If the minimum solution V* has the N-th order reverse symmetry (4.8), M satisfies the 

relation 

冗岱M=M定. (4.25) 

Let us define a reverse transformation matrixた(k)in the reduced space (a, i) by 

兌(k)a,i;b,j三 (a(k)20m0-i,j・十 a(k)omo-i+N1,j)Oab・ (4.26) 

Then, 兌(k)satisfies 

兌t(k)兌(k)= 1 : 兌一l(k)=兌t(k). 

From relation (4.25), it follows that 

た(k)O(k)= 0(-k)兌(k).

This implies that 
兌(k)v(r,k) = x(r, k)v(r, -k), 

(4.27) 

、
I
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where x(r,k) is a complex number and satisfies lx(r,k)l2 = 1 due to (4.27). x(r,k) is called 
the reverse symmetry index. By using兌(k),the N-th order reverse transformation for the 

eigenvector of M, Ua,i,n(r, k)三 Va,i(r, k)a(k)叫canbe written as 

偉四u(r,k))a,i,n = a(k)可た(k)v(r,k))a,ia(-k)叫

From (4.29), it can be proved that 

冗岱u(r,k) = x(r, k)a(k)mu(r, -k). 

(4.30) 

(4.31) 

Then, the N-th order reverse transformation (4.14b) for eigenmode coordinate Zr,k becomes 

ロー｝冗誓］各ょ=x(r, k)0:(k)m孟，k・ (4.32) 

It should be noted that孟ょ=Zr,k and x(r, k) =土1for a real 0:(k) since n(k) = n(-k), v(r, k) = 

v(r, -k) = v(r, k) and兌(k戸=1 are satisfied for a real 0:(k). 
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V Bifurcations in TSP 

V-A Saddle-node bifurcation 

(a) N = l case 

14 

If the solution V* at the bifurcation point has no symmetry, which corresponds to N = l, 
the saddle-node bifurcation occurs as explained in Sec. III. In this case, 2N。equivalent
minima appear or disappear simultaneously by the saddle-node bifurcation due to the N。-th
order cyclic and reverse transformation invariance of the free energy function. 

For a solution V* with the N-th order cyclic symmetry, (4. 7), the bifurcation structure 
depends on which eigenmode becomes a zero eigenvalue mode at the bifurcation point as 

described below. 

(b) a(O) and no reverse symmetry case 

First, let us assume that one of the eigenvectors with the N-th order cyclic symmetry, which 

corresponds to a(O) (= 1), becomes a zero eigenvalue mode. Let (r, k) = (0, 0) correspond 
to this zero eigenvalue mode. Since a(O) is real, this eigenvalue is simple. It is also as-
sumed that the solution V* has no reverse symmetry. The zero eigenvalue coordinate z00 
does not change under the N-th order cyclic transformation (4.23). Then, the N-th order 
cyclic transformation invariance of the free energy does not give any special relation for the 
quantities, 82 F / fJT加。 andがF/8z5。,which characterize the saddle-node condition (3.7). 
In this case, the saddle-node condition is generically satisfied: 

伊F No Ni 

&T&zoo 
= N~ ~b[l]a,i,1Va,i(O, 0)ヂ0,

z=O a=l i=l 
(5.la) 

忍F No N1 

d 
3 =NE  Ea[l]a,i,1心(0,0) o/ 0, (5.lb) 
Zoo z=O a=l i=l 

where b[l]a,i,1 = b[l]a,i,n = log(Va~i,i/(1 -Va~i,1)) and a[l]a,i,1 = a[l]a,i,n = Tc(2Va~i,l -
1) / (V: ふ，1(1-V: ふ，1))2as in (3.5). Therefore, 2N1 equivalent minima with the N-th order 
cyclic symmetry appear or disappear simultaneously by the saddle-node bifurcation. 

(c) o:(O), the reverse symmetry and x = l case 

Let us consider the case that the minimum solution V* at the bifurcation point also has the 

reverse symmetry. If the reverse symmetry index of the zero eigenvalue mode, x(O, 0), is +1, 
the zero eigenvalue coordinate z00 does not change under the reverse transformation (4.32) 

since z00 is real. Then, the reverse transformation invariance of the free energy does not give 
any special relation for 8守/8Toz。。 andがF/8z5。,and the saddle-node bifurcation occurs. 
In this case, N1 equivalent minima with the N-th order cyclic and reverse symmetries appear 

or disappear simultaneously by the saddle-node bifurcation. 
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V-B Pitchfork bifurcation 

(a) a(O), the reverse symmetry and X = -1 case 

If the reverse symmetry index of the zero eigenvalue mode, x(O, 0), is -1, the zero eigenvalue 

coordinate z00 is transformed to -z00 under the reverse transformation (4.32). Then, the 

reverse transformation invariance of the free energy gives the relation 

舒F がF
＝一

8T8zoo 8T8zoo 
= 0, 

z=O z=O 
がF がF
- =-―=  0. 
釦t。z=O OZ8。z=O

This invariance does not give any relation for炉F/8T8翡。 andがF/azt。,and 

、
¥
_
／
、

1
,

a

b

 

2

2

 

5

5

 

（

（

 

がF No N1 

8T8z名。
= NL  L b[2]a,i,1心(0,0) =f. 0, 

z=O a=l i=l 
がF No N1 

8 4 
= NL  L a[2]a,i,1心(0,0) =f. 0 

zoo z=O a=l i=l 

are satisfied generically. The conditions (5.2) and (5.3) are nothing but the pitchfork con-

ditions, (3.8) and (3.9). Therefore, the pitchfork bifurcation occurs. The relation (5.2) is 

structurally stable, since the reverse transformation invariance guarantees the relation even 

if the energy parameters are slightly changed. 
The stationary condition (3.6) can be solved as a power series with respect to c112. There 

is a solution with the N-th order cyclic and reverse symmetries for any T: 

(5.3a) 

(5.3b) 

叩，i,n~ 一'I:入(:0)い (r,0) (言〗 b[1 },,J,l v,,j (r, 0)) + 0(召）
x(r,O)=l 

Let us de且nea constant△ by 

(5.4) 

△=  
区x(r,0)=1(a[l]炉(0,O)v(r, O))(b[l]v(r, 0))/入(r,0) -(b[2]炉(0,0))

¼(a[2]v4(0, 0))一区x(r,0)=1(a[l]炉(0,O)v(r, 0))2 / (2入(r,O)) ' 

where abbreviated notations (a[l]v2(0, O)v(r, 0)) 三区ご竺1 区〉且 a[l]a,j,1V~,j(O, O)va,j(r, 0), etc. 
are used. If△ E > 0, there is a pair of solutions: 

(5.5) 

rv; ふ＝土辺心Va,i(O,0) + 0(1:). (5.6) 

This pair of solutions does not exist if△ E < 0. The pair of solutions has the N-th order cyclic 

symmetry but does not have the reverse symmetry. They are related with each other by 

the reverse transformation: 冗炉JV+= sv-. There are four types of bifurcation diagrams 
(Fig. 4). There is no symmetry breaking of the N-th order cyclic symmetry, i.e., all the 

solutions have the N-th order cyclic symmetry. On the other hand, the symmetry breaking 

of the reverse symmetry occurs in this case. In Fig. 4a, a minimum with the reverse symmetry 
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for T >匹 becomesa saddle point for T < Tc and a pair of minima without the reverse 

symmetry appears for T < Tc, In Fig. 4b, a pair of minima without the reverse symmetry 

for T > Tc disappears at T = Tc, and a saddle point with the reverse symmetry for T > Tc 
becomes a minimum with the reverse symmetry for T < Tc. In Fig. 4c, a saddle point with 

the reverse symmetry for T >箕 becomesa minimum with the reverse symmetry for T < Tc・

There is also a pair of saddle points without the reverse symmetry for T < Tc. In Fig. 4d, a 

minimum with the reverse symmetry for T >箕 becomesa saddle point for T < Tc. There 
is also a pair of saddle points without the reverse symmetry for T > Tc. 

iI“ 

(b) a(N/2) and no reverse symmetry case 

If N is even, there is another real a(N/2) (= -1). Let us assume that one of the modes cor-

responding to o:(N/2) becomes a zero eigenvalue mode. This zero eigenvalue is simple. It is 
also assumed that the solution V* has no reverse symmetry. Let (r, k) = (0, N /2) correspond 

to this zero eigenvalue mode. The corresponding eigenvector is given by (Va,i (0, N /2) (-lt), 
which has the (N /2)-th order cyclic symmetry. The zero eigenvalue coordinate zo,N/2 is 
transformed to土zo,N/2under the N-th order cyclic transformation. The N-th order cyclic 

transformation invariance of the free energy gives the relation, 

伊F 沙F
=- =0 

直釦。，N/2z=O 8T釦。，N/2z=O 

沙F 岱F
＝一釦 3

O,N/2 
釦 3

=0 ， 
z=O O,N/2 z=O 

(5.7a) 

(5.7b) 

as in (5.2). Therefore, the structurally stable pitchfork bifurcation occurs. 
The stationary condition (3.6) can be solved as a power series with respect to E1/2 as in 

(5.4). There is a solution with the N-th order cyclic symmetry for any T: 

NoN1 -1 1 No Ni 
c5V: ふ，n=一EL一―-va,i(r,O)(L L b[l]b,j,1Vb,j(r, 0)) + 0(召）. (5.8) 

r=O 入(r,0) b=lj=l 

Let us define a constant△ by 

△=  
こ羹盆「i-l(a[l]炉(0,N/2)v(r, O))(b[l]v(r, 0))/入(r,0) -(b[2]炉(O,N/2))

¼(a[2]v4(0, N /2)) -I:: 竺炉―1(a[l]炉(0,N/2)v(r, 0))2/(2入(r,O)) ' 

instead of (5.5). If△ E > 0, there is a pair of solutions: 

尻~,n =土辺立Va,i(O,N/2)(-1げ+O(c). 

(5.9) 

(5.10) 

This pair of solutions does not exist ifふく 0.According to consideration on the N-th order 

cyclic transformation invariance, it can be proved that Zrょ=0 for k # 0, N /2. Then, the 

pair of solutions bV: 嘉，nhas the (N/2)-th order cyclic symmetry: 

8V±: =8V土a,i,n+2m a,i,n (a= 1, …, N。;i = 1, …，N1;n = 1, …, N; m = l, ... , N/2 -1) (5.11) 
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The solutions of the pair are related to each other by the 2nd order cyclic transformation: 
冗鸞v+= Jv-. There are four types of bifurcation diagrams (Fig. 4). In Fig. 4a, a 
minimum with the N-th order cyclic symmetry for T >九 becomesa saddle point for 
T < Tc and a pair of minima with the (N /2)-th order cyclic symmetry appears for T < Tc. 
In Fig. 4b, a pair of minima with the (N /2)-th order cyclic symmetry for T >冗 disappears
at T = Tc, and a saddle point with the N-th order cyclic symmetry for T >冗 becomes
a minimum with the N-th order cyclic symmetry for T < Tc. In Fig. 4c, a saddle point 
with the N-th order cyclic symmetry for T >箕 becomesa minimum with the N-th order 
cyclic symmetry for T < Tc. There is also a pair of saddle points with the (N /2)-th order 
cyclic symmetry for T < Tc. In Fig. 4d, a minimum with the N-th order cyclic symmetry 
for T > Tc becomes a saddle point for T < Tc. There is also a pair of saddle points with the 
(N /2)-th order cyclic symmetry for T > Tc. 

(c) a(N/2) and the reverse symmetry case 

The presence of the reverse symmetry does not change the above bifurcation diagram. The 
symmetry breaking of the reverse symmetry does not occur even if the reverse symmetry 
index of the zero eigenvalue mode is -1. The pair of solutions bV土 hasthe reverse symme-
try: 

冗闘に応 =6V土

褐翫v士 =6V士

if X (0, N / 2) = -1 

if X (0, N / 2) = 1 

(m = 0, 1, ... , N /2 -1), 

which is the (N/2)-th order reverse symmetry. 

V-C S ymmetry breaking of cychc symmetry 

(5.12a) 

(5.12b) 

Next, we consider the case in which one of the modes corresponding to a complex a(K) (K E 

r N, K # 0, N /2) becomes a zero eigenvalue mode. This eigenvalue is doubly degenerate. In 
this subsection, we assume that there is no common divisor for Kand N. In order to simplify 

the discussion, let us first consider a specific case, i.e., N1 = 1, N = 5, K = l and the suffix a 
is neglected since it is not relevant to the symmetry properties. The index r is also omitted. 
In this case, the solution V* has the reverse symmetry and the reverse symmetry indices of 

all the eigenmodes are + 1. A more general case will be discussed later. 

(a) N = 5, a(l), the reverse symmetry and x = l case 

The free energy function F(V* + bV, 箕十 E)in terms of the eigen coordinate {叫k-
0, 土1,土2}is given by 

F(V* + 8V, Tc+ E)/5 = 
1 1 
—入(O)z弓＋入(2)22z2 + Eb[l]zo十一Eb[2](zさ+2(z1z1 + z2z砂）
2 2 
1 

+-a[l](z8 + 6zo(z了1z1+ z了2z2)+ 3(zfえらi+ zf z2 + z1z~ + z1z芸））
3! 

(5.13) 
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1 
+-a[2]{z6 + 12z名（ゑ1z1+乏豆z2)+ 12zo(ゑ：2z『+ z2芝『+z1z名＋ゑ・1z名）
4! 

+6((ziz1)2 + (ゑ了2z2)2+ 4(え:iz1)(乏了2z2))+ 4(zr Z2 + zrz2 + Zlえ;~ + z1z芸）｝ ＋ ．．． ． 
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Because of the invariance under the N(= 5)-th order cyclic transformation (4.23) and the 
N(= 5)-th order reverse transformation (4.32), only the invariant combinations under (4.23) 
and (4.32) appear in (5.13). 

The solution of the stationary condition, oF /年=0, can be calculated as a power series 
with respect to E112. Note that in (5.13) the leading orders for z。arez5 and Ezo, those for z1 

are E(z口），zo(z戸1),and (z戸1げ， andthose for z2 are (z辺） and (恥z『+Z2畔）. This implies 
that the leading orders of the stationary solution are z。~E, (z1z1) ~ E, and z2 ~ z『.Then 
the non-zero eigenvalue modes z。andz2 are an order of E. On the other hand, the zero 
eigenvalue mode z1 is an order of E112. The non-zero eigenvalue modes z。and砂 canbe 
expanded as 

00 

筏=~咋s) (k = 0,2), (5.14) 
s=2 

where Zks) is an order of E8/2. By assuming that z1 is an order of E112, the stationary conditions 

for z。andz2 can be solved successively, and Zk (k = 0, 2) can be expressed in terms of zじ

Zo = c?lc + C忍翌（均z1)+ C亙~{E(司z1)+ C, 閤i信1均）2+c, 忍5{(zf+ z『)＋… (5.15a) 

2だ2= c?lz『 +c品~{zf + cctl叶+ctiz『（均釘）＋…， (5.15b) 

where c(s),s are coefficients of order E8/2 which can be determined by comparing the terms 

of order Es/2 in fJF / fJ咋=0. Because of the invariance under the 5-th order cyclic transfor-

mation and the 5-th order reverse transformation, each term on the right hand side of (5.15) 
has the same transformation property as the left hand side. Substituting (5.15) into (5.13), 
one can get the effective free energy for the zero eigenvalue mode z1: 

（ 1 1 (- 2 1 (5 -5) F z1) = -2 d1c(z1z1) + -4 d2叩 1) + -5 d3 Z1 +召＋… (5.16a) 

di/5 = 2b[2] -2a[l]b[l]/入(0) (5.16b) 

d2/5 = a[2] -2a2[1]/入(0)-a2[1]/入(2) (5.16c) 

a厄/5 = 5a3[1]/(8〉?(2))-5a[l]a[2]/(12入(2))+ a[3]/24. (5.16d) 

This corresponds to the effective free energy in the center manifold [12] defined by fJF /年＝
0 for k = 0, 2. The effective free energy function F(z1) is a function of the elementary 
invariant combinations, (z口） and (zf +畔） [11], because of the invariance under the 5-th 
order cyclic and reverse transformations. The leading order terms, E(z1z1) and (z1z1)2 in 
(5.16), are invariant under the continuous transformation: 

Z1 ー➔ eie句 (0~0 < 21r). (5.17) 

Therefore, the leading order solution is continuously degenerate. However, the higher order 

term, (zf +畔）， whichis not invariant under the continuous transformation (5.17) but in-
variant under (4.23), breaks this continuous degeneracy. Let us define a polar coordinate 
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(r, </>) by 
釘=,e竺 12:0, 0 :S¢< 2冗

Then, the free energy (5.16) can be written as 

1 1 2 
F(,, ¢) = -d1E1ド+-d2ヅ4+ -d315 cos 5¢+ ... 

2 4 5 
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(5.18) 

(5.19) 

The shape of the effective free energy (5.19) is shown in Fig. 5. The stationary conditions 

are given by 

EJF 
0=―-= (die:+ d2,2 + 2d3,3 cos 5¢+…)1 

缶
EJF 

0 = - = -2d3,5sin5¢+ ... 
⑳ 

The equation (5.20) has a solution: 

,=0 

(5.20a) 

(5.2Gb) 

(5.21) 

for any E, which has the 5-th order cyclic and reverse symmetries since it has only symmetric 

component z。.If (砥/dり<0, there is another set of solutions: 

'Y =喜+O(c:) 

</> = j ri / 5 (j = 0, 1, ... , 9) . 

The stability of these solutions is determined by the curvature matrix: 

0ゲ/8ry2=如+3d2↑ + 8d3ry3 cos 5¢+… 

0ザ／繹＝ー10d3ry5cos 5¢+… 

8ゲ／釣⑳＝ー10d3ry4sin 5¢+ …• 

The curvature matrix of the symmetric solution,'Y = 0, becomes 

82F/庁 =d1c:. 

(5.22a) 

(5.22b) 

(5.23a) 

(5.23b) 

(5.23c) 

(5.24) 

The symmetric solution is stable for d1E > 0, and unstable for d1E < 0. The curvature matrix 

for the set of solutions (5.22) becomes 

82F/8斧＝ー2如+O(e:3/2) 

8ゲ／網＝ーlOd孔ー(dりん）e:)512 cos(j而） +0(召）

8ゲ／的加=0. 

(5.25a) 

(5.25b) 

(5.25c) 

The stability with respect to¢depends on the sign of d3. The curvature (伊F/8的 becomes

positive for j:even (odd) if肉く 0(> 0). The stability with respect to'Y is opposite to 

that of the symmetric solution. The curvature (びF/8笠） becomes positive for d1£< 0, and 

negative for d1£> 0. Let us denote j:even (odd) solutions by 

zf[J] =咋釦J/5

zf[J] =叫年J/S)+(irr/5) (J = 0, 1, …, 4), 
(5.26a) 

(5.26b) 
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where'Y is given by (5.22a). Under the 5-th order cyclic and reverse transformations, they 
are transformed as 

T嘉~lz~[J] = a(l)mz~[J] = z『[J+ m] (mod 5) 

TJ5lz『[J]= a(l)mz『[J]= z『[J+叫 (mod5) 

冗隠叶[J]= a(l)mznJ] = z~[m -J] (mod 5) 

冗位lzf[J]= a(l)mz『[J]=z『[m-J -1] (mod 5). 

(5.27a) 

(5.27b) 

(5.27c) 

(5.27d) 

These solutions are related by the 5-th order cyclic transformations Tfl and have no cyclic 
symmetry. From (5.27), it is proved that they have the 1st order reverse symmetry: 

翌B叶[J]= z~[J] for m[J] = 2J (mod 5), 

叫 [J]z『[J]=Z『[J] for m'[J] = 2J + 1 (mod 5). 

(5.28a) 

(5.28b) 

Therefore, the cyclic symmetry is broken by this bifurcation while the reverse symmetry is 
preserved. 

Four types of bifurcation diagrams are illustrated in Fig. 6. In Fig. 6a, a minimum with 

the 5-th order cyclic symmetry for T >冗 becomesa saddle point with the 5-th order cyclic 
symmetry for T < Tc. Five minima appear together with five saddle points for T < Tc. 
These new minima are not symmetric with respect to the cyclic symmetry. In Fig. 6b, five 
minima without the cyclic symmetry for T > Tc disappear together with five saddle points 
without the cyclic symmetry at T = Tc, A saddle point with the 5-th order cyclic symmetry 
for T > Tc becomes a minimum with the 5-th order cyclic symmetry for T < Tc. In Fig. 6c, 
a saddle point with the 5-th order cyclic symmetry for T >広 becomesa minimum with 
the 5-th order cyclic symmetry for T < Tc. There are ten saddle points without the cyclic 
symmetry for T < Tc. In Fig. 6d, a minimum with the 5-th order cyclic symmetry for 
T > Tc becomes a saddle point with the 5-th order cyclic symmetry for T < Tc. There are 
ten saddle points without the cyclic symmetry for T > Tc. All of the solutions have the 
reverse symmetry. 

(b) a(K) and no reverse symmetry case 

Almost the same argument can be made for a general case with arbitrary N。andN, where 

N。=N1N. First, let us assume there is no reverse symmetry, i.e., the minimum at the 
bifurcation point has no reverse symmetry. Let (r, k) = (0, K) be the zero eigenvalue mode. 
The stationary solution can also be calculated as a power series with respect to E 1/2. Con-
sideration on the order of E indicates that the zero eigenvalue mode zo,K is an order of E112, 

the symmetric modes Zr,。arean order of E, and all other modes are an order of E or higher. 
(There is an exception, i.e., N = 3. In this case, the zero eigenvalue mode zo,K is an order of 
E, since (z詠＋乏J,K)becomes a leading order term in the free energy.) The stationary condi-
tions, 8F/8zr,k = 0 for (r, k) =/ (0, K), can be solved in terms of E and z。,K which is assumed 
to be an order of E112. Due to the invariance under the N-th order cyclic transformation 

(4.23), Zr,k can be expressed as 

Zr,O = C贔＋噂，2位O,KZo,K) + Q (召） (5.29a) 
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(5.29c) 

where l1 is the minimum integer that satisfies liK = k (mod N), andらisthe minimum 
integer that satisfies -l2K = k (mod N). The leading order term is given by zl国（翡％）
if li s_:; ら(li2: ら） • Substituting (5.29) into the free energy function, one can obtain the 
effective free energy for the zero eigenvalue mode zo,K: 

1 1 2 1 
F(z。,K) = 2如信O,KZo,K)+ 4屯(z。,KZO,K) +…十丙（如贔+d:点以）＋…• (5.30) 

Because of the invariance under the N-th order cyclic transformation (4.23), the effective 
free energy function F(zo,K) is a function of (z。,xzo,K), z贔and乏贔 ifthere is no reverse 
symmetry. The stationary solution of EJF / oz。,K = 0 can be obtained by using the same 
argument as in the N = 5 case. There is a symmetric solution for any E: 

Zo,K = 0. 

If (Edi/d砂く 0,there is another set of solutions: 

恥 [J]=誓加J/N)-(油o/N)

叫 [J]= ,e(i珈 J/N)+(i(1r―c/,o)/N) (J = 0, 1, …，N -1), 

(5.31) 

(5.32a) 

(5.32b) 

where I is given by (5.22a) and d3 = [d3[e坤0. The stabilities of these solutions are the same 
as in the N = 5 case. Under the N-th order cyclic transformation, they are transformed as 

7嘉~lz瓜’災 [J] = a(K)m吋［災[J]=z~; 災[J+ mK] (mod N). (5.33) 

They are transformed to each other by the N-th order cyclic transformations Gょ~land have 
no cyclic symmetry. Then, there are four types of bifurcation diagrams as shown in Fig. 6 
like in the case of N = 5. The only difference is that N = 5 is replaced by an arbitrary 
N. For example, the bifurcation diagram in Fig. 6a corresponds to the situation in which 
a minimum with the N-th order cyclic symmetry for T > Tc becomes a saddle point with 
the N-th order cyclic symmetry for T < Tc. N minima without the cyclic symmetry appear 
together with N saddle points without the cyclic symmetry for T < Tc. These solutions 
have no reverse symmetry. 

(c) a(K), the reverse symmetry case 

Now, we consider the effect of the reverse symmetry. Let us assume that the minimum 
solution at the bifurcation point has the reverse symmetry. In this case, the elementary 

invariant combinations under the reverse transformation (4.32) are (z。,K zo,K) and (z贔＋
x(O, K)N~ 贔）， sincelx(O, K) [2 = 1. The effective free energy function F(zo,K) is the same 
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as in (5.30) except that (d認贔 +d点贔） is replaced by d3に以+x(O, K)竺以）• There is a 
symmetric solution (5.31) for any E. If (cdi/d砂く 0,there is another set of solutions 

恥 [J]=誓珈J/N)+(i心/2)

叫 [J]= ,e(i珈 J/N)+(i-rr/N)+(坤/2) (J=0,1, ... ,N-1), 

(5.34a) 

(5.34b) 

where'Y is given by (5.22a) and x(O, K) = e叫 Thestabilities of these solutions are the 
same as in the N = 5 case. Their transformation properties under the N-th order cyclic 
transformation are the same as in (5.33). The solutions (5.34) are transformed to each other 
by the N-th order cyclic transformation~ ょ:"land have no cyclic symmetry. Under the N-th 
order reverse transformation, they are transformed as 

冗岱zg,K[J]= x(O, K)a(K)m芝i,K[J]= zg,K[mK -J] (mod N) 

冗認噂，K[J]= x(O, K)a(K)m酪，K[J]=z贔[mK-J -1] (mod N). 

From (5.35), it is proved that they have the 1st order reverse symmetry: 

疇臼i,K[J]= zg,K[J] for m[J]K = 2J (mod N) 

心l1iZ証[J]=恥[J] for m'[J]K = 2J + 1 (mod N). 

(5.35a) 

(5.35b) 

(5.36a) 

(5.36b) 

Therefore, the reverse symmetry is not broken in this case. The bifurcation diagrams are 
the same as those without reverse symmetry except that all the solutions have the reverse 
symmetry. 

V-D P ・artial symmetry breaking of cyclic symmetry 

In Sec.V-C, it is assumed that there is no common divisor for K and N. In the following, 
it is assumed that the greatest common measure of N and K is Q (> 1). Let us define 

R = N/Q and P = K/Q. Then, NP= KR is satisfied and there is no common divisor for 
P and R. Main differences from the argument in Sec. V-C are the following. 

1. Under the N-th order cyclic transformation (4. 23), Zr,k is transformed like Zrょ→

a(k)mzr,k, while zb,x (2了b,x)is transformed like zb,1く→ a(k)→ b,K偶，K→a(k)-ml乞b,x)-
The transformation factors are written as a(k)m = i21r(mk)/N and a(K)ml = ei21r(mlK)/N 

(a(K)-ml = e―i21r(mlK)/N). In order that zb,x に贔） is transformed like Zr,k, the con-

dition k = lK (-lK) (mod N) should be satisfied. If k is a multiple of Q, there is an 

l that satisfies this condition. If k is not a multiple of Q, this condition can not be 
satisfied for any l. Therefore, (5.29c) is replaced by 

Z,.,k~{ 虞，1ztK if k = IQ 
0 if k is not a multiple of Q. 

(5.37) 

Since a(k)R = 1 fork= lQ, th e above solut10n satisfies the symmetry: 

Zrょ=a(k)mR各，K (m = 1, …, Q-1). (5.38) 
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This corresponds to the Q-th order cyclic symmetry: 

建直，k= Zr,k (m = 1, ... , Q -1), (5.39) 

where T;., 嘉~]三 Tば塁

2. Since a(K戸=1, elementary invariant combinations under the N-th order cyclic 

transformation (4.23) are given by (z。,KZo,K), Z贔 andz贔.Then, the effective free 
energy function F(zo,K) can be written as 

1 1 2 1 
F(zo,K) =ぅd叫 O,J(ZO,K)+ 4あ信O,KZo,K)+…十五(d3z贔+d:豆贔）＋…•

The set of solutions with the Q-th order cyclic symmetry (5.39) is given by 

恥 [J]=叫年J/R)-(坤o/R)

z贔[J]= 1e(i2r.J/R)+(i(1r→ o)/R) (J = 0, 1, …，R-1), 

(5.40) 

(5.41a) 

(5.45b) 

where, is given by (5.22a) and d3 = Id叶e袖0. Under the N-th order cyclic transforma-
tion, the solutions are transformed as 

TJ{"lzg; 災[J]= a(K)mz勾災[J]=z忍災[J+ mP] (mod R). (5.46) 

They are transformed to each other by~ 炉 (m= 1, …, R -l), since P and R have 

no common divisor. The bifurcation diagrams are the same as in Sec.V-C, except that 
the N solutions in Sec.V-C are replaced by the R solutions with the Q-th order cyclic 

symmetry. 

3. The effect of the reverse symmetry is the same as in Sec.V-C, if the role of N and K 

are replaced by Rand Pin (5.34) ~ (5.36), respectively. The reverse symmetry is not 
broken. The bifurcation diagrams are the same as those without the reverse symmetry 

except that all the solutions have the reverse symmetry. 

V-E Summary 

The previous arguments can be summarized as follows. The MFT free energy for a TSP 

with J¥T。citiesis invariant under the N。-thorder cyclic transformation (4.2) and the reverse 

transformation (4.3). At high temperature (T > -~min/4), th・ ere 1s a umque mm1mum 
of the free energy. This unique minimum has the N。-thorder cyclic symmetry and the 

reverse symmetry. In the MFT annealing process, one will follow this minimum solution to 

a sufficiently low temperature by gradual lowering of the temperature. As the temperature 
decreases, bifurcations of minimum solutions occur. 

If JV;。isdecomposed as JV;。=N1N, minima with the N-th order cyclic symmetry (4.7) 

may appear. These minima may or may not have the reverse symmetry (4.8). If they have 
the reverse symmetry, there must be N1 equivalent minima with the N-th order cyclic and 

reverse symmetries, due to the N。-thorder cyclic and reverse transformation invariance. 

These minima are related to each other by the N1-th order cyclic transformation. If they do 
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not have the reverse symmetry, there must be 2N1 equivalent minima with the N-th order 
cyclic symmetry due to the N。-thorder cyclic and reverse transformation invariance. 

There are three types of bifurcations. 

1. Saddle-node bifurcation 
2N1 (N1) equivalent minima with the N-th order cyclic symmetry (and the N-th 
order reverse symmetry) may appear or disappear simultaneously by the saddle-node 
bifurcation. In TSPs, most typically 2N。(,i.e.,N1 = Ni。,N = l) non-symmetric 
equivalent minima appear. 

2. Reverse symmetry brealing bifurcation 
The reverse symmetry may break by this bifurcation; it is one type of pitchfork bifur-
cation. The cyclic symmetry does not break by this bifurcation. There are four types 
of bifurcation diagrams as shown in Fig. 4. If there are N1 equivalent minima with 
the N-th order cyclic and reverse symmetries, each minimum may bifurcate into a pair 
of minima without the reverse symmetry but with the N-th order cyclic symmetry 
(Fig. 4a). If there are 2N1 equivalent minima without the reverse symmetry but with 
the N-th order cyclic symmetry, N1 pairs of minima may collide at the N1 bifurcation 
points and new凡 minimawith the N-th order cyclic and reverse symmetries may 
appear (Fig. 4b). Also, N1 equivalent minima with the N-th order cyclic and reverse 
symmetries may appear (Fig. 4c) or disappear (Fig. 4d) simultaneously. 

3. Cyclic symmetry breaking bifurcation 
The cyclic symmetry may break by this bifurcation. The reverse symmetry does not 
break by this bifurcation. There are four types of bifurcation diagrams as shown in 
Fig. 6. Let us assume N is further decomposed as N = R• Q. If there are 2N1 
(Nリequivalentminima with the N-th order cyclic symmetry (and the N-th order 
reverse symmetry), each minimum may bifurcate into R equivalent minima with the 
Q-th order cyclic symmetry (and the Q-th order reverse symmetry) (Fig. 6a). If there 
are 2凡 (N1)equivalent sets of R minima with the Q-th order cyclic symmetry (and 
the Q-th order reverse symmetry), 2N1 (Nリsetsof R minima collide at the 2N1 (Nサ
bifurcation points and new 2N1 (Nりminimawith the N-th order cyclic symmetry (and 
the N-th order reverse symmetry) may appear (Fig. 6b). Also, 2凡 (N1)equivalent 
minima with the N-th order cyclic symmetry (and the N-th order reverse symmetry) 
may appear (Fig. 6c) or disappear (Fig. 6d) simultaneously. 

If the annealing solution bifurcates into N1 (or 2Nリminimawith the N-th order cyclic 
symmetry, one can follow the annealing solution since these minima are equivalent to each 
other. If the annealing solution is annihilated and there are more than two distinctive local 
minima having lower free energy values than the annihilation point at that temperature, one 
may not uniquely follow the annealing solution because of the instability at the annihilation 
point. Whether the annealing solution is unique or not depends on the basin structure of the 
local minima. Therefore, the MFT arinealing procedure does not necessarily give a unique 
minimum solution in general, even though the procedure is deterministic. 

When new minima appear, these local minima have a higher free energy than that of 
the global minima at that temperature. However, free energy levels of local minima may 
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cross each other as the temperature decreases. Therefore, the MFT annealing procedure 
does not guarantee the optimal solution. As a consequence, the annealing solution in the 
MFT annealing is, in general, a not-so-bad solution and is not unique. 

V-F Example 

Let us show a typical example of a bifurcation diagram. Figure 7a is a bifurcation diagram 
of a 5-city TSP, where Vぃ(i= 1, …, 5) for every minimum are plotted against temperature. 
Figure 7b is the corresponding free energy diagram. In the experiment, the parameter A in 

(4.1) is set to be 1.5. 
At high temperature, i.e., T > 0.52, there is a unique minimum (a). This minimum 

has the 5th order cyclic and reverse symmetries. At T1~0.52, a saddle-node bifurcation 
occurs. Since all new minima have neither the cyclic symmetry nor the reverse symmetry, 
10 non-symmetric minima (b) appear simultaneously. Since the new born minima (b) are 
local minima, their free energy level must be higher than that of the symmetric minimum (a) 
at the bifurcation temperature. However, the former becomes lower than the latter as the 
temperature is lowered. This free energy crossing occurs at T~0.518 as seen in Fig. 7b. At 
T2~0.50, another saddle-node bifurcation occurs, and 10 non-symmetric minima (c) appear. 
At T3~0.48, a cyclic symmetry breaking bifurcation occurs. The minimum (a) with the 
5th order cyclic and reverse symmetries bifurcates into five minima (d) without the cyclic 
symmetry but with the 1st order reverse symmetry. Because of the reverse symmetry, there 
are only three cascades observed in Fig. 7a. At T4~0.475, a reverse symmetry breaking 
bifurcation occurs, and each of the five minima with the 1st order reverse symmetry (d) 
collides with saddle-points and eventually becomes a saddle-point. After this bifurcation, 
the original annealing solutions disappear. At this temperature, there exist two sets of 
minima, (b) and (c), and the free energy levels of these minima are lower than that of 
the disappearing minima as shown in Fig. 7b. In this case, due to the instability of the 
disappearing bifurcation point, which minimum is found is ambiguous, even if the procedure 
is deterministic. This example shows the non-uniqueness of the MFT annealing solution. 

VI MFT annealing of Potts spin model 

VI-A MFT for Potts spin model 

A Potts spin model [9, 14] for a TSP is defined by an energy function: 

l No No 

―一 I: Wa,n;b,mSa, ぶ，m+ I: la,nSa,n (6.1) 
2 a,b,n,m=l a,n=l 

E(S) 

l No A No N。 B No No 

—ー I: Dab幻 (Sb,n+l+ sb,n-i) + -
2 

区(I:Sa,n - lげ十一I:I: Sa,nふ，m,

a,b,n=l 
2 n=l a=l 2 

a=l n=f-m 

where Potts spin variables Sa,n (= 1 or 0) satisfy the constraints: 

支Sa,n= l (a= 1, …, N。)． (6.2) 
n=l 
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The MFT free energy for the Potts spin model (6.1) is given by 

F(V) 

E(V) 

E(V) + T H(V), 
l No N。
2 
ー L Wa,n;b,m Va,n½,m + L Ja,n Va, れ 9

a,b,n,m=l a,n=l 

(6.3a) 

(6.3b) 

會

＼

H(V) = 
No 

I: Va,n log Va,n, 
a,n=l 

(6.3c) 

where the analog variables Va,n E [O, 1] represent the probability that Sa,n takes a value 1 
and satisfies the constraint: 

: 兄,n=l 
n=l 

(a= 1, ... , N,。)． (6.4) 

Both the free energy function (6.3) and the constraint (6.4) are invariant under the N。-th
order cyclic transformation (4.2) and the N。-thorder reverse transformation (4.3). Therefore, 
minima with the N-th order cyclic symmetry (4.7) may appear if N。=NN1. They may or 

may not have the N-th order reverse symmetry (4.8). If they have the reverse symmetry, 
there must be N1 equivalent minima due to the N。-thorder cyclic transformation invariance 
as in Sec. V . If they do not have the reverse symmetry, there must be 2N 1 equivalent minima 

due to the N。-thorder cyclic and reverse transformation invariance. 
The gradient and the curvature of the entropy function (6.3c) are given by 

fJH 

av = log Va,n + l, 
a,n 
82 H l 

叩，nfJ½,m
= 6ab6nm―・ 

V a,n 

(6.5a) 

(6.5b) 

Since some values of Va,n are zero at the boundary, the gradient of H, (6.5a), diverges at 
the boundary. Since 1/Va,n~1, H(V) is a convex function. Then, the same argument as 

in Sec. III-A can be made. Namely, a minimum of the free energy function (6.3) with the 

constraint (6.4) occurs at the interior point and one can neglect the boundary constraint 

〇 ~Va,n~l in the local analysis of the minima. 

Let us define a new coordinate Ya,k by 

1 
囮＝ー ~Ya,ka(kf

N。
kErN 

゜

(a,n=l, …，No), (6.6) 

where a(k) is defined by (4.17) with N = N。.Since Va,n is real and a(k) = a(-k), 

Ya,k = Ya,-k (a= 1, …，N。;k E rN。)

is satisfied. By using the relation: 

N。
~a(kt = 0 for k # 0, k E fN。,
n=l 

(6.7) 

(6.8) 
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the constraint (6.4) can be explicitly solved as: 

戸Va,n= Ya,O = l (a = l, …, N。)． (6.9) 
n=l 

Then, the problem is reduced to finding the minimum of the free energy function (6.3), in 
which Ya,o is且xedto be 1, with respect to Ya,k for k i-0. The free energy is still invariant 
under the N,。-thorder cyclic transformation: 

Ya,kー→ tiiNo]Ya,k = a(k)mYa,k (a, m = 1, …, N。;k i-0, k E「N。) (6.10) 

and the Ni。-thorder reverse transformation: 

Ya,k ---+翌o]Yaょ =a(k)mい (a=1, …，N。;m=O, …，N。ー l;k=/-O,k Eい） • (6.11) 

Near the bifurcation point (V*, Tc), which has the N-th order cyclic symmetry (4.7), one can 
define eigenmode coordinate Zr,k as in Sec. IV-B by using the eigenvectors of the curvature 
matrix (82 F / 8V 8V) (V*, Tc). The transformation properties of the eigenmode coordinate 

Zr,k under the N-th order cyclic and reverse transformations are the same as in (4. 23) and 
(4.32). The analysis for the bifurcation of the minimum solution can be done in the same 
way as in Sec. V. The only difference is that the N。-thorder cyclic symmetry mode Ya,o 
is fixed by the constraint (6.9). Therefore, the minimum solution with the N。-thorder 
cyclic symmetry can not appear or disappear by the saddle-node bifurcation. Other types 
of bifurcations as described in Sec. V can also occur in this model. 

VII Conclusion 

In this paper, we investigated the MFT bifurcation processes for MFT applied to traveling 
salesman problems. Due to the cyclic and reverse symmetries of the TSP free energy function, 
some special bifurcations occur: cyclic symmetry breaking bifurcations and reverse symmetry 

breaking bifurcations. Saddle-node bifurcations also occur. Which type of bifurcations 
occurs depends on the symmetry of the eigenvector that corresponds to the zero eigenvalue 
mode of the free energy curvature matrix at the bifurcation point. In the MFT annealing 
process, a sequence of the above-mentioned bifurcations occurs and the bifurcation structure 
affects the q叫 ityof the annealing solution. The annealing solution in the MFT annealing is 
not unique in general, although the procedure is deterministic. Moreover, the MFT annealing 
procedure does not always give the optimal solution. As a consequence, the annealing 
solution is, in general, a not-so-bad solution and is not unique. Our approach can also be 

applied to the Potts spin model and its bifurcation structure is almost the same as that of 
the MFT. 
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Figure 2 Saddle-node bifurcation. 
A new mm1mum appears at the bifurcation point. 

A saddle-node bifurcation that generates a new local minimum. (a) Two graphs, y = dH/dx, 
and y ='rJ(X -x0)/T for T < Tc, T = Tc, and T > Tc, are shown. (b) The graph of (8F/8x) 
for T > Tc. There is only one minimum. (c) The graph of (8F/8x) for T = Tc. A new 
stationary point is generated. (d) The graph of (8F/8x) for T < Tc. There are three 
stationary points; two are minima and the other is a saddle-point. (e) The graphs of F for 
T > Tc, T = Tc, and T < Tc. (f) The graphs of (82 F /珈） • At the bifurcation point, i.e., 
T = Tc and x = 0, the free energy curvature is 0. (g) A new minimum and an unstable 
saddle point are born at T = Tc beside the existing minima as the temperature decreases. 
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Figure 3 Saddle-node bifurcation. 
A minimum disappears at the bifurcation point. 

A saddle-node bifurcation that annihilates a local minimum and a saddle point. (a) Two 
graphs, y = dH/dx, and y = rJ(X -xo)/T for T < Tc, T = Tc, and T > Tc, are shown. (b) 
The graph of (BF/Bx) for T > Tc. There are three stationary points; two are minima and 
the other is a saddle-point. (c) The graph of (BF/Bx) for T = Tc, The minima and the 
saddle point collide with each other. (d) The graph of (BF/Bx) for T < Tc. There is only 
one minimum. (e) A minimum and a saddle point collide with each other at T = Tc beside 
the existing minima and are annihilated as the temperature decreases. 
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Figure 1 

Schematic figure of the MFT bifurcation processes. The abscissa denotes the value of a 
state variable, and the ordinate denotes the temperature. The unique symmetric minimum 
at higしtemperaturebifurcates into equivalent minima without cyclic symmetry through 
a cyclic symmetry breaking bifurcation at T = T1, and is annihilated through a reverse 
symmetry breaking bifurcation at T = T3. Besides them, new minima are generated by 
saddle-node bifurcations T = T2 and T = T4. 
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Figure 4 

A reverse symmetry breaking bifurcation. The abscissa denotes the value of a state variable, 
and the ordinate denotes the temperature. The upper side of each figure denotes high 
temperature. The solid line and dotted line denote a stable stationary point (minimum) and 
an unstable stationary point (saddle point), respectively. The straight line and curved line 
denote a stationary point with reverse symmetry and without reverse symmetry, respectively. 
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Figure 5 
The shape of the effective free energy, Eq. (5.19), on a 2-dimensional subspace composed 
by two eigenvectors that correspond to the zero eigenvalue mode. Five minima without 
cyclic symmetry, five saddle points without cyclic symmetry, and a saddle point with cyclic 
symmetry can be observed. Stationary points without cyclic symmetry are located on the 
circle whose diameter is予

1 
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Figure 6 
A cyclic symmetry breaking bifurcation. The abscissa denotes the value of a state variable, 
and the ordinate denotes the temperature. The upper side of each figure denotes high 
temperature. The solid line and dotted line denote a stable stationary point (minimum) and 
an unstable stationary point (saddle point), respectively. The straight line and curved line 
denote a stationary point with the N-th order cyclic symmetry, and a stationary point with 
the Q-th order cyclic symmetry, respectively, where N = R• Q. In this figure, N = 5 and 
Q = l. 
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Figure 7(a) 

9.2 

，
 8.8 

8.6 

u.. 

8.4 

8.2 

8
 

嗜'.54 0.53 0.52 0.51 0.5 0.49 0.48 0.47 0.46 0.45 0.44 
T 

Figure 7(b) 

(a) A typical example of a 5-city TSP bifurcation diagram, where Vぃ(i= 1, …, 5) for every 
minimum are plotted against temperature. (b) The corresponding free energy diagram. 
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